
ptg18189312

ptg18189312

D E I T E L® D E V E L O P E R S E R I E S
The DEITEL® DEVELOPER SERIES is designed for professional programmers. The series presents
focused treatments on a growing list of emerging and mature technologies, including C# and .NET,
C++, C, JavaScript®, Internet and web development, Android™ app development, Java™, iOS® app
development, Swift™ and more. Each book in the series contains the same live-code teaching
methodology used in the Deitels’ HOW TO PROGRAM SERIES college textbooks—in this book,
most concepts are presented in the context of completely coded, live apps.

A B O U T T H E C O V E R
The cover of this book features a fractal—a geometric figure that can be generated from a pattern
repeated recursively. The figure is modified by applying the pattern to each segment of the original
figure. Although these figures were studied before the 20th century, it was the mathematician
Benoit Mandelbrot who in the 1970s introduced the term fractal, along with the specifics of how
a fractal is created and practical applications. Fractal geometry provides mathematical models for
many complex forms found in nature, such as mountains, clouds, galaxy clusters and the folds of
the brain. Not all fractals resemble objects in nature. Drawing fractals has become a popular art form.

D E I T E L & A S S O C I A T E S , I N C .
Deitel & Associates, Inc., founded by Paul Deitel and Harvey Deitel, is an internationally recognized
authoring and corporate training organization, specializing in computer programming languages,
object technology, Internet and web software technology, and Android and iOS app development. The
company’s clients include many of the world’s largest corporations, government agencies, branches of
the military and academic institutions. The company offers instructor-led training courses delivered at
client sites worldwide on major programming languages and platforms. Through its 40-year publishing
partnership with Prentice Hall/Pearson, Deitel & Associates, Inc., creates leading-edge programming
professional books, college textbooks, LiveLessons™ video products, e-books and REVEL™ interactive
multimedia courses (revel.pearson.com) with integrated labs and assessment. To learn more about
Deitel & Associates, Inc., its text and video publications and its worldwide instructor-led, on-site training
curriculum, visit www.deitel.com/or send an email to deitel@deitel.com. Join the Deitel social
media communities on Facebook® (facebook.com/DeitelFan), Twitter® (twitter.com/deitel),
Google+™ (google.com/+DeitelFan), LinkedIn® (bit.ly/DeitelLinkedIn) and YouTube™
(youtube.com/DeitelTV), and subscribe to the Deitel® Buzz Online newsletter (www.deitel.com/
newsletter/subscribe.html).

Cover illustration by Lisa Ewing/GettyImages

COMMENTS FROM RECENT EDITIONS REVIEWERS (Continued From Back Cover)

“I really love the way you guys write—it’s interesting and informative!”—Shay Friedman, Microsoft Visual C# MVP

“Good introduction to the most popular GUI controls and working with events. I use the techniques of the strings chapter in the line of business
apps that I build. I liked the files and streams chapter and the real-world example. I’m pleased to see the inclusion of additional advanced material
online.” —Shawn Weisfeld, Microsoft MVP and President and Founder of UserGroup.tv

“Outstanding presentations of Windows Forms and the .NET I/O facilities. Amazingly clear and intuitive presentation of generics; this chapter represents
why I like this book so much—it really shines at presenting advanced topics in a way that can be easily understood. The presentation of LINQ to
XML is fabulous.” —Octavio Hernandez, Microsoft Certified Solution Developer (MCSD), Principal Software Engineer at Advanced Bionics

“The beginning of the chapter ‘Classes and Objects: A Deeper Look’ shows a class in an ‘amateur’ state—then you do a great job of describing
how many ways one can improve it until it pretty much becomes air-tight in security and functionality. Operator overloading is a good description.
Good example of extension methods.” —Bradley Sward, College of Dupage

“Updating an already excellent book with the latest .NET features can only result in a superb product. I like the explanation of properties and
the discussion of value vs. reference types. I like your explanation of pass-by-value vs. pass-by-reference. The arrays chapter is one of my
favorites. Great job explaining inheritance, polymorphism, interfaces and operator overloading.”

—José Antonio González Seco, Parliament of Andalusia, Spain

“Great job explaining exception handling—with great examples; the new features look pretty sweet. Shows the important things you need
to get going with GUI. Delegates are huge and covered well. Interesting description of C# 6’s exception filters.”

—Bradley Sward, College of Dupage

“An excellent introduction to XML, LINQ to XML and related technologies.” —Helena Kotas, Microsoft

“Good overview of relational databases—it hits on the right LINQ idioms.”—Alex Turner, Microsoft

“Excellent chapter on exceptions.” —Vinay Ahuja, Architect, Microsoft Corporation

“Great chapter on polymorphism.” —Eric Lippert, Formerly of Microsoft

“Introduction to LINQ and the List Collection is a great chapter; you do such a good and consistent job of explaining your code. The focus on
using LINQ to manage data is cutting edge.”—Stephen Hustedde, South Mountain College

“The presentations are always superbly clear. Excellent intro to Visual Studio and visual programming! I like the early presentation of the new
C# 6 string interpolation feature. Introducing UML class diagrams in parallel with the presentation of the language is a great idea. I like the
early introduction of exception handling. Brings readers up to speed fast in GUI design and implementation, and event-driven programming.
Nice example demonstrating the method call stack and activation records. Database chapter perfectly explains LINQ to Entities and UI binding.”

—Octavio Hernandez, Microsoft Certified Solution Developer (MCSD), Principal Software Engineer at Advanced Bionics

“Chapter 2 is perfect for introducing Visual Studio and GUI elements—I wish I had this chapter when I was first getting back into computers.
Everything felt just right in the methods chapter. Recursion will warp anyone’s brain—the stack discussion really helps readers understand
what is going on. I really like the deck of cards example, being a former casino gaming programmer. Multidimensional arrays are handled well.
I like the attention to detail and the UML. Thank you for showing correct code-formatting conventions. Thorough display of all the ‘pass-by’ types.
The card shuffling and dealing simulation is a great example for bringing together many concepts. Good use of overloaded functions for
rectangular arrays and jagged arrays. The LINQ chapter is perfect—much more will be revealed in later chapters but readers will remember
this. The collections are a nice addition as well—a chapter that is important to get a taste of now so the later material can be feasted upon.
Describes inheritance perfectly.” —Bradley Sward, College of Dupage

“This new edition solidifies it as the fundamental tool for learning C# updated to the latest C# 6 features. It covers from the fundamentals of
OOP to the most advanced topics, all in an easily accessible way thanks to its crystal-clear explanations. A good job explaining such a complex
topic as asynchronous programming.”—José Antonio González Seco, Parliament of Andalusia, Spain

“I liked the natural use of C# 6 string interpolation. A good clear explanation of LINQ query syntax. GUI apps are where coding starts to become
fun—you’ve handled it well and covered all the bases. The Game of Craps is an awesome example. I love that you’re paying attention to
formats and using them well.”—Lucian Wischik, C# Language Design Team, Microsoft

“An excellent resource to tame the beast that is C#. In the Windows forms chapter, cool how the message box will be customized to the clicked
buttons. I love the Paint example. A good look at files and directories—with text mode it’s easier to see what’s going on—binary mode is
much more efficient so it’s good to see it here. You show error checking in GUI and files/streams well. File chooser functionality is a nice touch.
Good example of serialization. The recursive directory searching is nice.”—Bradley Sward, College of Dupage

7/7/16 12:31 PM

http://www.deitel.com/
http://www.deitel.com/newsletter/subscribe.html
http://www.deitel.com/newsletter/subscribe.html

ptg18189312

C# 6 FOR PROGRAMMERS
SIXTH EDITION

DEITEL® DEVELOPER SERIES

ptg18189312

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks.
Where those designations appear in this book, and the publisher was aware of a trademark claim, the designations have
been printed with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no expressed or implied warranty
of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or consequential
damages in connection with or arising out of the use of the information or programs contained herein.

Microsoft and/or its respective suppliers make no representations about the suitability of the information contained in
the documents and related graphics published as part of the services for any purpose. All such documents and related
graphics are provided “as is” without warranty of any kind. Microsoft and/or its respective suppliers hereby disclaim
all warranties and conditions with regard to this information, including all warranties and conditions of merchantabi-
lity, whether express, implied or statutory, fitness for a particular purpose, title and non-infringement. In no event shall
Microsoft and/or its respective suppliers be liable for any special, indirect or consequential damages or any damages
whatsoever resulting from loss of use, data or profits, whether in an action of contract, negligence or other tortious
action, arising out of or in connection with the use or performance of information available from the services.

The documents and related graphics contained herein could include technical inaccuracies or typographical errors.
Changes are periodically added to the information herein. Microsoft and/or its respective suppliers may make improve-
ments and/or changes in the product(s) and/or the program(s) described herein at any time. Partial screen shots may
be viewed in full within the software version specified.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or special sales,
which may include electronic versions and/or custom covers and content particular to your business, training goals,
marketing focus, and branding interests.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact intlcs@pearson.com.

Visit us on the Web: informit.com/ph

Library of Congress Control Number: 2016946157

Copyright © 2017 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and permission
must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission
in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding
permissions, request forms and the appropriate contacts within the Pearson Education Global Rights & Permissions
Department, please visit www.pearsoned.com/permissions/.

ISBN-13: 978-0-13-459632-7
ISBN-10: 0-13-459632-3

Text printed in the United States at RR Donnelley in Crawfordsville, Indiana.
First printing, August 2016

http://www.pearsoned.com/permissions/

ptg18189312

C# 6 FOR PROGRAMMERS
SIXTH EDITION

DEITEL® DEVELOPER SERIES

Boston • Columbus • Indianapolis • New York • San Francisco • Amsterdam • Cape Town
Dubai • London • Madrid • Milan • Munich • Paris • Montreal • Toronto • Delhi • Mexico City

São Paulo • Sydney • Hong Kong • Seoul • Singapore • Taipei • Tokyo

Paul Deitel
Deitel & Associates, Inc.

Harvey Deitel
Deitel & Associates, Inc.

ptg18189312

Deitel® Ser ies Page
Deitel® Developer Series
Android™ 6 for Programmers: An App-Driven

Approach, 3/E
C for Programmers with an Introduction to C11
C++11 for Programmers
C# 6 for Programmers
iOS® 8 for Programmers: An App-Driven

Approach with Swift™

Java™ for Programmers, 3/E
JavaScript for Programmers
Swift™ for Programmers

How To Program Series
Android™ How to Program, 3/E
C++ How to Program, 10/E
C How to Program, 8/E
Java™ How to Program, Early Objects Version, 10/E
Java™ How to Program, Late Objects Version, 10/E
Internet & World Wide Web How to Program, 5/E
Visual Basic® 2012 How to Program, 6/E
Visual C#® How to Program, 6/E

Simply Series
Simply Visual Basic® 2010: An App-Driven

Approach, 4/E
Simply C++: An App-Driven Tutorial Approach

VitalSource Web Books
http://bit.ly/DeitelOnVitalSource
Android™ How to Program, 2/E and 3/E
C++ How to Program, 8/E and 9/E
Java™ How to Program, 9/E and 10/E
Simply C++: An App-Driven Tutorial Approach
Simply Visual Basic® 2010: An App-Driven

Approach, 4/E
Visual Basic® 2012 How to Program, 6/E
Visual C#® 2012 How to Program, 5/E
Visual C#® How to Program, 6/E

LiveLessons Video Learning Products
http://informit.com/deitel
Android™ 6 App Development Fundamentals, 3/E
C++ Fundamentals
Java™ Fundamentals, 2/E
C# 6 Fundamentals
C# 2012 Fundamentals
iOS® 8 App Development Fundamentals with

Swift™, 3/E
JavaScript Fundamentals
Swift™ Fundamentals

REVEL™ Interactive Multimedia
REVEL™ for Deitel Java™

To receive updates on Deitel publications, Resource Centers, training courses, partner offers and more,
please join the Deitel communities on

• Facebook®—http://facebook.com/DeitelFan

• Twitter®—http://twitter.com/deitel

• LinkedIn®—http://linkedin.com/company/deitel-&-associates

• YouTube™—http://youtube.com/DeitelTV

• Google+™—http://google.com/+DeitelFan

and register for the free Deitel® Buzz Online e-mail newsletter at:
 http://www.deitel.com/newsletter/subscribe.html

To communicate with the authors, send e-mail to:
 deitel@deitel.com

For information on programming-languages corporate training seminars offered by Deitel & Associates,
Inc. worldwide, write to deitel@deitel.com or visit:
 http://www.deitel.com/training/

For continuing updates on Pearson/Deitel publications visit:
http://www.deitel.com
http://www.pearsonhighered.com/deitel/

Visit the Deitel Resource Centers, which will help you master programming languages, software develop-
ment, Android™ and iOS® app development, and Internet- and web-related topics:
 http://www.deitel.com/ResourceCenters.html

http://bit.ly/DeitelOnVitalSource
http://informit.com/deitel
http://facebook.com/DeitelFan
http://twitter.com/deitel
http://linkedin.com/company/deitel-&-associates
http://youtube.com/DeitelTV
http://google.com/+DeitelFan
http://www.deitel.com/newsletter/subscribe.html
http://www.deitel.com/training/
http://www.deitel.com
http://www.pearsonhighered.com/deitel/
http://www.deitel.com/ResourceCenters.html

ptg18189312

Trademarks
DEITEL and the double-thumbs-up bug are registered trademarks of Deitel and Associates, Inc.

Microsoft® and Windows® are registered trademarks of the Microsoft Corporation in the U.S.A. and
other countries. This book is not sponsored or endorsed by or affiliated with the Microsoft Corporation.

UNIX is a registered trademark of The Open Group.

Throughout this book, trademarks are used. Rather than put a trademark symbol in every occurrence of
a trademarked name, we state that we are using the names in an editorial fashion only and to the benefit
of the trademark owner, with no intention of infringement of the trademark.

ptg18189312

In memory of William Siebert, Professor Emeritus of
Electrical Engineering and Computer Science at MIT:

Your use of visualization techniques in
your Signals and Systems lectures inspired
the way generations of engineers, computer
scientists, educators and authors present
their work.

Harvey and Paul Deitel

ptg18189312

Preface xxi

Before You Begin xxxii

1 Introduction 1
1.1 Introduction 2
1.2 Object Technology: A Brief Review 2
1.3 C# 5

1.3.1 Object-Oriented Programming 5
1.3.2 Event-Driven Programming 6
1.3.3 Visual Programming 6
1.3.4 Generic and Functional Programming 6
1.3.5 An International Standard 6
1.3.6 C# on Non-Windows Platforms 6
1.3.7 Internet and Web Programming 7
1.3.8 Asynchronous Programming with async and await 7

1.4 Microsoft’s .NET 7
1.4.1 .NET Framework 7
1.4.2 Common Language Runtime 7
1.4.3 Platform Independence 8
1.4.4 Language Interoperability 8

1.5 Microsoft’s Windows® Operating System 8
1.6 Visual Studio Integrated Development Environment 10
1.7 Painter Test-Drive in Visual Studio Community 10

2 Introduction to Visual Studio and
Visual Programming 15

2.1 Introduction 16
2.2 Overview of the Visual Studio Community 2015 IDE 16

2.2.1 Introduction to Visual Studio Community 2015 16
2.2.2 Visual Studio Themes 17
2.2.3 Links on the Start Page 17
2.2.4 Creating a New Project 18
2.2.5 New Project Dialog and Project Templates 19
2.2.6 Forms and Controls 20

Contents

ptg18189312

viii Contents

2.3 Menu Bar and Toolbar 21
2.4 Navigating the Visual Studio IDE 24

2.4.1 Solution Explorer 25
2.4.2 Toolbox 26
2.4.3 Properties Window 26

2.5 Help Menu and Context-Sensitive Help 28
2.6 Visual Programming: Creating a Simple App that Displays

Text and an Image 29
2.7 Wrap-Up 38
2.8 Web Resources 39

3 Introduction to C# App Programming 40
3.1 Introduction 41
3.2 Simple App: Displaying a Line of Text 41

3.2.1 Comments 42
3.2.2 using Directive 43
3.2.3 Blank Lines and Whitespace 43
3.2.4 Class Declaration 43
3.2.5 Main Method 46
3.2.6 Displaying a Line of Text 46
3.2.7 Matching Left ({) and Right (}) Braces 47

3.3 Creating a Simple App in Visual Studio 47
3.3.1 Creating the Console App 47
3.3.2 Changing the Name of the App File 48
3.3.3 Writing Code and Using IntelliSense 49
3.3.4 Compiling and Running the App 51
3.3.5 Errors, Error Messages and the Error List Window 51

3.4 Modifying Your Simple C# App 52
3.4.1 Displaying a Single Line of Text with Multiple Statements 52
3.4.2 Displaying Multiple Lines of Text with a Single Statement 53

3.5 String Interpolation 55
3.6 Another C# App: Adding Integers 56

3.6.1 Declaring the int Variable number1 57
3.6.2 Declaring Variables number2 and sum 57
3.6.3 Prompting the User for Input 58
3.6.4 Reading a Value into Variable number1 58
3.6.5 Prompting the User for Input and Reading a Value into number2 59
3.6.6 Summing number1 and number2 59
3.6.7 Displaying the sum with string Interpolation 59
3.6.8 Performing Calculations in Output Statements 59

3.7 Arithmetic 59
3.7.1 Arithmetic Expressions in Straight-Line Form 60
3.7.2 Parentheses for Grouping Subexpressions 60
3.7.3 Rules of Operator Precedence 60

3.8 Decision Making: Equality and Relational Operators 61
3.9 Wrap-Up 65

ptg18189312

 Contents ix

4 Introduction to Classes, Objects,
Methods and strings 67

4.1 Introduction 68
4.2 Test-Driving an Account Class 69

4.2.1 Instantiating an Object—Keyword new 69
4.2.2 Calling Class Account’s GetName Method 70
4.2.3 Inputting a Name from the User 70
4.2.4 Calling Class Account’s SetName Method 71

4.3 Account Class with an Instance Variable and Set and Get Methods 71
4.3.1 Account Class Declaration 71
4.3.2 Keyword class and the Class Body 72
4.3.3 Instance Variable name of Type string 72
4.3.4 SetName Method 73
4.3.5 GetName Method 75
4.3.6 Access Modifiers private and public 75
4.3.7 Account UML Class Diagram 76

4.4 Creating, Compiling and Running a Visual C# Project with Two Classes 77
4.5 Software Engineering with Set and Get Methods 78
4.6 Account Class with a Property Rather Than Set and Get Methods 79

4.6.1 Class AccountTest Using Account’s Name Property 79
4.6.2 Account Class with an Instance Variable and a Property 81
4.6.3 Account UML Class Diagram with a Property 83

4.7 Auto-Implemented Properties 83
4.8 Account Class: Initializing Objects with Constructors 84

4.8.1 Declaring an Account Constructor for Custom Object Initialization 84
4.8.2 Class AccountTest: Initializing Account Objects When

They’re Created 85
4.9 Account Class with a Balance; Processing Monetary Amounts 87

4.9.1 Account Class with a decimal balance Instance Variable 87
4.9.2 AccountTest Class That Uses Account Objects with Balances 90

4.10 Wrap-Up 93

5 Control Statements: Part 1 95
5.1 Introduction 96
5.2 Control Structures 96

5.2.1 Sequence Structure 97
5.2.2 Selection Statements 98
5.2.3 Iteration Statements 98
5.2.4 Summary of Control Statements 99

5.3 if Single-Selection Statement 99
5.4 if…else Double-Selection Statement 100

5.4.1 Nested if…else Statements 101
5.4.2 Dangling-else Problem 102

ptg18189312

x Contents

5.4.3 Blocks 102
5.4.4 Conditional Operator (?:) 103

5.5 Student Class: Nested if…else Statements 103
5.6 while Iteration Statement 106
5.7 Counter-Controlled Iteration 107

5.7.1 Implementing Counter-Controlled Iteration 108
5.7.2 Integer Division and Truncation 110

5.8 Sentinel-Controlled Iteration 110
5.8.1 Implementing Sentinel-Controlled Iteration 110
5.8.2 Program Logic for Sentinel-Controlled Iteration 112
5.8.3 Braces in a while Statement 113
5.8.4 Converting Between Simple Types Explicitly and Implicitly 113
5.8.5 Formatting Floating-Point Numbers 114

5.9 Nested Control Statements 114
5.10 Compound Assignment Operators 117
5.11 Increment and Decrement Operators 118

5.11.1 Prefix Increment vs. Postfix Increment 119
5.11.2 Simplifying Increment Statements 120
5.11.3 Operator Precedence and Associativity 120

5.12 Simple Types 121
5.13 Wrap-Up 121

6 Control Statements: Part 2 123
6.1 Introduction 124
6.2 Essentials of Counter-Controlled Iteration 124
6.3 for Iteration Statement 125

6.3.1 A Closer Look at the for Statement’s Header 126
6.3.2 General Format of a for Statement 126
6.3.3 Scope of a for Statement’s Control Variable 127
6.3.4 Expressions in a for Statement’s Header Are Optional 127
6.3.5 UML Activity Diagram for the for Statement 127

6.4 App: Summing Even Integers 128
6.5 App: Compound-Interest Calculations 129

6.5.1 Performing the Interest Calculations with Math Method pow 130
6.5.2 Formatting with Field Widths and Alignment 131
6.5.3 Caution: Do Not Use float or double for Monetary Amounts 131

6.6 do…while Iteration Statement 132
6.7 switch Multiple-Selection Statement 133

6.7.1 Using a switch Statement to Count A, B, C, D and F Grades 133
6.7.2 switch Statement UML Activity Diagram 138
6.7.3 Notes on the Expression in Each case of a switch 138

6.8 Class AutoPolicy Case Study: strings in switch Statements 139
6.9 break and continue Statements 141

6.9.1 break Statement 141
6.9.2 continue Statement 142

6.10 Logical Operators 143

ptg18189312

 Contents xi

6.10.1 Conditional AND (&&) Operator 143
6.10.2 Conditional OR (||) Operator 144
6.10.3 Short-Circuit Evaluation of Complex Conditions 145
6.10.4 Boolean Logical AND (&) and Boolean Logical OR (|) Operators 145
6.10.5 Boolean Logical Exclusive OR (^) 145
6.10.6 Logical Negation (!) Operator 146
6.10.7 Logical Operators Example 146

6.11 Wrap-Up 149

7 Methods: A Deeper Look 150
7.1 Introduction 151
7.2 Packaging Code in C# 152
7.3 static Methods, static Variables and Class Math 152

7.3.1 Math Class Methods 153
7.3.2 Math Class Constants PI and E 154
7.3.3 Why Is Main Declared static? 154
7.3.4 Additional Comments About Main 155

7.4 Methods with Multiple Parameters 155
7.4.1 Keyword static 157
7.4.2 Method Maximum 157
7.4.3 Assembling strings with Concatenation 157
7.4.4 Breaking Apart Large string Literals 158
7.4.5 When to Declare Variables as Fields 159
7.4.6 Implementing Method Maximum by Reusing Method Math.Max 159

7.5 Notes on Using Methods 159
7.6 Argument Promotion and Casting 160

7.6.1 Promotion Rules 161
7.6.2 Sometimes Explicit Casts Are Required 161

7.7 The .NET Framework Class Library 162
7.8 Case Study: Random-Number Generation 164

7.8.1 Creating an Object of Type Random 164
7.8.2 Generating a Random Integer 164
7.8.3 Scaling the Random-Number Range 165
7.8.4 Shifting Random-Number Range 165
7.8.5 Combining Shifting and Scaling 165
7.8.6 Rolling a Six-Sided Die 165
7.8.7 Scaling and Shifting Random Numbers 168
7.8.8 Repeatability for Testing and Debugging 168

7.9 Case Study: A Game of Chance; Introducing Enumerations 169
7.9.1 Method RollDice 172
7.9.2 Method Main’s Local Variables 172
7.9.3 enum Type Status 172
7.9.4 The First Roll 173
7.9.5 enum Type DiceNames 173
7.9.6 Underlying Type of an enum 173
7.9.7 Comparing Integers and enum Constants 173

ptg18189312

xii Contents

7.10 Scope of Declarations 174
7.11 Method-Call Stack and Activation Records 177

7.11.1 Method-Call Stack 177
7.11.2 Stack Frames 177
7.11.3 Local Variables and Stack Frames 178
7.11.4 Stack Overflow 178
7.11.5 Method-Call Stack in Action 178

7.12 Method Overloading 181
7.12.1 Declaring Overloaded Methods 181
7.12.2 Distinguishing Between Overloaded Methods 182
7.12.3 Return Types of Overloaded Methods 182

7.13 Optional Parameters 183
7.14 Named Parameters 184
7.15 C# 6 Expression-Bodied Methods and Properties 185
7.16 Recursion 186

7.16.1 Base Cases and Recursive Calls 186
7.16.2 Recursive Factorial Calculations 186
7.16.3 Implementing Factorial Recursively 187

7.17 Value Types vs. Reference Types 189
7.18 Passing Arguments By Value and By Reference 190

7.18.1 ref and out Parameters 191
7.18.2 Demonstrating ref, out and Value Parameters 192

7.19 Wrap-Up 194

8 Arrays; Introduction to Exception Handling 195
8.1 Introduction 196
8.2 Arrays 197
8.3 Declaring and Creating Arrays 198
8.4 Examples Using Arrays 199

8.4.1 Creating and Initializing an Array 199
8.4.2 Using an Array Initializer 200
8.4.3 Calculating a Value to Store in Each Array Element 201
8.4.4 Summing the Elements of an Array 202
8.4.5 Iterating Through Arrays with foreach 203
8.4.6 Using Bar Charts to Display Array Data Graphically;

Introducing Type Inference with var 205
8.4.7 Using the Elements of an Array as Counters 207

8.5 Using Arrays to Analyze Survey Results; Intro to Exception Handling 208
8.5.1 Summarizing the Results 210
8.5.2 Exception Handling: Processing the Incorrect Response 211
8.5.3 The try Statement 211
8.5.4 Executing the catch Block 211
8.5.5 Message Property of the Exception Parameter 211

8.6 Case Study: Card Shuffling and Dealing Simulation 212
8.6.1 Class Card and Getter-Only Auto-Implemented Properties 212
8.6.2 Class DeckOfCards 213

ptg18189312

 Contents xiii

8.6.3 Shuffling and Dealing Cards 215
8.7 Passing Arrays and Array Elements to Methods 216
8.8 Case Study: GradeBook Using an Array to Store Grades 219
8.9 Multidimensional Arrays 225

8.9.1 Rectangular Arrays 225
8.9.2 Jagged Arrays 226
8.9.3 Two-Dimensional Array Example: Displaying Element Values 227

8.10 Case Study: GradeBook Using a Rectangular Array 230
8.11 Variable-Length Argument Lists 236
8.12 Using Command-Line Arguments 237
8.13 (Optional) Passing Arrays by Value and by Reference 240
8.14 Wrap-Up 244

9 Introduction to LINQ and the List Collection 245
9.1 Introduction 246
9.2 Querying an Array of int Values Using LINQ 247

9.2.1 The from Clause 249
9.2.2 The where Clause 250
9.2.3 The select Clause 250
9.2.4 Iterating Through the Results of the LINQ Query 250
9.2.5 The orderby Clause 250
9.2.6 Interface IEnumerable<T> 251

9.3 Querying an Array of Employee Objects Using LINQ 251
9.3.1 Accessing the Properties of a LINQ Query’s Range Variable 255
9.3.2 Sorting a LINQ Query’s Results by Multiple Properties 255
9.3.3 Any, First and Count Extension Methods 255
9.3.4 Selecting a Property of an Object 255
9.3.5 Creating New Types in the select Clause of a LINQ Query 255

9.4 Introduction to Collections 256
9.4.1 List<T> Collection 256
9.4.2 Dynamically Resizing a List<T> Collection 257

9.5 Querying the Generic List Collection Using LINQ 261
9.5.1 The let Clause 263
9.5.2 Deferred Execution 263
9.5.3 Extension Methods ToArray and ToList 263
9.5.4 Collection Initializers 263

9.6 Wrap-Up 264
9.7 Deitel LINQ Resource Center 264

10 Classes and Objects: A Deeper Look 265
10.1 Introduction 266
10.2 Time Class Case Study; Throwing Exceptions 266

10.2.1 Time1 Class Declaration 267
10.2.2 Using Class Time1 268

10.3 Controlling Access to Members 270

ptg18189312

xiv Contents

10.4 Referring to the Current Object’s Members with the this Reference 271
10.5 Time Class Case Study: Overloaded Constructors 273

10.5.1 Class Time2 with Overloaded Constructors 273
10.5.2 Using Class Time2’s Overloaded Constructors 277

10.6 Default and Parameterless Constructors 279
10.7 Composition 280

10.7.1 Class Date 280
10.7.2 Class Employee 282
10.7.3 Class EmployeeTest 283

10.8 Garbage Collection and Destructors 284
10.9 static Class Members 284
10.10 readonly Instance Variables 288
10.11 Class View and Object Browser 289

10.11.1 Using the Class View Window 289
10.11.2 Using the Object Browser 290

10.12 Object Initializers 291
10.13 Operator Overloading; Introducing struct 291

10.13.1 Creating Value Types with struct 292
10.13.2 Value Type ComplexNumber 292
10.13.3 Class ComplexTest 294

10.14 Time Class Case Study: Extension Methods 295
10.15 Wrap-Up 298

11 Object-Oriented Programming: Inheritance 299
11.1 Introduction 300
11.2 Base Classes and Derived Classes 301
11.3 protected Members 303
11.4 Relationship between Base Classes and Derived Classes 304

11.4.1 Creating and Using a CommissionEmployee Class 305
11.4.2 Creating a BasePlusCommissionEmployee Class without

Using Inheritance 309
11.4.3 Creating a CommissionEmployee–BasePlusCommissionEmployee

Inheritance Hierarchy 314
11.4.4 CommissionEmployee–BasePlusCommissionEmployee Inheritance

Hierarchy Using protected Instance Variables 317
11.4.5 CommissionEmployee–BasePlusCommissionEmployee Inheritance

Hierarchy Using private Instance Variables 320
11.5 Constructors in Derived Classes 324
11.6 Software Engineering with Inheritance 324
11.7 Class object 325
11.8 Wrap-Up 326

12 OOP: Polymorphism and Interfaces 327
12.1 Introduction 328
12.2 Polymorphism Examples 330

ptg18189312

 Contents xv

12.3 Demonstrating Polymorphic Behavior 331
12.4 Abstract Classes and Methods 334
12.5 Case Study: Payroll System Using Polymorphism 336

12.5.1 Creating Abstract Base Class Employee 337
12.5.2 Creating Concrete Derived Class SalariedEmployee 339
12.5.3 Creating Concrete Derived Class HourlyEmployee 341
12.5.4 Creating Concrete Derived Class CommissionEmployee 342
12.5.5 Creating Indirect Concrete Derived

Class BasePlusCommissionEmployee 344
12.5.6 Polymorphic Processing, Operator is and Downcasting 345
12.5.7 Summary of the Allowed Assignments Between Base-Class

and Derived-Class Variables 350
12.6 sealed Methods and Classes 351
12.7 Case Study: Creating and Using Interfaces 352

12.7.1 Developing an IPayable Hierarchy 353
12.7.2 Declaring Interface IPayable 355
12.7.3 Creating Class Invoice 355
12.7.4 Modifying Class Employee to Implement Interface IPayable 357
12.7.5 Using Interface IPayable to Process Invoices and Employees

Polymorphically 358
12.7.6 Common Interfaces of the .NET Framework Class Library 360

12.8 Wrap-Up 361

13 Exception Handling: A Deeper Look 362
13.1 Introduction 363
13.2 Example: Divide by Zero without Exception Handling 364

13.2.1 Dividing By Zero 365
13.2.2 Enter a Non-Numeric Denominator 366
13.2.3 Unhandled Exceptions Terminate the App 366
13.3 Example: Handling DivideByZeroExceptions and FormatExceptions

367
13.3.1 Enclosing Code in a try Block 369
13.3.2 Catching Exceptions 369
13.3.3 Uncaught Exceptions 370
13.3.4 Termination Model of Exception Handling 371
13.3.5 Flow of Control When Exceptions Occur 371

13.4 .NET Exception Hierarchy 372
13.4.1 Class SystemException 372
13.4.2 Which Exceptions Might a Method Throw? 373

13.5 finally Block 374
13.5.1 Moving Resource-Release Code to a finally Block 374
13.5.2 Demonstrating the finally Block 375
13.5.3 Throwing Exceptions Using the throw Statement 379
13.5.4 Rethrowing Exceptions 379
13.5.5 Returning After a finally Block 380

13.6 The using Statement 381

ptg18189312

xvi Contents

13.7 Exception Properties 382
13.7.1 Property InnerException 382
13.7.2 Other Exception Properties 383
13.7.3 Demonstrating Exception Properties and Stack Unwinding 383
13.7.4 Throwing an Exception with an InnerException 385
13.7.5 Displaying Information About the Exception 386

13.8 User-Defined Exception Classes 386
13.9 Checking for null References; Introducing C# 6’s ?. Operator 390

13.9.1 Null-Conditional Operator (?.) 390
13.9.2 Revisiting Operators is and as 391
13.9.3 Nullable Types 391
13.9.4 Null Coalescing Operator (??) 392

13.10 Exception Filters and the C# 6 when Clause 392
13.11 Wrap-Up 393

14 Graphical User Interfaces with
Windows Forms: Part 1 394

14.1 Introduction 395
14.2 Windows Forms 396
14.3 Event Handling 398

14.3.1 A Simple Event-Driven GUI 399
14.3.2 Auto-Generated GUI Code 400
14.3.3 Delegates and the Event-Handling Mechanism 403
14.3.4 Another Way to Create Event Handlers 404
14.3.5 Locating Event Information 405

14.4 Control Properties and Layout 406
14.4.1 Anchoring and Docking 407
14.4.2 Using Visual Studio To Edit a GUI’s Layout 409

14.5 Labels, TextBoxes and Buttons 410
14.6 GroupBoxes and Panels 413
14.7 CheckBoxes and RadioButtons 416

14.7.1 CheckBoxes 416
14.7.2 Combining Font Styles with Bitwise Operators 418
14.7.3 RadioButtons 419

14.8 PictureBoxes 424
14.9 ToolTips 426
14.10 NumericUpDown Control 428
14.11 Mouse-Event Handling 430
14.12 Keyboard-Event Handling 433
14.13 Wrap-Up 436

15 Graphical User Interfaces with
Windows Forms: Part 2 438

15.1 Introduction 439

ptg18189312

 Contents xvii

15.2 Menus 439
15.3 MonthCalendar Control 449
15.4 DateTimePicker Control 450
15.5 LinkLabel Control 453
15.6 ListBox Control 456
15.7 CheckedListBox Control 461
15.8 ComboBox Control 464
15.9 TreeView Control 468
15.10 ListView Control 474
15.11 TabControl Control 480
15.12 Multiple Document Interface (MDI) Windows 484
15.13 Visual Inheritance 492
15.14 User-Defined Controls 497
15.15 Wrap-Up 500

16 Strings and Characters: A Deeper Look 502
16.1 Introduction 503
16.2 Fundamentals of Characters and Strings 504
16.3 string Constructors 505
16.4 string Indexer, Length Property and CopyTo Method 506
16.5 Comparing strings 507
16.6 Locating Characters and Substrings in strings 511
16.7 Extracting Substrings from strings 514
16.8 Concatenating strings 515
16.9 Miscellaneous string Methods 515
16.10 Class StringBuilder 517

16.11 Length and Capacity Properties, EnsureCapacity Method and
Indexer of Class StringBuilder 518

16.12 Append and AppendFormat Methods of Class StringBuilder 520
16.13 Insert, Remove and Replace Methods of Class StringBuilder 522

16.14 Char Methods 525
16.15 Introduction to Regular Expressions (Online) 527
16.16 Wrap-Up 527

17 Files and Streams 529
17.1 Introduction 530
17.2 Files and Streams 530
17.3 Creating a Sequential-Access Text File 531
17.4 Reading Data from a Sequential-Access Text File 540
17.5 Case Study: Credit-Inquiry Program 544
17.6 Serialization 549
17.7 Creating a Sequential-Access File Using Object Serialization 550
17.8 Reading and Deserializing Data from a Binary File 554
17.9 Classes File and Directory 557

17.9.1 Demonstrating Classes File and Directory 558

ptg18189312

xviii Contents

17.9.2 Searching Directories with LINQ 561
17.10 Wrap-Up 565

18 Generics 567
18.1 Introduction 568
18.2 Motivation for Generic Methods 569
18.3 Generic-Method Implementation 571
18.4 Type Constraints 574

18.4.1 IComparable<T> Interface 574
18.4.2 Specifying Type Constraints 574

18.5 Overloading Generic Methods 577
18.6 Generic Classes 577
18.7 Wrap-Up 587

19 Generic Collections; Functional Programming
with LINQ/PLINQ 588

19.1 Introduction 589
19.2 Collections Overview 590
19.3 Class Array and Enumerators 593

19.3.1 C# 6 using static Directive 595
19.3.2 Class UsingArray’s static Fields 596
19.3.3 Array Method Sort 596
19.3.4 Array Method Copy 596
19.3.5 Array Method BinarySearch 596
19.3.6 Array Method GetEnumerator and Interface IEnumerator 596
19.3.7 Iterating Over a Collection with foreach 597
19.3.8 Array Methods Clear, IndexOf, LastIndexOf and Reverse 597

19.4 Dictionary Collections 597
19.4.1 Dictionary Fundamentals 598
19.4.2 Using the SortedDictionary Collection 599

19.5 Generic LinkedList Collection 603
19.6 C# 6 Null Conditional Operator ?[] 607
19.7 C# 6 Dictionary Initializers and Collection Initializers 608
19.8 Delegates 608

19.8.1 Declaring a Delegate Type 610
19.8.2 Declaring a Delegate Variable 610
19.8.3 Delegate Parameters 611
19.8.4 Passing a Method Name Directly to a Delegate Parameter 611

19.9 Lambda Expressions 611
19.9.1 Expression Lambdas 613
19.9.2 Assigning Lambdas to Delegate Variables 614
19.9.3 Explicitly Typed Lambda Parameters 614
19.9.4 Statement Lambdas 614

19.10 Introduction to Functional Programming 614
19.11 Functional Programming with LINQ Method-Call Syntax and Lambdas 616

ptg18189312

 Contents xix

19.11.1 LINQ Extension Methods Min, Max, Sum and Average 619
19.11.2 Aggregate Extension Method for Reduction Operations 619
19.11.3 The Where Extension Method for Filtering Operations 621
19.11.4 Select Extension Method for Mapping Operations 622

19.12 PLINQ: Improving LINQ to Objects Performance with Multicore 622
19.13 (Optional) Covariance and Contravariance for Generic Types 626
19.14 Wrap-Up 628

20 Databases and LINQ 629
20.1 Introduction 630
20.2 Relational Databases 631
20.3 A Books Database 632
20.4 LINQ to Entities and the ADO.NET Entity Framework 636
20.5 Querying a Database with LINQ 637

20.5.1 Creating the ADO.NET Entity Data Model Class Library 639
20.5.2 Creating a Windows Forms Project and Configuring It to

Use the Entity Data Model 643
20.5.3 Data Bindings Between Controls and the Entity Data Model 645

20.6 Dynamically Binding Query Results 651
20.6.1 Creating the Display Query Results GUI 652
20.6.2 Coding the Display Query Results App 653

20.7 Retrieving Data from Multiple Tables with LINQ 655
20.8 Creating a Master/Detail View App 661

20.8.1 Creating the Master/Detail GUI 661
20.8.2 Coding the Master/Detail App 663

20.9 Address Book Case Study 664
20.9.1 Creating the Address Book App’s GUI 666
20.9.2 Coding the Address Book App 667

20.10 Tools and Web Resources 671
20.11 Wrap-Up 671

21 Asynchronous Programming with
async and await 672

21.1 Introduction 673
21.2 Basics of async and await 675

21.2.1 async Modifier 675
21.2.2 await Expression 675
21.2.3 async, await and Threads 675

21.3 Executing an Asynchronous Task from a GUI App 676
21.3.1 Performing a Task Asynchronously 676
21.3.2 Method calculateButton_Click 678
21.3.3 Task Method Run: Executing Asynchronously in a Separate Thread 679
21.3.4 awaiting the Result 679
21.3.5 Calculating the Next Fibonacci Value Synchronously 679

21.4 Sequential Execution of Two Compute-Intensive Tasks 680

ptg18189312

xx Contents

21.5 Asynchronous Execution of Two Compute-Intensive Tasks 682
21.5.1 awaiting Multiple Tasks with Task Method WhenAll 685
21.5.2 Method StartFibonacci 686
21.5.3 Modifying a GUI from a Separate Thread 686
21.5.4 awaiting One of Several Tasks with Task Method WhenAny 686

21.6 Invoking a Flickr Web Service Asynchronously with HttpClient 687
21.6.1 Using Class HttpClient to Invoke a Web Service 691
21.6.2 Invoking the Flickr Web Service’s

flickr.photos.search Method 691
21.6.3 Processing the XML Response 692
21.6.4 Binding the Photo Titles to the ListBox 693
21.6.5 Asynchronously Downloading an Image’s Bytes 694

21.7 Displaying an Asynchronous Task’s Progress 694
21.8 Wrap-Up 698

A Operator Precedence Chart 700

B Simple Types 702

C ASCII Character Set 704

Index 705

ptg18189312

Welcome to the world of leading-edge software development with Microsoft’s® Visual
C#® programming language. C# 6 for Programmers, 6/e is based on C# 6 and related Mi-
crosoft software technologies.1 You’ll be using the .NET platform and the Visual Studio®

Integrated Development Environment on which you’ll conveniently write, test and debug
your applications and run them on Windows® devices. The Windows operating system
runs on desktop and notebook computers, mobile phones and tablets, game systems and
a great variety of devices associated with the emerging “Internet of Things.” We believe
that this book will give you an informative, engaging, challenging and entertaining intro-
duction to C#.

You’ll study C# in the context of four of today’s most popular programming para-
digms:

• object-oriented programming,

• structured programming,

• generic programming and

• functional programming (new in this edition).

If you haven’t already done so, please read the back cover and check out the additional
reviewer comments on the inside back cover—these capture the essence of the book con-
cisely. In this Preface we provide more detail.

The book is loaded with “live-code” examples—most new concepts are presented in
the context of complete working C# apps, followed by one or more executions showing
program inputs and outputs. In the few cases where we show a code snippet, to ensure cor-
rectness first we tested it in a working program then copied the code and pasted it into the
book. We include a broad range of example apps selected from business, education, com-
puter science, personal utilities, mathematics, simulation, game playing, graphics and
many other areas. We also provide abundant tables, line drawings and UML diagrams.

Read the Before You Begin section after this Preface for instructions on setting up
your computer to run the 170+ code examples and to enable you to develop your own C#
apps. The source code for all of the book’s examples is available at

Use the source code we provide to compile and run each program as you study it—this
will help you master C# and related Microsoft technologies faster and at a deeper level.

1. At the time of this writing, Microsoft has not yet released the official C# 6 Specification. To view an
unofficial copy, visit https://github.com/ljw1004/csharpspec/blob/gh-pages/README.md

http://www.deitel.com/books/CSharp6FP

Preface

https://github.com/ljw1004/csharpspec/blob/gh-pages/README.md
http://www.deitel.com/books/CSharp6FP

ptg18189312

xxii Preface

Contacting the Authors
As you read the book, if you have a question, we’re easy to reach at

We’ll respond promptly.

Join the Deitel & Associates, Inc. Social Media Communities
For book updates, visit

subscribe to the Deitel® Buzz Online newsletter

and join the conversation on

• Facebook®—http://facebook.com/DeitelFan

• LinkedIn®—http://linkedin.com/company/deitel-&-associates

• YouTube®—http://youtube.com/DeitelTV

• Twitter®—http://twitter.com/Deitel

• Instagram®—http://instagram.com/DeitelFan

• Google+™—http://google.com/+DeitelFan

New C# 6 Features
We introduce key new C# 6 language features throughout the book (Fig. 1)—each defin-
ing occurrence is marked with a “6” margin icon as shown next to this paragraph.

deitel@deitel.com

http://www.deitel.com/books/CSharp6FP

http://www.deitel.com/newsletter/subscribe.html

C# 6 new language feature First introduced in

string interpolation Section 3.5

expression-bodied methods and get accessors Section 7.15

auto-implemented property initializers Section 8.6.1

getter-only auto-implemented properties Section 8.6.1

nameof operator Section 10.5.1

null-conditional operator (?.) Section 13.9.1

when clause for exception filtering Section 13.10

using static directive Section 19.3.1

null conditional operator (?[]) Section 19.6

collection initializers for any collection with
an Add extension method

Section 19.7

index initializers Section 19.7

Fig. 1 | C# 6 new language features.

http://facebook.com/DeitelFan
http://linkedin.com/company/deitel-&-associates
http://youtube.com/DeitelTV
http://twitter.com/Deitel
http://instagram.com/DeitelFan
http://google.com/+DeitelFan
http://www.deitel.com/books/CSharp6FP
http://www.deitel.com/newsletter/subscribe.html

ptg18189312

 A Tour of the Book xxiii

A Tour of the Book
Here’s a quick walkthrough of the book’s key features.

Introduction to Visual C# and Visual Studio 2015 Community Edition
The discussions in

• Chapter 1, Introduction

• Chapter 2, Introduction to Visual Studio and Visual Programming

introduce the C# programming language, Microsoft’s .NET platform and Visual Pro-
gramming. The vast majority of the book’s examples will run on Windows 7, 8 and 10
using the Visual Studio 2015 Community edition with which we test-drive a Painter app in
Section 1.7. Chapter 1 briefly reviews object-oriented programming terminology and
concepts on which the rest of the book depends.

Introduction to C# Fundamentals
The discussions in

• Chapter 3, Introduction to C# App Programming

• Chapter 4, Introduction to Classes, Objects, Methods and strings

• Chapter 5, Control Statements: Part 1

• Chapter 6, Control Statements: Part 2

• Chapter 7, Methods: A Deeper Look

• Chapter 8, Arrays; Introduction to Exception Handling

present rich coverage of C# programming fundamentals (data types, classes, objects, oper-
ators, control statements, methods and arrays) through a series of object-oriented pro-
gramming case studies. Chapter 8 briefly introduces exception handling with an example
that demonstrates attempting to access an element outside an array’s bounds.

Object-Oriented Programming: A Deeper Look
The discussions in

• Chapter 9, Introduction to LINQ and the List Collection

• Chapter 10, Classes and Objects: A Deeper Look

• Chapter 11, Object-Oriented Programming: Inheritance

• Chapter 12, OOP: Polymorphism and Interfaces

• Chapter 13, Exception Handling: A Deeper Look

provide a deeper look at object-oriented programming, including classes, objects, inheri-
tance, polymorphism, interfaces and exception handling. An online two-chapter case
study on designing and implementing the object-oriented software for a simple ATM is
described later in this preface.

Chapter 9 introduces Microsoft’s Language Integrated Query (LINQ) technology,
which provides a uniform syntax for manipulating data from various data sources, such as
arrays, collections and, as you’ll see in later chapters, databases and XML. Chapter 9 is
intentionally simple and brief to encourage readers to begin using LINQ technology early.

ptg18189312

xxiv Preface

Section 9.4 introduces the List collection. Later in the book, we take a deeper look at
LINQ, using LINQ to Entities (for querying databases) and LINQ to XML.

Windows Forms Graphical User Interfaces (GUIs)
The discussions in

• Chapter 14, Graphical User Interfaces with Windows Forms: Part 1

• Chapter 15, Graphical User Interfaces with Windows Forms: Part 2

present a detailed introduction to building GUIs using Windows Forms. We also use Win-
dows Forms GUIs in several later chapters.

Strings and Files
The discussions in

• Chapter 16, Strings and Characters: A Deeper Look

• Chapter 17, Files and Streams

investigate strings in more detail, and introduce text-file processing and object-serializa-
tion for inputting and outputting entire objects.

Generics and Generic Collections
The discussions in

• Chapter 18, Generics

• Chapter 19, Generic Collections; Functional Programming with LINQ/PLINQ

introduce generics and generic collections. Chapter 18 introduces C# generics and
demonstrates how to create type-safe generic methods and a type-safe generic class. Rather
than “reinventing the wheel,” most C# programmers should use .NET’s built-in search-
ing, sorting and generic collections (prepackaged data structures) capabilities, which are
discussed in Chapter 19.

Functional Programming with LINQ, PLINQ, Lambdas, Delegates and Immutability
In addition to generic collections, Chapter 19 now introduces functional programming,
showing how to use it with LINQ to Objects to write code more concisely and with fewer
bugs than programs written using previous techniques. In Section 19.12, with one addi-
tional method call, we demonstrate with timing examples how PLINQ (Parallel LINQ)
can improve LINQ to Objects performance substantially on multicore systems.

Database with LINQ to Entities and SQL Server
The discussions in

• Chapter 20, Databases and LINQ

introduce database programming with the ADO.NET Entity Framework, LINQ to Enti-
ties and Microsoft’s free version of SQL Server that’s installed with the Visual Studio 2015
Community edition.

Asynchronous Programming
The discussions in

ptg18189312

 Online Bonus Content xxv

• Chapter 21, Asynchronous Programming with async and await

show how to take advantage of multicore architectures by writing applications that can
process tasks asynchronously, which can improve app performance and GUI responsive-
ness in apps with long-running or compute-intensive tasks. The async modifier and await
operator greatly simplify asynchronous programming, reduce errors and enable your apps
to take advantage of the processing power in today’s multicore computers, smartphones
and tablets. In this edition, we added a case study that uses the Task Parallel Library (TPL),
async and await in a GUI app—we keep a progress bar moving along in the GUI thread
in parallel with a lengthy, compute-intensive calculation in another thread.

Online Bonus Content
Figure 2 shows online bonus content available with the publication of the book.

Accessing the Bonus Content
To access these materials—and for downloads, updates and corrections as they become
available—register your copy of C# 6 for Programmers, 6/e at informit.com. To register:

1. Go to

2. Log in or create an account.

3. Enter the product ISBN—9780134596327—and click Submit.

Once you’ve registered your book, you’ll find any available bonus content under Regis-
tered Products. Here’s a quick walkthrough of the initial online content.

XML and LINQ to XML
The Extensible Markup Language (XML), introduced briefly in Chapter 21, is pervasive
in the software-development industry, e-business and throughout the .NET platform.
XML is required to understand XAML—a Microsoft XML vocabulary that’s used to de-
scribe graphical user interfaces, graphics and multimedia for Windows Presentation Foun-
dation (WPF) apps, Universal Windows Platform (UWP) apps and Windows 10 Mobile

Online topics

XML and LINQ to XML

Windows Presentation Foundation (WPF) GUI and XAML

Windows Presentation Foundation (WPF) Graphics and Multimedia

ATM Case Study, Part 1: Object-Oriented Design with the UML

ATM Case Study, Part 2: Implementing an OO Design in C#

Appendix: Using the Visual Studio Debugger

Fig. 2 | Online topics on the C# 6 for Programmers, 6/e Companion Website.

 http://informit.com/register

http://informit.com/register

ptg18189312

xxvi Preface

apps. We present XML in more depth, then discuss LINQ to XML, which allows you to
query XML content using LINQ syntax.

Windows Presentation Foundation (WPF) GUI, Graphics and Multimedia
Windows Presentation Foundation (WPF)—created after Windows Forms and before
UWP—is another Microsoft technology for building robust GUI, graphics and multime-
dia desktop apps. We discuss WPF in the context of a painting app, a text editor, a color
chooser, a book-cover viewer, a television video player, various animations, and speech
synthesis and recognition apps.

We featured WPF in the previous edition of this book. Our plans now are to move
on to UWP for creating apps that can run on desktop, mobile and other Windows devices.
For this reason, the WPF chapters are provided as is from the previous edition—we’ll no
longer evolve this material. Many professionals are still actively using Windows Forms and
WPF.

Case Study: Using the UML to Develop an Object-Oriented Design and C# Implemen-
tation of the Software for an ATM (Automated Teller Machine)
The UML™ (Unified Modeling Language™) is a popular graphical language for visually
modeling object-oriented systems. We introduce the UML in the early chapters. We then
provide an online object-oriented design case study in which we use the UML to design and
implement the software for a simple ATM. We analyze a typical requirements document that
specifies the details of the system to be built, i.e., what the system is supposed to do. We then
design the system, specifying how it should work—in particular, we

• determine the classes needed to implement that system,

• determine the attributes the classes need to have,

• determine the behaviors the classes’ methods need to exhibit and

• specify how the classes must interact with one another to meet the system require-
ments.

From the design, we then produce a complete working C# implementation. Students in
our professional courses often report a “light bulb moment”—the case study helps them
“tie it all together” and truly understand object orientation.

Future Online Bonus Content
Periodically, we may make additional bonus chapters and appendices available at

to registered users of the book. Check this website and/or write to us at deitel@deitel.com
for the status of this content. These may cover:

• Universal Windows Platform (UWP) GUI, graphics and multimedia

• ASP.NET web app development

• Web Services

• Microsoft Azure™ Cloud Computing

http://www.informit.com/title/9780134596327

http://www.informit.com/title/9780134596327

ptg18189312

 Notes About the Presentation xxvii

Universal Windows Platform (UWP) for Desktop and Mobile Apps
The Universal Windows Platform (UWP) is designed to provide a common platform and
user experience across all Windows devices, including personal computers, smartphones,
tablets, Xbox and even Microsoft’s new HoloLens virtual reality and augmented reality ho-
lographic headset—all using nearly identical code.2

REST Web Services
Web services enable you to package app functionality in a manner that turns the web into
a library of reusable services. We used a Flickr REST-based web service in Chapter 21.

Microsoft Azure™ Cloud Computing
Microsoft Azure’s web services enable you to develop, manage and distribute your apps in
“the cloud.”

Notes About the Presentation
C# 6 for Programmers, 6/e contains a rich collection of examples. We concentrate on build-
ing well-engineered, high performance software and stress program clarity.

Syntax Shading. For readability, we syntax shade the code, similar to the way Visual Stu-
dio colors the code. Our syntax-shading conventions are:

Code Highlighting. We emphasize key code segments by placing them in gray rectangles.

Using Fonts for Emphasis. We place the key terms and the index’s page reference for each
defining occurrence in bold text for easy reference. We show on-screen components in the
bold Helvetica font (for example, the File menu) and Visual C# program text in the Lucida
font (for example, int count = 5;). We use italics for emphasis.

Objectives. The chapter objectives preview the topics covered in the chapter.

Programming Tips. We include programming tips that focus on important aspects of
program development. These tips and practices represent the best we’ve gleaned from a
combined nine decades of programming, professional training and college teaching expe-
rience.

2. As of Summer 2016, Windows Forms, WPF and UWP apps all can be posted for distribution, either
free or for sale, via the Windows Store. See http://bit.ly/DesktopToUWP for more information.

comments appear like this
keywords appear like this
constants and literal values appear like this
all other code appears in black

Good Programming Practices
The Good Programming Practices call attention to techniques that will help you pro-
duce programs that are clearer, more understandable and more maintainable.

http://bit.ly/DesktopToUWP

ptg18189312

xxviii Preface

Index. We’ve included an extensive index for reference. Defining occurrences of key terms
in the index are highlighted with a bold page number.

Obtaining the Software Used in C# 6 for Programmers, 6/e
We wrote the book’s code examples in C# 6 for Programmers, 6/e using Microsoft’s free
Visual Studio 2015 Community edition. See the Before You Begin section that follows
this preface for download and installation instructions.

Microsoft DreamSpark™
Microsoft provides many of its professional developer tools to students for free via a pro-
gram called DreamSpark (http://www.dreamspark.com). If you’re a student using this
book in a college course, see the website for details on verifying your status so you take
advantage of this program.

Acknowledgments
We’d like to thank Barbara Deitel of Deitel & Associates, Inc. She painstakingly re-
searched the latest versions of Visual C#, Visual Studio, .NET and other key technologies.
We’d also like to acknowledge Frank McCown, Ph.D., Associate Professor of Computer
Science, Harding University for his suggestion to include an example that used a
ProgressBar with async and await in Chapter 21—so we ported to C# a similar example
from our book Java for Programmers, 3/e.

We’re fortunate to have worked with the dedicated team of publishing professionals
at Pearson. We appreciate the extraordinary efforts and mentorship of our friend and pro-
fessional colleague, Mark L. Taub, Editor-in-Chief of the Pearson IT Professional Group.

Common Programming Errors
Pointing out these Common Programming Errors reduces the likelihood that you’ll
make them.

Error-Prevention Tips
These tips contain suggestions for exposing and removing bugs from your programs; many
of the tips describe aspects of Visual C# that prevent bugs from getting into programs.

Performance Tips
These tips highlight opportunities for making your programs run faster or minimizing the
amount of memory that they occupy.

Software Engineering Observations
The Software Engineering Observations highlight architectural and design issues that
affect the construction of software systems, especially large-scale systems.

Look-and-Feel Observations
These observations help you design attractive, user-friendly graphical user interfaces that
conform to industry norms.

http://www.dreamspark.com

ptg18189312

 Reviewers xxix

Kristy Alaura did an extraordinary job recruiting the book’s reviewers and managing the
review process. Julie Nahil did a wonderful job bringing the book to publication and
Chuti Prasertsith worked his magic on the cover design.

Reviewers
The book was scrutinized by industry C# experts and academics teaching C# courses.
They provided countless suggestions for improving the presentation. Any remaining flaws
in the book are our own.

Sixth Edition Reviewers: Lucian Wischik (Microsoft Visual C# Team), Octavio Her-
nandez (Microsoft Certified Solutions Developer, Principal Software Engineer at
Advanced Bionics), José Antonio González Seco (Parliament of Andalusia, Spain), Bradley
Sward (College of Dupage) and Qian Chen (Department of Engineering Technology:
Computer Science Technology Program, Savannah State University).

Other recent edition reviewers: Douglas B. Bock (MCSD.NET, Southern Illinois
University Edwardsville), Dan Crevier (Microsoft), Shay Friedman (Microsoft Visual C#
MVP), Amit K. Ghosh (University of Texas at El Paso), Marcelo Guerra Hahn (Micro-
soft), Kim Hamilton (Software Design Engineer at Microsoft and co-author of Learning
UML 2.0), Huanhui Hu (Microsoft Corporation), Stephen Hustedde (South Mountain
College), James Edward Keysor (Florida Institute of Technology), Narges Kasiri (Okla-
homa State University), Helena Kotas (Microsoft), Charles Liu (University of Texas at San
Antonio), Chris Lovett (Software Architect at Microsoft), Bashar Lulu (INETA Country
Leader, Arabian Gulf), John McIlhinney (Spatial Intelligence; Microsoft MVP Visual
Developer, Visual Basic), Ged Mead (Microsoft Visual Basic MVP, DevCity.net), Anand
Mukundan (Architect, Polaris Software Lab Ltd.), Dr. Hamid R. Nemati (The University
of North Carolina at Greensboro), Timothy Ng (Microsoft), Akira Onishi (Microsoft),
Jeffrey P. Scott (Blackhawk Technical College), Joe Stagner (Senior Program Manager,
Developer Tools & Platforms, Microsoft), Erick Thompson (Microsoft), Jesús Ubaldo
Quevedo-Torrero (University of Wisconsin–Parkside, Department of Computer Sci-
ence), Shawn Weisfeld (Microsoft MVP and President and Founder of UserGroup.tv) and
Zijiang Yang (Western Michigan University).

As you read the book, we’d sincerely appreciate your comments, criticisms, correc-
tions and suggestions for improvement. Please address all correspondence to:

We’ll respond promptly. It was fun writing C# 6 for Programmers, 6/e—we hope you enjoy
reading it!

Paul Deitel
Harvey Deitel

About the Authors
Paul Deitel, CEO and Chief Technical Officer of Deitel & Associates, Inc., has over 35
years of experience in computing. He is a graduate of MIT, where he studied Information
Technology. Through Deitel & Associates, Inc., he has delivered hundreds of corporate
programming training courses worldwide to clients, including Cisco, IBM, Boeing, Sie-
mens, Sun Microsystems (now Oracle), Dell, Fidelity, NASA at the Kennedy Space Cen-

deitel@deitel.com

ptg18189312

xxx Preface

ter, the National Severe Storm Laboratory, NOAA (National Oceanic and Atmospheric
Administration), White Sands Missile Range, Rogue Wave Software, SunGard, Nortel
Networks, Puma, iRobot, Invensys and many more. He and his co-author, Dr. Harvey
Deitel, are the world’s best-selling programming-language professional book/textbook/
video authors.

Paul was named a Microsoft® Most Valuable Pro-
fessional (MVP) for C# in 2012–2014. According to
Microsoft, “the Microsoft MVP Award is an annual
award that recognizes exceptional technology commu-
nity leaders worldwide who actively share their high
quality, real-world expertise with users and Micro-
soft.” He also holds the Java Certified Programmer
and Java Certified Developer designations and is an Oracle Java Champion.

Dr. Harvey Deitel, Chairman and Chief Strategy Officer of Deitel & Associates, Inc.,
has over 55 years of experience in the computer field. Dr. Deitel earned B.S. and M.S.
degrees in Electrical Engineering from MIT and a Ph.D. in Mathematics from Boston
University—he studied computing in each of these programs before they spun off Com-
puter Science programs. He has extensive college teaching experience, including earning
tenure and serving as the Chairman of the Computer Science Department at Boston Col-
lege before founding Deitel & Associates, Inc., in 1991 with his son, Paul. The Deitels’
publications have earned international recognition, with translations published in Japa-
nese, German, Russian, Spanish, French, Polish, Italian, Simplified Chinese, Traditional
Chinese, Korean, Portuguese, Greek, Urdu and Turkish. Dr. Deitel has delivered hun-
dreds of programming courses to corporate, government, military and academic clients.

About Deitel & Associates, Inc.
Deitel & Associates, Inc., founded by Paul Deitel and Harvey Deitel, is an internationally
recognized authoring and corporate training organization, specializing in computer
programming languages, object technology, Internet and web software technology, and
Android and iOS app development. The company’s clients include many of the world’s
largest corporations, government agencies, branches of the military and academic
institutions. The company offers instructor-led training courses delivered at client sites
worldwide on major programming languages and platforms, including C#®, C++, C,
Java™, Android app development, iOS app development, Swift™, Visual Basic® and In-
ternet and web programming.

Through its 40-year publishing partnership with Prentice Hall/Pearson, Deitel &
Associates, Inc., creates leading-edge programming professional books, college textbooks,
LiveLessons video products, e-books and REVEL™ interactive multimedia courses with
integrated labs and assessment (http://revel.pearson.com). Deitel & Associates, Inc.
and the authors can be reached at:

To learn more about Deitel’s corporate training curriculum, visit

deitel@deitel.com

http://www.deitel.com/training

C# MVP 2012–2014

http://revel.pearson.com
http://www.deitel.com/training

ptg18189312

 About Deitel & Associates, Inc. xxxi

To request a proposal for worldwide on-site, instructor-led training at your organization,
send an e-mail to deitel@deitel.com.

Individuals wishing to purchase Deitel books can do so via

Individuals wishing to purchase Deitel LiveLessons video training can do so at:

Deitel books and LiveLessons videos are generally available electronically to Safari Books
Online subscribers at:

You can get a free 10-day Safari Books Online trial at:

Bulk orders by corporations, the government, the military and academic institutions
should be placed directly with Pearson. For more information, visit

http://bit.ly/DeitelOnAmazon

http://bit.ly/DeitelOnInformit

http://SafariBooksOnline.com

https://www.safaribooksonline.com/register/

http://www.informit.com/store/sales.aspx

http://bit.ly/DeitelOnAmazon
http://bit.ly/DeitelOnInformit
http://SafariBooksOnline.com
https://www.safaribooksonline.com/register/http://www.informit.com/store/sales.aspx
https://www.safaribooksonline.com/register/http://www.informit.com/store/sales.aspx

ptg18189312

Please read this section before using the book to ensure that your computer is set up properly.

Font and Naming Conventions
We use fonts to distinguish between features, such as menu names, menu items, and other
elements that appear in the program-development environment. Our convention is

• to emphasize Visual Studio features in a sans-serif bold font (e.g., Properties win-
dow) and

• to emphasize program text in a fixed-width sans-serif font (e.g., bool x = true).

Visual Studio 2015 Community Edition
This book uses Windows 10 and the free Microsoft Visual Studio 2015 Community edi-
tion—Visual Studio also can run on various older Windows versions. Ensure that your
system meets Visual Studio 2015 Community edition’s minimum hardware and software
requirements listed at:

Next, download the installer from

then execute it and follow the on-screen instructions to install Visual Studio.
Though we developed the book’s examples on Windows 10, most of the examples will

run on Windows 7 and higher. Most examples without graphical user interfaces (GUIs)
also will run on other C# and .NET implementations—see “If You’re Not Using Micro-
soft Visual C#…” later in this Before You Begin for more information.

Viewing File Extensions
Several screenshots in C# 6 for Programmers, 6/e display file names with file-name exten-
sions (e.g., .txt, .cs, .png, etc.). You may need to adjust your system’s settings to display
file-name extensions. If you’re using Windows 7:

1. Open Windows Explorer.

2. Press the Alt key to display the menu bar, then select Folder Options… from the
Tools menu.

3. In the dialog that appears, select the View tab.

https://www.visualstudio.com/en-us/visual-studio-2015-system-
requirements-vs

https://www.visualstudio.com/products/visual-studio-express-vs

Before You Begin

https://www.visualstudio.com/en-us/visual-studio-2015-system-requirements-vs
https://www.visualstudio.com/en-us/visual-studio-2015-system-requirements-vs
https://www.visualstudio.com/products/visual-studio-express-vs

ptg18189312

 Obtaining the Source Code xxxiii

4. In the Advanced settings pane, uncheck the box to the left of the text Hide exten-
sions for known file types.

5. Click OK to apply the setting and close the dialog.

If you’re using Windows 8 or higher:

1. Open File Explorer.

2. Click the View tab.

3. Ensure that the File name extensions checkbox is checked.

Obtaining the Source Code
C# 6 for Programmers, 6/e’s source-code examples are available for download at

Click the Examples link to download the ZIP archive file to your computer—most brows-
ers will save the file into your user account’s Downloads folder. You can extract the ZIP
file’s contents using built-in Windows capabilities, or using a third-party archive-file tool
such as WinZip (www.winzip.com) or 7-zip (www.7-zip.org).

Throughout the book, steps that require you to access our example code on your com-
puter assume that you’ve extracted the examples from the ZIP file and placed them in your
user account’s Documents folder. You can extract them anywhere you like, but if you
choose a different location, you’ll need to update our steps accordingly. To extract the ZIP
file’s contents using the built-in Windows capabilities:

1. Open Windows Explorer (Windows 7) or File Explorer (Windows 8 and higher).

2. Locate the ZIP file on your system, typically in your user account’s Downloads
folder.

3. Right click the ZIP file and select Extract All….

4. In the dialog that appears, navigate to the folder where you’d like to extract the
contents, then click the Extract button.

Configuring Visual Studio for Use with This Book
In this section, you’ll use Visual Studio’s Options dialog to configure several Visual Studio
options. Setting these options is not required, but will make your Visual Studio match
what we show in the book’s Visual Studio screen captures.

Visual Studio Theme
Visual Studio has three color themes—Blue, Dark and Light. We used the Blue theme with
light colored backgrounds to make the book’s screen captures easier to read. To switch
themes:

1. In the Visual Studio Tools menu, select Options… to display the Options dialog.

2. In the left column, select Environment.

3. Select the Color theme you wish to use.

Keep the Options dialog open for the next step.

http://www.deitel.com/books/CSharp6FP

http://www.winzip.com
http://www.7-zip.org
http://www.deitel.com/books/CSharp6FP

ptg18189312

xxxiv Before You Begin

Line Numbers
Throughout the book’s discussions, we refer to code in our examples by line number. Many
programmers find it helpful to display line numbers in Visual Studio as well. To do so:

1. Expand the Text Editor node in the Options dialog’s left pane.

2. Select All Languages.

3. In the right pane, check the Line numbers checkbox.

Keep the Options dialog open for the next step.

Tab Size for Code Indents
Microsoft recommends four-space indents in source code, which is the Visual Studio de-
fault. Due to the fixed and limited width of code lines in print, we use three-space in-
dents—this reduces the number of code lines that wrap to a new line, making the code a
bit easier to read. If you wish to use three-space indents:

1. Expand the C# node in the Options dialog’s left pane and select Tabs.

2. Ensure that Insert spaces is selected.

3. Enter 3 for both the Tab size and Indent size fields.

4. Click OK to save your settings.

If You’re Not Using Microsoft Visual C#…
C# can be used on other platforms via two open-source projects managed by the .NET
Foundation (http://www.dotnetfoundation.org)—the Mono Project and .NET Core.

Mono Project
The Mono Project is an open source, cross-platform C# and .NET Framework implemen-
tation that can be installed on Linux, OS X (soon to be renamed as macOS) and Windows.
The code for most of the book’s console (non-GUI) apps will compile and run using the
Mono Project. Mono also supports Windows Forms GUI, which is used in Chapters 14–
15 and several later examples. For more information and to download Mono, visit:

.NET Core

.NET Core is a new cross-platform .NET implementation for Windows, Linux, OS X and
FreeBSD. The code for most of the book’s console (non-GUI) apps will compile and run
using .NET Core. At the time of this writing, a .NET Core version for Windows was avail-
able and versions were still under development for other platforms. For more information
and to download .NET Core, visit:

You’re now ready to get started with C# and the .NET platform using C# 6 for Pro-
grammers, 6/e. We hope you enjoy the book!

http://www.mono-project.com/

https://dotnet.github.io/

http://www.dotnetfoundation.org
http://www.mono-project.com/https://dotnet.github.io/
http://www.mono-project.com/https://dotnet.github.io/

ptg18189312

1
Introduction

O b j e c t i v e s
In this chapter you’ll:

■ Understand the history of the Visual C# programming
language and the Windows operating system.

■ Learn what cloud computing with Microsoft Azure is.

■ Review the basics of object technology.

■ Understand the parts that Windows, .NET, Visual Studio
and C# play in the C# ecosystem.

■ Test-drive a Visual C# drawing app.

ptg18189312

2 Chapter 1 Introduction

O
u

tl
in

e

1.1 Introduction
Welcome to C#1—a powerful computer-programming language that’s used to build sub-
stantial computer applications. There are billions of personal computers in use and an even
larger number of mobile devices with computers at their core. Since it was released in
2001, C# has been used primarily to build applications for personal computers and sys-
tems that support them. The explosive growth of mobile phones, tablets and other devices
also is creating significant opportunities for programming mobile apps. With this new
sixth edition of C# 6 for Programmers, you’ll be able to use Microsoft’s new Universal Win-
dows Platform (UWP) with Windows 10 to build C# apps for both personal computers
and Windows 10 Mobile devices. With Microsoft’s purchase of Xamarin, you also can de-
velop C# mobile apps for Android devices and for iOS devices, such as iPhones and iPads.

1.2 Object Technology: A Brief Review
C# is an object-oriented programming language. In this section we’ll review the basics of
object technology.

Building software quickly, correctly and economically remains an elusive goal at a
time when demands for new and more powerful software are soaring. Objects, or more
precisely—as we’ll see in Chapter 4—the classes objects come from, are essentially reusable
software components. There are date objects, time objects, audio objects, video objects,
automobile objects, people objects, etc. Almost any noun can be reasonably represented as
a software object in terms of attributes (e.g., name, color and size) and behaviors (e.g.,
calculating, moving and communicating). Software developers have discovered that using
a modular, object-oriented design-and-implementation approach can make software-
development groups much more productive than was possible with earlier techniques—
object-oriented programs are often easier to understand, correct and modify.

The Automobile as an Object
Let’s begin with a simple analogy. Suppose you want to drive a car and make it go faster by
pressing its accelerator pedal. What must happen before you can do this? Well, before you

1.1 Introduction
1.2 Object Technology: A Brief Review
1.3 C#

1.3.1 Object-Oriented Programming
1.3.2 Event-Driven Programming
1.3.3 Visual Programming
1.3.4 Generic and Functional Programming
1.3.5 An International Standard
1.3.6 C# on Non-Windows Platforms
1.3.7 Internet and Web Programming
1.3.8 Asynchronous Programming with

async and await

1.4 Microsoft’s .NET
1.4.1 .NET Framework
1.4.2 Common Language Runtime
1.4.3 Platform Independence
1.4.4 Language Interoperability

1.5 Microsoft’s Windows® Operating
System

1.6 Visual Studio Integrated Develop-
ment Environment

1.7 Painter Test-Drive in Visual Studio
Community

1. The name C#, pronounced “C-sharp,” is based on the musical # notation for “sharp” notes.

ptg18189312

1.2 Object Technology: A Brief Review 3

can drive a car, someone has to design it. A car typically begins as engineering drawings,
similar to the blueprints that describe the design of a house. These drawings include the
design for an accelerator pedal. The pedal hides from the driver the complex mechanisms
that actually make the car go faster, just as the brake pedal hides the mechanisms that slow
the car, and the steering wheel hides the mechanisms that turn the car. This enables people
with little or no knowledge of how engines, braking and steering mechanisms work to
drive a car easily.

Before you can drive a car, it must be built from the engineering drawings that
describe it. A completed car has an actual accelerator pedal to make the car go faster, but
even that’s not enough—the car won’t accelerate on its own (hopefully!), so the driver
must press the pedal to accelerate the car.

Methods and Classes
Let’s use our car example to introduce some key object-oriented programming concepts.
Performing a task in a program requires a method. The method houses the program state-
ments that actually perform the task. It hides these statements from its user, just as a car’s
accelerator pedal hides from the driver the mechanisms of making the car go faster. In C#,
we create a program unit called a class to house the set of methods that perform the class’s
tasks. For example, a class that represents a bank account might contain one method to
deposit money to an account and another to withdraw money from an account. A class is
similar in concept to a car’s engineering drawings, which house the design of an accelerator
pedal, steering wheel, and so on.

Making Objects from Classes
Just as someone has to build a car from its engineering drawings before you can actually
drive a car, you must build an object from a class before a program can perform the tasks
that the class’s methods define. The process of doing this is called instantiation. An object
is then referred to as an instance of its class.

Reuse
Just as a car’s engineering drawings can be reused many times to build many cars, you can
reuse a class many times to build many objects. Reuse of existing classes when building new
classes and programs saves time and effort. Reuse also helps you build more reliable and ef-
fective systems, because existing classes and components often have gone through extensive
testing (to locate problems), debugging (to correct those problems) and performance tuning.
Just as the notion of interchangeable parts was crucial to the Industrial Revolution, reusable
classes are crucial to the software revolution that’s been spurred by object technology.

Messages and Method Calls
When you drive a car, pressing its gas pedal sends a message to the car to perform a task—
that is, to go faster. Similarly, you send messages to an object. Each message is implemented
as a method call that tells a method of the object to perform its task. For example, a pro-
gram might call a particular bank-account object’s deposit method to increase the account’s
balance.

ptg18189312

4 Chapter 1 Introduction

Attributes and Instance Variables
A car, besides having capabilities to accomplish tasks, also has attributes, such as its color,
its number of doors, the amount of gas in its tank, its current speed and its record of total
miles driven (i.e., its odometer reading). Like its capabilities, the car’s attributes are repre-
sented as part of its design in its engineering diagrams (which, for example, include an
odometer and a fuel gauge). As you drive an actual car, these attributes are carried along
with the car. Every car maintains its own attributes. For example, each car knows how
much gas is in its own gas tank, but not how much is in the tanks of other cars.

An object, similarly, has attributes that it carries along as it’s used in a program. These
attributes are specified as part of the object’s class. For example, a bank-account object has
a balance attribute that represents the amount of money in the account. Each bank-
account object knows the balance in the account it represents, but not the balances of the
other accounts in the bank. Attributes are specified by the class’s instance variables.

Properties, get Accessors and set Accessors
Attributes are not necessarily accessible directly. The car manufacturer does not want driv-
ers to take apart the car’s engine to observe the amount of gas in its tank. Instead, the driver
can check the fuel gauge on the dashboard. The bank does not want its customers to walk
into the vault to count the amount of money in an account. Instead, the customers talk to
a bank teller or check personalized online bank accounts. Similarly, you do not need to
have access to an object’s instance variables in order to use them. You should use the prop-
erties of an object. Properties contain get accessors for reading the values of variables, and
set accessors for storing values into them.

Encapsulation
Classes encapsulate (i.e., wrap) attributes and methods into objects created from those
classes—an object’s attributes and methods are intimately related. Objects may commu-
nicate with one another, but they’re normally not allowed to know how other objects are
implemented—implementation details are hidden within the objects themselves. This in-
formation hiding, as we’ll see, is crucial to good software engineering.

Inheritance
A new class of objects can be created quickly and conveniently by inheritance—the new
class absorbs the characteristics of an existing class, possibly customizing them and adding
unique characteristics of its own. In our car analogy, an object of class “convertible” cer-
tainly is an object of the more general class “automobile,” but more specifically, the roof can
be raised or lowered.

Object-Oriented Analysis and Design (OOAD)
Soon you’ll be writing programs in C#. How will you create the code for your programs?
Perhaps, like many programmers, you’ll simply turn on your computer and start typing.
This approach may work for small programs (like the ones we present in the early chapters
of the book), but what if you were asked to create a software system to control thousands
of automated teller machines for a major bank? Or suppose you were asked to work on a
team of thousands of software developers building the next generation of the U.S. air traf-
fic control system? For projects so large and complex, you should not simply sit down and
start writing programs.

ptg18189312

1.3 C# 5

To create the best solutions, you should follow a detailed analysis process for deter-
mining your project’s requirements (i.e., defining what the system is supposed to do) and
developing a design that satisfies them (i.e., deciding how the system should do it). Ideally,
you’d go through this process and carefully review the design (and have your design
reviewed by other software professionals) before writing any code. If this process involves
analyzing and designing your system from an object-oriented point of view, it’s called an
object-oriented analysis and design (OOAD) process. Languages like C# are object ori-
ented—programming in such a language, called object-oriented programming (OOP),
allows you to implement an object-oriented design as a working system.

The UML (Unified Modeling Language)
Although many different OOAD processes exist, a single graphical language for commu-
nicating the results of any OOAD process has come into wide use. This language, known
as the Unified Modeling Language (UML), is now the most widely used graphical scheme
for modeling object-oriented systems. We present our first UML diagrams in Chapters 4
and 5, then use them in our deeper treatment of object-oriented programming through
Chapter 12. In our online ATM Software Engineering Case Study, we present a simple
subset of the UML’s features as we guide you through an object-oriented design and im-
plementation experience.

1.3 C#
In 2000, Microsoft announced the C# programming language. C# has roots in the C, C++
and Java programming languages. It has similar capabilities to Java and is appropriate for
the most demanding app-development tasks, especially for building today’s desktop apps,
large-scale enterprise apps, and web-based, mobile and cloud-based apps.

1.3.1 Object-Oriented Programming
C# is object oriented—we’ve discussed the basics of object technology and we present a rich
treatment of object-oriented programming throughout the book. C# has access to the
powerful .NET Framework Class Library—a vast collection of prebuilt classes that enable
you to develop apps quickly (Fig. 1.1). We’ll say more about .NET in Section 1.4.

Some key capabilities in the .NET Framework Class Library

Database Debugging

Building web apps Multithreading

Graphics File processing

Input/output Security

Computer networking Web communication

Permissions Graphical user interface

Mobile Data structures

String processing Universal Windows Platform GUI

Fig. 1.1 | Some key capabilities in the .NET Framework Class Library.

ptg18189312

6 Chapter 1 Introduction

1.3.2 Event-Driven Programming
C# graphical user interfaces (GUIs) are event driven. You can write programs that respond
to user-initiated events such as mouse clicks, keystrokes, timer expirations and touches and
finger swipes—gestures that are widely used on smartphones and tablets.

1.3.3 Visual Programming
Visual Studio enables you to use C# as a visual programming language—in addition to writ-
ing program statements to build portions of your apps, you’ll also use Visual Studio to
drag and drop predefined GUI objects like buttons and textboxes into place on your screen,
and label and resize them. Visual Studio will write much of the GUI code for you.

1.3.4 Generic and Functional Programming
Generic Programming
It’s common to write a program that processes a collection—e.g., a collection of numbers,
a collection of contacts, a collection of videos, etc. Historically, you had to program sepa-
rately to handle each type of collection. With generic programming, you write code that
handles a collection “in the general” and C# handles the specifics for each collection type,
saving you a great deal of work. Chapters 18–19 present generics and generic collections.

Functional Programming
With functional programming, you specify what you want to accomplish in a task, but not
how to accomplish it. For example, with Microsoft’s LINQ—which we introduce in
Chapter 9, then use in many later chapters—you can say, “Here’s a collection of numbers,
give me the sum of its elements.” You do not need to specify the mechanics of walking
through the elements and adding them into a running total one at a time—LINQ handles
all that for you. Functional programming speeds application development and reduces
errors. We take a deeper look at functional programming in Chapter 19.

1.3.5 An International Standard
C# has been standardized through ECMA International:

This enables other implementations of the language besides Microsoft’s Visual C#. At the
time of this writing, the C# standard document—ECMA-334—was still being updated
for C# 6. For information on ECMA-334, visit

Visit the Microsoft download center to find the latest version of Microsoft’s C# 6 specifi-
cation, other documentation and software downloads.

1.3.6 C# on Non-Windows Platforms
Microsoft originally developed C# for Windows development, but it can be used on other
platforms via the Mono Project and .NET Core—both managed by the .NET Foundation

For more information, see the Before You Begin section after the Preface.

http://www.ecma-international.org

http://www.ecma-international.org/publications/standards/Ecma-334.htm

http://www.dotnetfoundation.org/

http://www.ecma-international.org
http://www.ecma-international.org/publications/standards/Ecma-334.htm
http://www.dotnetfoundation.org/

ptg18189312

1.4 Microsoft’s .NET 7

1.3.7 Internet and Web Programming
Today’s apps can be written with the aim of communicating among the world’s comput-
ers. As you’ll see, this is the focus of Microsoft’s .NET strategy. Later in the book, you’ll
build web-based apps with C# and Microsoft’s ASP.NET technology.

1.3.8 Asynchronous Programming with async and await
In most programming today, each task in a program must finish executing before the next
task can begin. This is called synchronous programming and is the style we use for most of this
book. C# also allows asynchronous programming in which multiple tasks can be performed at
the same time. Asynchronous programming can help you make your apps more responsive
to user interactions, such as mouse clicks and keystrokes, among many other uses.

Asynchronous programming in early versions of Visual C# was difficult and error prone.
C#’s async and await capabilities simplify asynchronous programming by enabling the
compiler to hide much of the associated complexity from the developer. In Chapter 21, we
provide an introduction to asynchronous programming with async and await.

1.4 Microsoft’s .NET
In 2000, Microsoft announced its .NET initiative (www.microsoft.com/net), a broad vi-
sion for using the Internet and the web in the development, engineering, distribution and
use of software. Rather than forcing you to use a single programming language, .NET per-
mits you to create apps in any .NET-compatible language (such as C#, Visual Basic, Visual
C++ and many others). Part of the initiative includes Microsoft’s ASP.NET technology
for building web-based applications.

1.4.1 .NET Framework
The .NET Framework Class Library provides many capabilities that you’ll use to build
substantial C# apps quickly and easily. It contains thousands of valuable prebuilt classes
that have been tested and tuned to maximize performance. You’ll learn how to create your
own classes, but you should re-use the .NET Framework classes whenever possible to speed
up the software-development process, while enhancing the quality and performance of the
software you develop.

1.4.2 Common Language Runtime
The Common Language Runtime (CLR), another key part of the .NET Framework, ex-
ecutes .NET programs and provides functionality to make them easier to develop and de-
bug. The CLR is a virtual machine (VM)—software that manages the execution of
programs and hides from them the underlying operating system and hardware. The source
code for programs that are executed and managed by the CLR is called managed code. The
CLR provides various services to managed code, such as

• integrating software components written in different .NET languages,

• error handling between such components,

• enhanced security,

• automatic memory management and more.

http://www.microsoft.com/net

ptg18189312

8 Chapter 1 Introduction

Unmanaged-code programs do not have access to the CLR’s services, which makes un-
managed code more difficult to write.2 Managed code is compiled into machine-specific
instructions in the following steps:

1. First, the code is compiled into Microsoft Intermediate Language (MSIL). Code
converted into MSIL from other languages and sources can be woven together by
the CLR—this allows programmers to work in their preferred .NET program-
ming language. The MSIL for an app’s components is placed into the app’s exe-
cutable file—the file that causes the computer to perform the app’s tasks.

2. When the app executes, another compiler (known as the just-in-time compiler
or JIT compiler) in the CLR translates the MSIL in the executable file into ma-
chine-language code (for a particular platform).

3. The machine-language code executes on that platform.

1.4.3 Platform Independence
If the .NET Framework exists and is installed for a platform, that platform can run any
.NET program. The ability of a program to run without modification across multiple plat-
forms is known as platform independence. Code written once can be used on another type
of computer without modification, saving time and money. In addition, software can tar-
get a wider audience. Previously, companies had to decide whether converting their pro-
grams to different platforms—a process called porting—was worth the cost. With .NET,
porting programs is no longer an issue, at least once .NET itself has been made available
on the platforms.

1.4.4 Language Interoperability
The .NET Framework provides a high level of language interoperability. Because soft-
ware components written in different .NET languages (such as C# and Visual Basic) are
all compiled into MSIL, the components can be combined to create a single unified pro-
gram. Thus, MSIL allows the .NET Framework to be language independent.

The .NET Framework Class Library can be used by any .NET language. The latest
release of .NET includes .NET 4.6 and .NET Core:

• NET 4.6 introduces many improvements and new features, including ASP.NET
5 for web-based applications, improved support for today’s high-resolution 4K
screens and more.

• .NET Core is the cross-platform subset of .NET for Windows, Linux, OS X and
FreeBSD.

1.5 Microsoft’s Windows® Operating System
Microsoft’s Windows is the most widely personal-computer, desktop operating system
worldwide. Operating systems are software systems that make using computers more con-
venient for users, developers and system administrators. They provide services that allow
each app to execute safely, efficiently and concurrently (i.e., in parallel) with other apps.

2. http://msdn.microsoft.com/library/8bs2ecf4.

http://msdn.microsoft.com/library/8bs2ecf4

ptg18189312

1.5 Microsoft’s Windows® Operating System 9

Other popular desktop operating systems include macOS (formerly OS X) and Linux.
Mobile operating systems used in smartphones and tablets include Microsoft’s Windows 10
Mobile, Google’s Android and Apple’s iOS (for iPhone, iPad and iPod Touch devices).
Figure 1.2 presents the evolution of the Windows operating system.

Version Description

Windows in the 1990s In the mid-1980s, Microsoft developed the Windows operating
system based on a graphical user interface with buttons, textboxes,
menus and other graphical elements. The various versions released
throughout the 1990s were intended for personal computing.
Microsoft entered the corporate operating systems market with the
1993 release of Windows NT.

Windows XP and
Windows Vista

Windows XP was released in 2001 and combined Microsoft’s cor-
porate and consumer operating-system lines. At the time of this
writing, it still holds more than 10% of the operating-systems
market (https://www.netmarketshare.com/operating-system-
market-share.aspx). Windows Vista, released in 2007, offered the
attractive new Aero user interface, many powerful enhancements
and new apps and enhanced security. But Vista never caught on.

Windows 7 Windows 7 is currently the world’s most widely used desktop oper-
ating system with over 47% of the operating-systems market
(https://www.netmarketshare.com/operating-system-market-
share.aspx). Windows added enhancements to the Aero user
interface, faster startup times, further refinement of Vista’s security
features, touch-screen with multitouch support, and more.

Windows 8 for
Desktops and
Tablets

Windows 8, released in 2012, provided a similar platform (the
underlying system on which apps run) and user experience across a
wide range of devices including personal computers, smartphones,
tablets and the Xbox Live online game service. Its new look-and-
feel featured a Start screen with tiles representing each app, similar
to that of Windows Phone (now Windows 10 Mobile)—Micro-
soft’s smartphone operating system. Windows 8 featured multi-
touch support for touchpads and touchscreen devices, enhanced
security features and more.

Windows 8 UI
(User Interface)

Windows 8 UI (previously called “Metro”) introduced a clean
look-and-feel with minimal distractions to the user. Windows 8
apps featured a chromeless window with no borders, title bars and
menus. These elements were hidden, allowing apps to fill the entire
screen—particularly helpful on smaller screens such as tablets and
smartphones. The interface elements were displayed in the app bar
when the user swiped the top or bottom of the screen by holding
down the mouse button, moving the mouse in the swipe direction
and releasing the mouse button; or using a finger swipe on a touch-
screen device.

Fig. 1.2 | The evolution of the Windows operating system. (Part 1 of 2.)

https://www.netmarketshare.com/operating-system-market-share.aspx
https://www.netmarketshare.com/operating-system-market-share.aspx
https://www.netmarketshare.com/operating-system-market-share.aspx
https://www.netmarketshare.com/operating-system-market-share.aspx

ptg18189312

10 Chapter 1 Introduction

Windows Store
You can sell apps or offer them for free in the Windows Store. At the time of this writing,
the fee to become a registered developer is $19 for individuals and $99 for companies. Mi-
crosoft retains 30% of the purchase price (more in some markets). See the App Developer
Agreement for more information:

The Windows Store offers several business models for monetizing your app. You can
charge full price for your app before download, with prices starting at $1.49. You also can
offer a time-limited trial or feature-limited trial that allows users to try the app before pur-
chasing the full version, sell virtual goods (such as additional app features) using in-app pur-
chases and more. To learn more about the Windows Store and monetizing your apps, visit

1.6 Visual Studio Integrated Development Environment
C# programs can be created using Microsoft’s Visual Studio—a collection of software tools
called an Integrated Development Environment (IDE). The Visual Studio Community
edition IDE enables you to write, run, test and debug C# programs quickly and conveniently.
It also supports Microsoft’s Visual Basic, Visual C++ and F# programming languages and
many more. Most of this book’s examples were built using Visual Studio Community, which
runs on Windows 7, 8 and 10. A few of the book’s examples require Windows 10.

1.7 Painter Test-Drive in Visual Studio Community
You’ll now use Visual Studio Community to “test-drive” an existing app that enables you
to draw on the screen using the mouse. The Painter app allows you to choose among several
brush sizes and colors. The elements and functionality you see in this app are typical of
what you’ll learn to program in this text. The following steps walk you through test-driv-
ing the app. For this test drive, we assume that you placed the book’s examples in your
user account’s Documents folder in a subfolder named examples.

Windows 10 and the
Universal Windows
Platform

Windows 10, released in 2015, is the current version of Windows
and currently holds a 15% (and growing) share of the operating-
systems market (https://www.netmarketshare.com/operating-
system-market-share.aspx). In addition to many user-interface
and other updates, Windows 10 introduced the Universal Win-
dows Platform (UWP), which is designed to provide a common
platform (the underlying system on which apps run) and user
experience across all Windows devices including personal comput-
ers, smartphones, tablets, Xbox and even Microsoft’s new
HoloLens augmented reality holographic headset—all using nearly
identical code.

https://msdn.microsoft.com/en-us/library/windows/apps/hh694058.aspx

https://msdn.microsoft.com/windows/uwp/monetize/index

Version Description

Fig. 1.2 | The evolution of the Windows operating system. (Part 2 of 2.)

https://www.netmarketshare.com/operating-system-market-share.aspx
https://www.netmarketshare.com/operating-system-market-share.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/hh694058.aspx
https://msdn.microsoft.com/windows/uwp/monetize/index

ptg18189312

1.7 Painter Test-Drive in Visual Studio Community 11

Step 1: Checking Your Setup
Confirm that you’ve set up your computer and the software properly by reading the book’s
Before You Begin section that follows the Preface.

Step 2: Locating the Painter App’s Directory
Open a File Explorer (Windows 8 and 10) or Windows Explorer (Windows 7) window and
navigate to

Double click the Painter folder to view its contents (Fig. 1.3), then double click the
Painter.sln file to open the app’s solution in Visual Studio. An app’s solution contains
all of the app’s code files, supporting files (such as images, videos, data files, etc.) and config-
uration information. We’ll discuss the contents of a solution in more detail in the next
chapter.

Depending on your system configuration, File Explorer or Windows Explorer might dis-
play Painter.sln simply as Painter, without the filename extension .sln. To display the
filename extensions in Windows 8 and higher:

1. Open File Explorer.

2. Click the View tab, then ensure that the File name extensions checkbox is checked.

To display them in Windows 7:

1. Open Windows Explorer.

2. Press Alt to display the menu bar, then select Folder Options… from Windows Ex-

plorer’s Tools menu.

3. In the dialog that appears, select the View tab.

4. In the Advanced settings: pane, uncheck the box to the left of the text Hide exten-

sions for known file types. [Note: If this item is already unchecked, no action needs
to be taken.]

5. Click OK to apply the setting and close the dialog.

C:\Users\yourUserName\Documents\examples\ch01

Fig. 1.3 | Contents of C:\examples\ch01\Painter.

Double click Painter.sln to
open the project in Visual Studio

ptg18189312

12 Chapter 1 Introduction

Step 3: Running the Painter App
To see the running Painter app, click the Start button (Fig. 1.4)

or press the F5 key.

Figure 1.5 shows the running app and labels several of the app’s graphical elements—
called controls. These include GroupBoxes, RadioButtons, Buttons and a Panel. These con-
trols and many others are discussed throughout the text. The app allows you to draw with
a Red, Blue, Green or Black brush of Small, Medium or Large size. As you drag the mouse on
the white Panel, the app draws circles of the specified color and size at the mouse pointer’s
current position. The slower you drag the mouse, the closer the circles will be. Thus, drag-
ging slowly draws a continuous line (as in Fig. 1.6) and dragging quickly draws individual
circles with space in between. You also can Undo your previous operation or Clear the
drawing to start from scratch by pressing the Buttons below the RadioButtons in the GUI.
By using existing controls—which are objects—you can create powerful apps much faster
than if you had to write all the code yourself. This is a key benefit of software reuse.

The brush’s properties, selected in the RadioButtons labeled Black and Medium, are
default settings—the initial settings you see when you first run the app. Programmers
include default settings to provide reasonable choices that the app will use if the user does
not change the settings. Default settings also provide visual cues for users to choose their
own settings. Now you’ll choose your own settings as a user of this app.

Step 4: Changing the Brush Color
Click the RadioButton labeled Red to change the brush color, then click the RadioButton
labeled Small to change the brush size. Position the mouse over the white Panel, then drag
the mouse to draw with the brush. Draw flower petals, as shown in Fig. 1.6.

Fig. 1.4 | Running the Painter app.

Press the Start button to begin executing the Painter app

ptg18189312

1.7 Painter Test-Drive in Visual Studio Community 13

Step 5: Changing the Brush Color and Size
Click the Green RadioButton to change the brush color. Then, click the Large RadioBut-
ton to change the brush size. Draw grass and a flower stem, as shown in Fig. 1.7.

Step 6: Finishing the Drawing
Click the Blue and Medium RadioButtons. Draw raindrops, as shown in Fig. 1.8, to com-
plete the drawing.

Step 7: Stopping the App
When you run an app from Visual Studio, you can terminate it by clicking the stop button

on the Visual Studio toolbar or by clicking the close box

i

Fig. 1.5 | Painter app running in Windows 10.

Fig. 1.6 | Drawing flower petals with a small red brush.

GroupBoxes

RadioButtons

Panel

Buttons

ptg18189312

14 Chapter 1 Introduction

on the running app’s window.
Now that you’ve completed the test-drive, you’re ready to begin developing C# apps.

In Chapter 2, Introduction to Visual Studio and Visual Programming, you’ll use Visual
Studio to create your first C# program using visual programming techniques. As you’ll see,
Visual Studio will generate for you the code that builds the app’s GUI. In Chapter 3,
Introduction to C# App Programming, you’ll begin writing C# programs containing con-
ventional program code that you write.

Fig. 1.7 | Drawing the flower stem and grass with a large green brush.

Fig. 1.8 | Drawing rain drops with a medium blue brush.

ptg18189312

2
Introduction to Visual Studio

and Visual Programming

O b j e c t i v e s
In this chapter you’ll:

■ See an overview of the Visual Studio Community 2015
Integrated Development Environment (IDE) for writing,
running and debugging your apps.

■ Create a new project using Visual Studio’s Windows
Forms Application template.

■ Be introduced to Windows Forms and the controls you’ll
use to build graphical user interfaces.

■ Use visual app development to conveniently create, compile
and execute a simple Visual C# app that displays text and
an image.

ptg18189312

16 Chapter 2 Introduction to Visual Studio and Visual Programming

O
u

tl
in

e

2.1 Introduction
Visual Studio is Microsoft’s Integrated Development Environment (IDE) for creating,
running and debugging apps (also called applications) written in C# and various other
.NET programming languages. In this chapter, we overview the Visual Studio Communi-
ty 2015 IDE, then show how to create a simple Visual C# app by dragging and dropping
predefined building blocks into place—a technique known as visual app development.

2.2 Overview of the Visual Studio Community 2015 IDE
There are several versions of Visual Studio. This book’s examples, screen captures and dis-
cussions are based on the free Visual Studio Community 2015 running on Windows 10.
See the Before You Begin section that follows the Preface for information on installing the
software. With few exceptions, this book’s examples can be created and run on Windows
7, 8.x or 10—we’ll point out any examples that require Windows 10.

The examples will work on full versions of Visual Studio as well—though some
options, menus and instructions might differ. From this point forward, we’ll refer to Visual
Studio Community 2015 simply as “Visual Studio” or “the IDE.”

2.2.1 Introduction to Visual Studio Community 2015
[Note: We use the > character to indicate when you should select a menu item from a menu.
For example, notation File > Save All means that you should select the Save All menu item
from the File menu.]

To begin, open Visual Studio. On Windows 10, click

then select All Apps > Visual Studio 2015. On Windows 7, click

2.1 Introduction
2.2 Overview of the Visual Studio Com-

munity 2015 IDE
2.2.1 Introduction to Visual Studio Com-

munity 2015
2.2.2 Visual Studio Themes
2.2.3 Links on the Start Page
2.2.4 Creating a New Project
2.2.5 New Project Dialog and Project Tem-

plates
2.2.6 Forms and Controls

2.3 Menu Bar and Toolbar

2.4 Navigating the Visual Studio IDE
2.4.1 Solution Explorer
2.4.2 Toolbox
2.4.3 Properties Window

2.5 Help Menu and Context-Sensitive
Help

2.6 Visual Programming: Creating a Sim-
ple App that Displays Text and an Im-
age t

2.7 Wrap-Up
2.8 Web Resources

ptg18189312

2.2 Overview of the Visual Studio Community 2015 IDE 17

then select All Programs > Visual Studio 2015. On Windows 8’s Start screen, locate and click
the Visual Studio 2015 tile, which will contain the following icon:

Initially, Visual Studio displays the Start Page (Fig. 2.1). Depending on your version
of Visual Studio, your Start Page may look different. The Start Page contains a list of links
to Visual Studio resources and web-based resources. At any time, you can return to the
Start Page by selecting View > Start Page.

2.2.2 Visual Studio Themes
Visual Studio supports three themes that specify the IDE’s color scheme:

• a dark theme (with dark window backgrounds and light text)

• a light theme (with light window backgrounds and dark text) and

• a blue theme (with light window backgrounds and dark text).

We use the blue theme throughout this book. The Before You Begin section after the Pref-
ace explains how to set this option.

2.2.3 Links on the Start Page
The Start Page links are organized into two columns. The left column’s Start section con-
tains options for building new apps or working on existing ones. The left column’s Recent

section contains links to projects you’ve recently created or modified.

Fig. 2.1 | Start Page in Visual Studio Community 2015.

Start Page linksCollapsed Toolbox window

Solution Explorer (no projects open)New Project button Start Page tab

Recent projects will be listed here

ptg18189312

18 Chapter 2 Introduction to Visual Studio and Visual Programming

The Start Page’s right column—with Discover Visual Studio Community 2015 at the
top—contains links to various online documentation and resources to help you get started
with Visual Studio and learn about Microsoft programming technologies. An Internet
connection is required for the IDE to access most of this information.

To access more extensive information on Visual Studio, you can browse the MSDN
(Microsoft Developer Network) Library at

The MSDN site contains articles, downloads and tutorials on technologies of interest to
Visual Studio developers. You also can browse the web from the IDE by selecting View >

Other Windows > Web Browser. To request a web page, type its URL into the location bar
(Fig. 2.2) and press the Enter key—your computer, of course, must be connected to the
Internet. The web page that you wish to view appears as another tab in the IDE—
Figure 2.2 shows the browser tab after entering http://msdn.microsoft.com/library.

2.2.4 Creating a New Project
To begin app development in Visual C#, you must create a new project or open an existing
one. A project is a group of related files, such as the Visual C# code and any images that
might make up an app. Visual Studio organizes apps into projects and solutions, which
contain one or more projects. Multiple-project solutions are used to create large-scale apps.
Most apps we create in this book consist of a solution containing a single project. You se-
lect File > New > Project… to create a new project or File > Open > Project/Solution… to open
an existing one. You also can click the corresponding links in the Start Page’s Start section.

https://msdn.microsoft.com/library/dd831853

Fig. 2.2 | MSDN Library web page in Visual Studio.

Location bar Web browser window tab

http://msdn.microsoft.com/library
https://msdn.microsoft.com/library/dd831853

ptg18189312

2.2 Overview of the Visual Studio Community 2015 IDE 19

2.2.5 New Project Dialog and Project Templates
For the discussions in the next several sections, we’ll create a new project. Select File >

New > Project… to display the New Project dialog (Fig. 2.3). Dialogs are windows that fa-
cilitate user–computer communication.

Visual Studio provides many templates (left column of Fig. 2.3)—the project types
that users can create in Visual C# and other languages. The templates include Windows
Forms apps, WPF apps and others—full versions of Visual Studio provide additional tem-
plates. In this chapter, you’ll build a Windows Forms Application—an app that executes
within a Windows operating system (such as Windows 7, 8 or 10) and typically has a
graphical user interface (GUI). Users interact with this visual part of the app. GUI apps
include Microsoft software products like Microsoft Word, Internet Explorer and Visual
Studio, software products created by other vendors, and customized software that you and
other app developers create. You’ll create many Windows apps in this book.

To create a Windows Forms Application, under Templates select Visual C# > Windows >

Classic Desktop, then in the middle column select Windows Forms Application. By default,
Visual Studio assigns the name WindowsFormsApplication1 to a new Windows Forms Applica-

tion project and solution (Fig. 2.3). Click OK to display the IDE in Design view (Fig. 2.4),
which contains the features that enable you to create an app’s GUI.

Fig. 2.3 | New Project dialog.

Visual C# Windows Forms
Application (selected)

Default project name
(provided by Visual Studio)

Description of selected project
(provided by Visual Studio)

ptg18189312

20 Chapter 2 Introduction to Visual Studio and Visual Programming

2.2.6 Forms and Controls
The rectangle in the Design area titled Form1 (called a Form) represents the main window
of the Windows Forms app that you’re creating. Each Form is an object of class Form in the
.NET Framework Class Library. Apps can have multiple Forms (windows)—however, the
app you’ll create in Section 2.6 and most other Windows Forms apps you’ll create later in
this book will contain a single Form. You’ll learn how to customize the Form by adding
GUI controls—in Section 2.6, you’ll add a Label and a PictureBox. A Label typically
contains descriptive text (for example, "Welcome to Visual C#!"), and a PictureBox dis-
plays an image. Visual Studio has many preexisting controls and other components you
can use to build and customize your apps. Many of these controls are discussed and used
throughout the book. Other controls are available from third parties.

In this chapter, you’ll work with preexisting controls from the .NET Framework Class
Library. As you place controls on the Form, you’ll be able to modify their properties (dis-
cussed in Section 2.4).

Collectively, the Form and controls make up the app’s GUI. Users enter data into the
app by typing at the keyboard, by clicking the mouse buttons and in a variety of other
ways. Apps use the GUI to display instructions and other information for users to view.
For example, the New Project dialog in Fig. 2.3 presents a GUI where the user clicks the
mouse button to select a template type, then inputs a project name from the keyboard (the
figure shows the default project name WindowsFormsApplication1).

Fig. 2.4 | Design view of the IDE.

Menu in the
menu bar Form

Solution Explorer
windowActive tab

ptg18189312

2.3 Menu Bar and Toolbar 21

Each open document’s name is listed on a tab. To view a document when multiple
documents are open, click its tab. The active tab (the tab of the currently displayed doc-
ument) is highlighted (for example, Form1.cs [Design] in Fig. 2.4). The active tab’s high-
light color depends on the Visual Studio theme—the blue theme uses a yellow highlight
and the light and dark themes use a blue highlight.

2.3 Menu Bar and Toolbar
Commands for managing the IDE and for developing, maintaining and executing apps
are contained in menus, which are located on the menu bar of the IDE (Fig. 2.5). The set
of menus displayed depends on what you’re currently doing in the IDE.

Menus contain groups of related commands called menu items that, when selected,
cause the IDE to perform specific actions—for example, open a window, save a file, print
a file and execute an app. For example, selecting File > New > Project… tells the IDE to dis-
play the New Project dialog. The menus depicted in Fig. 2.5 are summarized in Fig. 2.6.

Fig. 2.5 | Visual Studio menu bar.

Menu Contains commands for

File Opening, closing, adding and saving projects, as well as printing project data
and exiting Visual Studio.

Edit Editing apps, such as cut, copy, paste, undo, redo, delete, find and select.
View Displaying IDE windows (for example, Solution Explorer, Toolbox, Properties

window) and for adding toolbars to the IDE.
Project Managing projects and their files.
Build Turning your app into an executable program.
Debug Compiling, debugging (that is, identifying and correcting problems in apps) and

running apps.
Team Connecting to a Team Foundation Server—used by development teams that

typically have multiple people working on the same app.
Format Arranging and modifying a Form’s controls. The Format menu appears only when

a GUI component is selected in Design view.
Tools Accessing additional IDE tools and options for customizing the IDE.
Test Performing various types of automated testing on your app.
Analyze Locating and reporting violations of the .NET Framework Design Guidelines

(https://msdn.microsoft.com/library/ms229042).

Fig. 2.6 | Summary of Visual Studio menus that are displayed when a Form is in Design
view. (Part 1 of 2.)

https://msdn.microsoft.com/library/ms229042

ptg18189312

22 Chapter 2 Introduction to Visual Studio and Visual Programming

You can access many common menu commands from the toolbar (Fig. 2.7), which
contains icons that graphically represent commands. By default, the standard toolbar is
displayed when you run Visual Studio for the first time—it contains icons for the most
commonly used commands, such as opening a file, saving files and running apps
(Fig. 2.7). The icons that appear on the standard toolbar may vary, depending on the ver-
sion of Visual Studio you’re using. Some commands are initially disabled (grayed out or
unavailable to use). These commands are enabled by Visual Studio only when you can use
them. For example, Visual Studio enables the command for saving a file once you begin
editing a file.

You can customize which toolbars are displayed by selecting View > Toolbars then
selecting a toolbar from the list in Fig. 2.8. Each toolbar you select is displayed with the
other toolbars at the top of the Visual Studio window. You move a toolbar by dragging its
handle

at the left side of the toolbar. To execute a command via the toolbar, click its icon.

Window Hiding, opening, closing and displaying IDE windows.
Help Accessing the IDE’s help features.

Fig. 2.7 | Standard Visual Studio toolbar.

Menu Contains commands for

Fig. 2.6 | Summary of Visual Studio menus that are displayed when a Form is in Design
view. (Part 2 of 2.)

New
Project

Navigate
Forward

Navigate
Backward Undo Save

Open File Save All

Solution
Platforms

Redo

StartSolution
Configurations

Find In Files

ptg18189312

2.3 Menu Bar and Toolbar 23

 It can be difficult to remember what each toolbar icon represents. Hovering the mouse
pointer over an icon highlights it and, after a brief pause, displays a description of the icon
called a tool tip (Fig. 2.9)—these tips help you become familiar with the IDE’s features
and serve as useful reminders for each toolbar icon’s functionality.

Fig. 2.8 | List of toolbars that can be added to the top of the IDE.

Fig. 2.9 | Tool tip for the New Project button.

Tool tip appears when
you place the mouse
pointer on an icon

ptg18189312

24 Chapter 2 Introduction to Visual Studio and Visual Programming

2.4 Navigating the Visual Studio IDE
The IDE provides windows for accessing project files and customizing controls. This sec-
tion introduces several windows that you’ll use frequently when developing Visual C#
apps. Each of the IDE’s windows can be accessed by selecting its name in the View menu.

Auto-Hide
Visual Studio provides an auto-hide space-saving feature. When auto-hide is enabled for
a window, a tab containing the window’s name appears along the IDE window’s left, right
or bottom edge (Fig. 2.10). Clicking the name of an auto-hidden window displays that
window (Fig. 2.11). Clicking the name again (or clicking outside) hides the window. To
“pin down” a window (that is, to disable auto-hide and keep the window open), click the
pin icon. When auto-hide is enabled, the pin icon is horizontal

as shown in Fig. 2.11. When a window is “pinned down,” the pin icon is vertical

as shown in Fig. 2.12.

Fig. 2.10 | Auto-hide feature demonstration.

Fig. 2.11 | Displaying the hidden Toolbox window when auto-hide is enabled.

Auto-hidden
Toolbox and

Data Sources
windows

Auto-hidden
Solution
Explorer and
Properties
windows

Expanded
Toolbox
window

Horizontal
orientation for
pin icon when
auto-hide is
enabled

ptg18189312

2.4 Navigating the Visual Studio IDE 25

The next few sections present three Visual Studio’s windows that you’ll use fre-
quently—the Solution Explorer, the Properties window and the Toolbox. These windows dis-
play project information and include tools that help you build your apps.

2.4.1 Solution Explorer

The Solution Explorer window (Fig. 2.13) provides access to all of a solution’s files. If it’s
not shown in the IDE, select View > Solution Explorer. When you open a new or existing
solution, the Solution Explorer displays the solution’s contents.

The solution’s startup project (shown in bold in the Solution Explorer) is the one that
runs when you select Debug > Start Debugging (or press F5) or select Debug > Start Without

Debugging (or press Ctrl + F5 key). For a single-project solution like the examples in this
book, the startup project is the only project (in this case, WindowsFormsApplication1).
When you create an app for the first time, the Solution Explorer window appears as shown
in Fig. 2.13. The Visual C# file that corresponds to the Form shown in Fig. 2.4 is named
Form1.cs (selected in Fig. 2.13). Visual C# files use the .cs file-name extension, which is
short for “C#.”

By default, the IDE displays only files that you may need to edit—other files that the
IDE generates are hidden. The Solution Explorer window includes a toolbar that contains
several icons. Clicking the Show All Files icon (Fig. 2.13) displays all the solution’s files,
including those generated by the IDE. Clicking the arrow to the left of a node expands or
collapses that node. Click the arrow to the left of References to display items grouped under

Fig. 2.12 | Disabling auto-hide—“pinning down” a window.

Fig. 2.13 | Solution Explorer window showing the WindowsFormsApplication1 project.

Toolbox
“pinned down”

Vertical
orientation for
pin icon when
window is
“pinned down”

Show All Files icon
Toolbar

Startup project

ptg18189312

26 Chapter 2 Introduction to Visual Studio and Visual Programming

that heading (Fig. 2.14). Click the arrow again to collapse the tree. Other Visual Studio
windows also use this convention.

2.4.2 Toolbox
To display the Toolbox window, select View > Toolbox. The Toolbox contains the controls
used to customize Forms (Fig. 2.15). With visual app development, you can “drag and
drop” controls onto the Form and the IDE will write the code that creates the controls for
you. This is faster and simpler than writing this code yourself. Just as you do not need to
know how to build an engine to drive a car, you do not need to know how to build controls
to use them. Reusing preexisting controls saves time and money when you develop apps.
You’ll use the Toolbox when you create your first app later in the chapter.

The Toolbox groups the prebuilt controls into categories—All Windows Forms, Common

Controls, Containers, Menus & Toolbars, Data, Components, Printing, Dialogs, Reporting, WPF

Interoperability and General are listed in Fig. 2.15. Again, note the use of arrows for
expanding or collapsing a group of controls. We discuss many of the Toolbox’s controls and
their functionality throughout the book.

2.4.3 Properties Window
If the Properties window is not displayed below the Solution Explorer, select View > Properties

Window to display it—if the window is in auto-hide mode, pin down the window by click-
ing its horizontal pin icon

The Properties window contains the properties for the currently selected Form, control or
file in the IDE. Properties specify information about the Form or control, such as its size,

Fig. 2.14 | Solution Explorer with the References node expanded.

Click to collapse node

Click to expand node

ptg18189312

2.4 Navigating the Visual Studio IDE 27

color and position. Each Form or control has its own set of properties. When you select a
property, its description is displayed at the bottom of the Properties window.

Figure 2.16 shows Form1’s Properties window—you can view by clicking anywhere in
the Form1.cs [Design] window. The left column lists the Form’s properties—the right
column displays the current value of each property. You can sort the properties either

• alphabetically (by clicking the Alphabetical icon) or

• categorically (by clicking the Categorized icon).

Depending on the Properties window’s size, some properties may be hidden from your
view. You can scroll through the list of properties by dragging the scrollbox up or down
inside the scrollbar, or by clicking the arrows at the top and bottom of the scrollbar. We
show how to set individual properties later in this chapter.

Fig. 2.15 | Toolbox window displaying controls for the Common Controls group.

Group names

Controls

ptg18189312

28 Chapter 2 Introduction to Visual Studio and Visual Programming

The Properties window is crucial to visual app development—it allows you to quickly
modify a control’s properties and, rather than writing code yourself, lets the IDE write
code for you “behind the scenes.” You can see which properties are available for modifica-
tion and, in many cases, can learn the range of acceptable values for a given property. The
Properties window displays a brief description of the selected property, helping you under-
stand its purpose.

2.5 Help Menu and Context-Sensitive Help
Microsoft provides extensive help documentation via the Help menu, which is an excellent
way to get information quickly about Visual Studio, Visual C# and more. Visual Studio
provides context-sensitive help pertaining to the “current content” (that is, the items
around the location of the mouse cursor). To use context-sensitive help, click an item,
then press the F1 key. The help documentation is displayed in a web browser window. To
return to the IDE, either close the browser window or select the IDE’s icon in your Win-
dows task bar.

Fig. 2.16 | Properties window.

Selected property’s
description

Categorized icon

Alphabetical icon

Component selection
drop-down list

Scrollbox

Scrollbar

Toolbar

Properties in the
Behavior category

Property values

ptg18189312

2.6 Visual Programming: Creating a Simple App that Displays Text and an Image 29

2.6 Visual Programming: Creating a Simple App that
Displays Text and an Image
Next, we create an app that displays the text "Welcome to C# Programming!" and an image
of the Deitel & Associates bug mascot. The app consists of a Form that uses a Label and a
PictureBox. Figure 2.17 shows the final app executing. The app and the bug image are
available with this chapter’s examples—see the Before You Begin section following the
Preface for download instructions. We assume you placed the examples in your user ac-
count’s Documents folder in a subfolder named examples.

In this example, you won’t write any C# code—you’ll use visual app-development
techniques. Visual Studio processes your actions (such as mouse clicking, dragging and
dropping) to generate app code. Chapter 3 begins our discussion of writing app code.
Throughout the book, you’ll produce increasingly substantial and powerful apps that will
include code written by you and code generated by Visual Studio.

Visual app development is useful for building GUI-intensive apps that require a sig-
nificant amount of user interaction. To create, save, run and terminate this first app, per-
form the following steps.

Step 1: Closing the Open Project
If the project you were working with earlier in this chapter is still open, close it by selecting
File > Close Solution.

Step 2: Creating the New Project
To create a new Windows Forms app:

1. Select File > New > Project… to display the New Project dialog (Fig. 2.18).

2. Select Windows Forms Application. Name the project ASimpleApp, specify the Loca-

tion where you want to save it and click OK. We stored the app in the IDE’s de-
fault location—in your user account’s Documents folder under the Visual Studio
2015\Projects.

Fig. 2.17 | Simple app executing.

PictureBox control
displays an image

Label control
displays text

ptg18189312

30 Chapter 2 Introduction to Visual Studio and Visual Programming

As you saw earlier in this chapter, when you first create a new Windows Forms app, the
IDE opens in Design view (that is, the app is being designed and is not executing). The text
Form1.cs [Design] in the tab containing the Form means that we’re designing the Form visu-
ally rather than programmatically. An asterisk (*) at the end of the text in a tab indicates
that you’ve changed the file and the changes have not yet been saved.

Step 3: Setting the Text in the Form’s Title Bar
The text in the Form’s title bar is determined by the Form’s Text property (Fig. 2.19). If the
Properties window is not open, select View > Properties Window and pin down the window so
it doesn’t auto hide. Click anywhere in the Form to display the Form’s properties in the Prop-

erties window. In the textbox to the right of the Text property, type "A Simple App", as in
Fig. 2.19. Press the Enter key—the Form’s title bar is updated immediately (Fig. 2.20).

Fig. 2.18 | New Project dialog.

Fig. 2.19 | Setting the Form’s Text property in the Properties window.

Type the project
name here

Select the Windows Forms
Application template

Selected
property Property value

Name and type of object

Property
description

ptg18189312

2.6 Visual Programming: Creating a Simple App that Displays Text and an Image 31

Step 4: Resizing the Form
The Form’s size is specified in pixels (that is, dots on the screen). By default, a Form is 300
pixels wide and 300 pixels tall. You can resize the Form by dragging one of its sizing handles
(the small white squares that appear around the Form, as shown in Fig. 2.20). Using the
mouse, select the bottom-right sizing handle and drag it down and to the right to make the
Form larger. As you drag the mouse (Fig. 2.21), the IDE’s status bar (at the bottom of the
IDE) shows the current width and height in pixels. We set the Form to 400 pixels wide by
360 pixels tall. You also can do this via the Form’s Size property in the Properties window.

Fig. 2.20 | Form with updated title-bar text and enabled sizing handles.

Fig. 2.21 | Resizing the Form.

Enabled sizing
handles

Title bar

Form’s current
width and height
while resizing

Mouse cursor when
resizing the Form

ptg18189312

32 Chapter 2 Introduction to Visual Studio and Visual Programming

Step 5: Changing the Form’s Background Color
The BackColor property specifies a Form’s or control’s background color. Clicking Back-
Color in the Properties window causes a down-arrow button to appear next to the value of
the property (Fig. 2.22). Clicking the down-arrow button displays other options, which
vary depending on the property. In this case, the arrow displays tabs for Custom, Web and
System (the default). Click the Custom tab to display the palette (a grid of colors). Select
the box that represents light blue. Once you select the color, the palette closes and the
Form’s background color changes to light blue (Fig. 2.23).

Step 6: Adding a Label Control to the Form
For the app we’re creating in this chapter, the typical controls we use are located in the
Toolbox’s Common Controls group, and also can be found in the All Windows Forms group.
If the Toolbox is not already open, select View > Toolbox to display the set of controls you’ll
use for creating your apps. If either group name is collapsed, expand it by clicking the ar-

Fig. 2.22 | Changing the Form’s BackColor property.

Fig. 2.23 | Form with new BackColor property applied.

Down-arrow button

Current color

Custom palette
Light blue

New light blue
background color

ptg18189312

2.6 Visual Programming: Creating a Simple App that Displays Text and an Image 33

row to the left of the group name (the All Windows Forms and Common Controls groups are
shown in Fig. 2.15). Next, double click the Label control in the Toolbox to add a Label
in the Form’s upper-left corner (Fig. 2.24)—each Label you add to the Form is an object
of class Label from the .NET Framework Class Library. [Note: If the Form is behind the
Toolbox, you may need to hide or pin down the Toolbox to see the Label.] Although double
clicking any Toolbox control places the control on the Form, you also can “drag” controls
from the Toolbox to the Form—you may prefer dragging the control because you can po-
sition it wherever you want. The Label displays the text label1 by default. By default, the
Label’s BackColor is the same as the Form’s.

Step 7: Customizing the Label’s Appearance
Click the Label’s text in the Form to select it and display its properties in the Properties win-
dow. The Label’s Text property determines the text that the Label displays. The Form and
Label each have their own Text property—Forms and controls can have the same property
names (such as Text, BackColor etc.) without conflict. Each common properties purpose
can vary by control. Perform the following steps:

1. Set the Label’s Text property to Welcome to C# Programming!. The Label resizes
to fit all the typed text on one line.

2. By default, the AutoSize property of the Label is set to True so the Label can up-
date its own size to fit all of its text. Set the AutoSize property to False so that you
can change the Label’s size, then resize the Label (using the sizing handles) so that
the text fits.

3. Move the Label to the top center of the Form by dragging it or by using the key-
board’s left and right arrow keys to adjust its position (Fig. 2.25). Alternatively,
when the Label is selected, you can center it horizontally by selecting Format >

Center In Form > Horizontally.

Step 8: Setting the Label’s Font Size
To change the font type and appearance of the Label’s text:

1. Select the value of the Font property, which causes an ellipsis button to appear
next to the value (Fig. 2.26)—you can click this button to display a dialog of op-

Fig. 2.24 | Adding a Label to the Form.

Fig. 2.25 | GUI after the Form and Label have been customized.

Label control

Label centered with
updated Text
property

Sizing
handles

ptg18189312

34 Chapter 2 Introduction to Visual Studio and Visual Programming

tions for the property. Click the ellipsis button to display the Font dialog
(Fig. 2.27).

2. You can select the font name (the font options may be different, depending on
your system), font style (Regular, Italic, Bold, etc.) and font size (16, 18, 20, etc.) in
this dialog. The Sample text shows the selected font settings. Under Font, select
Segoe UI, Microsoft’s recommended font for user interfaces. Under Size, select 24

points and click OK.

3. If the Label’s text does not fit on a single line, it wraps to the next line. Resize the
Label so that the words "Welcome to" appear on the Label’s first line and the
words "C# Programming!" appear on the second line.

4. Re-center the Label horizontally.

Step 9: Aligning the Label’s Text
Select the Label’s TextAlign property, which determines how the text is aligned within
the Label. A three-by-three grid of buttons representing alignment choices is displayed
(Fig. 2.28). The position of each button corresponds to where the text appears in the La-
bel. For this app, set the TextAlign property to MiddleCenter in the three-by-three
grid—this selection centers the text horizontally and vertically within the Label. The other
TextAlign values, such as TopLeft, TopRight, and BottomCenter, can be used to position

Fig. 2.26 | Properties window displaying the Label’s Font property.

Fig. 2.27 | Font dialog for selecting fonts, styles and sizes.

Ellipsis button

Selected font

Font sample

ptg18189312

2.6 Visual Programming: Creating a Simple App that Displays Text and an Image 35

the text anywhere within a Label. Certain alignment values may require that you resize
the Label to fit the text better.

Step 10: Adding a PictureBox to the Form
The PictureBox control displays images. Locate the PictureBox in the Toolbox (Fig. 2.15)
and double click it to add it to the Form—each PictureBox you add to the Form is an ob-
ject of class PictureBox from the .NET Framework Class Library. When the PictureBox
appears, move it underneath the Label, either by dragging it or by using the arrow keys
(Fig. 2.29).

Step 11: Inserting an Image
Click the PictureBox to display its properties in the Properties window (Fig. 2.30), then:

1. Locate and select the Image property, which displays a preview of the selected im-
age or (none) if no image is selected.

2. Click the ellipsis button to display the Select Resource dialog (Fig. 2.31), which
is used to import files, such as images, for use in an app.

Fig. 2.28 | Centering the Label’s text.

Fig. 2.29 | Inserting and aligning a PictureBox.

Text alignment
options

Middle-center
alignment option

Updated
Label

PictureBox

ptg18189312

36 Chapter 2 Introduction to Visual Studio and Visual Programming

3. Click the Import… button to browse for an image, select the image file and click
OK to add it to your project. We used bug.png from this chapter’s examples fold-
er. Supported image formats include PNG (Portable Network Graphics), GIF
(Graphic Interchange Format), JPEG (Joint Photographic Experts Group) and
BMP (Windows bitmap). Depending on the image’s size, it’s possible that only
a portion of the image will be previewed in the Select Resource dialog—you can
resize the dialog to see more of the image (Fig. 2.32). Click OK to use the image.

4. To scale the image to fit in the PictureBox, change the SizeMode property to
StretchImage (Fig. 2.33). Resize the PictureBox, making it larger (Fig. 2.34),
then re-center the PictureBox horizontally.

Step 12: Saving the Project
Select File > Save All to save the entire solution. The solution file (which has the filename
extension .sln) contains the name and location of its project, and the project file (which
has the filename extension .csproj) contains the names and locations of all the files in the
project. If you want to reopen your project at a later time, simply open its .sln file.

Fig. 2.30 | Image property of the PictureBox.

Fig. 2.31 | Select Resource dialog to select an image for the PictureBox.

Image property value
(no image selected)

ptg18189312

2.6 Visual Programming: Creating a Simple App that Displays Text and an Image 37

Fig. 2.32 | Select Resource dialog displaying a preview of selected image.

Fig. 2.33 | Scaling an image to the size of the PictureBox.

Fig. 2.34 | PictureBox displaying an image.

Image resource name

SizeMode
property

SizeMode
property set to
StretchImage

Newly
inserted
image

ptg18189312

38 Chapter 2 Introduction to Visual Studio and Visual Programming

Step 13: Running the Project
Recall that up to this point we have been working in the IDE design mode (that is, the
app being created is not executing). In run mode, the app is executing, and you can inter-
act with only a few IDE features—features that are not available are disabled (grayed out).
Select Debug > Start Debugging to execute the app (or press the F5 key). The IDE enters run
mode and displays “(Running)” next to the app’s name in the IDE’s title bar. Figure 2.35
shows the running app, which appears in its own window outside the IDE.

Step 14: Terminating the App
You can terminate the app by clicking its close box

in the top-right corner of the running app’s window. This action stops the app’s execution
and returns the IDE to design mode. You also can select Debug > Stop Debugging to termi-
nate the app.

2.7 Wrap-Up
In this chapter, we introduced key features of the Visual Studio IDE. You visually designed
a working Visual C# app without writing any code. Visual C# app development is a mix-
ture of the two styles—visual app development allows you to develop GUIs easily and
avoid tedious GUI programming. “Conventional” programming (which we introduce in
Chapter 3) allows you to specify the behavior of your apps.

You created a Visual C# Windows Forms app with one Form. You worked with the
IDE’s Solution Explorer, Toolbox and Properties windows, which are essential to developing
Visual C# apps. We also demonstrated context-sensitive help, which displays help topics
related to selected controls or text.

You used visual app development to design an app’s GUI by adding a Label and a
PictureBox control onto a Form. You used the Properties window to set a Form’s Text and
BackColor properties. You learned that Label controls display text and that PictureBoxes
display images. You displayed text in a Label and added an image to a PictureBox. You
also worked with the Label’s AutoSize, TextAlign and Font properties and the Pic-
tureBox’s Image and SizeMode properties.

Fig. 2.35 | IDE in run mode, with the running app in the foreground.

Close box

ptg18189312

2.8 Web Resources 39

In the next chapter, we discuss “nonvisual,” or “conventional,” programming—you’ll
create your first apps with C# code that you write, instead of having Visual Studio write
the code.

2.8 Web Resources
Please take a moment to visit each of these sites.
https://www.visualstudio.com/

The home page for Microsoft Visual Studio. The site includes news, documentation, downloads and
other resources.
https://social.msdn.microsoft.com/Forums/vstudio/en-US/home?forum=csharpgeneral

This site provides access to the Microsoft Visual C# forums, which you can use to get your Visual
C# language and IDE questions answered.
https://msdn.microsoft.com/magazine/default.aspx

This is the Microsoft Developer Network Magazine site. This site provides articles and code on
many Visual C# and .NET app development topics. There is also an archive of past issues.
http://stackoverflow.com/

In addition to the Microsoft forums, StackOverflow is an excellent site for getting your program-
ming questions answered for most programming languages and technologies.

https://www.visualstudio.com/
https://social.msdn.microsoft.com/Forums/vstudio/en-US/home?forum=csharpgeneral
https://msdn.microsoft.com/magazine/default.aspx
http://stackoverflow.com/

ptg18189312

3
Introduction to C# App

Programming

O b j e c t i v e s
In this chapter you’ll:

■ Write simple C# apps using code rather than visual
programming.

■ Input data from the keyboard and output data to the screen.

■ Use C# 6’s string interpolation to create formatted
strings by inserting values into string literals.

■ Declare and use data of various types.

■ Use arithmetic operators.

■ Understand the order in which operators are applied.

■ Write decision-making statements with equality and
relational operators.

ptg18189312

3.1 Introduction 41

O
u

tl
in

e

3.1 Introduction
We now introduce C# programming. Most of the C# apps you’ll study in this book pro-
cess information and display results. In this chapter, we introduce console apps—these in-
put and output text in a console window, which in Windows is known as the Command

Prompt.
We begin with several examples that simply display messages on the screen. We then

demonstrate an app that obtains two numbers from a user, calculates their sum and dis-
plays the result. You’ll perform various arithmetic calculations and save the results for later
use. The last example in this chapter demonstrates decision-making fundamentals by com-
paring numbers and displaying messages based on the comparison results.

3.2 Simple App: Displaying a Line of Text
Let’s consider a simple app that displays a line of text. Figure 3.1 shows the app’s source
code and its output. The app illustrates several important C# features. Each app we pres-
ent in this book includes line numbers, which are not part of actual C# code. In the Before
You Begin section following the Preface, we show how to display line numbers for your
C# code in Visual Studio. We’ll soon see that line 10 does the real work of the app—name-
ly, displaying the phrase Welcome to C# Programming! on the screen. We now discuss each
line of the app.

3.1 Introduction
3.2 Simple App: Displaying a Line of Text

3.2.1 Comments
3.2.2 using Directive
3.2.3 Blank Lines and Whitespace
3.2.4 Class Declaration
3.2.5 Main Method
3.2.6 Displaying a Line of Text
3.2.7 Matching Left ({) and Right (}) Braces

3.3 Creating a Simple App in Visual Stu-
dio

3.3.1 Creating the Console App
3.3.2 Changing the Name of the App File
3.3.3 Writing Code and Using IntelliSense
3.3.4 Compiling and Running the App
3.3.5 Syntax Errors, Error Messages and the

Error List Window
3.4 Modifying Your Simple C# App

3.4.1 Displaying a Single Line of Text with
Multiple Statements

3.4.2 Displaying Multiple Lines of Text with
a Single Statement

3.5 String Interpolation

3.6 Another C# App: Adding Integers
3.6.1 Declaring the int Variable number1
3.6.2 Declaring Variables number2 and sum
3.6.3 Prompting the User for Input
3.6.4 Reading a Value into Variable num-

ber1
3.6.5 Prompting the User for Input and

Reading a Value into number2
3.6.6 Summing number1 and number2
3.6.7 Displaying the sum with string In-

terpolation
3.6.8 Performing Calculations in Output

Statements
3.7 Arithmetic

3.7.1 Arithmetic Expressions in Straight-
Line Form

3.7.2 Parentheses for Grouping Subexpres-
sions

3.7.3 Rules of Operator Precedence
3.8 Decision Making: Equality and Rela-

tional Operators
3.9 Wrap-Up

ptg18189312

42 Chapter 3 Introduction to C# App Programming

3.2.1 Comments
Line 1 begins with //, indicating that the remainder of the line is a comment. We begin
every source-code file with a comment indicating the figure number and the name of the
file in which the code is stored.

A comment that begins with // is called a single-line comment, because it terminates
at the end of the line on which it appears. A // comment also can begin in the middle of
a line and continue until the end of that line (as in lines 7, 11 and 12).

Delimited comments such as

can be split over several lines. This type of comment begins with the delimiter /* and ends
with the delimiter */. All text between the delimiters is ignored by the compiler. Line 2 is
a single-line comment that describes the purpose of the app.

1 // Fig. 3.1: Welcome1.cs
2 // Text-displaying app.
3 using System;
4
5 class Welcome1
6 {
7 // Main method begins execution of C# app
8 static void Main()
9 {

10 Console.WriteLine("Welcome to C# Programming!");
11 } // end Main
12 } // end class Welcome1

Welcome to C# Programming!

Fig. 3.1 | Text-displaying app.

/* This is a delimited comment.
 It can be split over many lines */

Common Programming Error 3.1
Forgetting one of the delimiters of a delimited comment is a syntax error. A programming
language’s syntax specifies the grammatical rules for writing code in that language. A syn-
tax error occurs when the compiler encounters code that violates C#’s language rules. In
this case, the compiler does not produce an executable file. Instead, it issues one or more
error messages to help you identify and fix the incorrect code. Syntax errors are also called
compiler errors, compile-time errors or compilation errors, because the compiler detects
them during the compilation phase. You cannot execute your app until you correct all the
compilation errors in it. We’ll see that some compile-time errors are not syntax errors.

Error-Prevention Tip 3.1
When the compiler reports an error, the error may not be in the line indicated by the error
message. First, check the line for which the error was reported. If that line does not contain
syntax errors, check several preceding lines.

ptg18189312

3.2 Simple App: Displaying a Line of Text 43

3.2.2 using Directive
Line 3

is a using directive that tells the compiler where to look for a class that’s used in this app. A
great strength of Visual C# is its rich set of predefined classes that you can reuse rather than
“reinventing the wheel.” These classes are organized under namespaces—named collections
of related classes. Collectively, .NET’s predefined namespaces are known as .NET Frame-
work Class Library. Each using directive identifies a namespace containing classes that a C#
app should be able to use. The using directive in line 3 indicates that this example intends to
use classes from the System namespace, which contains the predefined Console class (dis-
cussed shortly) used in line 10, and many other useful classes.

For each new .NET class we use, we indicate the namespace in which it’s located. This
information is important, because it helps you locate descriptions of each class in the .NET
documentation. A web-based version of this documentation can be found at

This also can be accessed via the Help menu. You can click the name of any .NET class or
method, then press the F1 key to get more information. Finally, you can learn about the
contents of a given namespace by going to

So

takes you to namespace System’s documentation.

3.2.3 Blank Lines and Whitespace
Line 4 is simply a blank line. Blank lines and space characters make code easier to read, and
together with tab characters are known as whitespace. Space characters and tabs are known
specifically as whitespace characters. Whitespace is ignored by the compiler.

3.2.4 Class Declaration
Line 5

using System;

Error-Prevention Tip 3.2
Forgetting to include a using directive for a namespace that contains a class used in your
app typically results in a compilation error, containing a message such as “The name 'Con-
sole' does not exist in the current context.” When this occurs, check that you pro-
vided the proper using directives and that the names in them are spelled correctly,
including proper use of uppercase and lowercase letters. In the editor, when you hover over
an error’s red squiggly line, Visual Studio displays a box containing the link "Show po-

tential fixes." If a using directive is missing, one potential fix shown is to add the using
directive to your code—simply click that fix to have Visual Studio edit your code.

https://msdn.microsoft.com/library/w0x726c2

https://msdn.microsoft.com/namespace

https://msdn.microsoft.com/System

class Welcome1

https://msdn.microsoft.com/library/w0x726c2
https://msdn.microsoft.com/
https://msdn.microsoft.com/System

ptg18189312

44 Chapter 3 Introduction to C# App Programming

begins a class declaration for the class named Welcome1. Every app consists of at least one
class declaration that’s defined by you. These are known as user-defined classes. The
class keyword introduces a class declaration and is immediately followed by the class
name (Welcome1). Keywords (also called reserved words) are reserved for use by C#.

Class Name Convention
By convention, all class names begin with a capital letter and capitalize the first letter of
each word they include (e.g., SampleClassName). This naming convention is known as
camel case, because the uppercase letters stand out like a camel’s humps. When the first
letter is capitalized, it’s known as Pascal Case. A class name is an identifier—a series of
characters consisting of letters, digits and underscores (_) that does not begin with a digit
and does not contain spaces. Some valid identifiers are Welcome1, identifier, _value and
m_inputField1. The name 7button is not a valid identifier because it begins with a digit,
and the name input field is not a valid identifier because it contains a space. Normally,
an identifier that does not begin with a capital letter is not the name of a class. C# is case
sensitive—that is, uppercase and lowercase letters are distinct, so a1 and A1 are different
(but both valid) identifiers. Keywords are always spelled with all lowercase letters. The
complete list of C# keywords is shown in Fig. 3.2.1

Keywords and contextual keywords

abstract as base bool break byte

case catch char checked class const

continue decimal default delegate do double

else enum event explicit extern false

finally fixed float for foreach goto

if implicit in int interface internal

is lock long namespace new null

object operator out override params private

protected public readonly ref return sbyte

sealed short sizeof stackalloc static string

struct switch this throw true try

typeof uint ulong unchecked unsafe ushort

using virtual void volatile while

Contextual Keywords
add alias ascending async await by

descending dynamic equals from get global

group into join let nameof on

orderby partial remove select set value

var where yield

Fig. 3.2 | Keywords and contextual keywords.

1. The contextual keywords at the bottom of Fig. 3.2 can be used as identifiers outside the contexts in
which they’re keywords, but for clarity we do not recommend this.

ptg18189312

3.2 Simple App: Displaying a Line of Text 45

Class Declaration’s File Name
A class declaration’s file name is usually the class name followed by the .cs file-name ex-
tension, though this is not required. For our app, the file name is Welcome1.cs.

Body of a Class Declaration
A left brace, { (in line 6 in Fig. 3.1), begins each class declaration’s body. A corresponding
right brace, } (in line 12), must end each class declaration. Lines 7–11 are indented. This
indentation is a spacing convention. We define each spacing convention and other conven-
tions that improve program clarity as Good Programming Practices.

Good Programming Practice 3.1
By convention, always begin a class name’s identifier with a capital letter and start each
subsequent word in the identifier with a capital letter.

Common Programming Error 3.2
C# is case sensitive. Not using the proper uppercase and lowercase letters for an identifier
normally causes a compilation error.

Common Programming Error 3.3
Using a keyword as an identifier is a compilation error.

Good Programming Practice 3.2
By convention, a file that contains a single class should have a name that’s identical to the
class name (plus the .cs extension) in both spelling and capitalization. This makes it easy
to identify which file contains the class’s declaration.

Good Programming Practice 3.3
Indent the entire body of each class declaration one “level” of indentation between the left
and right braces that delimit the body of the class. This format emphasizes the class decla-
ration’s structure and makes it easier to read. You can let the IDE format your code by
selecting Edit > Advanced > Format Document.

Good Programming Practice 3.4
Set a convention for the indent size you prefer, then uniformly apply that convention. Mi-
crosoft recommends four-space indents, which is the default in Visual Studio. Due to the
limited width of code lines in print books, we use three-space indents—this reduces the
number of code lines that wrap to a new line, making the code a bit easier to read. We
show how to set the tab size in the Before You Begin section that follows the Preface.

Error-Prevention Tip 3.3
Whenever you type an opening left brace, {, in your app, the IDE immediately inserts the
closing right brace, }, then repositions the cursor between the braces so you can begin typ-
ing the body. This practice helps prevent errors due to missing braces.

Common Programming Error 3.4
It’s a syntax error if braces do not occur in matching pairs.

ptg18189312

46 Chapter 3 Introduction to C# App Programming

3.2.5 Main Method
Line 7 is a comment indicating the purpose of lines 8–11. Line 8

is where the app begins execution—this is known as the entry point. The parentheses after
the identifier Main indicate that it’s a method. Class declarations normally contain one or
more methods. Method names follow the same capitalization conventions as class names.
For each app, one of the methods in a class must be called Main; otherwise, the app will
not execute. A method is able to perform a task and return a value when it completes its
task. Keyword void (line 8) indicates that Main will not return a value after it completes its
task. Later, we’ll see that most methods do return values. You’ll learn more about methods
in Chapters 4 and 7. We discuss the contents of Main’s parentheses in Chapter 8. For now,
simply mimic Main’s first line in your apps.

Body of a Method Declaration
The left brace in line 9 begins the body of the method declaration. A corresponding right
brace ends the body (line 11). Line 10 in the method body is indented between the braces.

3.2.6 Displaying a Line of Text
Line 10

instructs the computer to perform an action—namely, to display the string of characters
between the double quotation marks, which delimit the string. A string is sometimes called
a character string, a message or a string literal. We refer to them simply as strings.
Whitespace characters in strings are not ignored by the compiler.

Class Console provides standard input/output capabilities that enable apps to read
and display text in the console window from which the app executes. The Console.Write-
Line method displays a line of text in the console window. The string in the parentheses
in line 10 is the argument to the method. Method Console.WriteLine performs its task
by displaying its argument in the console window. When Console.WriteLine completes
its task, it positions the screen cursor (the blinking symbol indicating where the next char-
acter will be displayed) at the beginning of the next line in the console window. This
movement of the cursor is similar to what happens when a user presses the Enter key while
typing in a text editor—the cursor moves to the beginning of the next line in the file.

Statements
The entire line 10, including Console.WriteLine, the parentheses, the argument "Wel-
come to C# Programming!" in the parentheses and the semicolon (;), is called a statement.
Most statements end with a semicolon. When the statement in line 10 executes, it displays
the message Welcome to C# Programming! in the console window. A method is typically
composed of one or more statements that perform the method’s task.

static void Main()

Good Programming Practice 3.5
Indent each method declaration’s body statements one level of indentation between the left
and right braces that define the body.

Console.WriteLine("Welcome to C# Programming!");

ptg18189312

3.3 Creating a Simple App in Visual Studio 47

3.2.7 Matching Left ({) and Right (}) Braces
You may find it difficult when reading or writing an app to match the left and right braces
({ and }) that delimit a class’s or method’s body. Visual Studio can help you locate match-
ing braces in your code. Simply place the cursor immediately in front of the left brace or
immediately after the right brace, and Visual Studio will highlight both.

3.3 Creating a Simple App in Visual Studio
Now that we’ve presented our first console app (Fig. 3.1), we provide a step-by-step expla-
nation of how to create, compile and execute it using Visual Studio Community 2015,
which we’ll refer to simply as Visual Studio from this point forward.

3.3.1 Creating the Console App
In Visual Studio, select File > New > Project… to display the New Project dialog (Fig. 3.3).
At the left side, under Installed > Templates > Visual C# select Windows, then in the middle
select the Console Application template. In the dialog’s Name field, type Welcome1—your
project’s name—then click OK to create the project. The project’s folder will be placed in
your user account’s documents folder under visual studio 2015\Projects.

The IDE now contains the open console app (Fig. 3.4). The editor window already
contains some code provided by the IDE. Some of this code is similar to that of Fig. 3.1.
Some is not and uses features that we have not yet discussed. The IDE inserts this extra
code to help organize the app and to provide access to some common classes in the .NET
Framework Class Library—at this point in the book, this code is neither required nor rel-
evant to the discussion of this app; delete all of it.

Fig. 3.3 | Selecting Console Application in the New Project dialog.

ptg18189312

48 Chapter 3 Introduction to C# App Programming

The code coloring scheme used by the IDE is called syntax-color highlighting and
helps you visually differentiate code elements. For example, keywords appear in blue and
comments appear in green. We style our code similarly as discussed in the Preface. One
example of a literal is the string passed to Console.WriteLine in line 10 of Fig. 3.1. You
can customize the colors shown in the code editor by selecting Tools > Options…. This dis-
plays the Options dialog. Then expand the Environment node and select Fonts and Colors.
Here you can change the colors for various code elements. Visual Studio provides many
ways to personalize your coding experience.

3.3.2 Changing the Name of the App File
For the apps we create in this book, we change the source-code file’s default name (Pro-
gram.cs) to a more descriptive name. To rename the file, right click Program.cs in the
Solution Explorer and select Rename to make the file name editable. Windows automatically
selects the file name’s base part (i.e., Program). Type Welcome1, then press Enter to change
the name to Welcome1.cs. Be sure to keep the .cs filename extension.

Fig. 3.4 | IDE with an open console app’s code displayed in the editor and the project’s contents
shown in the Solution Explorer at the IDE’s top-right side.

Error-Prevention Tip 3.4
When changing a file name in a Visual Studio project, always do so in Visual Studio.
Changing file names outside the IDE can break the project and prevent it from executing.

Editor window

ptg18189312

3.3 Creating a Simple App in Visual Studio 49

3.3.3 Writing Code and Using IntelliSense
In the editor window (Fig. 3.4), replace the generated code with Fig. 3.1’s code. As you
begin typing the name Console (line 10), an IntelliSense window is displayed (Fig. 3.5).

As you type, IntelliSense lists various items that start with or contain the letters you’ve
typed so far. IntelliSense also displays a tool tip containing a description of the first
matching item. You can either type the complete item name (e.g., Console), double click
the item name in the member list or press the Tab key to complete the name. Once the
complete name is provided, the IntelliSense window closes. While the IntelliSense window
is displayed, pressing the Ctrl key makes the window transparent so you can see the code
behind the window.

When you type the dot (.) after Console, the IntelliSense window reappears and ini-
tially shows only class Console’s members that can be used on the right of the dot—as you
type, this list narrows to items containing what you’ve typed so far. Figure 3.6 shows the
IntelliSense window narrowed down to only items that contain “Write”. You also can type
“WL” to find all items containing the capital letters “W” and “L” (such as WriteLine).

When you type the opening parenthesis character, (, after Console.WriteLine, the
Parameter Info window is displayed (Fig. 3.7). This contains information about the
method’s parameters—the data methods require to perform their tasks. As you’ll learn in
Chapter 7, a method can have several versions. That is, a class can define several methods
that have the same name, as long as they have different numbers and/or types of parame-
ters—a concept known as overloaded methods. These methods normally all perform similar
tasks.

Fig. 3.5 | IntelliSense window as you type “Con”.

Tool tip describes highlighted itemClosest match is highlighted

IntelliSense window

Partially typed name

a) IntelliSense window displayed as you type

ptg18189312

50 Chapter 3 Introduction to C# App Programming

The Parameter Info window indicates how many versions of the selected method are
available and provides up and down arrows for scrolling through the different versions. For
example, there are many versions of the WriteLine method that enable you to display dif-
ferent types of data—we use the one that displays a string in our app. The Parameter Info
window is one of many features provided by the IDE to facilitate app development. In the
next several chapters, you’ll learn more about the information displayed in these windows.
The Parameter Info window is especially helpful when you want to see the different ways
in which a method can be used. From the code in Fig. 3.1, we already know that we intend
to display one string with WriteLine, so, because you know exactly which version of
WriteLine you want to use, you can close the Parameter Info window by pressing the Esc

Fig. 3.6 | IntelliSense window.

Fig. 3.7 | Parameter Info window.

Tool tip describes highlighted memberHighlighted memberPartially typed member

b) IntelliSense window showing method names that start with Write

Parameter Info window

Down arrow

Up arrow

ptg18189312

3.3 Creating a Simple App in Visual Studio 51

key, or simply keep typing and ignore it. After you type the app’s code, select File > Save All

to save the project.

3.3.4 Compiling and Running the App
You’re now ready to compile and execute your app. Depending on the project’s type, the
compiler may compile the code into files with the .exe (executable) extension, the .dll
(dynamically linked library) extension or one of several other extensions—you can find
these files in project’s subfolders on disk. Such files are called assemblies and are the pack-
aging units for compiled C# code. These assemblies contain the Microsoft Intermediate
Language (MSIL; Section 1.4.2) code for the app.

To compile the app, select Build > Build Solution. If the app contains no compile-time
errors, this will compile your app and build it into an executable file (named Wel-
come1.exe, in one of the project’s subdirectories). To execute it, type Ctrl + F5, which
invokes the Main method (Fig. 3.1). If you attempt to run the app before building it, the
IDE will build the app first, then run it only if there are no compilation errors. The state-
ment in line 10 of Main displays Welcome to C# Programming!. Figure 3.8 shows the results
of executing this app, displayed in a console (Command Prompt) window. Leave the app’s
project open in Visual Studio; we’ll go back to it later in this section. [Note: The console
window normally has a black background and white text. We reconfigured it to have a
white background and black text for readability. If you’d like to do this, right click any-
where in the Command Prompt window’s title bar, then select Properties. You can change
the colors in the Colors tab of the dialog that appears.]

3.3.5 Errors, Error Messages and the Error List Window
Go back to the app in Visual Studio. As you type code, the IDE responds either by apply-
ing syntax-color highlighting or by generating an error. When an error occurs, the IDE
underlines the error’s location with a red squiggly line and provides a description of it in
the Error List window (Fig. 3.9). If the Error List window is not visible, select View > Error

List to display it. In Fig. 3.9, we intentionally omitted the semicolon at the end of line 10.
The error message indicates that the semicolon is missing. You can double click an error
message in the Error List to jump to the error’s location in the code.

Fig. 3.8 | Executing the app shown in Fig. 3.1.

Error-Prevention Tip 3.5
One compile-time error can lead to multiple entries in the Error List window. Each er-
ror you correct could eliminate several subsequent error messages when you recompile your
app. So when you see an error you know how to fix, correct it—the IDE will recompile
your code in the background, so fixing an error may make several other errors disappear.

ptg18189312

52 Chapter 3 Introduction to C# App Programming

3.4 Modifying Your Simple C# App
This section continues our introduction to C# programming with two examples that mod-
ify the example of Fig. 3.1.

3.4.1 Displaying a Single Line of Text with Multiple Statements
Class Welcome2, shown in Fig. 3.10, uses two statements to produce the same output as
that shown in Fig. 3.1. From this point forward, we highlight the new and key features in
each code listing, as shown in lines 10–11 of Fig. 3.10.

Fig. 3.9 | Syntax error indicated by the IDE.

1 // Fig. 3.10: Welcome2.cs
2 // Displaying one line of text with multiple statements.
3 using System;
4
5 class Welcome2
6 {

Fig. 3.10 | Displaying one line of text with multiple statements. (Part 1 of 2.)

Intentionally omitted semicolon (syntax error)

Squiggly underline indicates a syntax errorError description(s)Error List window

ptg18189312

3.4 Modifying Your Simple C# App 53

The app is almost identical to Fig. 3.1. We discuss the changes here. Line 2

states the purpose of this app. Line 5 begins the Welcome2 class declaration.
Lines 10–11 of method Main

display one line of text in the console window. The first statement uses Console’s method
Write to display a string. Unlike WriteLine, after displaying its argument, Write does not
position the screen cursor at the beginning of the next line in the console window—the
next character the app displays will appear immediately after the last character that Write
displays. Thus, line 11 positions the first character in its argument (the letter “C”) imme-
diately after the last character that line 10 displays (the space character before the string’s
closing double-quote character). Each Write or WriteLine statement resumes displaying
characters from where the last Write or WriteLine statement displayed its last character.

3.4.2 Displaying Multiple Lines of Text with a Single Statement
A single statement can display multiple lines by using newline characters, which indicate
to Console methods Write and WriteLine when they should position the screen cursor to
the beginning of the next line. Like space characters and tab characters, newline characters
are whitespace characters. The app of Fig. 3.11 outputs four lines of text, using newline
characters to indicate when to begin each new line.

7 // Main method begins execution of C# app
8 static void Main()
9 {

10
11
12 } // end Main
13 } // end class Welcome2

Welcome to C# Programming!

// Displaying one line of text with multiple statements.

Console.Write("Welcome to ");
Console.WriteLine("C# Programming!");

1 // Fig. 3.11: Welcome3.cs
2 // Displaying multiple lines with a single statement.
3 using System;
4
5 class Welcome3
6 {
7 // Main method begins execution of C# app
8 static void Main()
9 {

Fig. 3.11 | Displaying multiple lines with a single statement. (Part 1 of 2.)

Fig. 3.10 | Displaying one line of text with multiple statements. (Part 2 of 2.)

Console.Write("Welcome to ");
Console.WriteLine("C# Programming!");

ptg18189312

54 Chapter 3 Introduction to C# App Programming

Most of the app is identical to the apps of Fig. 3.1 and Fig. 3.10, so we discuss only
the changes here. Line 2

states the purpose of this app. Line 5 begins the Welcome3 class declaration.
Line 10

displays four separate lines of text in the console window. Normally, the characters in a
string are displayed exactly as they appear in the double quotes. Note, however, that the
two characters \ and n (repeated three times in the statement) do not appear on the screen.
The backslash (\) is called an escape character. It indicates to C# that a “special character”
is in the string. When a backslash appears in a string of characters, C# combines the next
character with the backslash to form an escape sequence.2

The escape sequence \n represents the newline character. When a newline character
appears in a string being output with Console methods, the newline character causes the
screen cursor to move to the beginning of the next line in the console window. Figure 3.12
lists several common escape sequences and describes how they affect the display of charac-
ters in the console window.

10 Console.WriteLine("Welcome to C# Programming!");
11 } // end Main
12 } // end class Welcome3

Welcome
to
C#
Programming!

// Displaying multiple lines with a single statement.

Console.WriteLine("Welcome\nto\nC#\nProgramming!");

2. There are also escape sequences that have four or eight hexadecimal characters following the \. These
represent so-called Unicode characters. For more information, see the Lexical Structure section of
Microsoft’s C# 6 specification. For more information on the hexadecimal (base 16) number system,
see our online Number Systems appendix.

Escape
sequence Description

\n Newline. Positions the screen cursor at the beginning of the next line.

\t Horizontal tab. Moves the screen cursor to the next tab stop.

\" Double quote. Used to place a double-quote character (") in a string—e,g.,
Console.Write("\"in quotes\""); displays "in quotes".

Fig. 3.12 | Common escape sequences. (Part 1 of 2.)

Fig. 3.11 | Displaying multiple lines with a single statement. (Part 2 of 2.)

\n \n \n

ptg18189312

3.5 String Interpolation 55

3.5 String Interpolation
Many programs format data into strings. C# 6 introduces a mechanism called string in-
terpolation that enables you to insert values in string literals to create formatted strings.
Figure 3.13 demonstrates this capability.

Declaring the string Variable person
Line 10

is a variable declaration statement (also called a declaration) that specifies the name
(person) and type (string) of a variable used in this app. Variables are declared with a
name and a type before they’re used:

• A variable’s name enables the app to access the corresponding value in memory—
the name can be any valid identifier. (See Section 3.2 for identifier naming re-
quirements.)

• A variable’s type specifies what kind of information is stored at that location in
memory. Variables of type string store character-based information, such as the

\r Carriage return. Positions the screen cursor at the beginning of the current
line—does not advance the cursor to the next line. Any characters output after
the carriage return overwrite the characters previously output on that line.

\\ Backslash. Used to place a backslash character in a string.

1 // Fig. 3.13: Welcome4.cs
2 // Inserting content into a string with string interpolation.
3 using System;
4
5 class Welcome4
6 {
7 // Main method begins execution of C# app
8 static void Main()
9 {

10
11
12 } // end Main
13 } // end class Welcome4

Welcome to C# Programming, Paul!

Fig. 3.13 | Inserting content into a string with string interpolation.

string person = "Paul"; // variable that stores the string "Paul"

Escape
sequence Description

Fig. 3.12 | Common escape sequences. (Part 2 of 2.)

string person = "Paul"; // variable that stores the string "Paul"
Console.WriteLine($"Welcome to C# Programming, {person}!");

ptg18189312

56 Chapter 3 Introduction to C# App Programming

contents of the string literal "Paul". In fact, a string literal has type string. (From
this point forward we’ll use the type name string when referring to strings.)

Like other statements, declaration statements end with a semicolon (;).

string Interpolation
Line 11

uses string interpolation to insert the variable person’s value ("Paul") into the string
that Console.WriteLine is about to display. An interpolated string must begin with a $
(dollar sign). Then, you can insert interpolation expressions enclosed in braces, {} (e.g.,
{person}), anywhere between the quotes (""). When C# encounters an interpolated
string, it replaces each braced interpolation expression with the corresponding value—in
this case, {person} is replaced with Paul, so line 11 displays

3.6 Another C# App: Adding Integers
The app in Fig. 3.14 reads (or inputs) two integers (whole numbers, like –22, 7, 0 and
1024) typed by a user at the keyboard, computes the sum of the values and displays the
result. In the sample output, we highlight data the user enters at the keyboard in bold.

Console.WriteLine($"Welcome to C# Programming, {person}!");

Welcome to C# Programming, Paul!

1 // Fig. 3.14: Addition.cs
2 // Displaying the sum of two numbers input from the keyboard.
3 using System;
4
5 class Addition
6 {
7 // Main method begins execution of C# app
8 static void Main()
9 {

10
11
12
13
14 Console.Write("Enter first integer: "); // prompt user
15 // read first number from user
16
17
18 Console.Write("Enter second integer: "); // prompt user
19 // read second number from user
20
21
22
23
24
25 } // end Main
26 } // end class Addition

Fig. 3.14 | Displaying the sum of two numbers input from the keyboard. (Part 1 of 2.)

int number1; // declare first number to add
int number2; // declare second number to add
int sum; // declare sum of number1 and number2

number1 = int.Parse(Console.ReadLine());

number2 = int.Parse(Console.ReadLine());

sum = number1 + number2; // add numbers

Console.WriteLine($"Sum is {sum}"); // display sum

ptg18189312

3.6 Another C# App: Adding Integers 57

Line 5

begins the declaration of class Addition. Remember that the body of each class declaration
starts with an opening left brace (line 6) and ends with a closing right brace (line 26). The
app begins execution with Main (lines 8–25).

3.6.1 Declaring the int Variable number1
Line 10

is a variable declaration statement specifying that number1 has type int—it will hold in-
teger values (whole numbers such as 7, –11, 0 and 31914). The range of values for an int
is –2,147,483,648 (int.MinValue) to +2,147,483,647 (int.MaxValue). We’ll soon dis-
cuss types float, double and decimal, for specifying numbers with decimal points (as in
3.4, 0.0 and –11.19), and type char, for specifying characters. Variables of type float and
double store approximations of real numbers in memory. Variables of type decimal store
numbers with decimal points precisely (to 28–29 significant digits3), so decimal variables
are often used with monetary calculations—we use type decimal to represent the balance
in our Account class in Chapter 4. Variables of type char represent individual characters,
such as an uppercase letter (e.g., A), a digit (e.g., 7), a special character (e.g., * or %) or an
escape sequence (e.g., the newline character, \n). Types such as int, float, double, dec-
imal and char are called simple types. Simple-type names are keywords and must appear
in all lowercase letters. Appendix summarizes the characteristics of the simple types (bool,
byte, sbyte, char, short, ushort, int, uint, long, ulong, float, double and decimal),
including the amount of memory required to store a value of each type.

3.6.2 Declaring Variables number2 and sum
The variable declaration statements at lines 11–12

declare variables number2 and sum to be of type int.

Enter first integer: 45
Enter second integer: 72
Sum is 117

class Addition

int number1; // declare first number to add

3. See Section 4.1.7 of the C# Language Specification.

int number2; // declare second number to add
int sum; // declare sum of number1 and number2

Good Programming Practice 3.6
Declare each variable on a separate line. This format allows a comment to be easily in-
serted next to each declaration.

Fig. 3.14 | Displaying the sum of two numbers input from the keyboard. (Part 2 of 2.)

ptg18189312

58 Chapter 3 Introduction to C# App Programming

3.6.3 Prompting the User for Input
Line 14

uses Console.Write to prompt the user for input.

3.6.4 Reading a Value into Variable number1
Line 16

works in two steps. First, it calls the Console’s ReadLine method, which waits for the user
to type a string of characters at the keyboard and press the Enter key. As we mentioned,
some methods perform a task, then return the result of that task. In this case, ReadLine re-
turns the text the user entered. Then the returned string is used as an argument to type
int’s Parse method, which converts this sequence of characters into data of type int.

Possible Erroneous User Input
Technically, the user can type anything as the input value. ReadLine will accept it and pass
it off to int’s Parse method. This method assumes that the string contains a valid integer
value. In this app, if the user types a noninteger value, a runtime logic error called an ex-
ception will occur and the app will terminate. The string processing techniques you’ll
learn in Chapter 16 can be used to check that the input is in the correct format before at-
tempting to convert the string to an int. C# also offers a technology called exception han-
dling that will help you make your apps more robust by enabling them to handle
exceptions and continue executing. This is also known as making your app fault tolerant.
We introduce exception handling in Section 8.5, then use it again in Chapter 10. We take
a deeper look at exception handling in Chapter 13 and throughout the book.

Assigning a Value to a Variable
In line 16, the result of the call to int’s Parse method (an int value) is placed in variable
number1 by using the assignment operator, =. The statement is read as “number1 gets the
value returned by int.Parse.” Operator = is a binary operator, because it works on two
pieces of information. These are known as its operands—in this case, number1 and the re-
sult of the method call int.Parse. This statement is called an assignment statement, be-
cause it assigns a value to a variable. Everything to the right of the assignment operator, =,
is always evaluated before the assignment is performed.

Good Programming Practice 3.7
By convention, variable-name identifiers begin with a lowercase letter, and every word in
the name after the first word begins with a capital letter (e.g., firstNumber). This nam-
ing convention is known as camel case.

Console.Write("Enter first integer: "); // prompt user

number1 = int.Parse(Console.ReadLine());

Good Programming Practice 3.8
Place spaces on either side of a binary operator to make the code more readable.

ptg18189312

3.7 Arithmetic 59

3.6.5 Prompting the User for Input and Reading a Value into number2
Line 18

prompts the user to enter the second integer. Line 20

reads a second integer and assigns it to the variable number2.

3.6.6 Summing number1 and number2
Line 22

calculates the sum of number1 and number2 and assigns the result to variable sum by using
the assignment operator, =. The statement is read as “sum gets the value of number1 + num-
ber2.” When number1 + number2 is encountered, the values stored in the variables are used
in the calculation. The addition operator is a binary operator—its two operands are num-
ber1 and number2. Portions of statements that contain calculations are called expressions.
In fact, an expression is any portion of a statement that has a value associated with it. For
example, the value of the expression number1 + number2 is the sum of the numbers. Simi-
larly, the value of the expression Console.ReadLine() is the string of characters typed by
the user.

3.6.7 Displaying the sum with string Interpolation
After the calculation has been performed, line 24

uses method Console.WriteLine to display the sum. C# replaces the interpolation expres-
sion {sum} with the calculated sum from line 22. So method WriteLine displays "Sum is ",
followed by the value of sum and a newline.

3.6.8 Performing Calculations in Output Statements
Calculations also can be performed in interpolation expressions. We could have combined
the statements in lines 22 and 24 into the statement

3.7 Arithmetic
The arithmetic operators are summarized in Fig. 3.15. The asterisk (*) indicates multipli-
cation, and the percent sign (%) is the remainder operator, which we’ll discuss shortly.
The arithmetic operators in Fig. 3.15 are binary operators—for example, the expression f
+ 7 contains the binary operator + and the two operands f and 7.

Console.Write("Enter second integer: "); // prompt user

number2 = int.Parse(Console.ReadLine());

sum = number1 + number2; // add numbers

Console.WriteLine($"Sum is {sum}"); // display sum

Console.WriteLine($"Sum is {number1 + number2}");

ptg18189312

60 Chapter 3 Introduction to C# App Programming

If both operands of the division operator (/) are integers, integer division is per-
formed and the result is an integer—for example, the expression 7 / 4 evaluates to 1, and
the expression 17 / 5 evaluates to 3. Any fractional part in integer division is simply trun-
cated (i.e., discarded)—no rounding occurs. C# provides the remainder operator, %, which
yields the remainder after division. The expression x % y yields the remainder after x is
divided by y. Thus, 7 % 4 yields 3, and 17 % 5 yields 2. This operator is most commonly
used with integer operands but also can be used with floats, doubles, and decimals. In
later chapters, we consider several interesting applications of the remainder operator, such
as determining whether one number is a multiple of another.

3.7.1 Arithmetic Expressions in Straight-Line Form
Arithmetic expressions must be written in straight-line form to facilitate entering an app’s
code into the computer. Thus, expressions such as “a divided by b” must be written as a /
b in a straight line. The following algebraic notation is not acceptable to the C# compiler
and cannot be typed into the Visual Studio editor:

3.7.2 Parentheses for Grouping Subexpressions
Parentheses are used to group terms in C# expressions in the same manner as in algebraic
expressions. For example, to multiply a times the quantity b + c, we write

If an expression contains nested parentheses, such as

the expression in the innermost set of parentheses (a + b in this case) is evaluated first.

3.7.3 Rules of Operator Precedence
C# applies the operators in arithmetic expressions in a precise sequence determined by the
following rules of operator precedence, which are generally the same as those followed in
algebra (Fig. 3.16). These rules enable C# to apply operators in the correct order.4

C# operation
Arithmetic
operator

Algebraic
expression

C#
expression

Addition + f + 7 f + 7

Subtraction – p – c p - c

Multiplication * b ⋅ m b * m

Division / x / y or or x ÷ y x / y

Remainder % r mod s r % s

Fig. 3.15 | Arithmetic operators.

a * (b + c)

((a + b) * c)

x
y--

a
b
--

ptg18189312

3.8 Decision Making: Equality and Relational Operators 61

When we say that operators are applied from left to right, we’re referring to their asso-
ciativity. You’ll see that some operators associate from right to left. Figure 3.16 summa-
rizes these rules of operator precedence. The table will be expanded as additional operators
are introduced. Appendix provides the complete precedence chart.

3.8 Decision Making: Equality and Relational Operators
A condition is an expression that can be either true or false. This section introduces a sim-
ple version of C#’s if statement that allows an app to make a decision based on the value
of a condition. For example, the condition “grade is greater than or equal to 60” deter-
mines whether a student passed a test. If the condition in an if statement is true, the body
of the if statement executes. If the condition is false, the body is skipped—it does not ex-
ecute. We’ll see an example shortly.

Conditions in if statements can be formed by using the equality operators (== and
!=) and relational operators (>, <, >= and <=) summarized in Fig. 3.17. The two equality
operators (== and !=) each have the same level of precedence, the relational operators (>,
<, >= and <=) each have the same level of precedence, and the equality operators have lower
precedence than the relational operators. They all associate from left to right.

4. We discuss simple examples here to explain the order of evaluation. More subtle order of evaluation
issues occur in the increasingly complex expressions you’ll encounter later. For more details, see the
following blog posts from Eric Lippert: https://ericlippert.com/2008/05/23/ and https://
ericlippert.com/2007/08/14/.

Operators Operations Order of evaluation (associativity)

Evaluated first
*

/

%

Multiplication
Division
Remainder

If there are several operators of this type,
they’re evaluated from left to right.

Evaluated next
+

-

Addition
Subtraction

If there are several operators of this type,
they’re evaluated from left to right.

Fig. 3.16 | Precedence of arithmetic operators.

Common Programming Error 3.5
Confusing the equality operator, ==, with the assignment operator, =, can cause a logic er-
ror or a syntax error. The equality operator should be read as “is equal to,” and the assign-
ment operator should be read as “gets” or “gets the value of.” To avoid confusion, some
programmers read the equality operator as “double equals” or “equals equals.”

https://ericlippert.com/2008/05/23/
https://ericlippert.com/2007/08/14/
https://ericlippert.com/2007/08/14/

ptg18189312

62 Chapter 3 Introduction to C# App Programming

Using the if Statement
Figure 3.18 uses six if statements to compare two integers entered by the user. If the con-
dition in any of these if statements is true, the statement associated with that if statement
executes. The app uses class Console to prompt for and read two lines of text from the
user, extracts the integers from that text with int’s Parse method, and stores them in vari-
ables number1 and number2. Then the app compares the numbers and displays the results
of the comparisons that are true.

Standard algebraic
equality and
relational operators

C# equality or
relational
operator

Sample C#
condition

Meaning of
C# condition

Relational operators
> > x > y x is greater than y

< < x < y x is less than y

≥ >= x >= y x is greater than or equal to y

≤ <= x <= y x is less than or equal to y

Equality operators
= == x == y x is equal to y

≠ != x != y x is not equal to y

Fig. 3.17 | Relational and equality operators.

1 // Fig. 3.18: Comparison.cs
2 // Comparing integers using if statements, equality operators
3 // and relational operators.
4 using System;
5
6 class Comparison
7 {
8 // Main method begins execution of C# app
9 static void Main()

10 {
11 // prompt user and read first number
12 Console.Write("Enter first integer: ");
13 int number1 = int.Parse(Console.ReadLine());
14
15 // prompt user and read second number
16 Console.Write("Enter second integer: ");
17 int number2 = int.Parse(Console.ReadLine());
18
19
20
21
22

Fig. 3.18 | Comparing integers using if statements, equality operators and relational operators.
(Part 1 of 2.)

if (number1 == number2)
{
 Console.WriteLine($"{number1} == {number2}");
}

ptg18189312

3.8 Decision Making: Equality and Relational Operators 63

23
24 if ()
25 {
26 Console.WriteLine($"{number1} != {number2}");
27 }
28
29 if ()
30 {
31 Console.WriteLine($"{number1} < {number2}");
32 }
33
34 if ()
35 {
36 Console.WriteLine($"{number1} > {number2}");
37 }
38
39 if ()
40 {
41 Console.WriteLine($"{number1} <= {number2}");
42 }
43
44 if ()
45 {
46 Console.WriteLine($"{number1} >= {number2}");
47 }
48 } // end Main
49 } // end class Comparison

Enter first integer: 42
Enter second integer: 42
42 == 42
42 <= 42
42 >= 42

Enter first integer: 1000
Enter second integer: 2000
1000 != 2000
1000 < 2000
1000 <= 2000

Enter first integer: 2000
Enter second integer: 1000
2000 != 1000
2000 > 1000
2000 >= 1000

Fig. 3.18 | Comparing integers using if statements, equality operators and relational operators.
(Part 2 of 2.)

number1 != number2

number1 < number2

number1 > number2

number1 <= number2

number1 >= number2

ptg18189312

64 Chapter 3 Introduction to C# App Programming

Class Comparison
The declaration of class Comparison begins at line 6

The class’s Main method (lines 9–48) begins the execution of the app.

Reading the Inputs from the User
Lines 11–13

prompt for and input the first value. Line 13 also declares number1 as an int variable that
stores the first value entered by the user.

Lines 15–17

prompt for and input the second value.

Comparing Numbers
The if statement in lines 19–22

compares the values of variables number1 and number2 to test for equality. The condition
number1 == number2 is enclosed in required parentheses. If the values are equal, line 21
displays a line of text indicating that the numbers are equal. We used two interpolation
expressions to insert the values of number1 and number2 in line 21’s output. If the condi-
tions are true in one or more of the if statements starting in lines 24, 29, 34, 39 and 44,
the corresponding body statement displays an appropriate line of text.

Each if statement in Fig. 3.18 contains a single body statement that’s indented. Also
notice that we’ve enclosed each body statement in a pair of braces, { }, creating what’s
called a block.

class Comparison

// prompt user and read first number
Console.Write("Enter first integer: ");
int number1 = int.Parse(Console.ReadLine());

// prompt user and read second number
Console.Write("Enter second integer: ");
int number2 = int.Parse(Console.ReadLine());

if (number1 == number2)
{

 Console.WriteLine($"{number1} == {number2}");
}

Good Programming Practice 3.9
Indent the statement(s) in the body of an if statement to enhance readability.

Error-Prevention Tip 3.6
You don’t need to use braces, { }, around single-statement bodies, but you must include
the braces around multiple-statement bodies. To avoid errors and make your code more
readable, always enclose an if statement’s body statement(s) in braces, even if it contains
only a single statement.

ptg18189312

3.9 Wrap-Up 65

Whitespace
Note the use of whitespace in Fig. 3.18. Recall that whitespace characters, such as tabs,
newlines and spaces, are normally ignored by the compiler. So, statements may be split
over several lines and may be spaced according to your preferences without affecting the
meaning of an app. It’s incorrect to split identifiers, strings, and multicharacter operators
(like >=). Ideally, statements should be kept small, but this is not always possible.

Precedence and Associativity of the Operators We’ve Discussed So Far
Figure 3.19 shows the precedence of the operators introduced in this chapter. The operators
are shown from top to bottom in decreasing order of precedence. All these operators, with
the exception of the assignment operator, =, associate from left to right. Addition is left as-
sociative, so an expression like x + y + z is evaluated as if it had been written as (x + y) + z.
The assignment operator, =, associates from right to left, so an expression like x = y = 0 is
evaluated as if it had been written as x = (y = 0), which, as you’ll soon see, first assigns the
value 0 to variable y, then assigns the result of that assignment, 0, to x.

3.9 Wrap-Up
We presented many important features of C# in this chapter. First you learned how to dis-
play data on the screen in a Command Prompt using the Console class’s Write and Write-
Line methods. Next, we showed how to use C# 6’s new string-interpolation capabilities
to insert values into string literals. You learned how to input data from the keyboard us-

Good Programming Practice 3.10
A lengthy statement can be spread over several lines. If a single statement must be split
across lines, choose breaking points that make sense, such as after a comma in a comma-
separated list, or after an operator in a lengthy expression. If a statement is split across two
or more lines, indent all lines after the first until the end of the statement.

Good Programming Practice 3.11
Refer to the operator precedence chart (the complete chart is in Appendix) when writing
expressions containing many operators. Confirm that the operations in the expression are
performed in the order you expect. If you’re uncertain about the order of evaluation in a
complex expression, use parentheses to force the order, as you would do in algebraic expres-
sions. Some programmers also use parentheses to clarify the order. Observe that some op-
erators, such as assignment, =, associate from right to left rather than left to right.

Operators Associativity Type

* / % left to right multiplicative

+ - left to right additive

< <= > >= left to right relational

== != left to right equality

= right to left assignment

Fig. 3.19 | Precedence and associativity of operations discussed so far.

ptg18189312

66 Chapter 3 Introduction to C# App Programming

ing the Console class’s ReadLine method and how to convert strings to int values with
type int’s Parse method. We discussed how to perform calculations using C#’s arithmetic
operators. Finally, you made decisions using the if statement and the relational and equal-
ity operators. As you’ll see in Chapter 4, C# apps typically contain just a few lines of code
in method Main—these statements normally create the objects that perform the work of
the app. You’ll learn how to implement your own classes and use objects of those classes
in apps.

ptg18189312

4
Introduction to Classes,

Objects, Methods and strings

O b j e c t i v e s
In this chapter you’ll:

■ Declare a class and use it to create an object.

■ Implement a class’s attributes as instance variables and a
class’s behaviors as methods.

■ Call an object’s methods to make them perform their tasks.

■ Understand how local variables differ from instance
variables of a class.

■ Use validation to prevent bad data from being stored in an
object.

■ Understand the software engineering benefits of private
instance variables and public access methods.

■ Use properties to provide a friendlier notation for storing
and retrieving data.

■ Use a constructor to initialize an object’s data when the
object is created.

■ Use type decimal for precise monetary amounts and
calculations.

ptg18189312

68 Chapter 4 Introduction to Classes, Objects, Methods and strings

O
u

tl
in

e

4.1 Introduction
[Note: This chapter depends on the terminology and concepts introduced in Section 1.2,
Object Technology: A Brief Review.]

Section 1.2 presented a friendly introduction to object-oriented programming concepts,
including classes, objects, instance variables, properties and methods. In this chapter’s ex-
amples, we make those concepts real by building a simple bank-account class. The final
version of the class maintains a bank account’s name and balance, and provides properties
(Name and Balance) and methods (Deposit and Withdraw) for behaviors including

• querying the balance (with the Balance property),

• making deposits that increase the balance (with the Deposit method) and

• making withdrawals that decrease the balance (with the Withdraw method).

We’ll build the Balance property and Deposit method into the chapter’s examples. As an
exercise, you can add the Withdraw method.

Each class you create becomes a new type you can use to create objects, so C# is an
extensible programming language. Major development teams in industry work on appli-
cations that contain hundreds, or even thousands, of classes.

4.1 Introduction
4.2 Test-Driving an Account Class

4.2.1 Instantiating an Object—Keyword
new

4.2.2 Calling Class Account’s GetName
Method

4.2.3 Inputting a Name from the User
4.2.4 Calling Class Account’s SetName

Method
4.3 Account Class with an Instance

Variable and Set and Get Methods
4.3.1 Account Class Declaration
4.3.2 Keyword class and the Class Body
4.3.3 Instance Variable name of Type

string
4.3.4 SetName Method
4.3.5 GetName Method
4.3.6 Access Modifiers private and pub-

lic
4.3.7 Account UML Class Diagram

4.4 Creating, Compiling and Running a
Visual C# Project with Two Classes

4.5 Software Engineering with Set and
Get Methods

4.6 Account Class with a Property Rath-
er Than Set and Get Methods

4.6.1 Class AccountTest Using Account’s
Name Property

4.6.2 Account Class with an Instance Vari-
able and a Property

4.6.3 Account UML Class Diagram with a
Property

4.7 Auto-Implemented Properties
4.8 Account Class: Initializing Objects

with Constructors
4.8.1 Declaring an Account Constructor

for Custom Object Initialization
4.8.2 Class AccountTest: Initializing Ac-

count Objects When They’re Creat-
ed

4.9 Account Class with a Balance; Pro-
cessing Monetary Amounts

4.9.1 Account Class with a decimal
balance Instance Variable

4.9.2 AccountTest Class That Uses Ac-
count Objects with Balances

4.10 Wrap-Up

ptg18189312

4.2 Test-Driving an Account Class 69

4.2 Test-Driving an Account Class
A person drives a car by telling it what to do (go faster, go slower, turn left, turn right,
etc.)—without having to know how the car’s internal mechanisms work. Similarly, a meth-
od (such as Main) “drives” an Account object by calling its methods—without having to
know how the class’s internal mechanisms work. In this sense, the class containing method
Main is referred to as a driver class. We show the Main method and its output first, so you
can see an Account object in action.

To help you prepare for the larger programs you’ll encounter later in this book and in
industry, we define class AccountTest and its Main method in the file AccountTest.cs
(Fig. 4.1). We define the Account class in its own file as well (file Account.cs, Fig. 4.2).
After we present classes AccountTest (in this section) and Account (in Section 4.3),
Section 4.4 discusses how to create and build a project that contains multiple .cs source-
code files. First, let’s walk through the AccountTest class.

4.2.1 Instantiating an Object—Keyword new
You cannot call a method of a class until you create an object of that class.1 Line 10 of Fig. 4.1

1 // Fig. 4.1: AccountTest.cs
2 // Creating and manipulating an Account object.
3 using System;
4
5 class AccountTest
6 {
7 static void Main()
8 {
9 // create an Account object and assign it to myAccount

10
11
12 // display myAccount's initial name (there isn't one yet)
13 Console.WriteLine($"Initial name is: { }");
14
15 // prompt for and read the name, then put the name in the object
16 Console.Write("Enter the name: "); // prompt
17 string theName = Console.ReadLine(); // read the name
18
19
20 // display the name stored in the myAccount object
21 Console.WriteLine($"myAccount's name is: { }");
22 }
23 }

Initial name is:
Enter the name: Jane Green
myAccount's name is: Jane Green

Fig. 4.1 | Creating and manipulating an Account object.

Account myAccount = new Account();

1. You’ll see in Section 10.9 that static methods (and other static class members) are an exception.

Account myAccount = new Account();

myAccount.GetName()

myAccount.SetName(theName); // put theName in the myAccount object

myAccount.GetName()

ptg18189312

70 Chapter 4 Introduction to Classes, Objects, Methods and strings

uses an object-creation expression

to create an Account object, then assigns it to the variable myAccount. The variable’s type
is Account—the class we’ll define in Fig. 4.2. Keyword new creates a new object of the
specified class—in this case, Account. The parentheses to the right of Account are required
(we’ll discuss these in Section 4.8).

4.2.2 Calling Class Account’s GetName Method
The Account class’s GetName method returns the account name stored in a particular
Account object. Line 13 of Fig. 4.1

displays myAccount’s initial name by calling the object’s GetName method with the expres-
sion myAccount.GetName(). To call this method for a specific object, you specify

• the object’s name (myAccount) followed by

• the member access operator (.),

• the method name (GetName) and

• a set of parentheses.

The empty parentheses indicate that GetName does not require any additional information
to perform its task. Soon, you’ll see the SetName method that does require additional in-
formation to perform its task.

When Main calls the GetName method:

1. The app transfers execution from the expression myAccount.GetName() (line 13
in Main) to method GetName’s declaration (which we’ll study in Section 4.3).
Because GetName was accessed via the object myAccount, GetName knows which
object’s data to manipulate.

2. Next, method GetName performs its task—that is, it returns the myAccount ob-
ject’s name to line 13 where the method was called.

3. Console.WriteLine displays the string returned by GetName—the name is in-
serted into the interpolated string in place of the call to GetName—then the pro-
gram continues executing at line 16 in Main.

Because we have not yet stored a name in the myAccount object, line 13 does not display
a name.

4.2.3 Inputting a Name from the User
Next, lines 16–17 prompt for and input a name. Line 17

uses Console method ReadLine to read the name from the user and assign it to the string
variable theName. The user types the name (in this case, Jane Green) and presses Enter to
submit it to the app. Method ReadLine reads a whole line, including all the characters the

new Account()

Console.WriteLine($"Initial name is: {myAccount.GetName()}");

string theName = Console.ReadLine(); // read a line of text

ptg18189312

4.3 Account Class with an Instance Variable and Set and Get Methods 71

user types until the newline that the user typed by pressing Enter—the newline is discard-
ed. Pressing Enter also positions the output cursor to the beginning of the next line in the
console window, so the program’s next output begins on the line below the user’s input.

4.2.4 Calling Class Account’s SetName Method
The Account class’s SetName method stores (sets) an account name in a particular Account
object. Line 18

calls myAccounts’s SetName method, passing theName’s value as SetName’s argument. The
method stores this value in the object myAccount—we’ll see exactly where it’s stored in the
next section.

When Main calls the SetName method:

1. The app transfers program execution from line 18 in Main to method SetName’s
declaration. Because method SetName was accessed via the myAccount object,
SetName “knows” which object to manipulate.

2. Next, method SetName stores the argument’s value in the myAccount object (we’ll
see exactly where in Section 4.3).

3. When SetName completes execution, program control returns to where method
SetName was called (line 18 in Main), then execution continues at line 21.

Displaying the Name That Was Entered by the User
To demonstrate that myAccount now contains the name the user entered, line 21

calls myAccounts’s GetName method again. As you can see in the last line of the program’s
output, the name entered by the user in line 17 is displayed. When the preceding state-
ment completes execution, the end of Main is reached, so the app terminates.

4.3 Account Class with an Instance Variable and Set and
Get Methods
The fact that in Fig. 4.1 we could create and manipulate an Account object without know-
ing its implementation details is called abstraction. This is one of the most powerful
software-engineering benefits of object-oriented programming. Now that we’ve seen class
Account in action (Fig. 4.1), in the next several sections we’ll explain its implementation
in detail. Then, we present a UML diagram that summarizes class Account’s attributes and
operations in a concise graphical representation.

4.3.1 Account Class Declaration
Class Account (Fig. 4.2) contains a name instance variable (line 7) that stores the account
holder’s name—each Account object has its own copy of the name instance variable. In
Section 4.9, we’ll add a balance instance variable to keep track of the current balance in
each Account. Class Account also contains method SetName that a program can call to

myAccount.SetName(theName); // put theName in the myAccount object

Console.WriteLine($"myAccount's name is: {myAccount.GetName()}");

ptg18189312

72 Chapter 4 Introduction to Classes, Objects, Methods and strings

store a name in an Account object, and method GetName that a program can call to obtain
the name from an Account object.

4.3.2 Keyword class and the Class Body
The class declaration begins in line 5 with

As we mentioned in Chapter 3, every class declaration contains the keyword class fol-
lowed immediately by the class’s name—in this case, Account. Also, each class declaration
is typically stored in a file having the same name as the class and ending with the .cs file-
name extension, so we’ve placed class Account in the file Account.cs. The class’s body is
enclosed in a pair of braces (lines 6 and 20 of Fig. 4.2).

Identifiers and Camel-Case Naming
Class, property, method and variable names are all identifiers and by convention all use the
naming schemes we discussed in Chapter 3:

• class, property and method names begin with an initial uppercase letter (i.e., Pas-
cal case)

• variable names begin with an initial lowercase letter (i.e., camel case).

4.3.3 Instance Variable name of Type string
Recall from Section 1.2 that a class has attributes, implemented as instance variables. Ob-
jects of the class carry these instance variables with them throughout their lifetimes. Each
object has its own copy of the class’s instance variables. Normally, a class also contains

1 // Fig. 4.2: Account.cs
2 // A simple Account class that contains a private instance
3 // variable name and public methods to Set and Get name's value.
4
5 class Account
6 {
7
8
9

10
11
12
13
14
15
16
17
18
19
20 }

Fig. 4.2 | A simple Account class that contains a private instance variable name and public
methods to Set and Get name’s value.

class Account

private string name; // instance variable

// method that sets the account name in the object
public void SetName(string accountName)
{
 name = accountName; // store the account name
}

// method that retrieves the account name from the object
public string GetName()
{
 return name; // returns name's value to this method's caller
}

ptg18189312

4.3 Account Class with an Instance Variable and Set and Get Methods 73

methods and properties. These manipulate the instance variables belonging to particular
objects of the class.

Instance variables are declared inside a class declaration but outside the bodies of the
class’s methods and properties. Line 7

declares instance variable name of type string outside the bodies of methods SetName and
GetName. If there are many Account objects, each has its own name. Because name is an in-
stance variable, it can be manipulated by each of the class’s methods and properties. Cli-
ents of class Account—that is, any other code that calls the class’s methods (such as class
AccountTest’s Main method in Fig. 4.1)—cannot access the name instance variable be-
cause it’s declared private. However, clients can access Account’s public methods Set-
Name and GetName. These methods can access private instance variable name. We discuss
private and public in Section 4.3.6, then discuss why this architecture of private in-
stance variables and public access methods is powerful in more detail in Section 4.5.

null—the Default Initial Value for string Variables
Every instance variable has a default initial value—a value provided by C# if you do not
specify the instance variable’s initial value. Thus, instance variables are not required to be
explicitly initialized before they’re used in a program—unless they must be initialized to val-
ues other than their default values. The default value for an instance variable of type string
(like name in this example) is null, which we discuss further in Chapter 7 when we consider
so-called reference types. When you use Console.Write or Console.WriteLine to display a
string variable that contains the value null, no text is displayed on the screen—this is
why line 13 in Main (Fig. 4.1) did not display a name the first time we called myAccount’s
GetName method.

4.3.4 SetName Method
Let’s walk through the code of method SetName’s declaration (Fig. 4.2, lines 10–13):

The first line of each method declaration (line 10) is the method header. The method’s
return type (which appears to the left of the method’s name) specifies the type of data the
method returns to its caller after performing its task. The return type void (line 10) indi-
cates that when SetName completes its task, it does not return (i.e., give back) any infor-
mation to its calling method—in this example, line 18 of the Main method (Fig. 4.1). As
you’ll soon see, Account method GetName does return a value.

private string name; // instance variable

Good Programming Practice 4.1
We prefer to list a class’s instance variables first in the class’s body, so that you see the names
and types of the variables before they’re used in the class’s methods and properties. You can
list the class’s instance variables anywhere in the class outside its method (and property)
declarations, but scattering the instance variables can lead to hard-to-read code.

public void SetName(string accountName)
{

 name = accountName; // store the account name
}

ptg18189312

74 Chapter 4 Introduction to Classes, Objects, Methods and strings

SetName’s Parameter
Our car analogy from Section 1.2 mentioned that pressing a car’s gas pedal sends a mes-
sage to the car to perform a task—make the car go faster. But how fast should the car ac-
celerate? The farther down you press the pedal, the faster the car accelerates. So the
message to the car includes both the task to perform and information that helps the car
perform that task. This information is known as a parameter—the parameter’s value helps
the car determine how fast to accelerate. Similarly, a method can require one or more pa-
rameters that represent the data it needs to perform its task.

Method SetName declares the string parameter accountName—which receives the
name that’s passed to SetName as an argument. When line 18 in Fig. 4.1

executes, the argument value in the call’s parentheses (i.e., the value stored in theName) is
copied into the corresponding parameter (accountName) in the method’s header (line 10
of Fig. 4.2). In Fig. 4.1’s sample execution, we entered "Jane Green" for theName, so
"Jane Green" was copied into the accountName parameter.

SetName Parameter List
Parameters like accountName are declared in a parameter list located in the required paren-
theses following the method’s name. Each parameter must specify a type (e.g., string) fol-
lowed by a parameter name (e.g., accountName). When there are multiple parameters, they
are placed in a comma-separated list, as in

The number and order of arguments in a method call must match the number and order of
parameters in the method declaration’s parameter list.

SetName Method Body
Every method body is delimited by an opening left brace (Fig. 4.2, line 11) and a closing
right brace (line 13). Within the braces are one or more statements that perform the meth-
od’s task(s). In this case, the method body contains a single statement (line 12)

that assigns the accountName parameter’s value (a string) to the class’s name instance vari-
able, thus storing the account name in the object for which SetName was called—
myAccount in this example’s Main program.2 After line 12 executes, program execution
reaches the method’s closing brace (line 13), so the method returns to its caller.

Parameters Are Local Variables
In Chapter 3, we declared all of an app’s variables in the Main method. Variables declared
in a particular method’s body (such as Main) are local variables which can be used only in
that method. Each method can access only its own local variables, not those of other meth-
ods. When a method terminates, the values of its local variables are lost. A method’s pa-
rameters also are local variables of the method.

myAccount.SetName(theName); // put theName in the myAccount object

(type1 name1, type2 name2, …)

name = accountName; // store the account name

2. We used different names for the SetName method’s parameter (accountName) and the instance vari-
able (name). It’s common idiom in industry to use the same name for both. We’ll show you how to
do this without ambiguity in Section 10.4.

ptg18189312

4.3 Account Class with an Instance Variable and Set and Get Methods 75

4.3.5 GetName Method
Method GetName (lines 16–19)

returns a particular Account object’s name to the caller—a string, as specified by the meth-
od’s return type. The method has an empty parameter list, so it does not require additional
information to perform its task. When a method with a return type other than void is
called and completes its task, it must return a result to its caller. A statement that calls
method GetName on an Account object expects to receive the Account’s name.

The return statement in line 18

passes the string value of instance variable name back to the caller, which can then use the
returned value. For example, the statement in line 21 of Fig. 4.1

uses the value returned by GetName to output the name stored in the myAccount object.

4.3.6 Access Modifiers private and public
The keyword private (line 7 of Fig. 4.2)

is an access modifier. Instance variable name is private to indicate that name is accessible
only to class Account’s methods (and other members, like properties, as you’ll see in sub-
sequent examples). This is known as information hiding—the instance variable name is hid-
den and can be used only in class Account’s methods (SetName and GetName). Most
instance variables are declared private.

This class also contains the public access modifier (line 10)

and line 16

Methods (and other class members) that are declared public are “available to the public.”
They can be used

• by methods (and other members) of the class in which they’re declared,

• by the class’s clients—that is, methods (and other members) of any other classes
(in this app, class AccountTest’s Main method is the client of class Account).

In Chapter 11, we’ll introduce the protected access modifier.

Default Access for Class Members
By default, everything in a class is private, unless you specify otherwise by providing ac-
cess modifiers.

public string GetName()
{

 return name; // returns name's value to this method's caller
}

return name; // returns name's value to this method's caller

Console.WriteLine($"myAccount's name is: {myAccount.GetName()}");

private string name; // instance variable

public void SetName(string accountName)

public string GetName()

ptg18189312

76 Chapter 4 Introduction to Classes, Objects, Methods and strings

4.3.7 Account UML Class Diagram
We’ll often use UML class diagrams to summarize a class’s attributes and operations. In in-
dustry, UML diagrams help systems designers specify systems in a concise, graphical, pro-
gramming-language-independent manner, before programmers implement the systems in
specific programming languages. Figure 4.3 presents a UML class diagram for class Ac-
count of Fig. 4.2.

Top Compartment
In the UML, each class is modeled in a class diagram as a rectangle with three compart-
ments. In this diagram the top compartment contains the class name Account centered
horizontally in boldface type.

Middle Compartment
The middle compartment contains the class’s attribute names, which correspond to the
instance variables of the same names in C#. The single instance variable name in Fig. 4.2
is private in C#, so the UML class diagram lists a minus sign (–) UML access modifier be-
fore the attribute’s name. Following the attribute’s name are a colon and the attribute type,
in this case string.

Bottom Compartment
The bottom compartment contains the class’s operations, SetName and GetName, which
correspond to the methods of the same names in C#. The UML models operations by list-
ing the operation name preceded by a UML access modifier, for example, + SetName. This
plus sign (+) indicates that SetName is a public operation in the UML (because it’s a public
method in C#). Operation GetName is also a public operation.

Error-Prevention Tip 4.1
Making a class’s instance variables private and its methods (and as you’ll see, properties)
public and accessing those instance variables only through the class’s methods and prop-
erties facilitates debugging, because problems with data manipulations are localized to the
methods (and properties).

Common Programming Error 4.1
An attempt by a method that’s not a member of a particular class to access a private
member of that class is a compilation error.

Fig. 4.3 | UML class diagram for class Account of Fig. 4.2.

Account

– name : string

+ SetName(accountName : string)
+ GetName() : string

ptg18189312

4.4 Creating, Compiling and Running a Visual C# Project with Two Classes 77

Return Types
The UML indicates an operation’s return type by placing a colon and the return type after
the parentheses following the operation name. Method SetName does not return a value
(because it returns void in C#), so the UML class diagram does not specify a return type
after the parentheses of this operation. Method GetName has a string return type. The
UML has its own data types similar to those of C#—for simplicity, we use the C# types.

Parameters
The UML models a parameter by listing the parameter name, followed by a colon and the
parameter type in the parentheses after the operation name. Account method SetName has
a string parameter called accountName, so the class diagram lists

between the parentheses following the method name. Operation GetName does not have
any parameters, so the parentheses following the operation name in the class diagram are
empty, just as they are in the method’s declaration in line 16 of Fig. 4.2.

4.4 Creating, Compiling and Running a Visual C# Project
with Two Classes
When you create the project for this app, you should rename Program.cs to Ac-
countTest.cs and add the Account.cs file to the project. To set up a project with two
classes:

1. Create a Console Application as you did in Chapter 3. We named this chapter’s
projects Account1, Account2, Account3 and Account4, respectively.

2. Rename the project’s Program.cs file to AccountTest.cs. Replace the autogen-
erated code with class AccountTest’s code (Fig. 4.1).

3. Right click the project name in the Solution Explorer and select Add > Class… from
the pop-up menu.

4. In the Add New Item dialog’s Name field, enter the new file’s name (Account.cs),
then click Add. In the new Account.cs file, replace the auto-generated code with
class Account’s code from Fig. 4.2.

You can open each class in the Visual Studio editor by double clicking the filename in the
Solution Explorer window.

You must compile the classes in Figs. 4.1 and 4.2 before you can execute the app. This
is the first time you’ve created an app with multiple classes. Class AccountTest has a Main
method; class Account does not. The IDE automatically recognizes as the app’s entry
point the class that contains Main. When you select Build > Build Solution in Visual Studio,
the IDE compiles all the files in the project to create the executable app. If both classes
compile correctly—that is, no compilation errors are displayed—you can then run the app
by typing Ctrl + F5 to execute the AccountTest class’s Main method. If you do not build
the app before running it, typing Ctrl + F5 will build the app first and run the app only if
there are no compilation errors.

accountName : string

ptg18189312

78 Chapter 4 Introduction to Classes, Objects, Methods and strings

4.5 Software Engineering with Set and Get Methods
Set and Get methods can validate attempts to modify private data and control how that
data is presented to the caller, respectively. These are compelling software engineering ben-
efits. If an instance variable were public, any client of the class could see the data and
modify it, including setting it to an invalid value. Also, public data allows client-code pro-
grammers to write code that depends on the class’s data format. If the class’s owner chang-
es that format, any client code dependent on it would “break” and would need to be
adjusted to the new format, making it subject to break again.

You might think that even though a client of the class cannot directly access a private
instance variable, the client can nevertheless do whatever it wants with the variable
through public Set and Get methods. You’d think that you could peek at the private data
(and see exactly how it’s stored in the object) any time with the public Get method and
that you could modify the private data at will through the public Set method.

Actually, Set methods can be programmed to validate their arguments and reject any
attempts to Set the data to bad values, such as

• a negative body temperature

• a day in March outside the range 1 through 31

• a product code not in the company’s product catalog, etc.

A Get method can present the data in a different form, while the actual data representation
remains hidden from the user. For example, a Grade class might store a grade instance
variable as an int between 0 and 100, but a GetGrade method might return a letter grade
as a string, such as "A" for grades between 90 and 100, "B" for grades between 80 and
89, …—we’ll do this in Section 5.5 with a property. Tightly controlling the access to and
presentation of private data can greatly reduce errors, while increasing the robustness, se-
curity and usability of your programs.

Conceptual View of an Account Object with private Data
You can think of an Account object as shown in Fig. 4.4. The private instance variable
name is hidden inside the object (represented by the inner circle containing name) and
guarded by an outer layer of public methods (represented by the outer circle containing
GetName and SetName). Any client code that needs to interact with the Account object can
do so only by calling the public methods of the protective outer layer.

Common Programming Error 4.2
In a given project, declaring a Main method in more than exactly one class results in the
compilation error, “Program has more than one entry point defined.”

Software Engineering Observation 4.1
Generally, instance variables should be private and methods public.

Software Engineering Observation 4.2
Change is the rule rather than the exception. You should anticipate that your code will be
modified, and possibly often. Using public Set and Get methods to control access to
private data makes programs clearer and easier to maintain.

ptg18189312

4.6 Account Class with a Property Rather Than Set and Get Methods 79

4.6 Account Class with a Property Rather Than Set and
Get Methods
Our first Account class contained a private instance variable name and public methods
SetName and GetName that enabled a client to assign to and retrieve from an Account’s
name, respectively. C# provides a more elegant solution—called properties—to accom-
plish the same tasks. A property encapsulates a set accessor for storing a value into a vari-
able and a get accessor for getting the value of a variable.3 In this section, we’ll revisit the
AccountTest class to demonstrate how to interact with an Account object containing a
public Name property, then we’ll present the updated Account class and take a detailed look
at properties.

4.6.1 Class AccountTest Using Account’s Name Property
Figure 4.5 shows the updated AccountTest class that uses class Account’s Name property
(declared in Fig. 4.6) to get and set an Account’s name instance variable. This app pro-
duces the same output as the one in Fig. 4.1, assuming the user once again enters Jane
Green when prompted to enter a name.

Fig. 4.4 | Conceptual view of an Account object with its private instance variable name
and guarding layer of public methods.

3. In subsequent chapters, you’ll see that properties are not required to have both a set and a get.

1 // Fig. 4.5: AccountTest.cs
2 // Creating and manipulating an Account object with properties.
3 using System;
4
5 class AccountTest
6 {
7 static void Main()
8 {
9 // create an Account object and assign it to myAccount

10 Account myAccount = new Account();

Fig. 4.5 | Creating and manipulating an Account object with properties. (Part 1 of 2.)

Ge
tN

am
e

Se
tN

am
e

name

ptg18189312

80 Chapter 4 Introduction to Classes, Objects, Methods and strings

Invoking Class Account’s Name Property to Get the Name
The get accessor of the Account class’s Name property gets the account name stored in a
particular Account object. Line 13 of Fig. 4.5

displays myAccount’s initial name by accessing the object’s Name property with the expres-
sion myAccount.Name. To access a property, you specify the object’s name (myAccount),
followed by the member-access operator (.) and the property’s name (Name). When used
to get the account’s name, this notation implicitly executes the property’s get accessor,
which returns the account’s name.

When Main accesses the Name property in line 13:

1. The app transfers program execution from the expression myAccount.Name (line
13 in Main) to the property Name’s get accessor).

2. Next, the Name property’s get accessor performs its task—that is, it returns (i.e.,
gives back) the value of myAccount’s name instance variable to line 13 where the
property was accessed.

3. Console.WriteLine displays the string returned by the Name property’s get ac-
cessor—which was inserted into the interpolated string in place of the expres-
sion myAccount.Name—then the program continues executing at line 16 in Main.

As in Fig. 4.1, line 13 in Fig. 4.5 does not display a name, because we have not yet stored
a name in the myAccount object.

Invoking Class Account’s Name Property to Set the Name
Next, lines 16–17 prompt for and input a name. The set accessor Account class’s Name
property sets an account name in a particular Account object. Line 18

11
12 // display myAccount's initial name
13 Console.WriteLine($"Initial name is: { }");
14
15 // prompt for and read the name, then put the name in the object
16 Console.Write("Please enter the name: "); // prompt
17 string theName = Console.ReadLine(); // read a line of text
18
19
20 // display the name stored in object myAccount
21 Console.WriteLine($"myAccount's name is: { }");
22 }
23 }

Initial name is:
Please enter the name: Jane Green
myAccount's name is: Jane Green

Console.WriteLine($"Initial name is: {myAccount.Name}");

myAccount.Name = theName; // put theName in myAccount's Name

Fig. 4.5 | Creating and manipulating an Account object with properties. (Part 2 of 2.)

myAccount.Name

myAccount.Name = theName; // put theName in myAccount's Name

myAccount.Name

ptg18189312

4.6 Account Class with a Property Rather Than Set and Get Methods 81

assigns to myAccounts’s Name property the string entered by the user in line 17. When
property Name is invoked by the expression myAccount.Name on the left of an assignment:

1. The app transfers program execution from line 18 in Main to Name’s set accessor.

2. Property Name’s set accessor performs its task—that is, it stores in the myAccount
object’s name instance variable the string value that was assigned to property
Name in Main (line 18).

3. When Name’s set accessor completes execution, program execution returns to
where the Name property was accessed (line 18 in Main), then execution continues
at line 21.

To demonstrate that myAccount now contains the name the user entered, line 21

accesses myAccounts’s Name property again, which uses the property’s get accessor to ob-
tain the name instance variable’s new value. As you can see, the last line of the program’s
output displays the name input from the user in line 17.

4.6.2 Account Class with an Instance Variable and a Property
The updated Account class replaces the GetName and SetName methods from Fig. 4.2 with
the property Name (lines 10–20 of Fig. 4.6). The property’s get and set accessors handle
the details of getting and setting data, respectively. Unlike method names, the accessor
names get and set each begin with a lowercase letter.

Console.WriteLine($"myAccount's name is: {myAccount.Name}");

1 // Fig. 4.6: Account.cs
2 // Account class that replaces public methods SetName
3 // and GetName with a public Name property.
4
5 class Account
6 {
7 private string name; // instance variable
8
9

10
11
12
13
14
15
16
17
18
19
20
21 }

Fig. 4.6 | Account class that replaces public methods SetName and GetName with a public
Name property.

// property to get and set the name instance variable
public string Name
{
 get // returns the corresponding instance variable's value
 {

 return name; // returns the value of name to the client code
 }
 set // assigns a new value to the corresponding instance variable
 {

 name = value; // value is implicitly declared and initialized
 }
}

ptg18189312

82 Chapter 4 Introduction to Classes, Objects, Methods and strings

Property Name’s Declaration
Line 10

begins the Name property declaration, which specifies that

• the property is public so it can be used by the class’s clients,

• the property’s type is string and

• the property’s name is Name.

By convention, a property’s identifier is the capitalized identifier of the instance variable
that it manipulates—Name is the property that represents instance variable name. C# is case
sensitive, so Name and name are distinct identifiers. The property’s body is enclosed in the
braces at lines 11 and 20.

Property Name’s get Accessor
The get accessor (lines 12–15) performs the same task as method GetName in Fig. 4.2. A
get accessor begins with the keyword get, and its body is delimited by braces. Like meth-
od GetName, the get accessor’s body contains a return statement (line 14) that returns the
value of an Account’s name instance variable. So, in line 13 of Fig. 4.5

the expression myAccount.Name gets the value of myAccount’s instance variable name. The
property notation allows the client to think of the property as the underlying data, but the
client still cannot directly manipulate the private instance variable name. Keyword get is
a contextual keyword, because it’s a keyword only in a property’s context (that is, its
body)—in other contexts, get can be used as an identifier.

Property Name’s set Accessor
The set accessor (lines 16–19, Fig. 4.6) begins with the identifier set followed by its
body, which is delimited by braces. Method SetName (Fig. 4.2) declared a parameter ac-
countName to receive the new name to store in an Account object—a set accessor uses the
keyword value (line 18, Fig. 4.6) for the same purpose. value is implicitly declared and
initialized for you with the value that the client code assigns to the property. So, in line 18
of Fig. 4.5

value is initialized with theName (the string entered by the user). Property Name’s set ac-
cessor simply assigns value to the instance variable name—we’ll show a set accessor that
performs validation in Fig. 4.11. Like get, the keywords set and value are contextual key-
words—set is a keyword only in a property’s context and value is a keyword only in a set
accessor’s context.

The statements inside the property in lines 14 and 18 (Fig. 4.6) each access name even
though it was declared outside the property declaration. We can use instance variable name

public string Name

Console.WriteLine($"Initial name is: {myAccount.Name}");

myAccount.Name = theName; // put theName in myAccount's Name

Error-Prevention Tip 4.2
Although contextual keywords, like value in a set accessor, can be used as identifiers in
some contexts, we prefer not to do so.

ptg18189312

4.7 Auto-Implemented Properties 83

in class Account’s property (and other properties and methods, if there are any), because
name is an instance variable in the same class.

4.6.3 Account UML Class Diagram with a Property
Figure 4.7 presents a UML class diagram for class Account of Fig. 4.6. We model C#
properties in the UML as attributes. The property Name is listed as a public attribute—as
indicated by the plus (+) sign—followed by the word “property” in guillemets (« and »).
Using descriptive words in guillemets (called stereotypes in the UML) helps distinguish
properties from other attributes and operations. The UML indicates the type of the prop-
erty by placing a colon and a type after the property name.

A class diagram helps you design a class, so it’s not required to show every implemen-
tation detail. Since an instance variable that’s manipulated by a property is really an imple-
mentation detail of that property, our class diagram does not show the name instance
variable. A programmer implementing the Account class based on this class diagram would
create the instance variable name as part of the implementation process (as we did in
Fig. 4.6). Similarly, a property’s get and set accessors are implementation details, so
they’re not listed in the UML diagram.

4.7 Auto-Implemented Properties
In Fig. 4.6, we created an Account class with a private name instance variable and a pub-
lic property Name to enable client code to access the name. When you look at the Name
property’s definition (Fig. 4.6, lines 10–20), notice that the get accessor simply returns
private instance variable name’s value and the set accessor simply assigns a value to the
instance variable—no other logic appears in the accessors. For such simple cases, C# pro-
vides auto-implemented properties.

With an auto-implemented property, the C# compiler automatically creates a hidden
private instance variable, and the get and set accessors for getting and setting that hidden
instance variable. This enables you to implement the property trivially, which is handy
when you’re first designing a class. If you later decide to include other logic in the get or
set accessors, you can simply implement the property and an instance variable using the
techniques shown in Fig. 4.6. To use an auto-implemented property in the Account class
of Fig. 4.6, you’d replace the private instance variable at line 7 and the property at lines
10–20 with the following single line of code:

We’ll use this technique for the Name property in Fig. 4.8.

Fig. 4.7 | UML class diagram for class Account of Fig. 4.6.

public string Name { get; set; }

Account

+ «property» Name : string

ptg18189312

84 Chapter 4 Introduction to Classes, Objects, Methods and strings

4.8 Account Class: Initializing Objects with Constructors
As mentioned in Section 4.6, when an object of class Account (Fig. 4.6) is created, its
string instance variable name is initialized to null by default. But what if you want to pro-
vide an actual name when you create an Account object?

Each class you declare optionally can provide a constructor with parameters that can
be used to initialize an object when it’s created. C# requires a constructor call for every
object that’s created, so this is the ideal point to initialize an object’s instance variables.
The next example enhances class Account (Fig. 4.8) with a constructor that can receive a
name and use it to initialize the Name property when an Account object is created
(Fig. 4.9). Now that you’ve seen class Account in action, this chapter’s two remaining
examples present class Account before class AccountTest.

This version of class Account replaces the private name instance variable and the
public Name property from Fig. 4.6 with a public auto-implemented Name property
(Fig. 4.8, line 6). This property automatically creates a hidden private instance variable
to store the property’s value.

4.8.1 Declaring an Account Constructor for Custom Object
Initialization
When you declare a class, you can provide your own constructor to specify custom initial-
ization for objects of your class. For example, you might want to specify a name for an Ac-
count object when the object is created, as in line 11 of Fig. 4.9:

In this case, the string argument "Jane Green" is passed to the Account object’s construc-
tor and used to initialize the Account’s name. A constructor’s identifier must be the class’s

Software Engineering Observation 4.3
In programming languages that do not have property syntax, you think of a class’s
attributes as instance variables. With C# property syntax, you should think of the
properties themselves as the class’s attributes.

1 // Fig. 4.8: Account.cs
2 // Account class with a constructor that initializes an Account's name.
3
4 class Account
5 {
6 public string Name { get; set; } // auto-implemented property
7
8
9

10
11
12
13 }

Fig. 4.8 | Account class with a constructor that initializes an Account’s name.

Account account1 = new Account("Jane Green");

// constructor sets the Name property to parameter accountName's value
public Account(string accountName) // constructor name is class name
{
 Name = accountName;
}

ptg18189312

4.8 Account Class: Initializing Objects with Constructors 85

name. The preceding statement requires an Account constructor that can receive a string.
Figure 4.8 contains a modified Account class with such a constructor.

Account Constructor Declaration
Let’s walk through the code of the constructor’s declaration (Fig. 4.8, lines 9–12):

We refer to the first line of each constructor declaration (line 9 in this case) as the construc-
tor header. This constructor receives the string parameter accountName—which rep-
resents the name that’s passed to the constructor as an argument. An important difference
between constructors and methods is that constructors cannot specify a return type (not even
void). Normally, constructors are declared public so they can be used by the class’s client
code to initialize objects of the class.

Constructor Body
A constructor’s body is delimited by a pair of braces containing one or more statements that
perform the constructor’s task(s). In this case, the body contains one statement (line 11)
that assigns parameter accountName’s value (a string) to the class’s Name property, thus
storing the account name in the object. After line 11 executes, the constructor has com-
pleted its task, so it returns to the line of code containing the object-creation expression
that invoked the constructor. As you’ll soon see, the statements in lines 11–12 of Main
(Fig. 4.9) each call this constructor.

4.8.2 Class AccountTest: Initializing Account Objects When They’re
Created
The AccountTest program (Fig. 4.9) initializes two Account objects using the construc-
tor. Line 11 creates and initializes the Account object account1. Keyword new requests
memory from the system to store the Account object, then implicitly calls the class’s con-
structor to initialize the object. The call is indicated by the parentheses after the class
name, which contain the argument "Jane Green" that’s used to initialize the new object’s
name. Line 11 then assigns the initialized object to the variable account1. Line 12 repeats
this process, passing the argument "John Blue" to initialize the name for account2. Lines
15–16 use each object’s Name property to obtain the names and show that they were indeed
initialized when the objects were created. The output shows different names, confirming
that each Account maintains its own name.

public Account(string accountName) // constructor name is class name
{
 Name = accountName;
}

1 // Fig. 4.9: AccountTest.cs
2 // Using the Account constructor to set an Account's name
3 // when an Account object is created.
4 using System;
5

Fig. 4.9 | Using the Account constructor to set an Account's name when an Account object is
created. (Part 1 of 2.)

ptg18189312

86 Chapter 4 Introduction to Classes, Objects, Methods and strings

Default Constructor
Recall that line 10 of Fig. 4.5

used new to create an Account object. The empty parentheses in the expression

indicate a call to the class’s default constructor—in any class that does not explicitly de-
clare a constructor, the compiler provides a public default constructor (which always has
no parameters). When a class has only the default constructor, the class’s instance variables
are initialized to their default values:

• 0 for numeric simple types,

• false for simple type bool and

• null for all other types.

In Section 10.5, you’ll learn that classes can have multiple constructors through a process
called overloading.

There’s No Default Constructor in a Class That Declares a Constructor
If you declare one or more constructors for a class, the compiler will not create a default
constructor for that class. In that case, you will not be able to create an Account object with
the expression new Account() as we did in Fig. 4.5—unless one of the custom construc-
tors you declare takes no parameters.

6 class AccountTest
7 {
8 static void Main()
9 {

10 // create two Account objects
11
12
13
14 // display initial value of name for each Account
15 Console.WriteLine($"account1 name is: {account1.Name}");
16 Console.WriteLine($"account2 name is: {account2.Name}");
17 }
18 }

account1 name is: Jane Green
account2 name is: John Blue

Account myAccount = new Account();

new Account()

Software Engineering Observation 4.4
Unless default initialization of your class’s instance variables is acceptable, provide a
custom constructor to ensure that your instance variables are properly initialized with
meaningful values when each new object of your class is created.

Fig. 4.9 | Using the Account constructor to set an Account's name when an Account object is
created. (Part 2 of 2.)

Account account1 = new Account("Jane Green");
Account account2 = new Account("John Blue");

ptg18189312

4.9 Account Class with a Balance; Processing Monetary Amounts 87

Adding the Constructor to Class Account’s UML Class Diagram
The UML class diagram of Fig. 4.10 models class Account of Fig. 4.8, which has a con-
structor with a string accountName parameter. The UML models constructors as opera-
tions in the third compartment of a class diagram. To distinguish a constructor from the
class’s other operations, the UML requires that the word “constructor” be enclosed in guil-
lemets (« and ») and placed before the constructor’s name. It’s customary to list construc-
tors before other operations in the third compartment. In Fig. 4.14, you’ll see a class
diagram with both a constructor and an operation in the third compartment.

4.9 Account Class with a Balance; Processing Monetary
Amounts
In this section, we’ll declare an Account class that maintains an Account’s balance in addi-
tion to its name. Most account balances are not whole numbers (such as 0, –22 and 1024),
rather they’re numbers that include a decimal point, such as 99.99 or –20.15. For this rea-
son, class Account represents the account balance using type decimal, which is designed
to precisely represent numbers with decimal points, especially monetary amounts.

4.9.1 Account Class with a decimal balance Instance Variable
A typical bank services many accounts, each with its own balance, so our next Account class
(Fig. 4.11) maintains a bank account’s

• name—as the auto-implemented Name property (line 6)—and

• balance—as the private decimal instance variable balance (line 7) and a corre-
sponding public Balance property (lines 17–32). We use a fully implemented
Balance property here so we can ensure that the set accessor’s argument is valid
before assigning it to the balance instance variable.

A decimal instance variable is initialized to zero by default. Every instance (i.e., object) of
class Account contains its own name and balance.

Fig. 4.10 | UML class diagram for Account class of Fig. 4.8.

1 // Fig. 4.11: Account.cs
2 // Account class with a balance and a Deposit method.
3
4 class Account
5 {

Fig. 4.11 | Account class with a decimal instance variable balance and a Balance property
and Deposit method that each perform validation. (Part 1 of 2.)

Account

+ «property» Name : string

+ «constructor» Account(accountName: string)

ptg18189312

88 Chapter 4 Introduction to Classes, Objects, Methods and strings

Account Class Two-Parameter Constructor
It’s common for someone opening an account to deposit money immediately, so the con-
structor (lines 10–14) now receives a second parameter—initialBalance of type deci-
mal that represents the starting balance. Line 13 assigns initialBalance to the property
Balance, invoking Balance’s set accessor to ensure that the initialBalance argument is
valid before assigning a value to the instance variable balance.

Account Property Balance
Property Balance (lines 17–32) of type decimal provides a get accessor, which allows cli-
ents of the class to obtain a particular Account object’s balance. The property also pro-
vides a set accessor.

6 public string Name { get; set; } // auto-implemented property
7
8
9 // Account constructor that receives two parameters

10 public Account(string accountName, decimal initialBalance)
11 {
12 Name = accountName;
13 Balance = initialBalance; // Balance's set accessor validates
14 }
15
16 // Balance property with validation
17
18 {
19 get
20 {
21 return balance;
22 }
23
24
25
26
27
28
29
30
31
32 }
33
34 // method that deposits (adds) only a valid amount to the balance
35
36
37
38
39
40
41
42 }

Fig. 4.11 | Account class with a decimal instance variable balance and a Balance property
and Deposit method that each perform validation. (Part 2 of 2.)

private decimal balance; // instance variable

public decimal Balance

private set // can be used only within the class
{
 // validate that the balance is greater than 0.0; if it's not,
 // instance variable balance keeps its prior value
 if (value > 0.0m) // m indicates that 0.0 is a decimal literal
 {

 balance = value;
 }
}

public void Deposit(decimal depositAmount)
{
 if (depositAmount > 0.0m) // if the depositAmount is valid
 {

 Balance = Balance + depositAmount; // add it to the balance
 }
}

ptg18189312

4.9 Account Class with a Balance; Processing Monetary Amounts 89

In Fig. 4.6, class Account defined a Name property in which the set accessor simply
assigned the value received in its implicit parameter value to class Account’s instance vari-
able name. The Name property did not ensure that name contains only valid data.

The Balance property’s set accessor performs validation (also known as validity
checking). Line 27 (Fig. 4.11) ensures that the set accessor’s implicit value parameter is
greater than 0.0m—the letter m (or M) indicates that 0.0 is a decimal literal.4 If value is
greater than 0.0m, the amount stored in value is assigned to instance variable balance
(line 29). Otherwise, balance is left unchanged—we’ll say more about error processing
throughout the book.

Though we validated the balance in this example, we did not validate the name.
Names are normally quite “free form”—there’s a wide variety of acceptable name formats.
Often when you fill out a form, you’re asked to limit a name to a certain number of char-
acters. In Chapter 16, Strings and Characters: A Deeper Look, you’ll learn how to check
a string’s length, so that you can validate strings by checking that they’re not too long.

set and get Accessors with Different Access Modifiers
By default, a property’s get and set accessors have the same access as the property—e.g.,
public property Name’s accessors are public. It’s possible to declare the get and set ac-
cessors with different access modifiers. In this case, one of the accessors must implicitly have
the same access as the property and the other must be explicitly declared with a more restric-
tive access modifier than the property. We declared the Balance property’s set accessor
private—this indicates that it may be used only in class Account, not by the class’s clients.
This enables us to ensure that once an Account object exists, its balance can be modified
only by method Deposit.

Account Class Deposit Method
The public method Deposit (lines 35–41 of Fig. 4.11) enables the client code to deposit
money into an Account, thus increasing its balance. Line 35 indicates that

• the method does not return any information to its caller (as indicated by the re-
turn type void) and

• receives one parameter named depositAmount—a decimal value.

The depositAmount is added to the balance only if the parameter’s value is valid—that is,
it’s greater than 0.0m as specified in line 37. Line 39 first adds the current Balance and

4. The m is required to indicate a decimal literal. C# treats numeric literals with decimal points as type
double by default, and doubles and decimals cannot be intermixed. We introduce type double in
Chapter 5.

Error-Prevention Tip 4.3
The benefits of data integrity are not automatic simply because instance variables are
made private—you must provide appropriate validity checking and report the errors.

Error-Prevention Tip 4.4
set accessors that set the values of private data should verify that the intended new val-
ues are proper; if they’re not, the set accessors should leave the instance variables un-
changed and indicate an error. We demonstrate how to indicate errors by throwing
exceptions in Chapter 10.

ptg18189312

90 Chapter 4 Introduction to Classes, Objects, Methods and strings

depositAmount, forming a temporary sum which is then assigned to the Balance property.
The property’s set accessor then replaces instance variable balance’s prior value (recall that
addition has a higher precedence than the assignment operator). So line 39 uses the Bal-
ance property’s get accessor on the right side of the assignment and the set accessor on
the left side. It’s important to understand that the calculation on the right side of the as-
signment operator in line 39 does not modify the instance variable balance—that’s why
the assignment is necessary.

4.9.2 AccountTest Class That Uses Account Objects with Balances
Class AccountTest (Fig. 4.12) creates two Account objects (lines 9–10) and initializes
them with a valid balance of 50.00m and an invalid balance of -7.53m, respectively—for
the purpose of our examples, we assume that balances must be greater than or equal to
zero. The calls to method Console.WriteLine in lines 13–16 output the account names
and initial balances, which are obtained from each Account’s Name and Balance properties.

Software Engineering Observation 4.5
When implementing a method of a class, although it’s possible for the method to access the
class’s instance variables directly, always use the class’s properties for that purpose. In
Chapter 10, we’ll take a deeper look at this issue.

1 // Fig. 4.12: AccountTest.cs
2 // Reading and writing monetary amounts with Account objects.
3 using System;
4
5 class AccountTest
6 {
7 static void Main()
8 {
9

10
11
12 // display initial balance of each object
13 Console.WriteLine(
14 $"{account1.Name}'s balance: ");
15 Console.WriteLine(
16 $"{account2.Name}'s balance: ");
17
18 // prompt for then read input
19 Console.Write("\nEnter deposit amount for account1: ");
20
21 Console.WriteLine(
22 $"adding to account1 balance\n");
23
24
25 // display balances
26 Console.WriteLine(
27 $"{account1.Name}'s balance: {account1.Balance:C}");
28 Console.WriteLine(
29 $"{account2.Name}'s balance: {account2.Balance:C}");

Fig. 4.12 | Reading and writing monetary amounts with Account objects. (Part 1 of 2.)

Account account1 = new Account("Jane Green", 50.00m);
Account account2 = new Account("John Blue", -7.53m);

{account1.Balance:C}

{account2.Balance:C}

decimal depositAmount = decimal.Parse(Console.ReadLine());

{depositAmount:C}
account1.Deposit(depositAmount); // add to account1's balance

ptg18189312

4.9 Account Class with a Balance; Processing Monetary Amounts 91

Displaying the Account Objects’ Initial Balances
When line 14 accesses account1’s Balance property, the value of account1’s balance in-
stance variable is returned from line 21 of Fig. 4.11 and inserted into the interpolated
string at line 14 of Fig. 4.12 for display. Similarly, when line 16 accesses account2’s Bal-
ance property, the value of account2’s balance instance variable is returned from line 21
of Fig. 4.11 and inserted into the interpolated string at line 16 of Fig. 4.12 for display.
The balance of account2 is initially 0.00, because the constructor rejected the attempt to
start account2 with a negative balance, so the balance instance variable retains its default
initial value.

string Interpolation Expressions with Formatting
This app displays each Account’s balance as a monetary amount. You can specify format-
ting in a C# 6 string interpolation expression by following the value in the braces with a
colon and a format specifier. For example, in line 14, the interpolation expression

uses the format specifier C to format account1.Balance as currency. The Windows culture
settings on the user’s machine determine the format for displaying currency amounts, such
as the commas vs. periods for separating thousands, millions, etc. For example,

30
31 // prompt for then read input
32 Console.Write("\nEnter deposit amount for account2: ");
33 depositAmount = decimal.Parse(Console.ReadLine());
34 Console.WriteLine(
35 $"adding {depositAmount:C} to account2 balance\n");
36 account2.Deposit(depositAmount); // add to account2's balance
37
38 // display balances
39 Console.WriteLine(
40 $"{account1.Name}'s balance: {account1.Balance:C}");
41 Console.WriteLine(
42 $"{account2.Name}'s balance: {account2.Balance:C}");
43 }
44 }

Jane Green's balance: $50.00
John Blue's balance: $0.00

Enter deposit amount for account1: 25.53
adding $25.53 to account1 balance

Jane Green's balance: $75.53
John Blue's balance: $0.00

Enter deposit amount for account2: 123.45
adding $123.45 to account2 balance

Jane Green's balance: $75.53
John Blue's balance: $123.45

{account1.Balance:C}

Fig. 4.12 | Reading and writing monetary amounts with Account objects. (Part 2 of 2.)

ptg18189312

92 Chapter 4 Introduction to Classes, Objects, Methods and strings

• 50 displays as $50.00 in the United States (U.S.), as 50,00 e (e for euros) in Ger-
many and as ¥50 in Japan.

• 4382.51 displays as $4,382.51 in the U.S., as 4.382,51 e in Germany and as
¥4,382 in Japan.

• 1254827.40 displays as $1,254,827.40 in the U.S., as 1.254.827,40 e in Ger-
many and as ¥1,254,827 in Japan.

Figure 4.13 lists additional format specifiers.

Reading a decimal Value from the User
Line 19 (Fig. 4.12) prompts the user to enter a deposit amount for account1. Line 20 de-
clares local variable depositAmount to store each deposit amount entered by the user. Un-
like instance variables (such as name and balance in class Account), local variables (like
depositAmount in Main) are not initialized by default, so they normally must be initialized
explicitly. As you’ll learn momentarily, variable depositAmount’s initial value will be de-
termined by the user’s input.

Line 20 obtains the input from the user by calling the Console class’s ReadLine
method, then passing the string entered by the user to type decimal’s Parse method,
which returns the decimal value in this string—each simple type has a Parse method.
Lines 21–22 display the deposit amount in currency format.

Format
specifier Description

C or c Formats the string as currency. Includes an appropriate currency symbol ($ in
the U.S.) next to the number. Separates digits with an appropriate separator char-
acter (in the U.S. its a comma between every three digits for thousands, millions,
etc.) and sets the number of decimal places to two by default.

D or d Formats the string as a whole number (integer types only).

N or n Formats the string with a thousands separator and a default of two decimal places.

E or e Formats the number using scientific notation with a default of six decimal places.

F or f Formats the string with a fixed number of decimal places (two by default).

G or g Formats the number normally with decimal places or using scientific notation,
depending on context. If a format item does not contain a format specifier, for-
mat G is assumed implicitly.

X or x Formats the string as hexadecimal (base 16 numbers; we discuss these in the
online Number Systems appendix).

Fig. 4.13 | string format specifiers.

Common Programming Error 4.3
The C# compiler will issue the compilation error "Use of unassigned local variable 'vari-

ableName'" if you attempt to use the value of an uninitialized local variable—in the error
message, variableName will be the actual variable name. This helps you avoid dangerous
execution-time logic errors. It’s always better to get the errors out of your programs at com-
pilation time rather than execution time.

ptg18189312

4.10 Wrap-Up 93

Making a Deposit
Line 23 calls object account1’s Deposit method and supplies depositAmount as the meth-
od’s argument. The method then adds the parameter’s value to the Balance property (line
39 of Fig. 4.11). Then lines 26–29 in Fig. 4.12 output the balances of both Accounts again
to show that only account1’s balance instance variable changed.

Reading a decimal Value and Depositing into account2
Line 32 prompts the user to enter a deposit amount for account2. Line 33 obtains the in-
put from the user by calling method Console.ReadLine and passing the return value to
type decimal’s Parse method. Lines 34–35 display the deposit amount. Line 36 calls ob-
ject account2’s Deposit method and supplies depositAmount as the method’s argument.
Then, the method adds that value to account2’s Balance property. Finally, lines 39–42
output the Balances of both Accounts again to show that only account2’s balance in-
stance variable changed.

UML Class Diagram for Class Account
The class diagram in Fig. 4.14 concisely models class Account of Fig. 4.11. The diagram
models in its second compartment the public properties Name of type string and Balance
of type decimal. Class Account’s constructor is modeled in the third compartment with pa-
rameters name of type string and initialBalance of type decimal. The class’s public De-
posit operation also is modeled in the third compartment—Deposit has a depositAmount
parameter of type decimal. Method Deposit does not return a value (because it returns void
in C#), so the UML class diagram does not specify a return type for this operation.

4.10 Wrap-Up
In this chapter, we discussed the object-oriented programming concepts of classes, objects,
methods, instance variables, properties and constructors—these will be used in most sub-
stantial C# apps you create. You declared instance variables of a class to maintain data for
each object of the class and declared Set and Get methods for operating on that data. We
demonstrated how to call methods to perform their tasks and how to pass information to
methods as arguments. Next, we showed C#’s elegant property syntax for setting and get-
ting data, and we demonstrated how to access properties to execute their set and get ac-
cessors. We discussed the differences between local variables of a method and instance
variables of a class and that only instance variables are initialized automatically. You
learned how to create auto-implemented properties that simply get or set an instance
variable without any additional logic in the accessors’ declarations. You learned about type

Fig. 4.14 | UML class diagram for Account class of Fig. 4.11.

Account

+ «property» Name : string
+ «property» Balance : decimal

«constructor» Account(name : string, initialBalance: decimal)
+ Deposit(depositAmount : decimal)

ptg18189312

94 Chapter 4 Introduction to Classes, Objects, Methods and strings

decimal for precise manipulation of numbers with decimal points, such as monetary
amounts.

We showed how to create UML class diagrams that model the constructors, methods,
properties and attributes of classes. You learned the value of declaring instance variables
private and using public properties to manipulate them. For example, we demonstrated
how set accessors in properties can be used to validate an instance variable’s potential new
value before modifying the variable’s value.

In Chapter 5, we begin our introduction to control statements, which specify the
order in which an app’s actions are performed. You’ll use these in your methods and prop-
erties to help specify how they should perform their tasks.

ptg18189312

5
Control Statements: Part 1

O b j e c t i v e s
In this chapter you’ll:

■ Use the if and if…else selection statements to choose
between actions.

■ Use the while statement to execute statements repeatedly.

■ Use counter-controlled iteration and sentinel-controlled
iteration.

■ Use the increment, decrement and compound assignment
operators.

■ Use type decimal for precise monetary amounts and
calculations.

ptg18189312

96 Chapter 5 Control Statements: Part 1

O
u

tl
in

e

5.1 Introduction
In this chapter, we discuss C#’s if statement in additional detail and introduce the
if…else and while statements—all of these building blocks allow you to specify the logic
required for methods and properties to perform their tasks. We also introduce the com-
pound assignment operators and the increment and decrement operators. Finally, we dis-
cuss additional details of C#’s simple types.

5.2 Control Structures
Normally, statements execute one after the other in the order in which they’re written.
This process is called sequential execution. Various C# statements enable you to specify
that the next statement to execute is not necessarily the next one in sequence. This is called
transfer of control.

During the 1960s, it became clear that the indiscriminate use of transfers of control
was the root of much difficulty experienced by software development groups. The blame
was pointed at the goto statement (used in most programming languages of the time),
which allows you to specify a transfer of control to one of a wide range of destinations in
a program.

The research of Bohm and Jacopini1 had demonstrated that programs could be
written without any goto statements. The challenge for programmers of the era was to shift

5.1 Introduction
5.2 Control Structures

5.2.1 Sequence Structure
5.2.2 Selection Statements
5.2.3 Iteration Statements
5.2.4 Summary of Control Statements

5.3 if Single-Selection Statement
5.4 if…else Double-Selection State-

ment
5.4.1 Nested if…else Statements
5.4.2 Dangling-else Problem
5.4.3 Blocks
5.4.4 Conditional Operator (?:)

5.5 Student Class: Nested if…else
Statements

5.6 while Iteration Statement
5.7 Counter-Controlled Iteration

5.7.1 Implementing Counter-Controlled It-
eration

5.7.2 Integer Division and Truncation
5.8 Sentinel-Controlled Iteration

5.8.1 Implementing Sentinel-Controlled It-
eration

5.8.2 Program Logic for Sentinel-Controlled
Iteration

5.8.5 Braces in a while Statement
5.8.4 Converting Between Simple Types Ex-

plicitly and Implicitly
5.8.5 Formatting Floating-Point Numbers

5.9 Nested Control Statements
5.10 Compound Assignment Operators
5.11 Increment and Decrement Operators

5.11.1 Prefix Increment vs. Postfix Increment
5.11.2 Simplifying Increment Statements
5.11.3 Operator Precedence and Associativi-

ty
5.12 Simple Types
5.13 Wrap-Up

ptg18189312

5.2 Control Structures 97

their styles to “goto-less programming.” The term structured programming became
almost synonymous with “goto elimination.” Not until the 1970s did most programmers
start taking structured programming seriously. The results were impressive. Software
development groups reported shorter development times, more frequent on-time delivery
of systems and more frequent within-budget completion of software projects. The key to
these successes was that structured programs were clearer, easier to debug and modify, and
more likely to be bug free in the first place.

Bohm and Jacopini’s work demonstrated that all programs could be written in terms
of only three control structures—the sequence structure, the selection structure and the
iteration structure. We’ll discuss how each of these is implemented in C#.

5.2.1 Sequence Structure
The sequence structure is built into C#. Unless directed otherwise, C# statements execute
one after the other in the order in which they’re written—that is, in sequence. The UML
activity diagram in Fig. 5.1 illustrates a typical sequence structure in which two calcula-
tions are performed in order. C# lets you have as many actions as you want in a sequence
structure.

An activity diagram models the workflow (also called the activity) of a portion of a
software system. Such workflows may include a portion of an algorithm, like the sequence
structure in Fig. 5.1. Activity diagrams are composed of symbols, such as

• action-state symbols (rectangles with their left and right sides replaced with out-
ward arcs),

• diamonds and

• small circles.

These symbols are connected by transition arrows, which represent the flow of the activi-
ty—that is, the order in which the actions should occur.

1. C. Bohm and G. Jacopini, “Flow Diagrams, Turing Machines, and Languages with Only Two For-
mation Rules,” Communications of the ACM, Vol. 9, No. 5, May 1966, pp. 336–371.

Fig. 5.1 | Sequence structure activity diagram.

add 1 to counter

add grade to total Corresponding C# statement:
total = total + grade;

Corresponding C# statement:
counter = counter + 1;

ptg18189312

98 Chapter 5 Control Statements: Part 1

Activity diagrams help you develop and represent algorithms. We use the UML in this
chapter and the next to show the flow of control in control statements.

Consider the sequence-structure activity diagram in Fig. 5.1. It contains two action
states, each containing an action expression—for example, “add grade to total” or “add 1
to counter”—that specifies a particular action to perform. The arrows in the activity dia-
gram represent transitions, which indicate the order in which the actions represented by
the action states occur. The portion of the app that implements the activities illustrated in
Fig. 5.1 first adds grade to total, then adds 1 to counter.

The solid circle at the top of the activity diagram represents the initial state—the
beginning of the workflow before the app performs the modeled actions. The solid circle
surrounded by a hollow circle at the bottom of the diagram represents the final state—
the end of the workflow after the app performs its actions.

Figure 5.1 also includes rectangles with the upper-right corners folded over. These are
UML notes (like comments in C#) that describe the purpose of symbols in the diagram.
Figure 5.1 uses UML notes to show the C# code associated with each action state. A
dotted line connects each note with the element that the note describes. Activity diagrams
normally do not show the C# code that implements the activity. We do this here to illus-
trate how the diagram relates to C# code.

5.2.2 Selection Statements
C# has three types of selection structures, which from this point forward we’ll refer to as
selection statements:

• The if statement performs (selects) an action if a condition is true or skips the
action if the condition is false.

• The if…else statement performs an action if a condition is true or performs a
different action if the condition is false.

• The switch statement (Chapter 6) performs one of many different actions, de-
pending on the value of an expression.

The if statement is called a single-selection statement because it selects or ignores a
single action (or group of actions). The if…else statement is called a double-selection
statement because it selects between two different actions (or groups of actions). The
switch statement is called a multiple-selection statement because it selects among many
different actions (or groups of actions).

5.2.3 Iteration Statements
C# provides four iteration statements that enable programs to perform statements repeat-
edly as long as a condition (called the loop-continuation condition) remains true. The it-
eration statements are the while, do…while, for and foreach statements. (Chapter 6
presents the do…while and for statements. Chapter 8 discusses the foreach statement.)
The while, for and foreach statements perform the action (or group of actions) in their
bodies zero or more times. The do…while statement performs the action (or group of ac-
tions) in its body one or more times. The words if, else, switch, while, do, for and
foreach are C# keywords.

ptg18189312

5.3 if Single-Selection Statement 99

5.2.4 Summary of Control Statements
C# has only three kinds of control statements: the sequence, selection (three types) and
iteration (four types). Every app is formed by combining as many of these statements as is
appropriate for the algorithm the app implements. We can model each control statement
as an activity diagram. Like Fig. 5.1, each diagram contains an initial state and a final state
that represent a control statement’s entry point and exit point, respectively. Single-entry/
single-exit control statements make it easy to build programs—we simply connect the exit
point of one to the entry point of the next. We call this control-statement stacking.
There’s only one other way in which control statements may be connected—control-
statement nesting—in which one control statement appears inside another. Thus, algo-
rithms in C# apps are constructed from only three kinds of control statements, combined
in only two ways. This is the essence of simplicity.

5.3 if Single-Selection Statement
We introduced the if single-selection statement briefly in Section 3.8. Apps use selection
statements to choose among alternative courses of action. For example, suppose that the
passing grade on an exam is 60. The statement

determines whether the condition “studentGrade >= 60” is true. If so, “Passed” is dis-
played, and the next statement in order is performed. If the condition is false, the Con-
sole.Writeln call is ignored, and the next statement in order is performed.

bool Simple Type
You saw in Chapter 3 that decisions can be based on conditions containing relational or
equality operators. Actually, a decision can be based on any expression that evaluates to
true or false. C# provides the simple type bool for Boolean variables that can hold only
the values true and false—each of these is a C# keyword.

UML Activity Diagram for an if Statement
Figure 5.2 illustrates the single-selection if statement. This figure contains the most im-
portant symbol in an activity diagram—the diamond, or decision symbol, which indi-
cates that a decision is to be made. The workflow continues along a path determined by
the symbol’s associated guard conditions, which can be true or false. Each transition ar-
row emerging from a decision symbol has a guard condition specified in square brackets
next to the arrow. If a guard condition is true, the workflow enters the action state to
which the transition arrow points. In Fig. 5.2, if the student’s grade is greater than or
equal to 60, the app displays “Passed” then transitions to the final state of this activity. If
the grade is less than 60, the app immediately transitions to the final state without dis-
playing a message.

if (studentGrade >= 60)
{

 Console.WriteLine("Passed");
}

ptg18189312

100 Chapter 5 Control Statements: Part 1

The if statement is a single-entry/single-exit control statement. We’ll see that the
activity diagrams for the remaining control statements also contain initial states, transition
arrows, action states that indicate actions to perform, decision symbols (with associated
guard conditions) that indicate decisions to be made, and final states.

5.4 if…else Double-Selection Statement
The if single-selection statement performs an indicated action only when the condition is
true; otherwise, the action is skipped. The if…else double-selection statement allows
you to specify an action to perform when the condition is true and a different action when
the condition is false. For example, the statement

is an if…else statement that displays “Passed” if grade >= 60, but displays “Failed” if
it’s less than 60. In either case, after “Passed” or “Failed” is displayed, the next statement
in sequence is performed.

Note the indentation of the bodies of the if-part and the else-part for readability.
Microsoft recommends four-space indentation—the default in Visual Studio. We use
three-space indentation in all our print books because of line-width limitations.

UML Activity Diagram for an if…else Statement
Figure 5.3 illustrates the flow of control in the preceding if…else statement. Once again,
the symbols in the UML activity diagram (besides the initial state, transition arrows and
final state) represent action states and decisions.

Fig. 5.2 | if single-selection statement UML activity diagram.

if (grade >= 60)
{

 Console.WriteLine("Passed");
}
else
{

 Console.WriteLine("Failed");
}

[studentGrade >= 60]

[studentGrade < 60]

Corresponding C# statement:
Console.WriteLine("Passed");

display “Passed”

ptg18189312

5.4 if…else Double-Selection Statement 101

5.4.1 Nested if…else Statements
An app can test multiple cases by placing if…else statements inside other if…else state-
ments to create nested if…else statements. For example, the following nested if…else

statement displays A for exam grades greater than or equal to 90, B for 80 to 89, C for 70 to
79, D for 60 to 69 and F for all other grades (we use shading to highlight the nesting):

If variable studentGrade is greater than or equal to 90, the first four conditions in the nest-
ed if…else statement will be true, but only the statement in the if part of the first
if…else statement will execute. After that statement executes, the else part of the
“outermost” if…else statement is skipped. You can write the preceding nested if…else

Fig. 5.3 | if…else double-selection statement UML activity diagram.

display “Passed”display “Failed”
[studentGrade >= 60][studentGrade < 60]

if (studentGrade >= 90)
{

 Console.WriteLine("A")
}
else
{

 if (studentGrade >= 80)
 {

 Console.WriteLine("B")
 }
 else
 {

 if (studentGrade >= 70)
 {

 Console.WriteLine("C")
 }
 else
 {

 if (studentGrade >= 60)
 {

 Console.WriteLine("D")
 }
 else
 {

 Console.WriteLine("F")
 }

 }
 }

}

ptg18189312

102 Chapter 5 Control Statements: Part 1

statement in the following form, which is identical except for the spacing and indentation
that the compiler ignores:

The latter form avoids deep indentation of the code to the right. Such indentation often
leaves little room on a line of code, forcing lines to wrap.

5.4.2 Dangling-else Problem
Throughout the text, we always enclose control statement bodies in braces. This avoids the
logic error called the dangling-else problem in which the code indentation make it appear
as though an else is associated with a particular if when, in fact, it is not.

5.4.3 Blocks
The if statement normally expects only one statement in its body. To include several state-
ments in the body of an if (or the body of an else for an if…else statement), you must
enclose the statements in braces. As we’ve done throughout the text, it’s good practice to
always use the braces. Statements contained in a pair of braces (such as the body of a con-
trol statement, property or method) form a block. A block can be placed anywhere in a
control statement, property or method that a single statement can be placed.

The following example includes a block of multiple statements in the else part of an
if…else statement:

if (studentGrade >= 90)
{

 Console.WriteLine("A");
}
else if (studentGrade >= 80)
{

 Console.WriteLine("B");
}
else if (studentGrade >= 70)
{

 Console.WriteLine("C");
}
else if (studentGrade >= 60)
{

 Console.WriteLine("D");
}
else
{

 Console.WriteLine("F");
}

if (studentGrade >= 60)
{

 Console.WriteLine("Passed");
}
else
{

 Console.WriteLine("Failed");
 Console.WriteLine("You must take this course again.");

}

ptg18189312

5.5 Student Class: Nested if…else Statements 103

In this case, if studentGrade is less than 60, the program executes both statements in the
body of the else and prints

Without the braces surrounding the two statements in the else clause, the statement

would be outside the body of the else part of the if…else statement and would execute
regardless of whether the grade was less than 60.

Empty Statement
Just as a block can be placed anywhere a single statement can be placed, it’s also possible
to have an empty statement, which is represented by placing a semicolon (;) where a state-
ment would normally be.

5.4.4 Conditional Operator (?:)
C# provides the conditional operator (?:) that can be used in place of an if…else state-
ment. This can make your code shorter and clearer. The conditional operator is C#’s only
ternary operator—it takes three operands. Together, the operands and the ?: symbols
form a conditional expression:

• The first operand (to the left of the ?) is a bool expression that evaluates to true
or false.

• The second operand (between the ? and :) is the value of the conditional expres-
sion if the bool expression is true.

• The third operand (to the right of the :) is the value of the conditional expression
if the bool expression is false.

For now, the second and third operands should have the same type. In Section 7.6, we’ll
discuss implicit conversions that may occur if these operands do not have the same type.

For example, the statement

displays the value of WriteLine’s conditional-expression argument. The conditional ex-
pression in the preceding statement evaluates to the string "Passed" if the condition

is true and to the string "Failed" if it’s false. Thus, this statement with the conditional
operator performs essentially the same task as the first if…else statement shown in
Section 5.4. The precedence of the conditional operator is low, so the entire conditional
expression is normally placed in parentheses. We’ll see that conditional expressions can be
used in some situations where if…else statements cannot.

5.5 Student Class: Nested if…else Statements
The example of Figs. 5.4–5.5 demonstrates a nested if…else statement that determines
a student’s letter grade based on the student’s average in a course.

Failed
You must take this course again.

Console.WriteLine("You must take this course again.");

Console.WriteLine(studentGrade >= 60 ? "Passed" : "Failed");

studentGrade >= 60

ptg18189312

104 Chapter 5 Control Statements: Part 1

Class Student
Class Student (Fig. 5.4) stores a student’s name and average and provides properties for
manipulating these values. The class contains:

• Auto-implemented string property Name (line 7) to store a Student’s name.

• Instance variable average of type int (line 8) to store a Student’s average in a
course and a corresponding Average property (lines 18–36) to get and set the Stu-
dent’s average. Average’s set accessor uses nested if statements (lines 28–34) to
validate the value that’s assigned to the Average property. These statements
ensure that the value is greater than 0 and less than or equal to 100; otherwise,
instance variable average’s value is left unchanged. Each if statement contains a
simple condition—i.e., one that makes only a single test. In Section 6.10, you’ll
see how to use logical operators to write compound conditions that conveniently
combine several simple conditions. If the condition in line 28 is true, only then
will the condition in line 30 be tested, and only if the conditions in both lines 28
and 30 are true will the statement in line 32 execute.

• A constructor (lines 11–15) that sets the Name and Average properties.

• Read-only property LetterGrade (lines 39–68), which uses nested if…else

statements to determine the Student’s letter grade based on the Student’s aver-
age. A read-only property provides only a get accessor. Note that the local vari-
able letterGrade is initialized to string.Empty (line 43), which represents the
empty string (that is, a string containing no characters).

1 // Fig. 5.4: Student.cs
2 // Student class that stores a student name and average.
3 using System;
4
5 class Student
6 {
7 public string Name { get; set; } // property
8 private int average; // instance variable
9

10 // constructor initializes Name and Average properties
11 public Student(string studentName, int studentAverage)
12 {
13 Name = studentName;
14 Average = studentAverage; // sets average instance variable
15 }
16
17 // property to get and set instance variable average
18 public int Average
19 {
20 get // returns the Student's average
21 {
22 return average;
23 }
24 set // sets the Student's average
25 {

Fig. 5.4 | Student class that stores a student name and average. (Part 1 of 2.)

ptg18189312

5.5 Student Class: Nested if…else Statements 105

Class StudentTest
To demonstrate the nested if statements and nested if…else statements in class Stu-
dent’s Average and LetterGrade properties, respectively, method Main (Fig. 5.5) creates
two Student objects (lines 9–10). Next, lines 12–15 display each Student’s name, average
and letter grade by accessing the objects’ Name, Average and LetterGrade properties, re-
spectively.

26 // validate that value is > 0 and <= 100; otherwise,
27 // keep instance variable average's current value
28
29
30
31
32
33
34
35 }
36 }
37
38 // returns the Student's letter grade, based on the average
39 string LetterGrade
40 {
41 get
42 {
43 string letterGrade = ; // string.Empty is ""
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66 return letterGrade;
67 }
68 }
69 }

Fig. 5.4 | Student class that stores a student name and average. (Part 2 of 2.)

if (value > 0)
{
 if (value <= 100)
 {

 average = value; // assign to instance variable
 }
}

string.Empty

if (average >= 90)
{
 letterGrade = "A";
}
else if (average >= 80)
{
 letterGrade = "B";
}
else if (average >= 70)
{
 letterGrade = "C";
}
else if (average >= 60)
{
 letterGrade = "D";
}
else
{
 letterGrade = "F";
}

ptg18189312

106 Chapter 5 Control Statements: Part 1

5.6 while Iteration Statement
An iteration statement allows you to specify that a program should repeat an action while
some condition remains true. Consider a code segment designed to find the first power of
3 larger than 100—when the following while iteration statement finishes executing,
product contains the result:

When this while statement begins execution, variable product contains the value 3. Each
iteration of the while statement multiplies product by 3, so product takes on the values
9, 27, 81 and 243 successively. When product becomes 243, product <= 100 becomes
false. This terminates the iteration, so the final value of product is 243. At this point,
program execution continues with the next statement after the while statement.

while Iteration Statement Activity Diagram
The UML activity diagram in Fig. 5.6 illustrates the flow of control in the preceding
while statement. This diagram introduces the UML’s merge symbol. The UML rep-

1 // Fig. 5.5: StudentTest.cs
2 // Create and test Student objects.
3 using System;
4
5 class StudentTest
6 {
7 static void Main()
8 {
9 Student student1 = new Student("Jane Green", 93);

10 Student student2 = new Student("John Blue", 72);
11
12 Console.Write($"{student1.Name}'s letter grade equivalent of ");
13 Console.WriteLine($"{student1.Average} is {student1.LetterGrade}");
14 Console.Write($"{student2.Name}'s letter grade equivalent of ");
15 Console.WriteLine($"{student2.Average} is {student2.LetterGrade}");
16 }
17 }

Jane Green's letter grade equivalent of 93 is A
John Blue's letter grade equivalent of 72 is C

Fig. 5.5 | Create and test Student objects.

int product = 3;

while (product <= 100)
{

 product = 3 * product;
}

Common Programming Error 5.1
Not providing in the body of a while statement an action that eventually causes the con-
dition in the while to become false results in an infinite loop.

ptg18189312

5.7 Counter-Controlled Iteration 107

resents both the merge symbol and the decision symbol as diamonds. The merge symbol
joins multiple flows of activity into one. In this diagram, the merge symbol joins the tran-
sitions from the initial state and from the action state, so they both flow into the decision
that determines whether the loop should begin (or continue) executing.

The decision and merge symbols can be distinguished by the number of “incoming”
and “outgoing” transition arrows. A decision symbol has one transition arrow pointing to
the diamond and two or more pointing out from it to indicate possible transitions from that
point. In addition, each transition arrow pointing out of a decision symbol has a guard
condition next to it. A merge symbol has two or more transition arrows pointing to the
diamond and only one pointing from the diamond, to indicate multiple activity flows
merging to continue the activity. None of the transition arrows associated with a merge
symbol has a guard condition.

Figure 5.6 clearly shows the iteration of the while statement discussed earlier in this
section. The transition arrow emerging from the action state points back to the merge,
from which program flow transitions back to the decision that’s tested at the beginning of
each iteration of the loop. The loop continues executing until the guard condition
product > 100 becomes true. Then the while statement exits (reaches its final state), and
control passes to the next statement in sequence in the app.

5.7 Counter-Controlled Iteration
Consider the following problem statement:

A class of 10 students took a quiz. The grades (integers in the range 0 to 100) for this
quiz are available to you. Determine the class average on the quiz.

The class average is equal to the sum of the grades divided by the number of students. The
app must input each grade, keep track of the total of all grades entered, perform the aver-
aging calculation and print the result.

We use counter-controlled iteration to input the grades one at a time. In this
example, iteration terminates when the counter exceeds 10.

Fig. 5.6 | while iteration statement UML activity diagram.

triple product value

Corresponding C# statement:
product = 3 * product;

decision
[product <= 100]

[product > 100]

merge

ptg18189312

108 Chapter 5 Control Statements: Part 1

5.7.1 Implementing Counter-Controlled Iteration
In Fig. 5.7, method Main implements the class-averaging algorithm—it allows the user to
enter 10 grades, then calculates and displays the average.

Local Variables in Main
Lines 10, 11, 17 and 23 declare local variables total, gradeCounter, grade and average,
respectively. A variable declared in a method body is a local variable and can be used only

1 // Fig. 5.7: ClassAverage.cs
2 // Solving the class-average problem using counter-controlled iteration.
3 using System;
4
5 class ClassAverage
6 {
7 static void Main()
8 {
9 // initialization phase

10 int total = 0; // initialize sum of grades entered by the user
11
12
13 // processing phase uses counter-controlled iteration
14 while () // loop 10 times
15 {
16 Console.Write("Enter grade: "); // prompt
17 int grade = int.Parse(Console.ReadLine()); // input grade
18 total = total + grade; // add the grade to total
19
20 }
21
22 // termination phase
23
24
25 // display total and average of grades
26 Console.WriteLine($"\nTotal of all 10 grades is {total}");
27 Console.WriteLine($"Class average is {average}");
28 }
29 }

Enter grade: 88
Enter grade: 79
Enter grade: 95
Enter grade: 100
Enter grade: 48
Enter grade: 88
Enter grade: 92
Enter grade: 83
Enter grade: 90
Enter grade: 85

Total of all 10 grades is 848
Class average is 84

Fig. 5.7 | Solving the class-average problem using counter-controlled iteration.

int gradeCounter = 1; // initialize grade # to be entered next

gradeCounter <= 10

gradeCounter = gradeCounter + 1; // increment the counter by 1

int average = total / 10; // integer division yields integer result

ptg18189312

5.7 Counter-Controlled Iteration 109

from the line of its declaration to the closing right brace of the block in which the variable
is declared. A local variable’s declaration must appear before the variable is used; otherwise,
a compilation error occurs. Variable grade—declared in the body of the while loop—can
be used only in that block.

Initialization Phase: Initializing Variables total and gradeCounter
C# requires local variables to be definitely assigned—that is, each local variable must be
assigned a value before the variable’s value is used. Lines 10–11 declare and initialize total
to 0 and gradeCounter to 1 before their values are used, so these variables are definitely
assigned (as are grade and average in lines 17 and 23, respectively).

Processing Phase: Reading 10 Grades from the User
Line 14 indicates that the while statement should continue iterating as long as grade-
Counter’s value is less than or equal to 10. While this condition remains true, the while
statement repeatedly executes the statements between the braces that delimit its body
(lines 15–20).

Line 16 displays the prompt "Enter grade: ". Line 17 inputs the grade entered by
the user and assigns it to variable grade. Then line 18 adds the new grade entered by the
user to the total and assigns the result to total, replacing its previous value.

Line 19 adds 1 to gradeCounter to indicate that the program has processed a grade and
is ready to input the next grade from the user. Incrementing gradeCounter eventually causes
it to exceed 10. Then the loop terminates, because its condition (line 14) becomes false.

Termination Phase: Calculating and Displaying the Class Average
When the loop terminates, line 23 performs the averaging calculation in the average vari-
able’s initializer. Line 26 displays the text "Total of all 10 grades is " followed by vari-
able total’s value. Then, line 27 displays the text "Class average is " followed by
variable average’s value. When execution reaches line 28, the program terminates.

Notice that this example contains only one class, with method Main performing all the
work. In this chapter and in Chapter 4, you’ve seen examples consisting of two classes:

• one containing instance variables, properties and methods that perform tasks us-
ing the instance variables and properties, and

• one containing method Main, which creates an object of the other class and calls
its methods and accesses its properties.

Occasionally, when it does not make sense to create a separate class to demonstrate a con-
cept, we’ll place the program’s statements entirely within a single class’s Main method.

Common Programming Error 5.2
All local variables must be definitely assigned before their values are used in expressions.
Using a local variable’s value before it’s definitely assigned results in a compilation error.

Error-Prevention Tip 5.1
Initializing local variables when they’re declared helps you avoid compilation errors that
might arise from attempts to use uninitialized data. While C# does not require that local-
variable initializations be incorporated into declarations, it does require that local vari-
ables be initialized before their values are used in an expression.

ptg18189312

110 Chapter 5 Control Statements: Part 1

5.7.2 Integer Division and Truncation
The averaging calculation performed in line 23 produces an integer result. The app’s out-
put indicates that the sum of the grade values in the sample execution is 848, which, when
divided by 10, should yield 84.8. However, the result of the calculation total / 10 is the
integer 84, because total and 10 are both integers. Dividing two integers results in integer
division—any fractional part of the calculation is lost (i.e., truncated, not rounded). We’ll
see how to obtain a floating-point result from the averaging calculation in the next section.

5.8 Sentinel-Controlled Iteration
Let us generalize Section 5.7’s class-average problem. Consider the following problem:

Develop a class-averaging app that processes grades for an arbitrary number of students
each time it’s run.

In the previous class-average example, the problem statement specified the number of stu-
dents, so the number of grades (10) was known in advance. In this example, no indication
is given of how many grades the user will enter during the program’s execution.

One way to solve this problem is to use a special value called a sentinel value (also
called a signal value, a dummy value or a flag value) to indicate “end of data entry.” The
user enters grades until all legitimate grades have been entered. The user then types the sen-
tinel value to indicate that no more grades will be entered. Sentinel-controlled iteration is
often called indefinite iteration because the number of iterations is not known before the
loop begins executing. Clearly, a sentinel value must be chosen that cannot be confused
with an acceptable input value. Grades on a quiz are nonnegative integers, so –1 is an
acceptable sentinel value for this problem. Thus, a run of the class-averaging program
might process a stream of inputs such as 95, 96, 75, 74, 89 and –1. The program would
then compute and print the class average for the grades 95, 96, 75, 74 and 89; since –1 is
the sentinel value, it should not enter into the averaging calculation.

5.8.1 Implementing Sentinel-Controlled Iteration
In Fig. 5.8, method Main implements the sentinel-controlled iteration solution to the class
average problem. Although each grade entered by the user is an integer, the averaging cal-
culation is likely to produce a number with a decimal point—in other words, a real number
or floating-point number (e.g., 7.33, 0.0975 or 1000.12345). The type int cannot repre-
sent such a number, so this example must use another type to do so. C# provides data types
float and double to store floating-point numbers in memory. The primary difference be-

Common Programming Error 5.3
Assuming that integer division rounds (rather than truncates) can lead to incorrect results.
For example, 7 ÷ 4, which yields 1.75 in conventional arithmetic, truncates to 1 in inte-
ger arithmetic, rather than rounding to 2.

Error-Prevention Tip 5.2
When performing division by an expression whose value could be zero, explicitly test for
this possibility and handle it appropriately in your app (e.g., by displaying an error mes-
sage) rather than allowing the error to occur.

ptg18189312

5.8 Sentinel-Controlled Iteration 111

tween these types is that double variables can typically store numbers with larger magnitude
and finer detail (i.e., more digits to the right of the decimal point—also known as the num-
ber’s precision).

1 // Fig. 5.8: ClassAverage.cs
2 // Solving the class-average problem using sentinel-controlled iteration.
3 using System;
4
5 class ClassAverage
6 {
7 static void Main()
8 {
9 // initialization phase

10 int total = 0; // initialize sum of grades
11
12
13 // processing phase
14
15
16
17
18
19 while (grade != -1)
20 {
21 total = total + grade; // add grade to total
22 gradeCounter = gradeCounter + 1; // increment counter
23
24
25
26
27 }
28
29 // termination phase
30 // if the user entered at least one grade...
31 if ()
32 {
33 // use number with decimal point to calculate average of grades
34
35
36 // display the total and average (with two digits of precision)
37 Console.WriteLine(
38 $"\nTotal of the {gradeCounter} grades entered is {total}");
39 Console.WriteLine($"Class average is ");
40 }
41 else // no grades were entered, so output error message
42 {
43 Console.WriteLine("No grades were entered");
44 }
45 }
46 }

Fig. 5.8 | Solving the class-average problem using sentinel-controlled iteration. (Part 1 of 2.)

int gradeCounter = 0; // initialize # of grades entered so far

// prompt for input and read grade from user
Console.Write("Enter grade or -1 to quit: ");
int grade = int.Parse(Console.ReadLine());

// loop until sentinel value is read from the user

// prompt for input and read grade from user
Console.Write("Enter grade or -1 to quit: ");
grade = int.Parse(Console.ReadLine());

gradeCounter != 0

double average = (double) total / gradeCounter;

{average:F}

ptg18189312

112 Chapter 5 Control Statements: Part 1

Recall that integer division produces an integer result. This program introduces a spe-
cial operator called a cast operator to force the averaging calculation to produce a floating-
point numeric result. This program also stacks control statements on top of one another
(in sequence)—the while statement (lines 19–27) is followed in sequence by an if…else

statement (lines 31–44). Much of the code in this program is identical to that in Fig. 5.7,
so we concentrate on the new concepts.

5.8.2 Program Logic for Sentinel-Controlled Iteration
Line 11 of Fig. 5.8 initializes gradeCounter to 0, because no grades have been entered yet.
Remember that this program uses sentinel-controlled iteration to input the grades. The pro-
gram increments gradeCounter only when the user enters a valid grade. Line 34 declares
double variable average, which stores the class average as a floating-point number.

Compare the program logic for sentinel-controlled iteration in this program with that
for counter-controlled iteration in Fig. 5.7. In counter-controlled iteration, each iteration
of the while statement (lines 14–20 of Fig. 5.7) reads a value from the user, for the spec-
ified number of iterations. In sentinel-controlled iteration, the program prompts for and
reads the first value (lines 15–16 of Fig. 5.8) before reaching the while. This value deter-
mines whether the program’s flow of control should enter the body of the while. If the
condition of the while is false (line 19), the user entered the sentinel value, so the body
of the while does not execute (i.e., no grades were entered). If, on the other hand, the con-
dition is true, the body begins execution, and the loop adds the grade value to the total
and increments the gradeCounter (lines 21–22). Then lines 25–26 in the loop body input
the next value from the user. Next, program control reaches the closing right brace of the
loop body at line 27, so execution continues with the test of the while’s condition (line
19). The condition uses the most recent grade entered by the user to determine whether
the loop body should execute again.

The value of variable grade is always input from the user immediately before the pro-
gram tests the while condition. This allows the program to determine whether the value
just input is the sentinel value before the program processes that value (i.e., adds it to the
total). If the sentinel value is input, the loop terminates, and the program does not add
–1 to the total.

Enter grade or -1 to quit: 97
Enter grade or -1 to quit: 88
Enter grade or -1 to quit: 72
Enter grade or -1 to quit: -1

Total of the 3 grades entered is 257
Class average is 85.67

Good Programming Practice 5.1
In a sentinel-controlled loop, prompts should remind the user of the sentinel.

Fig. 5.8 | Solving the class-average problem using sentinel-controlled iteration. (Part 2 of 2.)

ptg18189312

5.8 Sentinel-Controlled Iteration 113

After the loop terminates, the if…else statement at lines 31–44 executes. Line 31
determines whether any grades were input. If none were input, the if…else statement’s
else part executes and displays the message "No grades were entered".

5.8.3 Braces in a while Statement
Notice the while statement’s block in Fig. 5.8 (lines 20–27). Without the braces, the loop
would consider its body to be only the first statement, which adds the grade to the total.
The last three statements in the block would fall outside the loop’s body, causing the com-
puter to interpret the code incorrectly as follows:

The preceding code would cause an infinite loop if the user did not enter the sentinel -1 at
line 16 (before the while statement).

5.8.4 Converting Between Simple Types Explicitly and Implicitly
If at least one grade was entered, line 34 of Fig. 5.8

calculates the average. Recall from Fig. 5.7 that integer division yields an integer result.
Even though variable average is declared as a double, if we had written line 34 as

it would lose the fractional part of the quotient before the result of the division was used
to initialize average.

Cast Operator
To perform a floating-point calculation with integers in this example, you first create a
temporary floating-point value using the unary cast operator. Line 34 uses the (double)
unary cast operator—which has higher precedence than the arithmetic operators—to cre-
ate a temporary double copy of its operand total, which appears to the right of the oper-
ator. The value stored in total is still an integer. Using a cast operator in this manner is
called explicit conversion.

Promotions
After the cast operation, the calculation consists of the temporary double copy of total
divided by the integer gradeCounter. For arithmetic, the compiler knows how to evaluate

while (grade != -1)
 total = total + grade; // add grade to total
gradeCounter = gradeCounter + 1; // increment counter

// prompt for input and read grade from user
Console.Write("Enter grade or -1 to quit: ");
grade = int.Parse(Console.ReadLine());

Error-Prevention Tip 5.3
Omitting the braces that delimit a block can lead to logic errors, such as infinite loops. To
prevent this and other problems, always enclose the body of every control statement in
braces even if the body contains only a single statement.

double average = (double) total / gradeCounter;

double average = total / gradeCounter;

ptg18189312

114 Chapter 5 Control Statements: Part 1

only expressions in which the operand types are identical. To ensure this, the compiler
performs an operation called promotion (also called implicit conversion) on selected
operands. In an expression containing values of types int and double, the compiler pro-
motes int operands to double values. So, in line 34, the compiler creates a temporary copy
of gradeCounter’s value of type double, then performs the floating-point division. Final-
ly, average is initialized with the floating-point result. Section 7.6.1 discusses the allowed
simple-type promotions.

Cast Operators for Any Type
Cast operators are available for all simple types. We’ll discuss cast operators for other types
in Chapter 12. The cast operator is formed by placing parentheses around the name of a
type. This operator is a unary operator—it takes only one operand. C# also supports unary
versions of the plus (+) and minus (–) operators, so you can write expressions like +5 or -
7. Cast operators have the second highest precedence. (See the operator precedence chart
in Appendix .)

5.8.5 Formatting Floating-Point Numbers
Line 39 of Fig. 5.8

outputs the class average. In this example, we decided that we’d like to display the class
average rounded to the nearest hundredth and output the average with exactly two digits to
the right of the decimal point. The format specifier F in the interpolation expression

typically formats average’s value with two digits to the right of the decimal point—again,
the Windows culture settings on the user’s machine determine the actual format, includ-
ing the digits to the right of the decimal point, whether commas or periods are used for
separating thousands, millions, etc.

Rounding Floating-Point Numbers
When the F format specifier is used to format a floating-point value, the formatted value
is rounded to a specific decimal position, although the value in memory remains unal-
tered. In many cultures a floating-point value output with F will be rounded to the hun-
dredths position—for example, 123.457 will be rounded to 123.46, and 27.333 will be
rounded to 27.33—though in some cultures these values are rounded to whole numbers.
In this app, the three grades entered during the sample execution total 257, which yields
the average 86.66666…. In the United States, the F format specifier rounds average to
the hundredths position, so the average is displayed as 85.67.

5.9 Nested Control Statements
We’ve seen that control statements can be stacked on top of one another (in sequence). In
this case study, we examine the only other structured way control statements can be con-
nected, namely, by nesting one control statement within another.

Console.WriteLine($"Class average is {average:F}");

{average:F}

ptg18189312

5.9 Nested Control Statements 115

Problem Statement
Consider the following problem statement:

A college offers a course that prepares students for the state licensing exam for real-estate
brokers. Last year, 10 of the students who completed this course took the exam. The col-
lege wants to know how well its students did on the exam. You’ve been asked to write an
app to summarize the results. You’ve been given a list of these 10 students. Next to each
name is written a 1 if the student passed the exam or a 2 if the student failed.

Your app should analyze the results of the exam as follows:

1. Input each test result (i.e., a 1 or a 2). Display the message “Enter result” on the screen
each time the app requests a test result.

2. Count the number of test results of each type.

3. Display a summary of the test results, indicating the number of students who passed and
the number who failed.

4. If more than eight students passed the exam, display the message “Bonus to instructor!”

Problem Statement Observations
After reading the problem statement, we make the following observations:

1. The app must process test results for 10 students. A counter-controlled loop can be
used because the number of test results is known in advance.

2. Each test result has a numeric value—either a 1 or a 2. Each time the app reads a
test result, the app must determine whether the number is a 1 or a 2. We test for
a 1 in our algorithm. If the number is not a 1, we assume that it’s a 2.

3. Two counters are used to keep track of the exam results—one to count the num-
ber of students who passed the exam and one to count the number of students
who failed the exam.

4. After the app has processed all the results, it must determine whether more than
eight students passed the exam.

The program that implements the pseudocode algorithm and two sample executions are
shown in Fig. 5.9. Lines 10–12 and 19 declare the local variables that method Main uses
to process the examination results.

1 // Fig. 5.9: Analysis.cs
2 // Analysis of examination results, using nested control statements.
3 using System;
4
5 class Analysis
6 {
7 static void Main()
8 {
9

10
11
12

Fig. 5.9 | Analysis of examination results, using nested control statements. (Part 1 of 3.)

// initialize variables in declarations
int passes = 0; // number of passes
int failures = 0; // number of failures
int studentCounter = 1; // student counter

ptg18189312

116 Chapter 5 Control Statements: Part 1

13
14 // process 10 students using counter-controlled iteration
15 while (studentCounter <= 10)
16 {
17 // prompt user for input and obtain a value from the user
18 Console.Write("Enter result (1 = pass, 2 = fail): ");
19 int result = int.Parse(Console.ReadLine());
20
21 // if...else is nested in the while statement
22
23
24
25
26
27
28
29
30
31 // increment studentCounter so loop eventually terminates
32 studentCounter = studentCounter + 1;
33 }
34
35 // termination phase; prepare and display results
36 Console.WriteLine($"Passed: {passes}\nFailed: {failures}");
37
38 // determine whether more than 8 students passed
39 if (passes > 8)
40 {
41 Console.WriteLine("Bonus to instructor!");
42 }
43 }
44 }

Enter result (1 = pass, 2 = fail): 1
Enter result (1 = pass, 2 = fail): 2
Enter result (1 = pass, 2 = fail): 1
Enter result (1 = pass, 2 = fail): 1
Enter result (1 = pass, 2 = fail): 1
Enter result (1 = pass, 2 = fail): 1
Enter result (1 = pass, 2 = fail): 1
Enter result (1 = pass, 2 = fail): 1
Enter result (1 = pass, 2 = fail): 1
Enter result (1 = pass, 2 = fail): 1
Passed: 9
Failed: 1
Bonus to instructor!

Enter result (1 = pass, 2 = fail): 1
Enter result (1 = pass, 2 = fail): 2
Enter result (1 = pass, 2 = fail): 2
Enter result (1 = pass, 2 = fail): 2

Fig. 5.9 | Analysis of examination results, using nested control statements. (Part 2 of 3.)

if (result == 1)
{
 passes = passes + 1; // increment passes
}
else
{
 failures = failures + 1; // increment failures
}

ptg18189312

5.10 Compound Assignment Operators 117

The while statement (lines 15–33) loops 10 times. During each iteration, the loop
inputs and processes one exam result. Notice that the if…else statement (lines 22–29)
for processing each result is nested in the while statement. If the result is 1, the if…else

statement increments passes; otherwise, it assumes the result is 2 and increments fail-
ures. Line 32 increments studentCounter before the loop condition is tested again at line
15. After 10 values have been input, the loop terminates and line 36 displays the number
of passes and the number of failures. Lines 39–42 determine whether more than eight
students passed the exam and, if so, output the message "Bonus to instructor!".

5.10 Compound Assignment Operators
The compound assignment operators abbreviate assignment expressions. Statements like

where operator is one of the binary operators +, -, *, / or % (or others we discuss later in
the text) can be written in the form

For example, you can abbreviate the statement

with the addition compound assignment operator, +=, as

The += operator adds the value of the expression on its right to the value of the variable on
its left and stores the result in the variable on the left of the operator. Thus, the assignment
expression c += 3 adds 3 to c. Figure 5.10 shows the arithmetic compound assignment op-
erators, sample expressions using the operators and explanations of what the operators do.

Enter result (1 = pass, 2 = fail): 1
Enter result (1 = pass, 2 = fail): 1
Enter result (1 = pass, 2 = fail): 1
Enter result (1 = pass, 2 = fail): 1
Enter result (1 = pass, 2 = fail): 2
Enter result (1 = pass, 2 = fail): 2
Passed: 5
Failed: 5

variable = variable operator expression;

variable operator= expression;

c = c + 3;

c += 3;

Assignment operator Sample expression Explanation Assigns

Assume: int c = 3, d = 5, e = 4, f = 6, g = 12;

+= c += 7 c = c + 7 10 to c

-= d -= 4 d = d - 4 1 to d

Fig. 5.10 | Arithmetic compound assignment operators. (Part 1 of 2.)

Fig. 5.9 | Analysis of examination results, using nested control statements. (Part 3 of 3.)

ptg18189312

118 Chapter 5 Control Statements: Part 1

5.11 Increment and Decrement Operators
C# provides two unary operators for adding 1 to or subtracting 1 from the value of a nu-
meric variable (summarized in Fig. 5.11). These are the unary increment operator, ++,
and the unary decrement operator, --, respectively. An app can increment by 1 the value
of a variable called c using the increment operator, ++, rather than the expression c = c + 1

or c += 1. An increment or decrement operator that’s prefixed to (placed before) a variable
is referred to as the prefix increment operator or prefix decrement operator, respectively.
An increment or decrement operator that’s postfixed to (placed after) a variable is referred
to as the postfix increment operator or postfix decrement operator, respectively.

Using the prefix increment (or decrement) operator to add 1 to (or subtract 1 from)
a variable is known as preincrementing (or predecrementing). This causes the variable to
be incremented (decremented) by 1; then the new value of the variable is used in the
expression in which it appears.

Using the postfix increment (or decrement) operator to add 1 to (or subtract 1 from)
a variable is known as postincrementing (or postdecrementing). This causes the current
value of the variable to be used in the expression in which it appears; then the variable’s
value is incremented (decremented) by 1.

*= e *= 5 e = e * 5 20 to e

/= f /= 3 f = f / 3 2 to f

%= g %= 9 g = g % 9 3 to g

Operator
Sample
expression Explanation

++ (prefix increment) ++a Increments a by 1 and uses the new value of a in
the expression in which a resides.

++ (postfix increment) a++ Increments a by 1, but uses the original value of a
in the expression in which a resides.

-- (prefix decrement) --b Decrements b by 1 and uses the new value of b in
the expression in which b resides.

-- (postfix decrement) b-- Decrements b by 1, but uses the original value of b
in the expression in which b resides.

Fig. 5.11 | Increment and decrement operators.

Assignment operator Sample expression Explanation Assigns

Fig. 5.10 | Arithmetic compound assignment operators. (Part 2 of 2.)

ptg18189312

5.11 Increment and Decrement Operators 119

5.11.1 Prefix Increment vs. Postfix Increment
Figure 5.12 demonstrates the difference between the prefix-increment and postfix-incre-
ment versions of the ++ increment operator. The decrement operator (--) works similarly.

Line 10 initializes the variable c to 5, and line 11 outputs c’s initial value. Line 12 out-
puts the value of the expression c++. This expression postincrements the variable c, so c’s
original value (5) is output, then c’s value is incremented (to 6). Thus, line 12 outputs c’s
initial value (5) again. Line 13 outputs c’s new value (6) to prove that the variable’s value
was indeed incremented in line 12.

Good Programming Practice 5.2
Unlike binary operators, the unary increment and decrement operators as a matter of style
should be placed next to their operands, with no intervening spaces.

1 // Fig. 5.12: Increment.cs
2 // Prefix-increment and postfix-increment operators.
3 using System;
4
5 class Increment
6 {
7 static void Main()
8 {
9 // demonstrate postfix increment operator

10 int c = 5; // assign 5 to c
11 Console.WriteLine($"c before postincrement: {c}"); // displays 5
12 Console.WriteLine($" postincrementing c: {c++}"); // displays 5
13 Console.WriteLine($" c after postincrement: {c}"); // displays 6
14
15 Console.WriteLine(); // skip a line
16
17 // demonstrate prefix increment operator
18 c = 5; // assign 5 to c
19 Console.WriteLine($" c before preincrement: {c}"); // displays 5
20 Console.WriteLine($" preincrementing c: {++c}"); // displays 6
21 Console.WriteLine($" c after preincrement: {c}"); // displays 6
22 }
23 }

c before postincrement: 5
 postincrementing c: 5
 c after postincrement: 6

 c before preincrement: 5
 preincrementing c: 6

 c after preincrement: 6

Fig. 5.12 | Prefix-increment and postfix-increment operators.

ptg18189312

120 Chapter 5 Control Statements: Part 1

Line 18 resets c’s value to 5, and line 19 outputs c’s value. Line 20 outputs the value
of the expression ++c. This expression preincrements c, so its value is incremented; then
the new value (6) is output. Line 21 outputs c’s value again to show that the value of c is
still 6 after line 20 executes.

5.11.2 Simplifying Increment Statements
The arithmetic compound assignment operators and the increment and decrement oper-
ators can be used to simplify statements. For example, the three assignment statements in
Fig. 5.9 (lines 24, 28 and 32)

can be written more concisely with compound assignment operators as

and even more concisely with prefix-increment operators as

or with postfix-increment operators as

When incrementing or decrementing a variable in a statement by itself, the prefix
increment and postfix increment forms have the same effect, and the prefix decrement and
postfix decrement forms have the same effect. It’s only when a variable appears in the con-
text of a larger expression that the prefix increment and postfix increment have different
results (and similarly for the prefix decrement and postfix decrement).

5.11.3 Operator Precedence and Associativity
Figure 5.13 shows the precedence and associativity of the operators introduced to this
point shown from top to bottom in decreasing order of precedence. The second column
describes the associativity of the operators at each level of precedence. The conditional op-
erator (?:); the unary operators prefix increment (++), prefix decrement (--), plus (+) and
minus (-); the cast operators; and the assignment operators =, +=, -=, *=, /= and %= asso-

passes = passes + 1;
failures = failures + 1;
studentCounter = studentCounter + 1;

passes += 1;
failures += 1;
studentCounter += 1;

++passes;
++failures;
++studentCounter;

passes++;
failures++;
studentCounter++;

Common Programming Error 5.4
Attempting to use the increment or decrement operator on an expression other than one to
which a value can be assigned is a syntax error. For example, writing ++(x + 1) is a syntax
error, because (x + 1) is not an expression to which a value can be assigned.

ptg18189312

5.12 Simple Types 121

ciate from right to left. All the other operators in the operator precedence chart in
Fig. 5.13 associate from left to right. The third column names the groups of operators.

5.12 Simple Types
The table in Appendix lists C#’s simple types. Like its predecessor languages C and C++,
C# requires all variables to have a type.

In C and C++, you frequently have to write separate versions of apps to support dif-
ferent computer platforms, because the simple types are not guaranteed to be identical
from computer to computer. For example, an int value on one machine might be repre-
sented by 16 bits (2 bytes) of storage, while an int value on another machine might be
represented by 32 bits (4 bytes) of storage. In C#, all C# numeric types have fixed sizes, as
is shown in Appendix . So, for example, int values are always 32 bits (4 bytes).

Each type in Appendix is listed with its size in bits (there are eight bits to a byte) and
its range of values. Because the designers of C# want it to be maximally portable, they use
internationally recognized standards for both character formats (Unicode; http://uni-
code.org) and floating-point numbers (IEEE 754; http://grouper.ieee.org/groups/
754/).

Recall that variables of simple types declared outside of a method as instance variables
of a class are automatically assigned default values unless explicitly initialized. Instance
variables of types char, byte, sbyte, short, ushort, int, uint, long, ulong, float,
double, and decimal are all given the value 0 by default. Instance variables of type bool
are given the value false by default. Similarly, reference-type instance variables are initial-
ized by default to the value null.

5.13 Wrap-Up
Only three types of control statements—sequence, selection and iteration—are needed to
develop any algorithm. Specifically, we demonstrated the if and if…else selection state-
ments and the while iteration statement. We used control-statement stacking to compute
the total and the average of a set of student grades with counter- and sentinel-controlled
iteration, and we used control-statement nesting to make decisions based on a set of exam

Operators Associativity Type

. new ++(postfix) --(postfix) left to right highest precedence

++ -- + - (type) right to left unary prefix
* / % left to right multiplicative
+ - left to right additive
< <= > >= left to right relational
== != left to right equality
?: right to left conditional
= += -= *= /= %= right to left assignment

Fig. 5.13 | Precedence and associativity of the operators discussed so far.

http://uni-code.org
http://uni-code.org
http://grouper.ieee.org/groups/754/
http://grouper.ieee.org/groups/754/

ptg18189312

122 Chapter 5 Control Statements: Part 1

results. We introduced C#’s compound assignment, unary cast, conditional (?:), incre-
ment and decrement operators. Finally, we discussed the simple types. In Chapter 6, we
continue our discussion of control statements, introducing the for, do…while and
switch statements.

ptg18189312

6
Control Statements: Part 2

O b j e c t i v e s
In this chapter you’ll:

■ Use counter-controlled iteration.

■ Use the for and do…while iteration statements.

■ Use the switch multiple-selection statement.

■ Use strings in switch expressions and string literals
in case labels.

■ Use the break and continue program-control
statements to alter the flow of control.

■ Use the logical operators to form complex conditional
expressions.

■ Understand short-circuit evaluation of the conditional &&
and || operators.

■ Use type decimal to avoid the representational errors
associated with using floating-point data types to hold
monetary values.

ptg18189312

124 Chapter 6 Control Statements: Part 2

O
u

tl
in

e

6.1 Introduction
In this chapter we introduce all but one of C#’s other control statements—the foreach
statement is introduced in Chapter 8. We demonstrate C#’s for, do…while and switch
statements. Through examples using while and for, we enumerate the essentials of count-
er-controlled iteration. You’ll use type decimal to represent monetary amounts precisely,
rather than incuring the representational errors that can occur with types float or double.
We use a switch multiple-selection statement to count the number of A, B, C, D and F
grade equivalents in a set of numeric grades entered by the user. We introduce the break
and continue program-control statements. We discuss C#’s logical operators, which en-
able you to combine simple conditions in control statements.

6.2 Essentials of Counter-Controlled Iteration
This section uses the while iteration statement introduced in Chapter 5 to formalize the
elements of counter-controlled iteration:

1. a control variable (or loop counter),

2. the control variable’s initial value,

3. the control variable’s increment that’s applied during each iteration of the loop,

4. the loop-continuation condition that determines if looping should continue.

Figure 6.1 displays the numbers from 1 through 10. The elements of counter-con-
trolled iteration are defined in lines 9, 11 and 14. Line 9 declares the control variable
(counter) as an int, reserves space for it in memory and sets its initial value to 1.

6.1 Introduction
6.2 Essentials of Counter-Controlled Iter-

ation
6.3 for Iteration Statement

6.3.1 A Closer Look at the for Statement’s
Header

6.3.2 General Format of a for Statement
6.3.3 Scope of a for Statement’s Control

Variable
6.3.4 Expressions in a for Statement’s

Header Are Optional
6.3.5 UML Activity Diagram for the for

Statement
6.4 App: Summing Even Integers
6.5 App: Compound-Interest Calcula-

tions
6.5.1 Performing the Interest Calculations

with Math Method pow
6.5.2 Formatting with Field Widths and

Alignment
6.5.3 Caution: Do Not Use float or dou-

ble for Monetary Amounts
6.6 do…while Iteration Statement

6.7 switch Multiple-Selection Statement
6.7.1 Using a switch Statement to Count

A, B, C, D and F Grades
6.7.2 switch Statement UML Activity Dia-

gram
6.7.3 Notes on the Expression in Each case

of a switch
6.8 Class AutoPolicy Case Study:

strings in switch Statements
6.9 break and continue Statements

6.9.1 break Statement
6.9.2 continue Statement

6.10 Logical Operators
6.10.1 Conditional AND (&&) Operator
6.10.2 Conditional OR (||) Operator
6.10.3 Short-Circuit Evaluation of Complex

Conditions
6.10.4 Boolean Logical AND (&) and Bool-

ean Logical OR (|) Operators
6.10.5 Boolean Logical Exclusive OR (^)
6.10.6 Logical Negation (!) Operator
6.10.7 Logical Operators Example

6.11 Wrap-Up

ptg18189312

6.3 for Iteration Statement 125

6.3 for Iteration Statement
The while statement can be used to implement any counter-controlled loop. C# also pro-
vides the for iteration statement, which specifies the elements of counter-controlled iter-
ation in a single line of code. Typically, for statements are used for counter-controlled
iteration, and while statements for sentinel-controlled iteration. However, while and for
can each be used for either iteration type. Figure 6.2 reimplements the app in Fig. 6.1
using the for statement.

Error-Prevention Tip 6.1
Floating-point values are approximate, so controlling counting loops with floating-point
variables of types float or double can result in imprecise counter values and inaccurate
tests for termination. Use integer values to control counting loops.

1 // Fig. 6.1: WhileCounter.cs
2 // Counter-controlled iteration with the while iteration statement.
3 using System;
4
5 class WhileCounter
6 {
7 static void Main()
8 {
9

10
11 while () // loop-continuation condition
12 {
13 Console.Write($"{counter} ");
14
15 }
16
17 Console.WriteLine();
18 }
19 }

1 2 3 4 5 6 7 8 9 10

Fig. 6.1 | Counter-controlled iteration with the while iteration statement.

1 // Fig. 6.2: ForCounter.cs
2 // Counter-controlled iteration with the for iteration statement.
3 using System;
4
5 class ForCounter
6 {
7 static void Main()
8 {

Fig. 6.2 | Counter-controlled iteration with the for iteration statement. (Part 1 of 2.)

int counter = 1; // declare and initialize control variable

counter <= 10

++counter; // increment control variable

ptg18189312

126 Chapter 6 Control Statements: Part 2

When the for statement (lines 11–14) begins executing, the control variable counter
is declared and initialized to 1. Next, the program checks the loop-continuation condition,
counter <= 10, which is between the two required semicolons. If the condition is true,
the body statement (line 13) displays control variable counter’s value (1). After executing
the loop’s body, the program increments counter in the expression ++counter. Then the
program performs the loop-continuation test again to determine whether to continue with
the loop’s next iteration. When the loop-continuation test fails, iteration terminates and
the program continues executing at the first statement after the for (line 16).

6.3.1 A Closer Look at the for Statement’s Header
Figure 6.3 takes a closer look at the for statement in Fig. 6.2. The first line—including
the keyword for and everything in parentheses after for (line 11 in Fig. 6.2)—is some-
times called the for statement header. The for header “does it all”—it specifies each item
needed for counter-controlled iteration with a control variable.

6.3.2 General Format of a for Statement
The general format of the for statement is

9 // for statement header includes initialization,
10 // loop-continuation condition and increment
11
12
13
14
15
16 Console.WriteLine();
17 }
18 }

1 2 3 4 5 6 7 8 9 10

Fig. 6.3 | for statement header components.

for (initialization; loopContinuationCondition; increment)
{

 statement
}

Fig. 6.2 | Counter-controlled iteration with the for iteration statement. (Part 2 of 2.)

for (int counter = 1; counter <= 10; ++counter)
{
 Console.Write($"{counter} ");
}

Initial value of
control variable

Loop-continuation
condition

Incrementing of
control variable

for keyword Control variable Required semicolon Required semicolon

for (int counter = 1; counter <= 10; counter++)

ptg18189312

6.3 for Iteration Statement 127

where the initialization expression names the loop’s control variable and provides its initial
value, the loopContinuationCondition determines whether looping should continue and
the increment modifies the control variable’s value (whether an increment or decrement),
so that the loop-continuation condition eventually becomes false. The two semicolons
in the for header are required. We don’t include a semicolon after statement, because the
semicolon is already assumed to be included in the notion of a statement.

6.3.3 Scope of a for Statement’s Control Variable
If the initialization expression in the for header declares the control variable (i.e., the con-
trol variable’s type is specified before the variable name, as in Fig. 6.2), the control variable
can be used only in that for statement—it will not exist outside it. This restricted use of
the name of the control variable is known as the variable’s scope. The scope of a variable
defines where it can be used in an app. For example, a local variable can be used only in
the method that declares the variable and only from the point of declaration through the
end of the block in which the variable has been declared. Scope is discussed in detail in
Chapter 7, Methods: A Deeper Look.

6.3.4 Expressions in a for Statement’s Header Are Optional
All three expressions in a for header are optional. If the loopContinuationCondition is omit-
ted, C# assumes that it’s always true, thus creating an infinite loop. You can omit the ini-
tialization expression if the app initializes the control variable before the loop—in this case,
the scope of the control variable will not be limited to the loop. You can omit the increment
expression if the app calculates the increment with statements in the loop’s body or if no
increment is needed. The increment expression in a for acts as if it were a standalone state-
ment at the end of the for’s body. Therefore, the expressions

are equivalent increment expressions in a for statement. Many programmers prefer
counter++ because it’s concise and because a for loop evaluates its increment expression
after its body executes—so the postfix increment form seems more natural. In this case, the
variable being incremented does not appear in a larger expression, so the prefix and postfix
increment operators have the same effect.

6.3.5 UML Activity Diagram for the for Statement
Figure 6.4 shows the activity diagram of the for statement in Fig. 6.2. The diagram makes
it clear that initialization occurs only once—before the loop-continuation test is evaluated
the first time—and that incrementing occurs each time through the loop after the body
statement executes.

Common Programming Error 6.1
When a for statement’s control variable is declared in the initialization section of a for’s
header, using the control variable after the for’s body is a compilation error.

counter = counter + 1
counter += 1
++counter
counter++

ptg18189312

128 Chapter 6 Control Statements: Part 2

6.4 App: Summing Even Integers
We now consider a sample app that demonstrates a simple use of for. The app in Fig. 6.5
uses a for statement to sum the even integers from 2 to 20 and store the result in an int
variable called total. Each iteration of the loop (lines 12–15) adds control variable num-
ber’s value to variable total.

Fig. 6.4 | UML activity diagram for the for statement in Fig. 6.2.

1 // Fig. 6.5: Sum.cs
2 // Summing integers with the for statement.
3 using System;
4
5 class Sum
6 {
7 static void Main()
8 {
9

10
11 // total even integers from 2 through 20
12
13
14
15
16
17 Console.WriteLine($"Sum is {total}"); // display results
18 }
19 }

Sum is 110

Fig. 6.5 | Summing integers with the for statement.

Determine whether
looping should
continue

 Console.Write($”{counter} ”);

[counter > 10]

[counter <= 10]

int counter = 1

++counter

Display the
counter value

Initialize
control variable

Increment the
control variable

int total = 0; // initialize total

for (int number = 2; number <= 20; number += 2)
{
 total += number;
}

ptg18189312

6.5 App: Compound-Interest Calculations 129

The initialization and increment expressions can be comma-separated lists that enable
you to use multiple initialization expressions or multiple increment expressions. For
example, although this is discouraged, you could merge the for’s body statement (line 14)
into the increment portion of the for header by using a comma as follows:

6.5 App: Compound-Interest Calculations
The next app uses the for statement to compute compound interest. Consider the follow-
ing problem:

A person invests $1,000 in a savings account yielding 5% interest. Assuming that all the
interest is left on deposit, calculate and print the amount of money in the account at the
end of each year for 10 years. Use the following formula to determine the amounts:

a = p (1 + r)n

where

p is the original amount invested (i.e., the principal)
r is the annual interest rate (e.g., use 0.05 for 5%)
n is the number of years
a is the amount on deposit at the end of the nth year.

The solution to this problem (Fig. 6.6) involves a loop that performs the indicated
calculation for each of the 10 years the money remains on deposit.

total += number, number += 2

1 // Fig. 6.6: Interest.cs
2 // Compound-interest calculations with for.
3 using System;
4
5 class Interest
6 {
7 static void Main()
8 {
9 decimal principal = 1000; // initial amount before interest

10 double rate = 0.05; // interest rate
11
12 // display headers
13 Console.WriteLine("Year Amount on deposit");
14
15 // calculate amount on deposit for each of ten years
16
17 {
18 // calculate new amount for specified year
19
20
21
22 // display the year and the amount
23
24 }
25 }
26 }

Fig. 6.6 | Compound-interest calculations with for. (Part 1 of 2.)

for (int year = 1; year <= 10; ++year)

decimal amount = principal *
 ((decimal) Math.Pow(1.0 + rate, year));

Console.WriteLine($"{year,4}{amount,20:C}");

ptg18189312

130 Chapter 6 Control Statements: Part 2

Lines 9 and 19 declare decimal variables principal and amount, and line 10 declares
double variable rate. Lines 9–10 also initialize principal to 1000 (i.e., $1,000.00) and
rate to 0.05. C# treats numeric literals like 0.05 as type double. Similarly, C# treats
whole-number literals like 7 and 1000 as type int—unlike double values, int values can
be assigned to decimal variables. When principal is initialized to 1000, the int value
1000 is promoted to type decimal implicitly—no cast is required. Line 13 outputs the
headers for the app’s two columns of output. The first column displays the year, and the
second displays the amount on deposit at the end of that year.

6.5.1 Performing the Interest Calculations with Math Method pow
Classes provide methods that perform common tasks on objects. Most methods must be
called on a specific object. For example, to deposit money into bank accounts in Fig. 4.12,
we called method Deposit on the Account objects account1 and account2. Many classes
also provide methods to perform common tasks that do not require specific objects—they
must be called using a class name. Such methods are called static methods. You’ve used
several static methods of class Console—methods Write, WriteLine and ReadLine. You
call a static method by specifying the class name followed by the member-access operator
(.) and the method name, as in

C# does not include an exponentiation operator, so we use class Math’s static
method Pow to perform the compound-interest calculation. The expression

calculates the value of x raised to the yth power. The method receives two double argu-
ments and returns a double value. Lines 19–20 in Fig. 6.6 perform the calculation

from the problem statement, where a is the amount, p is the principal, r is the rate and
n is the year. In this calculation, we need to multiply the decimal value principal by a
double value (the value returned by the call to Math.Pow). C# will not implicitly convert
double to a decimal type, or vice versa, because of the possible loss of information in either
conversion, so line 20 contains a (decimal) cast operator that explicitly converts
Math.Pow’s double return value to a decimal.

Year Amount on deposit
 1 $1,050.00
 2 $1,102.50
 3 $1,157.63
 4 $1,215.51
 5 $1,276.28
 6 $1,340.10
 7 $1,407.10
 8 $1,477.46
 9 $1,551.33

 10 $1,628.89

ClassName.MethodName(arguments)

Math.Pow(x, y)

a = p (1 + r)n

Fig. 6.6 | Compound-interest calculations with for. (Part 2 of 2.)

ptg18189312

6.5 App: Compound-Interest Calculations 131

The for statement’s body contains the calculation 1.0 + rate, which appears as an argu-
ment to the Math.Pow method. In fact, this calculation produces the same result each time
through the loop, so repeating the calculation in every iteration of the loop is wasteful.

6.5.2 Formatting with Field Widths and Alignment
After each calculation, line 23

displays the year and the amount on deposit at the end of that year. The following inter-
polation expression formats the year:

The integer 4 after the comma indicates that the year value should be displayed in a field
width of 4—that is, WriteLine displays the value with at least four character positions. If
the value to be output is fewer than four character positions wide (one or two characters in
this example), the value is right-aligned in the field by default—in this case the value is
preceded by two or three spaces, depending on the year value. If the value to be output
were more than four character positions wide, the field width would be extended to the right
to accommodate the entire value—this would push the amount column to the right, up-
setting the neat columns of our tabular output. Similarly, the interpolation expression

formats the amount as currency (C) right-aligned in a field of at least 20 characters. To left
align a value, simply use a negative field width.

6.5.3 Caution: Do Not Use float or double for Monetary Amounts
Section 4.9 introduced the simple type decimal for precise monetary representation and
calculations. You might be tempted to use the floating-point types float or double for
such calculations. However, for certain values types float or double suffer from what we
call representational error. For example, floating-point numbers often arise as a result of
calculations—when we divide 10 by 3, the result is 3.3333333…, with the sequence of 3s
repeating infinitely. The computer allocates only a fixed amount of space to hold such a
value, so clearly the stored floating-point value can be only an approximation.

Performance Tip 6.1
In loops, avoid calculations for which the result never changes—such calculations should
typically be placed before the loop. Optimizing compilers will typically do this for you.

Console.WriteLine($"{year,4}{amount,20:C}");

{year,4}

{amount,20:C}

Common Programming Error 6.2
Using floating-point numbers in a manner that assumes they’re represented exactly (e.g.,
using them in comparisons for equality) can lead to incorrect results. Floating-point num-
bers are represented only approximately.

Error-Prevention Tip 6.2
Do not use variables of type double (or float) to perform precise monetary calculations—
use type decimal instead. The imprecision of floating-point numbers can cause errors that
will result in incorrect monetary values.

ptg18189312

132 Chapter 6 Control Statements: Part 2

Applications of Floating-Point Numbers
Floating-point numbers have numerous applications, especially for measured values. For
example, when we speak of a “normal” body temperature of 98.6 degrees Fahrenheit, we
need not be precise to a large number of digits. When we read the temperature on a ther-
mometer as 98.6, it may actually be 98.5999473210643. Calling this number simply 98.6
is fine for most applications involving body temperatures. Similarly, we used type double
to perform class-average calculations in Chapter 5. Due to the imprecise nature of floating-
point numbers, type double is preferred over type float, because double variables can rep-
resent floating-point numbers more precisely. For this reason, we use type double through-
out the book, unless we’re manipulating monetary amounts, in which case we use decimal.

6.6 do…while Iteration Statement
The do…while iteration statement is similar to the while statement. In the while, the
app tests the loop-continuation condition at the beginning of the loop, before executing
the loop’s body. If the condition is false, the body never executes. The do…while state-
ment tests the loop-continuation condition after executing the loop’s body; therefore, the
body always executes at least once. When a do…while statement terminates, execution
continues with the next statement in sequence. Figure 6.7 uses a do…while (lines 11–15)
to output the numbers 1–10.

Line 9 declares and initializes control variable counter. Upon entering the do…while

statement, line 13 outputs counter’s value, and line 14 increments counter. Then the app
evaluates the loop-continuation test at the bottom of the loop (line 15). If the condition is
true, the loop continues from the first body statement (line 13). If the condition is false,
the loop terminates, and the app continues with the next statement after the loop (line 17).

1 // Fig. 6.7: DoWhileTest.cs
2 // do...while iteration statement.
3 using System;
4
5 class DoWhileTest
6 {
7 static void Main()
8 {
9 int counter = 1; // initialize counter

10
11
12
13
14
15
16
17 Console.WriteLine();
18 }
19 }

1 2 3 4 5 6 7 8 9 10

Fig. 6.7 | do...while iteration statement.

do
{
 Console.Write($"{counter} ");
 ++counter;
} while (counter <= 10); // required semicolon

ptg18189312

6.7 switch Multiple-Selection Statement 133

UML Activity Diagram for the do…while Iteration Statement
Figure 6.8 contains the UML activity diagram for the do…while statement. This diagram
makes it clear that the loop-continuation condition is not evaluated until after the loop
performs the action state at least once. Compare this activity diagram with that of the while
statement (Fig. 5.6).

6.7 switch Multiple-Selection Statement
We discussed the if and if…else selection statements in Chapter 5. C# provides the
switch multiple-selection statement to perform different actions based on the possible
values of an expression, known as the switch expression. Each action is associated with
one or more of the switch expression’s possible values. These are specified as constant in-
tegral expressions or a constant string expressions:

• A constant integral expression is any expression involving character and integer
constants that evaluates to an integer value—i.e., values of type sbyte, byte,
short, ushort, int, uint, long, ulong and char, or a constant from an enum type
(enum is discussed in Section 7.9).

• A constant string expression is any expression composed of string literals or
const string variables that always results in the same string.

6.7.1 Using a switch Statement to Count A, B, C, D and F Grades
Figure 6.9 calculates the class average of a set of numeric grades entered by the user, and
uses a switch statement to determine whether each grade is the equivalent of an A, B, C,
D or F and to increment the appropriate grade counter. The program also displays a sum-
mary of the number of students who received each grade.

Fig. 6.8 | do…while iteration statement UML activity diagram.

Determine whether
looping should
continue

[counter > 10]

[counter <= 10]

++counter

Display the
counter value

Increment the
control variable

Console.Write($”{counter} ”);

ptg18189312

134 Chapter 6 Control Statements: Part 2

1 // Fig. 6.9: LetterGrades.cs
2 // Using a switch statement to count letter grades.
3 using System;
4
5 class LetterGrades
6 {
7 static void Main()
8 {
9 int total = 0; // sum of grades

10 int gradeCounter = 0; // number of grades entered
11 int aCount = 0; // count of A grades
12 int bCount = 0; // count of B grades
13 int cCount = 0; // count of C grades
14 int dCount = 0; // count of D grades
15 int fCount = 0; // count of F grades
16
17 Console.WriteLine("Enter the integer grades in the range 0-100.");
18 Console.WriteLine(
19 "Type <Ctrl> z and press Enter to terminate input:");
20
21 string input = Console.ReadLine(); // read user input
22
23 // loop until user enters the end-of-file indicator (<Ctrl> z)
24 while (input != null)
25 {
26 int grade = int.Parse(input); // read grade off user input
27 total += grade; // add grade to total
28 ++gradeCounter; // increment number of grades
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51 input = Console.ReadLine(); // read user input
52 }
53

Fig. 6.9 | Using a switch statement to count letter grades. (Part 1 of 2.)

// determine which grade was entered
switch (grade / 10)
{
 case 9: // grade was in the 90s
 case 10: // grade was 100

 ++aCount; // increment aCount
 break; // necessary to exit switch

 case 8: // grade was between 80 and 89
 ++bCount; // increment bCount
 break; // exit switch

 case 7: // grade was between 70 and 79
 ++cCount; // increment cCount
 break; // exit switch

 case 6: // grade was between 60 and 69
 ++dCount; // increment dCount
 break; // exit switch

 default: // grade was less than 60
 ++fCount; // increment fCount
 break; // exit switch

}

ptg18189312

6.7 switch Multiple-Selection Statement 135

Lines 9 and 10 declare and initialize to 0 local variables total and gradeCounter to
keep track of the sum of the grades entered by the user and the number of grades entered,
respectively. Lines 11–15 declare and initialize to 0 counter variables for each grade cate-

54 Console.WriteLine("\nGrade Report:");
55
56 // if user entered at least one grade...
57 if (gradeCounter != 0)
58 {
59 // calculate average of all grades entered
60 double average = (double) total / gradeCounter;
61
62 // output summary of results
63 Console.WriteLine(
64 $"Total of the {gradeCounter} grades entered is {total}");
65 Console.WriteLine($"Class average is {average:F}");
66 Console.WriteLine("Number of students who received each grade:");
67 Console.WriteLine($"A: {aCount}"); // display number of A grades
68 Console.WriteLine($"B: {bCount}"); // display number of B grades
69 Console.WriteLine($"C: {cCount}"); // display number of C grades
70 Console.WriteLine($"D: {dCount}"); // display number of D grades
71 Console.WriteLine($"F: {fCount}"); // display number of F grades
72 }
73 else // no grades were entered, so output appropriate message
74 {
75 Console.WriteLine("No grades were entered");
76 }
77 }
78 }

Enter the integer grades in the range 0-100.
Type <Ctrl> z and press Enter to terminate input:
99
92
45
57
63
71
76
85
90
100
^Z

Grade Report:
Total of the 10 grades entered is 778
Class average is 77.80
Number of students who received each grade:
A: 4
B: 1
C: 2
D: 1
F: 2

Fig. 6.9 | Using a switch statement to count letter grades. (Part 2 of 2.)

ptg18189312

136 Chapter 6 Control Statements: Part 2

gory. The Main method has two key parts. Lines 21–52 read an arbitrary number of integer
grades from the user using sentinel-controlled iteration, update variables total and gra-
deCounter, and increment an appropriate letter-grade counter for each grade entered.
Lines 54–76 output a report containing the total of all grades entered, the average grade
and the number of students who received each letter grade.

Reading Grades from the User
Lines 17–19 prompt the user to enter integer grades and to type Ctrl + z, then press Enter
to terminate the input. The notation Ctrl + z means to hold down the Ctrl key and tap the
z key when typing in a Command Prompt. Ctrl + z is the Windows key sequence for typing
the end-of-file indicator. This is one way to inform an app that there’s no more data to
input. If Ctrl + z is entered while the app is awaiting input with a ReadLine method, null
is returned. (The end-of-file indicator is a system-dependent keystroke combination. On
many non-Windows systems, end-of-file is entered by typing Ctrl + d.) In Chapter 17,
Files and Streams, we’ll see how the end-of-file indicator is used when an app reads its in-
put from a file. Windows typically displays the characters ^Z in a Command Prompt when
the end-of-file indicator is typed, as shown in the program’s output.

Line 21 uses Console’s ReadLine method to get the first line that the user entered and
store it in variable input. The while statement (lines 24–52) processes this user input. The
condition at line 24 checks whether the value of input is null—Console’s ReadLine
method returns null only if the user typed an end-of-file indicator. As long as the end-of-
file indicator has not been typed, input will not be null and the condition will pass.

Line 26 converts the string in input to an int type. Line 27 adds grade to total.
Line 28 increments gradeCounter.

Processing the Grades
The switch statement (lines 31–49) determines which counter to increment. In this ex-
ample, we assume that the user enters a valid grade in the range 0–100. A grade in the
range 90–100 represents A, 80–89 represents B, 70–79 represents C, 60–69 represents D
and 0–59 represents F. The switch statement consists of a block that contains a sequence
of case labels and an optional default label. These are used in this example to determine
which counter to increment based on the grade.

The switch Statement
When control reaches the switch statement, the app evaluates the expression grade / 10

in the parentheses—this is the switch expression. The app attempts to match the value of
the switch expression with one of the case labels. The switch expression in line 31 per-
forms integer division, which truncates the fractional part of the result. Thus, when we di-
vide any value in the range 0–100 by 10, the result is always a value from 0 to 10. We use
several of these values in our case labels. For example, if the user enters the integer 85, the
switch expression evaluates to int value 8. If a match occurs between the switch expres-
sion and a case (case 8: at line 37), the app executes the statements for that case. For the
integer 8, line 38 increments bCount, because a grade in the 80s is a B.

The break statement (line 39) causes program control to proceed with the first state-
ment after the switch (line 51), which reads the next line entered by the user and assigns
it to the variable input. Line 52 marks the end of the body of the while statement that

ptg18189312

6.7 switch Multiple-Selection Statement 137

inputs grades, so control flows to the while’s condition (line 24) to determine whether the
loop should continue executing based on the value just assigned to the variable input.

Consecutive case Labels
The switch’s cases explicitly test for the values 10, 9, 8, 7 and 6. Lines 33–34 test for the
values 9 and 10 (both of which represent the grade A). Listing case labels consecutively in
this manner with no statements between them enables the cases to perform the same set
of statements—when the switch expression evaluates to 9 or 10, the statements in lines
35–36 execute. The switch statement does not provide a mechanism for testing ranges of
values, so every value to be tested must be listed in a separate case label. Each case can
have multiple statements. The switch statement differs from other control statements in
that it does not require braces around multiple statements in each case.

The default Case
If no match occurs between the switch expression’s value and a case label, the statements
after the default label (lines 47–48) execute. We use the default label in this example to
process all switch-expression values that are less than 6—that is, all failing grades. If no
match occurs and the switch does not contain a default label, program control simply
continues with the first statement (if there’s one) after the switch statement.

No “Fall Through” in the C# switch Statement
In many other programming languages containing switch, the break statement is not re-
quired at the end of a case. In those languages, without break statements, each time a
match occurs in the switch, the statements for that case and subsequent cases execute
until a break statement or the end of the switch is encountered. This is often referred to
as “falling through” to the statements in subsequent cases. This leads to logic errors when
you forget the break statement. C# is different from other programming languages—after
the statements in a case, you’re required to include a statement that terminates the case,
such as a break, a return or a throw;1 otherwise, a compilation error occurs.2

Displaying the Grade Report
Lines 54–76 output a report based on the grades entered (as shown in the input/output
window in Fig. 6.9). Line 57 determines whether the user entered at least one grade—this
helps us avoid dividing by zero. If so, line 60 calculates the average of the grades. Lines 63–
71 then output the total of all the grades, the class average and the number of students who
received each letter grade. If no grades were entered, line 75 outputs an appropriate mes-
sage. The output in Fig. 6.9 shows a sample grade report based on 10 grades.

Good Programming Practice 6.1
Although each case and the default label in a switch can occur in any order, place the
default label last for clarity.

1. We discuss the throw statement in Chapter 13, Exception Handling: A Deeper Look.
2. You can implement fall through by replacing the break statement after a case’s or default’s actions

with a statement of the form goto case value; (where value is a literal or constant in one of the
switch’s cases) or goto default;.

ptg18189312

138 Chapter 6 Control Statements: Part 2

6.7.2 switch Statement UML Activity Diagram
Figure 6.10 shows the UML activity diagram for the general switch statement. Every set
of statements after a case label normally ends its execution with a break or return state-
ment to terminate the switch statement after processing the case. Typically, you’ll use
break statements. Figure 6.10 emphasizes this by including break statements in the activ-
ity diagram. The diagram makes it clear that the break statement at the end of a case caus-
es control to exit the switch statement immediately.

6.7.3 Notes on the Expression in Each case of a switch
In the switch statements cases, constant integral expressions can be character constants—
specific characters in single quotes, such as 'A', '7' or '$'—which represent the integer
values of characters. (Appendix shows the integer values of the characters in the ASCII
character set, which is a popular subset of the Unicode character set used by C#.) A string
constant (or string literal) is a sequence of characters in double quotes, such as "Welcome
to C# Programming!" or a const string variable. For strings, you also can use null or
string.Empty.

Fig. 6.10 | switch multiple-selection statement UML activity diagram with break
statements.

.
.
.

default actions(s)

case a actions(s)

case b actions(s)

case z actions(s) break

break

break

case b

case z

case a

[false]

[true]

[true]

[true]

[false]

[false]

break

ptg18189312

6.8 Class AutoPolicy Case Study: strings in switch Statements 139

The expression in each case also can be a constant—a value which does not change
for the entire app. Constants are declared with the keyword const (discussed in
Chapter 7). C# also has a feature called enumerations, which we also present in Chapter 7.
Enumeration constants also can be used in case labels. In Chapter 12, we present a more
elegant way to implement switch logic—we use a technique called polymorphism to create
apps that are often clearer, easier to maintain and easier to extend than apps using switch
logic.

6.8 Class AutoPolicy Case Study: strings in switch
Statements
strings can be used in switch expressions, and string literals can be used in case labels.
To demonstrate this, we’ll implement an app that meets the following requirements:

You’ve been hired by an auto insurance company that serves these northeast states—
Connecticut, Maine, Massachusetts, New Hampshire, New Jersey, New York, Pennsyl-
vania, Rhode Island and Vermont. The company would like you to create a program
that produces a report indicating for each of their auto insurance policies whether the
policy is held in a state with “no-fault” auto insurance—Massachusetts, New Jersey,
New York and Pennsylvania.

The app contains two classes—AutoPolicy (Fig. 6.11) and AutoPolicyTest (Fig. 6.12).

Class AutoPolicy
Class AutoPolicy (Fig. 6.11) represents an auto insurance policy. The class contains:

• auto-implemented int property AccountNumber (line 5) to store the policy’s ac-
count number,

• auto-implemented string property MakeAndModel (line 6) to store the car’s make
and model (such as a "Toyota Camry"),

• auto-implemented string property State (line 7) to store a two-character state
abbreviation representing the state in which the policy is held (e.g., "MA" for
Massachusetts),

• a constructor (lines 10–15) that initializes the class’s properties and

• read-only property IsNoFaultState (lines 18–37) to return a bool value indicat-
ing whether the policy is held in a no-fault auto insurance state; note the property
name—a common naming convention for a bool property is to begin the name
with "Is".

In property IsNoFaultState, the switch expression (line 25) is the string returned by
AutoPolicy’s State property. The switch statement compares the switch expression’s
value with the case labels (line 27) to determine whether the policy is held in Massachu-
setts, New Jersey, New York or Pennsylvania (the no-fault states). If there’s a match, then
line 28 sets local variable noFaultState to true and the switch statement terminates; oth-
erwise, the default case sets noFaultState to false (line 31). Then IsNoFaultState’s
get accessor returns local variable noFaultState’s value.

ptg18189312

140 Chapter 6 Control Statements: Part 2

For simplicity, we do not validate an AutoPolicy’s properties, and we assume that state
abbreviations are always two uppercase letters. In addition, a real AutoPolicy class would
likely contain many other properties and methods for data such as the account holder’s
name, address, birth date, etc.

Class AutoPolicyTest
Class AutoPolicyTest (Fig. 6.12) creates two AutoPolicy objects (lines 10–11 in Main).
Lines 14–15 pass each object to static method policyInNoFaultState (lines 20–28),
which uses AutoPolicy methods to determine and display whether the object it receives
represents a policy in a no-fault auto insurance state.

1 // Fig. 6.11: AutoPolicy.cs
2 // Class that represents an auto insurance policy.
3 class AutoPolicy
4 {
5 public int AccountNumber { get; set; } // policy account number
6 public string MakeAndModel { get; set; } // car that policy applies to
7 public string State { get; set; } // two-letter state abbreviation
8
9 // constructor

10 public AutoPolicy(int accountNumber, string makeAndModel, string state)
11 {
12 AccountNumber = accountNumber;
13 MakeAndModel = makeAndModel;
14 State = state;
15 }
16
17 // returns whether the state has no-fault insurance
18 public bool IsNoFaultState
19 {
20 get
21 {
22 bool noFaultState;
23
24 // determine whether state has no-fault auto insurance
25
26
27
28
29
30
31
32
33
34
35 return noFaultState;
36 }
37 }
38 }

Fig. 6.11 | Class that represents an auto insurance policy.

switch (State) // get AutoPolicy object's state abbreviation
{
 case "MA": case "NJ": case "NY": case "PA":

 noFaultState = true;
 break;

 default:
 noFaultState = false;
 break;

}

ptg18189312

6.9 break and continue Statements 141

6.9 break and continue Statements
In addition to selection and iteration statements, C# provides statements break and con-
tinue to alter the flow of control. The preceding section showed how break can be used
to terminate a switch statement’s execution. This section discusses how to use break to
terminate any iteration statement.

6.9.1 break Statement
The break statement, when executed in a while, for, do…while, switch, or foreach,
causes immediate exit from the loop or switch. Execution continues with the first state-
ment after the control statement. Figure 6.13 demonstrates a break statement exiting a
for. When the if nested at line 13 in the for statement (lines 11–19) determines that

1 // Fig. 6.12: AutoPolicyTest.cs
2 // Demonstrating strings in switch.
3 using System;
4
5 class AutoPolicyTest
6 {
7 static void Main()
8 {
9 // create two AutoPolicy objects

10 AutoPolicy policy1 = new AutoPolicy(11111111, "Toyota Camry",);
11 AutoPolicy policy2 = new AutoPolicy(22222222, "Ford Fusion",);
12
13 // display whether each policy is in a no-fault state
14 PolicyInNoFaultState(policy1);
15 PolicyInNoFaultState(policy2);
16 }
17
18 // method that displays whether an AutoPolicy
19 // is in a state with no-fault auto insurance
20 public static void PolicyInNoFaultState(AutoPolicy policy)
21 {
22 Console.WriteLine("The auto policy:");
23 Console.Write($"Account #: {policy.AccountNumber}; ");
24 Console.WriteLine($"Car: {policy.MakeAndModel};");
25 Console.Write($"State {policy.State}; ");
26 Console.Write($"({ ? "is": "is not"})");
27 Console.WriteLine(" a no-fault state\n");
28 }
29 }

The auto policy:
Account #: 11111111; Car: Toyota Camry;
State NJ is a no-fault state

The auto policy:
Account #: 22222222; Car: Ford Fusion;
State ME is not a no-fault state

Fig. 6.12 | Demonstrating strings in switch.

"NJ"
"ME"

policy.IsNoFaultState

ptg18189312

142 Chapter 6 Control Statements: Part 2

count is 5, the break statement at line 15 executes. This terminates the for statement, and
the app proceeds to line 21 (immediately after the for statement), which displays a mes-
sage indicating the value of the control variable when the loop terminated. The loop fully
executes its body only four times instead of 10 because of the break.

6.9.2 continue Statement
The continue statement, when executed in a while, for, do…while, or foreach, skips
the remaining statements in the loop body and proceeds with the next iteration of the
loop. In while and do…while statements, the app evaluates the loop-continuation test
immediately after the continue statement executes. In a for statement, the increment ex-
pression normally executes next, then the app evaluates the loop-continuation test.

Figure 6.14 uses the continue statement in a for to skip the statement at line 16
when the nested if (line 11) determines that the value of count is 5. When the continue
statement executes, program control continues with the increment of the control variable
in the for statement (line 9).

1 // Fig. 6.13: BreakTest.cs
2 // break statement exiting a for statement.
3 using System;
4
5 class BreakTest
6 {
7 static void Main()
8 {
9 int count; // control variable also used after loop terminates

10
11 for (count = 1; count <= 10; ++count) // loop 10 times
12 {
13 if (count == 5) // if count is 5,
14 {
15
16 }
17
18 Console.Write($"{count} ");
19 }
20
21 Console.WriteLine($"\nBroke out of loop at count = {count}");
22 }
23 }

1 2 3 4
Broke out of loop at count = 5

Fig. 6.13 | break statement exiting a for statement.

Software Engineering Observation 6.1
There’s a tension between achieving quality software engineering and achieving the best-
performing software. Often, one of these goals is achieved at the expense of the other. For
all but the most performance-intensive situations, apply the following rule: First, make
your code simple and correct; then make it fast, but only if necessary.

break; // terminate loop

ptg18189312

6.10 Logical Operators 143

6.10 Logical Operators
So far, we’ve used only simple conditions expressed in terms of the relational operators >,
<, >= and <=, and the equality operators == and !=, such as number != sentinelValue,
count <= 10 and total > 1000. C# provides logical operators to enable you to form more
complex conditions by combining simple conditions. The logical operators are && (condi-
tional AND), || (conditional OR), & (boolean logical AND), | (boolean logical inclusive
OR), ^ (boolean logical exclusive OR) and ! (logical negation).

6.10.1 Conditional AND (&&) Operator
Suppose that we wish to ensure at some point in an app that two conditions are both true
before we choose a certain path of execution. In this case, we can use the && (conditional
AND) operator, as follows:

This if statement contains two simple conditions—gender == 'F' determines whether a
person is female and age >= 65 might be evaluated to determine whether a person is a se-
nior citizen. The if statement considers the combined condition

1 // Fig. 6.14: ContinueTest.cs
2 // continue statement skipping an iteration of a for statement.
3 using System;
4
5 class ContinueTest
6 {
7 static void Main()
8 {
9 for (int count = 1; count <= 10; ++count) // loop 10 times

10 {
11 if (count == 5) // if count is 5,
12 {
13
14 }
15
16 Console.Write($"{count} ");
17 }
18
19 Console.WriteLine("\nUsed continue to skip displaying 5");
20 }
21 }

1 2 3 4 6 7 8 9 10
Used continue to skip displaying 5

Fig. 6.14 | continue statement skipping an iteration of a for statement.

if (gender == 'F' && age >= 65)
{

 ++seniorFemales;
}

gender == 'F' && age >= 65

continue; // skip remaining code in loop

ptg18189312

144 Chapter 6 Control Statements: Part 2

which is true if and only if both simple conditions are true. Some programmers find that
the preceding combined condition is more readable with redundant parentheses, as in

The table in Fig. 6.15 summarizes the && operator. The table shows all four possible
combinations of false and true values for expression1 and expression2. Such tables are
called truth tables. C# evaluates all expressions that include relational operators, equality
operators or logical operators to bool values—which are either true or false.

6.10.2 Conditional OR (||) Operator
Now suppose we wish to ensure that either or both of two conditions are true before we
choose a certain path of execution. In this case, we use the || (conditional OR) operator,
as in the following app segment:

This statement also contains two simple conditions. The condition semesterAverage >=
90 is evaluated to determine whether the student deserves an A in the course because of a
solid performance throughout the semester. The condition finalExam >= 90 is evaluated
to determine whether the student deserves an A in the course because of an outstanding
performance on the final exam. The if statement then considers the combined condition

and awards the student an A if either or both of the simple conditions are true. The only
time the message "Student grade is A" is not displayed is when both of the simple condi-
tions are false. Figure 6.16 is a truth table for operator conditional OR (||). Operator &&
has a higher precedence than operator ||. Both operators associate from left to right.

(gender == 'F') && (age >= 65)

expression1 expression2 expression1 && expression2

false false false
false true false
true false false
true true true

Fig. 6.15 | && (conditional AND) operator truth table.

if ((semesterAverage >= 90) || (finalExam >= 90))
{

 Console.WriteLine ("Student grade is A");
}

(semesterAverage >= 90) || (finalExam >= 90)

expression1 expression2 expression1 || expression2

false false false
false true true
true false true
true true true

Fig. 6.16 | || (conditional OR) operator truth table.

ptg18189312

6.10 Logical Operators 145

6.10.3 Short-Circuit Evaluation of Complex Conditions
The parts of an expression containing && or || operators are evaluated only until it’s known
whether the condition is true or false. Thus, evaluation of the expression

stops immediately if gender is not equal to 'F' (i.e., at that point, it’s certain that the en-
tire expression is false) and continues only if gender is equal to 'F' (i.e., the entire ex-
pression could still be true if the condition age >= 65 is true). This feature of conditional
AND and conditional OR expressions is called short-circuit evaluation.

6.10.4 Boolean Logical AND (&) and Boolean Logical OR (|) Operators
The boolean logical AND (&) and boolean logical inclusive OR (|) operators work iden-
tically to the && (conditional AND) and || (conditional OR) operators, with one excep-
tion—the boolean logical operators always evaluate both of their operands (i.e., they do
not perform short-circuit evaluation). Therefore, the expression

evaluates age >= 65 regardless of whether gender is equal to 'F'. This is useful if the right
operand of the & or | operator has a required side effect—such as a modification of a vari-
able’s value. For example, the expression

guarantees that the condition ++age >= 65 will be evaluated. Thus, the variable age is in-
cremented in the preceding expression, regardless of whether the overall expression is true
or false.

6.10.5 Boolean Logical Exclusive OR (^)
A complex condition containing the boolean logical exclusive OR (^) operator (also called
the logical XOR operator) is true if and only if one of its operands is true and the other is
false. If both operands are true or both are false, the entire condition is false.
Figure 6.17 is a truth table for the boolean logical exclusive OR operator. This operator is
also guaranteed to evaluate both of its operands.

(gender == 'F') && (age >= 65)

Common Programming Error 6.3
In expressions using operator &&, a condition—known as the dependent condition—may
require another condition to be true for the evaluation of the dependent condition to be
meaningful. In this case, the dependent condition should be placed after the other one, or
an error might occur. For example, in the expression (i != 0) && (10 / i == 2), the sec-
ond condition must appear after the first condition, or a divide-by-zero error might occur.

(gender == 'F') & (age >= 65)

(birthday == true) | (++age >= 65)

Error-Prevention Tip 6.3
For clarity, avoid expressions with side effects in conditions. The side effects may appear
clever, but they can make it harder to understand code and can lead to subtle logic errors.

ptg18189312

146 Chapter 6 Control Statements: Part 2

6.10.6 Logical Negation (!) Operator
The ! (logical negation or not) operator enables you to “reverse” the meaning of a condi-
tion. Unlike the logical operators &&, ||, &, | and ^, which are binary operators that com-
bine two conditions, the logical negation operator is a unary operator that has only a single
condition as an operand. The logical negation operator is placed before a condition to
choose a path of execution if the original condition (without the logical negation operator)
is false, as in the code segment

which executes the WriteLine call only if grade is not equal to sentinelValue. The pa-
rentheses around the condition grade == sentinelValue are needed because the logical
negation operator has a higher precedence than the equality operator.

In most cases, you can avoid using logical negation by expressing the condition dif-
ferently with an appropriate relational or equality operator. For example, the previous
statement may also be written as

This flexibility can help you express a condition in a more convenient manner. Figure 6.18
is a truth table for the logical negation operator.

6.10.7 Logical Operators Example
Figure 6.19 demonstrates the logical operators and boolean logical operators by producing
their truth tables. The output shows the expression that was evaluated and the bool result
of that expression. Lines 10–14 produce the truth table for && (conditional AND). Lines

expression1 expression2 expression1 ^ expression2

false false false
false true true
true false true
true true false

Fig. 6.17 | ^ (boolean logical exclusive OR) operator truth table.

if (! (grade == sentinelValue))
{

 Console.WriteLine($"The next grade is {grade}");
}

if (grade != sentinelValue)
{

 Console.WriteLine($"The next grade is {grade}");
}

expression !expression

false true
true false

Fig. 6.18 | ! (logical negation)
operator truth table.

ptg18189312

6.10 Logical Operators 147

17–21 produce the truth table for || (conditional OR). Lines 24–28 produce the truth
table for & (boolean logical AND). Lines 31–35 produce the truth table for | (boolean log-
ical inclusive OR). Lines 38–42 produce the truth table for ^ (boolean logical exclusive
OR). Lines 45–47 produce the truth table for ! (logical negation).

1 // Fig. 6.19: LogicalOperators.cs
2 // Logical operators.
3 using System;
4
5 class LogicalOperators
6 {
7 static void Main()
8 {
9 // create truth table for && (conditional AND) operator

10 Console.WriteLine("Conditional AND (&&)");
11 Console.WriteLine($"false && false: {false && false}");
12 Console.WriteLine($"false && true: {false && true}");
13 Console.WriteLine($"true && false: {true && false}");
14 Console.WriteLine($"true && true: {true && true}\n");
15
16 // create truth table for || (conditional OR) operator
17 Console.WriteLine("Conditional OR (||)");
18 Console.WriteLine($"false || false: {false || false}");
19 Console.WriteLine($"false || true: {false || true}");
20 Console.WriteLine($"true || false: {true || false}");
21 Console.WriteLine($"true || true: {true || true}\n");
22
23 // create truth table for & (boolean logical AND) operator
24 Console.WriteLine("Boolean logical AND (&)");
25 Console.WriteLine($"false & false: {false & false}");
26 Console.WriteLine($"false & true: {false & true}");
27 Console.WriteLine($"true & false: {true & false}");
28 Console.WriteLine($"true & true: {true & true}\n");
29
30 // create truth table for | (boolean logical inclusive OR) operator
31 Console.WriteLine("Boolean logical inclusive OR (|)");
32 Console.WriteLine($"false | false: {false | false}");
33 Console.WriteLine($"false | true: {false | true}");
34 Console.WriteLine($"true | false: {true | false}");
35 Console.WriteLine($"true | true: {true | true}\n");
36
37 // create truth table for ^ (boolean logical exclusive OR) operator
38 Console.WriteLine("Boolean logical exclusive OR (^)");
39 Console.WriteLine($"false ^ false: {false ^ false}");
40 Console.WriteLine($"false ^ true: {false ^ true}");
41 Console.WriteLine($"true ^ false: {true ^ false}");
42 Console.WriteLine($"true ^ true: {true ^ true}\n");
43

Fig. 6.19 | Logical operators. (Part 1 of 2.)

ptg18189312

148 Chapter 6 Control Statements: Part 2

Precedence and Associativity of the Operators Presented So Far
Figure 6.20 shows the precedence and associativity of the C# operators introduced so far.
The operators are shown from top to bottom in decreasing order of precedence.

44 // create truth table for ! (logical negation) operator
45 Console.WriteLine("Logical negation (!)");
46 Console.WriteLine($"!false: {!false}");
47 Console.WriteLine($"!true: {!true}");
48 }
49 }

Conditional AND (&&)
false && false: False
false && true: False
true && false: False
true && true: True

Conditional OR (||)
false || false: False
false || true: True
true || false: True
true || true: True

Boolean logical AND (&)
false & false: False
false & true: False
true & false: False
true & true: True

Boolean logical inclusive OR (|)
false | false: False
false | true: True
true | false: True
true | true: True

Boolean logical exclusive OR (^)
false ^ false: False
false ^ true: True
true ^ false: True
true ^ true: False

Logical negation (!)
!false: True
!true: False

Operators Associativity Type

. new ++(postfix) --(postfix) left to right highest precedence

++ -- + - ! (type) right to left unary prefix

* / % left to right multiplicative

Fig. 6.20 | Precedence/associativity of the operators discussed so far. (Part 1 of 2.)

Fig. 6.19 | Logical operators. (Part 2 of 2.)

ptg18189312

6.11 Wrap-Up 149

6.11 Wrap-Up
Chapter 5 discussed the if, if…else and while control statements. In Chapter 6, we dis-
cussed the for, do...while and switch control statements—we’ll discuss the foreach
statement in Chapter 8. The for and do…while statements are simply more convenient
ways to express certain types of iteration. The switch statement is in some situations a
more convenient notation for multiple selection, rather than using nested if...else state-
ments. You can use the break and continue statements to alter the flow of control in it-
eration statements. The logical operators enable you to use more complex conditional
expressions in control statements. We used type decimal to represent monetary amounts
precisely rather than incuring the representational errors associated with types float and
double. In Chapter 7, we examine methods in greater depth.

+ - left to right additive

< <= > >= left to right relational

== != left to right equality

& left to right boolean logical AND

^ left to right boolean logical exclusive OR

| left to right boolean logical inclusive OR

&& left to right conditional AND

|| left to right conditional OR

?: right to left conditional

= += -= *= /= %= right to left assignment

Operators Associativity Type

Fig. 6.20 | Precedence/associativity of the operators discussed so far. (Part 2 of 2.)

ptg18189312

7
Methods: A Deeper Look

O b j e c t i v e s
In this chapter you’ll:
■ See that static methods and variables are associated with

classes rather than objects.
■ Use common Math class functions.
■ Learn C#’s argument promotion rules for when argument

types do not match parameter types exactly.
■ Get a high-level overview of various namespaces from the

.NET Framework Class Library.
■ Use random-number generation to implement game-

playing apps.
■ Understand how the visibility of identifiers is limited to

specific regions of programs.
■ See how the method call and return mechanism is

supported by the method-call stack.
■ Create overloaded methods.
■ Use optional and named parameters.
■ Use recursive methods.
■ Understand what value types and reference types are.
■ Pass method arguments by value and by reference.

ptg18189312

7.1 Introduction 151

O
u

tl
in

e

7.1 Introduction
In this chapter, we take a deeper look at methods. We’ll discuss the difference between non-
static and static methods. You’ll see that the Math class in the .NET Framework Class
Library provides many static methods to perform mathematical calculations. We’ll also
discuss static variables (known as class variables) and why method Main is declared static.

You’ll declare a method with multiple parameters and use operator + to perform
string concatenations. We’ll discuss C#’s argument promotion rules for implicitly con-

7.1 Introduction
7.2 Packaging Code in C#
7.3 static Methods, static Variables

and Class Math
7.3.1 Math Class Methods
7.3.2 Math Class Constants PI and E
7.3.3 Why Is Main Declared static?
7.3.4 Additional Comments About Main

7.4 Methods with Multiple Parameters
7.4.1 Keyword static
7.4.2 Method Maximum
7.4.3 Assembling strings with Concatena-

tion
7.4.4 Breaking Apart Large string Literals
7.4.5 When to Declare Variables as Fields
7.4.6 Implementing Method Maximum by Re-

using Method Math.Max
7.5 Notes on Using Methods
7.6 Argument Promotion and Casting

7.6.1 Promotion Rules
7.6.2 Sometimes Explicit Casts Are Required

7.7 The .NET Framework Class Library
7.8 Case Study: Random-Number Genera-

tion
7.8.1 Creating an Object of Type Random
7.8.2 Generating a Random Integer
7.8.3 Scaling the Random-Number Range
7.8.4 Shifting Random-Number Range
7.8.5 Combining Shifting and Scaling
7.8.6 Rolling a Six-Sided Die
7.8.7 Scaling and Shifting Random Numbers
7.8.8 Repeatability for Testing and Debugging

7.9 Case Study: A Game of Chance; Intro-
ducing Enumerations

7.9.1 Method RollDice
7.9.2 Method Main’s Local Variables

7.9.3 enum Type Status
7.9.4 The First Roll
7.9.5 enum Type DiceNames
7.9.6 Underlying Type of an enum
7.9.7 Comparing Integers and enum Con-

stants
7.10 Scope of Declarations
7.11 Method-Call Stack and Activation

Records
7.11.1 Method-Call Stack
7.11.2 Stack Frames
7.11.3 Local Variables and Stack Frames
7.11.4 Stack Overflow
7.11.5 Method-Call Stack in Action

7.12 Method Overloading
7.12.1 Declaring Overloaded Methods
7.12.2 Distinguishing Between Overload-

ed Methods
7.12.3 Return Types of Overloaded Meth-

ods
7.13 Optional Parameters
7.14 Named Parameters
7.15 C# 6 Expression-Bodied Methods

and Properties
7.16 Recursion

7.16.1 Base Cases and Recursive Calls
7.16.2 Recursive Factorial Calculations
7.16.3 Implementing Factorial Recursively

7.17 Value Types vs. Reference Types
7.18 Passing Arguments By Value and

By Reference
7.18.1 ref and out Parameters
7.18.2 Demonstrating ref, out and Value

Parameters
7.19 Wrap-Up

ptg18189312

152 Chapter 7 Methods: A Deeper Look

verting simple-type values to other types and when these rules are applied by the compiler.
We’ll also present several commonly used Framework Class Library namespaces.

We’ll take a brief, and hopefully entertaining, diversion into simulation techniques
with random-number generation and develop a version of a popular casino dice game that
uses most of the programming techniques you’ve learned so far. You’ll declare named con-
stants with the const keyword and with enum types. We’ll then present C#’s scope rules,
which determine where identifiers can be referenced in an app.

We’ll discuss how the method-call stack enables C# to keep track of which method is
currently executing, how local variables of methods are maintained in memory and how a
method knows where to return after it completes execution. You’ll overload methods in a
class by providing methods with the same name but different numbers and/or types of
parameters, and learn how to use optional and named parameters.

We’ll introduce C# 6’s expression-bodied methods, which provide a concise notation
for methods that simply return a value to their caller. We’ll also use this expression-bodied
notation for a read-only property’s get accessor.

We’ll discuss how recursive methods call themselves, breaking larger problems into
smaller subproblems until eventually the original problem is solved. Finally, we’ll provide
more insight into how value-type and reference-type arguments are passed to methods.

7.2 Packaging Code in C#
So far, we’ve used properties, methods and classes to package code. We’ll present addition-
al packaging mechanisms in later chapters. C# apps are written by combining your prop-
erties, methods and classes with predefined properties, methods and classes available in the
.NET Framework Class Library and in other class libraries. Related classes are often
grouped into namespaces and compiled into class libraries so that they can be reused in
other apps. You’ll learn how to create your own namespaces and class libraries in
Chapter 15. The Framework Class Library provides many predefined classes that contain
methods for performing common mathematical calculations, string manipulations, char-
acter manipulations, input/output operations, graphical user interfaces, graphics, multi-
media, printing, file processing, database operations, networking operations, error
checking, web-app development, accessibility (for people with disabilities) and more.

7.3 static Methods, static Variables and Class Math
Although most methods are called to operate on the data of specific objects, this is not al-
ways the case. Sometimes a method performs a task that does not depend on the data of any
object (other than the method’s arguments). Such a method applies to the class in which
it’s declared as a whole and is known as a static method.

Software Engineering Observation 7.1
Don’t try to “reinvent the wheel.” When possible, reuse Framework Class Library classes
and methods (https://msdn.microsoft.com/library/mt472912). This reduces app
development time and errors, contributes to good performance and often enhances security.

https://msdn.microsoft.com/library/mt472912

ptg18189312

7.3 static Methods, static Variables and Class Math 153

It’s common for a class to contain a group of static methods to perform common
tasks. For example, recall that we used static method Pow of class Math to raise a value to
a power in Fig. 6.6. To declare a method as static, place the keyword static before the
return type in the method’s declaration. You call any static method by specifying the
name of the class in which the method is declared, followed by the member-access operator
(.) and the method name, as in

7.3.1 Math Class Methods
Class Math (from the System namespace) provides a collection of static methods that en-
able you to perform common mathematical calculations. For example, you can calculate
the square root of 900.0 with the static method call

The expression Math.Sqrt(900.0) evaluates to 30.0. Method Sqrt takes an argument of
type double and returns a result of type double. The following statement displays in the
console window the value of the preceding method call:

Here, the value that Sqrt returns becomes the argument to WriteLine. We did not create
a Math object before calling Sqrt, nor did we create a Console object before calling Write-
Line. Also, all of Math’s methods are static—therefore, each is called by preceding the
name of the method with the class name Math and the member-access operator (.).

Method arguments may be constants, variables or expressions. If c = 13.0, d = 3.0 and
f = 4.0, then the statement

calculates and displays the square root of 13.0 + 3.0 * 4.0 = 25.0—namely, 5.0.
Figure 7.1 summarizes several Math class methods. In the figure, x and y are of type double.

ClassName.MethodName(arguments)

double value = Math.Sqrt(900.0);

Console.WriteLine(Math.Sqrt(900.0));

Console.WriteLine(Math.Sqrt(c + d * f));

Method Description Example

Abs(x) absolute value of x Abs(23.7) is 23.7
Abs(0.0) is 0.0
Abs(-23.7) is 23.7

Ceiling(x) rounds x to the smallest integer not
less than x

Ceiling(9.2) is 10.0
Ceiling(-9.8) is -9.0

Floor(x) rounds x to the largest integer not
greater than x

Floor(9.2) is 9.0
Floor(-9.8) is -10.0

Cos(x) trigonometric cosine of x (x in radians) Cos(0.0) is 1.0
Sin(x) trigonometric sine of x (x in radians) Sin(0.0) is 0.0
Tan(x) trigonometric tangent of x (x in radians) Tan(0.0) is 0.0

Fig. 7.1 | Math class methods. (Part 1 of 2.)

ptg18189312

154 Chapter 7 Methods: A Deeper Look

7.3.2 Math Class Constants PI and E
Each object of a class maintains its own copy of each of the class’s instance variables. There
are also variables for which each object of a class does not need its own separate copy (as
you’ll see momentarily). Such variables are declared static and are also known as class
variables. When objects of a class containing static variables are created, all the objects
of that class share one copy of those variables. Together a class’s static variables and
instance variables are known as its fields. You’ll learn more about static fields in
Section 10.9.

Class Math also declares two double constants for commonly used mathematical values:

• Math.PI (3.1415926535897931) is the ratio of a circle’s circumference to its di-
ameter, and

• Math.E (2.7182818284590451) is the base value for natural logarithms (calculat-
ed with static Math method Log).

These constants are declared in class Math with the modifiers public and const. Making
them public allows other programmers to use these variables in their own classes. A con-
stant is declared with the keyword const—its value cannot be changed after the constant
is declared. Fields declared const are implicitly static, so you can access them via the class
name Math and the member-access operator (.), as in Math.PI and Math.E.

7.3.3 Why Is Main Declared static?
Why must Main be declared static? During app startup, when no objects of the class have
been created, the Main method must be called to begin program execution. Main is some-
times called the app’s entry point. Declaring Main as static allows the execution environ-
ment to invoke Main without creating an instance of the class. Method Main is typically
declared with the header:

Exp(x) exponential method ex Exp(1.0) is 2.71828
Exp(2.0) is 7.38906

Log(x) natural logarithm of x (base e) Log(Math.E) is 1.0
Log(Math.E * Math.E) is 2.0

Max(x, y) larger value of x and y Max(2.3, 12.7) is 12.7
Max(-2.3, -12.7) is -2.3

Min(x, y) smaller value of x and y Min(2.3, 12.7) is 2.3
Min(-2.3, -12.7) is -12.7

Pow(x, y) x raised to the power y (i.e., xy) Pow(2.0, 7.0) is 128.0
Pow(9.0, 0.5) is 3.0

Sqrt(x) square root of x Sqrt(900.0) is 30.0

Common Programming Error 7.1
Constants declared in a class, but not inside a method or property, are implicitly static—
it’s a syntax error to declare such a constant with keyword static explicitly.

Method Description Example

Fig. 7.1 | Math class methods. (Part 2 of 2.)

ptg18189312

7.4 Methods with Multiple Parameters 155

but also can be declared with the header:

which we’ll discuss and demonstrate in Section 8.12, Shuffling and Dealing Cards. In ad-
dition, you can declare Main with return type int (instead of void)—this can be useful if
an app is executed by another app and needs to return an indication of success or failure
to that other app.

7.3.4 Additional Comments About Main
Most earlier examples have one class that contained only Main, and some examples had a
second class that was used by Main to create and manipulate objects. Actually, any class can
contain a Main method. In fact, each of our two-class examples could have been imple-
mented as one class. For example, in the app in Figs. 4.11–4.12, method Main (lines 7–43
of Fig. 4.12) could have been moved into class Account (Fig. 4.11). The app results would
have been identical to those of the two-class version. You can place a Main method in every
class you declare. Some programmers take advantage of this to build a small test app into
each class they declare. However, if you declare more than one Main method among the
classes of your project, you’ll need to indicate to the IDE which one you would like to be
the app’s entry point. To do so:

1. With the project open in Visual Studio, select Project > [ProjectName] Properties...

(where [ProjectName] is the name of your project).

2. Select the class containing the Main method that should be the entry point from
the Startup object list box.

7.4 Methods with Multiple Parameters
We now consider how to write a method with multiple parameters. Figure 7.2 defines
Maximum method that determines and returns the largest of three double values. When the
app begins execution, the Main method (lines 8–23) executes. Line 19 calls method Max-
imum (declared in lines 26–43) to determine and return the largest of its three double ar-
guments. In Section 7.4.3, we’ll discuss the use of the + operator in line 22. The sample
outputs show that Maximum determines the largest value regardless of whether that value is
the first, second or third argument.

static void Main()

static void Main(string[] args)

1 // Fig. 7.2: MaximumFinder.cs
2 // Method Maximum with three parameters.
3 using System;
4
5 class MaximumFinder
6 {
7 // obtain three floating-point values and determine maximum value
8 static void Main()
9 {

Fig. 7.2 | Method Maximum with three parameters. (Part 1 of 2.)

ptg18189312

156 Chapter 7 Methods: A Deeper Look

10 // prompt for and input three floating-point values
11 Console.Write("Enter first floating-point value: ");
12 double number1 = double.Parse(Console.ReadLine());
13 Console.Write("Enter second floating-point value: ");
14 double number2 = double.Parse(Console.ReadLine());
15 Console.Write("Enter third floating-point value: ");
16 double number3 = double.Parse(Console.ReadLine());
17
18 // determine the maximum of three values
19 ;
20
21 // display maximum value
22 Console.WriteLine();
23 }
24
25 // returns the maximum of its three double parameters
26
27 {
28 double maximumValue = x; // assume x is the largest to start
29
30 // determine whether y is greater than maximumValue
31 if (y > maximumValue)
32 {
33 maximumValue = y;
34 }
35
36 // determine whether z is greater than maximumValue
37 if (z > maximumValue)
38 {
39 maximumValue = z;
40 }
41
42 return maximumValue;
43 }
44 }

Enter first floating-point values: 3.33
Enter second floating-point values: 1.11
Enter third floating-point values: 2.22
Maximum is: 3.33

Enter first floating-point values: 2.22
Enter second floating-point values: 3.33
Enter third floating-point values: 1.11
Maximum is: 3.33

Enter first floating-point values: 2.22
Enter second floating-point values: 1.11
Enter third floating-point values: 3.33
Maximum is: 3.33

Fig. 7.2 | Method Maximum with three parameters. (Part 2 of 2.)

double result = Maximum(number1, number2, number3)

"Maximum is: " + result

static double Maximum(double x, double y, double z)

ptg18189312

7.4 Methods with Multiple Parameters 157

7.4.1 Keyword static
Method Maximum’s declaration begins with keyword static, which enables the Main meth-
od (another static method) to call Maximum as shown in line 19 without creating an ob-
ject of class MaximumFinder and without qualifying the method name with the class name
MaximumFinder—static methods in the same class can call each other directly.

7.4.2 Method Maximum
Consider the declaration of method Maximum (lines 26–43). Line 26 indicates that the
method returns a double value, that the method’s name is Maximum and that the method
requires three double parameters (x, y and z) to accomplish its task. When a method has
more than one parameter, the parameters are specified as a comma-separated list. When
Maximum is called in line 19, the parameter x is initialized with the value of the argument
number1, the parameter y is initialized with the value of the argument number2 and the
parameter z is initialized with the value of the argument number3. There must be one
argument in the method call for each required parameter in the method declaration. Also,
each argument must be consistent with the type of the corresponding parameter. For ex-
ample, a parameter of type double can receive values like 7.35 (a double), 22 (an int) or
–0.03456 (a double), but not strings like "hello". Section 7.6 discusses the argument
types that can be provided in a method call for each parameter of a simple type. Note the
use of type double’s Parse method in lines 12, 14 and 16 to convert into double values
the strings typed by the user.

Logic of Determining the Maximum Value
To determine the maximum value, we begin with the assumption that parameter x con-
tains the largest value, so line 28 declares local variable maximumValue and initializes it with
the value of parameter x. Of course, it’s possible that parameter y or z contains the largest
value, so we must compare each of these values with maximumValue. The if statement at
lines 31–34 determines whether y is greater than maximumValue. If so, line 33 assigns y to
maximumValue. The if statement at lines 37–40 determines whether z is greater than max-
imumValue. If so, line 39 assigns z to maximumValue. At this point, the largest of the three
values resides in maximumValue, so line 42 returns that value to line 19 where it’s assigned
to the variable result. When program control returns to the point in the app where Max-
imum was called, Maximum’s parameters x, y and z are no longer accessible. Methods can
return at most one value; the returned value can be a value type that contains one or more
values (implemented as a struct; Section 10.13) or a reference to an object that contains
one or more values.

7.4.3 Assembling strings with Concatenation
C# allows string objects to be created by assembling smaller strings into larger strings
using operator + (or the compound assignment operator +=). This is known as string con-
catenation. When both operands of operator + are string objects, the + operator creates
a new string object containing copies of the characters in its left operand followed by cop-

Common Programming Error 7.2
Declaring method parameters of the same type as double x, y instead of double x,
double y is a syntax error—a type is required for each parameter in the parameter list.

ptg18189312

158 Chapter 7 Methods: A Deeper Look

ies of the characters in its right operand. For example, the expression "hello " + "there"

creates the string "hello there" without disturbing the original strings.
In line 22, the expression "Maximum is: " + result uses operator + with operands of

types string and double. Every simple-type value has a string representation. When one
of the + operator’s operands is a string, the other is implicitly converted to a string, then
the two strings are concatenated. So, in line 22, the double value is converted to its string
representation and placed at the end of "Maximum is: ". If there are any trailing zeros in a
double value, these are discarded. Thus, the string representation of 9.3500 is "9.35".

Anything Can Be Converted to a string
If a bool is concatenated with a string, the bool is converted to the string "True" or
"False" (each is capitalized). In addition, every object has a ToString method that returns
a string representation of that object. When an object is concatenated with a string, the
object’s ToString method is called implicitly to obtain the string representation of the
object. If the object is null, an empty string is written.

If a type does not define a ToString method, the default ToString implementation
returns a string containing the type’s fully qualified name—that is, the namespace in
which the type is defined followed by a dot (.) and the type name (e.g., System.Object
for the .NET class Object). Each type you create can declare a custom ToString method,
as you’ll do in Chapter 8 for a Card class that represents a playing card in a deck of cards.

Formatting strings with string Interpolation
Line 22 of Fig. 7.2, of course, could also be written using string interpolation as

As with string concatenation, using string interpolation to insert an object into a string
implicitly calls the object’s ToString method to obtain the object’s string representation.

7.4.4 Breaking Apart Large string Literals
When a large string literal or interpolated string is typed into an app’s source code, you
can break that string into several smaller strings and place them on multiple lines for
readability. The strings can be reassembled using string concatenation. We discuss the
details of strings in Chapter 16.

Console.WriteLine($"Maximum is: {result}");

Common Programming Error 7.3
It’s a syntax error to break a string literal or interpolated string across multiple lines of
code. If a string does not fit on one line, you can split it into several smaller strings and
use concatenation to form the desired string.

Common Programming Error 7.4
Confusing the string concatenation + operator with the addition + operator can lead to
strange results. The + operator is left-associative. For example, if y has the int value 5, the
expression "y + 2 = " + y + 2 results in the string "y + 2 = 52", not "y + 2 = 7", because
first the value of y (5) is concatenated with the string "y + 2 = ", then the value 2 is con-
catenated with the new larger string "y + 2 = 5". The expression "y + 2 = " + (y + 2)
produces the desired result "y + 2 = 7". Using C# 6 string interpolation eliminates this
problem.

ptg18189312

7.5 Notes on Using Methods 159

7.4.5 When to Declare Variables as Fields
Variable result is a local variable in method Main because it’s declared in the block that
represents the method’s body. Variables should be declared as fields of a class (i.e., as either
instance variables or static variables) only if they’re required for use in more than one
method of the class or if the app should save their values between calls to a given method.

7.4.6 Implementing Method Maximum by Reusing Method Math.Max
Recall from Fig. 7.1 that class Math’s Max method can determine the larger of two values.
The entire body of our maximum method could also be implemented with nested calls to
Math.Max, as follows:

The leftmost Math.Max call has the arguments x and Math.Max(y, z). Before any method
can be called, the runtime evaluates all the arguments to determine their values. If an ar-
gument is a method call, the call must be performed to determine its return value. So, in
the preceding statement, Math.Max(y, z) is evaluated first to determine the larger of y and
z. Then the result is passed as the second argument to the first call to Math.Max, which
returns the larger of its two arguments. Using Math.Max in this manner is a good example
of software reuse—we find the largest of three values by reusing Math.Max, which finds the
larger of two values. Note how concise this code is compared to lines 28–42 of Fig. 7.2.

7.5 Notes on Using Methods
Three Ways to Call a Method
You’ve seen three ways to call a method:

1. Using a method name by itself to call a method of the same class—as in line 19
of Fig. 7.2, which calls Maximum(number1, number2, number3) from Main.

2. Using a reference to an object, followed by the member-access operator (.) and
the method name to call a non-static method of the referenced object—as in
line 23 of Fig. 4.12, which called account1.Deposit(depositAmount) from the
Main method of class AccountTest.

3. Using the class name and the member-access operator (.) to call a static method
of a class—as in lines 12, 14 and 16 of Fig. 7.2, which each call Console.Read-
Line(), or as in Math.Sqrt(900.0) in Section 7.3.

Three Ways to Return from a Method
You’ve seen three ways to return control to the statement that calls a method:

• Reaching the method-ending right brace in a method with return type void.

• When the following statement executes in a method with return type void

• When a method returns a result with a statement of the following form in which
the expression is evaluated and its result (and control) are returned to the caller:

return Math.Max(x, Math.Max(y, z));

 return;

 return expression;

ptg18189312

160 Chapter 7 Methods: A Deeper Look

static Members Can Access Only the Class’s Other static Members Directly
A static method or property can call only other static methods or properties of the same
class directly (i.e., using the method name by itself) and can manipulate only static vari-
ables in the same class directly. To access a class’s non-static members, a static method
or property must use a reference to an object of that class. Recall that static methods re-
late to a class as a whole, whereas non-static methods are associated with a specific object
(instance) of the class and may manipulate the instance variables of that object (as well as
the class’s static members).

Many objects of a class, each with its own copies of the instance variables, may exist
at the same time. Suppose a static method were to invoke a non-static method directly.
How would the method know which object’s instance variables to manipulate? What
would happen if no objects of the class existed at the time the non-static method was
invoked?

7.6 Argument Promotion and Casting
Another important feature of method calls is argument promotion—implicitly converting
an argument’s value to the type that the method expects to receive (if possible) in its cor-
responding parameter. For example, an app can call Math method Sqrt with an integer ar-
gument even though the method expects to receive a double argument. The statement

correctly evaluates Math.Sqrt(4) and displays the value 2.0. Sqrt’s parameter list causes
C# to convert the int value 4 to the double value 4.0 before passing the value to Sqrt.
Such conversions may lead to compilation errors if C#’s promotion rules are not satisfied.
The promotion rules specify which conversions are allowed—that is, which conversions
can be performed without losing data. In the Sqrt example above, an int is converted to a

Common Programming Error 7.5
Declaring a method outside the body of a class declaration or inside the body of another
method is a syntax error.

Common Programming Error 7.6
Redeclaring a method parameter as a local variable in the method’s body is a compilation
error.

Common Programming Error 7.7
Forgetting to return a value from a method that should return one is a compilation error.
If a return type other than void is specified, the method must use a return statement to
return a value, and that value must be consistent with the method’s return type. Returning
a value from a method whose return type has been declared void is a compilation error.

Software Engineering Observation 7.2
A static method cannot access non-static members of the same class directly.

Console.WriteLine(Math.Sqrt(4));

ptg18189312

7.6 Argument Promotion and Casting 161

double without changing its value. However, converting a double to an int truncates the
fractional part of the double value—thus, part of the value is lost. Also, double variables
can hold values much larger (and much smaller) than int variables, so assigning a double
to an int can cause a loss of information when the double value doesn’t fit in the int.
Converting large integer types to small integer types (e.g., long to int) also can produce
incorrect results.

7.6.1 Promotion Rules
The promotion rules apply to expressions containing values of two or more simple types
and to simple-type values passed as arguments to methods. Each value is promoted to the
appropriate type in the expression. (Actually, the expression uses a temporary copy of each
promoted value—the types of the original values remain unchanged.) Figure 7.3 lists the
simple types alphabetically and the types to which each can be promoted. Values of all sim-
ple types also can be implicitly converted to type object. We demonstrate such implicit
conversions in Chapter 19.

7.6.2 Sometimes Explicit Casts Are Required
By default, C# does not allow you to implicitly convert values between simple types if the
target type cannot represent every value of the original type (e.g., the int value 2000000
cannot be represented as a short, and any floating-point number with nonzero digits after
its decimal point cannot be represented in an integer type such as long, int or short).

To prevent a compilation error in cases where information may be lost due to an
implicit conversion between simple types, the compiler requires you to use a cast operator
to force the conversion. This enables you to “take control” from the compiler. You essen-

Type Conversion types

bool no possible implicit conversions to other simple types
byte ushort, short, uint, int, ulong, long, decimal, float or double
char ushort, int, uint, long, ulong, decimal, float or double
decimal no possible implicit conversions to other simple types
double no possible implicit conversions to other simple types
float double

int long, decimal, float or double
long decimal, float or double
sbyte short, int, long, decimal, float or double
short int, long, decimal, float or double
uint ulong, long, decimal, float or double
ulong decimal, float or double
ushort uint, int, ulong, long, decimal, float or double

Fig. 7.3 | Implicit conversions between simple types.

ptg18189312

162 Chapter 7 Methods: A Deeper Look

tially say, “I know this conversion might cause loss of information, but for my purposes
here, that’s fine.” Suppose you create a method Square that calculates the square of an int
argument. To call Square with the whole part of a double argument named doubleValue,
you’d write Square((int) doubleValue). This method call explicitly casts (converts) the
value of doubleValue to an integer for use in method Square. Thus, if doubleValue’s
value is 4.5, the method receives the value 4 and returns 16, not 20.25.

7.7 The .NET Framework Class Library
Many predefined classes are grouped into categories of related classes called namespaces.
Together, these namespaces are referred to as the .NET Framework Class Library.

using Directives and Namespaces
Throughout the text, using directives allow us to use library classes from the Framework
Class Library without specifying their namespace names. For example, an app would in-
clude the declaration

in order to use the class names from the System namespace without fully qualifying their
names. This allows you to use the unqualified name Console, rather than the fully qualified
name System.Console, in your code.

You might have noticed in each project containing multiple classes that in each class’s
source-code file we did not need additional using directives to use the other classes in the
project. There’s a special relationship between classes in a project—by default, such classes
are in the same namespace and can be used by other classes in the project. Thus, a using
declaration is not required when one class in a project uses another in the same project—
such as when class AccountTest used class Account in Chapter 4’s examples. Also, any
classes that are not explicitly placed in a namespace are implicitly placed in the so-called
global namespace.

.NET Namespaces
A strength of C# is the large number of classes in the namespaces of the .NET Framework
Class Library. Some key Framework Class Library namespaces are described in Fig. 7.4,
which represents only a small portion of the reusable classes in the .NET Framework Class
Library.

Common Programming Error 7.8
Converting a simple-type value to a value of another simple type may change the value if
the promotion is not allowed. For example, converting a floating-point value to an inte-
gral value may introduce truncation errors (loss of the fractional part) in the result.

using System;

Software Engineering Observation 7.3
The C# compiler does not require using declarations in a source-code file if the fully
qualified class name is specified every time a class name is used. Many programmers prefer
the more concise programming style enabled by using declarations.

ptg18189312

7.7 The .NET Framework Class Library 163

Locating Additional Information About a .NET Class’s Methods
You can locate additional information about a .NET class’s methods in the .NET Frame-
work Class Library reference

When you visit this site, you’ll see an alphabetical listing of all the namespaces in the
Framework Class Library. Locate the namespace and click its link to see an alphabetical
listing of all its classes, with a brief description of each. Click a class’s link to see a more
complete description of the class. Click the Methods link in the left-hand column to see a
listing of the class’s methods.

Namespace Description

System.Windows.Forms Contains the classes required to create and manipulate
GUIs. (Various classes in this namespace are discussed in
Chapter 14, Graphical User Interfaces with Windows
Forms: Part 1, and Chapter 15, Graphical User Interfaces
with Windows Forms: Part 2.)

System.Windows.Controls

System.Windows.Input

System.Windows.Media

System.Windows.Shapes

Contain the classes of the Windows Presentation Founda-
tion for GUIs, 2-D and 3-D graphics, multimedia and ani-
mation.

System.Linq Contains the classes that support Language Integrated
Query (LINQ). (See Chapter 9, Introduction to LINQ and
the List Collection, and several other chapters throughout
the book.)

System.Data.Entity Contains the classes for manipulating data in databases
(i.e., organized collections of data), including support for
LINQ to Entities. (See Chapter 20, Databases and LINQ.)

System.IO Contains the classes that enable programs to input and out-
put data. (See Chapter 17, Files and Streams.)

System.Web Contains the classes used for creating and maintaining web
apps, which are accessible over the Internet.

System.Xml Contains the classes for creating and manipulating XML
data. Data can be read from or written to XML files.

System.Xml.Linq Contains the classes that support Language Integrated
Query (LINQ) for XML documents. (See Chapter 21,
Asynchronous Programming with async and await.)

System.Collections

System.Collections.Generic

Contain the classes that define data structures for maintain-
ing collections of data. (See Chapter 19, Generic Collec-
tions; Functional Programming with LINQ/PLINQ.)

System.Text Contains classes that enable programs to manipulate char-
acters and strings. (See Chapter 16, Strings and Charac-
ters: A Deeper Look.)

Fig. 7.4 | .NET Framework Class Library namespaces (a subset).

https://msdn.microsoft.com/library/mt472912

https://msdn.microsoft.com/library/mt472912

ptg18189312

164 Chapter 7 Methods: A Deeper Look

7.8 Case Study: Random-Number Generation
In this and the next section, we develop a nicely structured game-playing app with multi-
ple methods. The app uses most of the control statements presented thus far in the book
and introduces several new programming concepts.

There’s something in the air of a casino that invigorates people—from the high rollers
at the plush mahogany-and-felt craps tables to the quarter poppers at the one-armed ban-
dits. It’s the element of chance, the possibility that luck will convert a pocketful of money
into a mountain of wealth. The element of chance can be introduced in an app via an
object of class Random (of namespace System). Objects of class Random can produce random
byte, int and double values. In the next several examples, we use objects of class Random
to produce random numbers.

Secure Random Numbers
According to Microsoft’s documentation for class Random, the random values it produces
“are not completely random because a mathematical algorithm is used to select them, but
they are sufficiently random for practical purposes.” Such values should not be used, for
example, to create randomly selected passwords. If your app requires so-called cryp-
tographically secure random numbers, use class RNGCryptoServiceProvider1 from name-
space System.Security.Cryptography) to produce random values:

7.8.1 Creating an Object of Type Random
A new random-number generator object can be created with class Random (from the Sys-
tem namespace) as follows:

The Random object can then be used to generate random byte, int and double values—
we discuss only random int values here.

7.8.2 Generating a Random Integer
Consider the following statement:

When called with no arguments, method Next of class Random generates a random int val-
ue in the range 0 to +2,147,483,646, inclusive. If the Next method truly produces values
at random, then every value in that range should have an equal chance (or probability) of
being chosen each time method Next is called. The values returned by Next are actually

Good Programming Practice 7.1
The online .NET Framework documentation is easy to search and provides many details
about each class. As you learn each class in this book, you should review it in the online
documentation for additional information.

1. Class RNGCryptoServiceProvider produces arrays of bytes. We discuss arrays in Chapter 8.

https://msdn.microsoft.com/library/system.security.cryptography.
rngcryptoserviceprovider

Random randomNumbers = new Random();

int randomValue = randomNumbers.Next();

https://msdn.microsoft.com/library/system.security.cryptography.rngcryptoserviceprovider
https://msdn.microsoft.com/library/system.security.cryptography.rngcryptoserviceprovider

ptg18189312

7.8 Case Study: Random-Number Generation 165

pseudorandom numbers—a sequence of values produced by a complex mathematical cal-
culation. The calculation uses the current time of day (which, of course, changes constant-
ly) to seed the random-number generator such that each execution of an app yields a
different sequence of random values.

7.8.3 Scaling the Random-Number Range
The range of values produced directly by method Next often differs from the range of val-
ues required in a particular C# app. For example, an app that simulates coin tossing might
require only 0 for “heads” and 1 for “tails.” An app that simulates the rolling of a six-sided
die might require random integers in the range 1–6. A video game that randomly predicts
the next type of spaceship (out of four possibilities) that will fly across the horizon might
require random integers in the range 1–4. For cases like these, class Random provides ver-
sions of method Next that accept arguments. One receives an int argument and returns a
value from 0 up to, but not including, the argument’s value. For example, you might use
the statement

which returns 0, 1, 2, 3, 4 or 5. The argument 6—called the scaling factor—represents the
number of unique values that Next should produce (in this case, six—0, 1, 2, 3, 4 and 5).
This manipulation is called scaling the range of values produced by Random method Next.

7.8.4 Shifting Random-Number Range
Suppose we wanted to simulate a six-sided die that has the numbers 1–6 on its faces, not
0–5. Scaling the range of values alone is not enough. So we shift the range of numbers pro-
duced. We could do this by adding a shifting value—in this case 1—to the result of meth-
od Next, as in

The shifting value (1) specifies the first value in the desired set of random integers. The
preceding statement assigns to face a random integer in the range 1–6.

7.8.5 Combining Shifting and Scaling
The third alternative of method Next provides a more intuitive way to express both shift-
ing and scaling. This method receives two int arguments and returns a value from the first
argument’s value up to, but not including, the second argument’s value. We could use this
method to write a statement equivalent to our previous statement, as in

7.8.6 Rolling a Six-Sided Die
To demonstrate random numbers, let’s develop an app that simulates 20 rolls of a six-sided
die and displays each roll’s value. Figure 7.5 shows two sample outputs, which confirm
that the results of the preceding calculation are integers in the range 1–6 and that each run
of the app can produce a different sequence of random numbers. Line 9 creates the Random
object randomNumbers to produce random values. Line 15 executes 20 times in a loop to
roll the die and line 16 displays the value of each roll.

int randomValue = randomNumbers.Next(6); // 0, 1, 2, 3, 4 or 5

int face = 1 + randomNumbers.Next(6); // 1, 2, 3, 4, 5 or 6

int face = randomNumbers.Next(1, 7); // 1, 2, 3, 4, 5 or 6

ptg18189312

166 Chapter 7 Methods: A Deeper Look

Rolling a Six-Sided Die 60,000,000 Times
To show that the numbers produced by Next occur with approximately equal likelihood,
let’s simulate 60,000,000 rolls of a die (Fig. 7.6). Each integer from 1 to 6 should appear
approximately 10,000,000 times.

1 // Fig. 7.5: RandomIntegers.cs
2 // Shifted and scaled random integers.
3 using System;
4
5 class RandomIntegers
6 {
7 static void Main()
8 {
9

10
11 // loop 20 times
12 for (int counter = 1; counter <= 20; ++counter)
13 {
14 // pick random integer from 1 to 6
15
16 Console.Write($"{face} "); // display generated value
17 }
18
19 Console.WriteLine();
20 }
21 }

3 3 3 1 1 2 1 2 4 2 2 3 6 2 5 3 4 6 6 1

6 2 5 1 3 5 2 1 6 5 4 1 6 1 3 3 1 4 3 4

Fig. 7.5 | Shifted and scaled random integers.

1 // Fig. 7.6: RollDie.cs
2 // Roll a six-sided die 60,000,000 times.
3 using System;
4
5 class RollDie
6 {
7 static void Main()
8 {
9 Random randomNumbers = new Random(); // random-number generator

10
11 int frequency1 = 0; // count of 1s rolled
12 int frequency2 = 0; // count of 2s rolled
13 int frequency3 = 0; // count of 3s rolled
14 int frequency4 = 0; // count of 4s rolled
15 int frequency5 = 0; // count of 5s rolled
16 int frequency6 = 0; // count of 6s rolled

Fig. 7.6 | Roll a six-sided die 60,000,000 times. (Part 1 of 2.)

Random randomNumbers = new Random(); // random-number generator

int face = randomNumbers.Next(1, 7);

ptg18189312

7.8 Case Study: Random-Number Generation 167

17
18 // summarize results of 60,000,000 rolls of a die
19 for (int roll = 1; roll <= 60000000; ++roll)
20 {
21 int face = randomNumbers.Next(1, 7); // number from 1 to 6
22
23 // determine roll value 1-6 and increment appropriate counter
24 switch ()
25 {
26 case 1:
27 ++frequency1; // increment the 1s counter
28 break;
29 case 2:
30 ++frequency2; // increment the 2s counter
31 break;
32 case 3:
33 ++frequency3; // increment the 3s counter
34 break;
35 case 4:
36 ++frequency4; // increment the 4s counter
37 break;
38 case 5:
39 ++frequency5; // increment the 5s counter
40 break;
41 case 6:
42 ++frequency6; // increment the 6s counter
43 break;
44 }
45 }
46
47 Console.WriteLine("Face\tFrequency"); // output headers
48 Console.WriteLine($"1\t{frequency1}\n2\t{frequency2}");
49 Console.WriteLine($"3\t{frequency3}\n4\t{frequency4}");
50 Console.WriteLine($"5\t{frequency5}\n6\t{frequency6}");
51 }
52 }

Face Frequency
1 10006774
2 9993289
3 9993438
4 10006520
5 9998762
6 10001217

Face Frequency
1 10002183
2 9997815
3 9999619
4 10006012
5 9994806
6 9999565

Fig. 7.6 | Roll a six-sided die 60,000,000 times. (Part 2 of 2.)

face

ptg18189312

168 Chapter 7 Methods: A Deeper Look

As the two sample outputs show, the values produced by method Next enable the app
to realistically simulate rolling a six-sided die. The app uses nested control statements (the
switch is nested inside the for) to determine the number of times each side of the die
occurred. The for statement (lines 19–45) iterates 60,000,000 times. During each itera-
tion, line 21 produces a random value from 1 to 6. This face value is then used as the
switch expression (line 24). Based on the face value, the switch statement increments one
of the six counter variables during each iteration of the loop. (In Section 8.4.7, we show an
elegant way to replace the entire switch statement in this app with a single statement.) The
switch statement has no default label because we have a case label for every possible die
value that the expression in line 21 can produce. Run the app several times and observe the
results. You’ll see that every time you execute this apkp, it produces different results.

7.8.7 Scaling and Shifting Random Numbers
Previously, we demonstrated the statement

which simulates the rolling of a six-sided die. This statement always assigns to variable
face an integer in the range 1 ≤ face < 7. The width of this range (i.e., the number of
consecutive integers in the range) is 6, and the starting number in the range is 1. Referring
to the preceding statement, we see that the width of the range is determined by the differ-
ence between the two integers passed to Random method Next, and the starting number of
the range is the value of the first argument. We can generalize this result as

where shiftingValue specifies the first number in the desired range of consecutive integers
and scalingFactor specifies how many numbers are in the range.

It’s also possible to choose integers at random from sets of values other than ranges of
consecutive integers. For this purpose, it’s simpler to use the version of the Next method
that takes only one argument. For example, to obtain a random value from the sequence
2, 5, 8, 11 and 14, you could use the statement

In this case, randomNumbers.Next(5) produces values in the range 0–4. Each value pro-
duced is multiplied by 3 to produce a number in the sequence 0, 3, 6, 9 and 12. We then
add 2 to that value to shift the range of values and obtain a value from the sequence 2, 5,
8, 11 and 14. We can generalize this result as

where shiftingValue specifies the first number in the desired range of values, difference-
BetweenValues represents the difference between consecutive numbers in the sequence and
scalingFactor specifies how many numbers are in the range.

7.8.8 Repeatability for Testing and Debugging
As we mentioned earlier in this section, the methods of class Random actually generate pseu-
dorandom numbers based on complex mathematical calculations. Repeatedly calling any
of Random’s methods produces a sequence of numbers that appears to be random. The cal-

int face = randomNumbers.Next(1, 7);

int number = randomNumbers.Next(shiftingValue, shiftingValue + scalingFactor);

int number = 2 + 3 * randomNumbers.Next(5);

int number = shiftingValue +
 differenceBetweenValues * randomNumbers.Next(scalingFactor);

ptg18189312

7.9 Case Study: A Game of Chance; Introducing Enumerations 169

culation that produces the pseudorandom numbers uses the time of day as a seed value to
change the sequence’s starting point. Each new Random object seeds itself with a value
based on the computer system’s clock at the time the object is created, enabling each exe-
cution of an app to produce a different sequence of random numbers.

When debugging an app, it’s sometimes useful to repeat the same sequence of pseu-
dorandom numbers during each execution of the app. This repeatability enables you to
prove that your app is working for a specific sequence of random numbers before you test
the app with different sequences of random numbers. When repeatability is important,
you can create a Random object as follows:

The seedValue argument (an int) seeds the random-number calculation—using the same
seedValue every time produces the same sequence of random numbers. Different seed val-
ues, of course, produce different sequences of random numbers.

7.9 Case Study: A Game of Chance; Introducing
Enumerations
One popular game of chance is the dice game known as “craps,” which is played in casinos
and back alleys throughout the world. The rules of the game are straightforward:

You roll two dice. Each die has six faces, which contain one, two, three, four, five and
six spots, respectively. After the dice have come to rest, the sum of the spots on the two
upward faces is calculated. If the sum is 7 or 11 on the first throw, you win. If the sum
is 2, 3 or 12 on the first throw (called “craps”), you lose (i.e., “the house” wins). If the
sum is 4, 5, 6, 8, 9 or 10 on the first throw, that sum becomes your “point.” To win,
you must continue rolling the dice until you “make your point” (i.e., roll that same
point value). You lose by rolling a 7 before making your point.

The app in Fig. 7.7 simulates the game of craps, using methods to define the logic of the
game. The Main method (lines 24–80) calls the static RollDice method (lines 83–94) as
needed to roll the two dice and compute their sum. The four sample outputs show win-
ning on the first roll, losing on the first roll, losing on a subsequent roll and winning on a
subsequent roll, respectively. Variable randomNumbers (line 8) is declared static, so it can
be created once during the program’s execution and used in method RollDice.

Random randomNumbers = new Random(seedValue);

1 // Fig. 7.7: Craps.cs
2 // Craps class simulates the dice game craps.
3 using System;
4
5 class Craps
6 {
7 // create random-number generator for use in method RollDice
8 private static Random randomNumbers = new Random();
9

10
11

Fig. 7.7 | Craps class simulates the dice game craps. (Part 1 of 4.)

// enumeration with constants that represent the game status
private enum Status {Continue, Won, Lost}

ptg18189312

170 Chapter 7 Methods: A Deeper Look

12
13 // enumeration with constants that represent common rolls of the dice
14
15
16
17
18
19
20
21
22
23 // plays one game of craps
24 static void Main()
25 {
26 // gameStatus can contain Continue, Won or Lost
27 Status gameStatus = Status.Continue;
28 int myPoint = 0; // point if no win or loss on first roll
29
30
31
32 // determine game status and point based on first roll
33 switch ()
34 {
35
36
37
38 break;
39
40
41
42
43 break;
44
45
46
47
48 break;
49 }
50
51 // while game is not complete
52 while () // game not Won or Lost
53 {
54
55
56 // determine game status
57 if (sumOfDice == myPoint) // win by making point
58 {
59
60 }
61 else
62 {

Fig. 7.7 | Craps class simulates the dice game craps. (Part 2 of 4.)

private enum DiceNames
{
 SnakeEyes = 2,
 Trey = 3,
 Seven = 7,
 YoLeven = 11,
 BoxCars = 12
}

int sumOfDice = RollDice(); // first roll of the dice

(DiceNames) sumOfDice

case DiceNames.Seven: // win with 7 on first roll
case DiceNames.YoLeven: // win with 11 on first roll
 gameStatus = Status.Won;

case DiceNames.SnakeEyes: // lose with 2 on first roll
case DiceNames.Trey: // lose with 3 on first roll
case DiceNames.BoxCars: // lose with 12 on first roll
 gameStatus = Status.Lost;

default: // did not win or lose, so remember point
 gameStatus = Status.Continue; // game is not over
 myPoint = sumOfDice; // remember the point
 Console.WriteLine($"Point is {myPoint}");

gameStatus == Status.Continue

sumOfDice = RollDice(); // roll dice again

gameStatus = Status.Won;

ptg18189312

7.9 Case Study: A Game of Chance; Introducing Enumerations 171

63 // lose by rolling 7 before point
64 if ()
65 {
66
67 }
68 }
69 }
70
71 // display won or lost message
72 if ()
73 {
74 Console.WriteLine("Player wins");
75 }
76 else
77 {
78 Console.WriteLine("Player loses");
79 }
80 }
81
82 // roll dice, calculate sum and display results
83
84 {
85 // pick random die values
86 int die1 = randomNumbers.Next(1, 7); // first die roll
87 int die2 = randomNumbers.Next(1, 7); // second die roll
88
89 int sum = die1 + die2; // sum of die values
90
91 // display results of this roll
92 Console.WriteLine($"Player rolled {die1} + {die2} = {sum}");
93
94 }
95 }

Player rolled 2 + 5 = 7
Player wins

Player rolled 2 + 1 = 3
Player loses

Player rolled 2 + 4 = 6
Point is 6
Player rolled 3 + 1 = 4
Player rolled 5 + 5 = 10
Player rolled 6 + 1 = 7
Player loses

Fig. 7.7 | Craps class simulates the dice game craps. (Part 3 of 4.)

sumOfDice == (int) DiceNames.Seven

gameStatus = Status.Lost;

gameStatus == Status.Won

static int RollDice()

return sum; // return sum of dice

ptg18189312

172 Chapter 7 Methods: A Deeper Look

7.9.1 Method RollDice
In the rules of the game, the player must roll two dice on the first roll and must do the
same on all subsequent rolls. We declare method RollDice (lines 83–94) to roll the dice
and compute and display their sum. Method RollDice is declared once, but it’s called
from two places (lines 30 and 54) in method Main, which contains the logic for one com-
plete game of craps. Method RollDice takes no arguments, so it has an empty parameter
list. Each time it’s called, RollDice returns the sum of the dice as an int. Although lines
86 and 87 look the same (except for the die names), they do not necessarily produce the
same result. Each of these statements produces a random value in the range 1–6. Variable
randomNumbers (used in lines 86–87) is not declared in the method. Rather it’s declared as
a private static variable of the class and initialized in line 8. This enables us to create
one Random object that’s reused in each call to RollDice.

7.9.2 Method Main’s Local Variables
The game is reasonably involved. The player may win or lose on the first roll or may win
or lose on any subsequent roll. Method Main (lines 24–80) uses local variable gameStatus
(line 27) to keep track of the overall game status, local variable myPoint (line 28) to store
the “point” if the player does not win or lose on the first roll and local variable sumOfDice
(line 30) to maintain the sum of the dice for the most recent roll. Variable myPoint is ini-
tialized to 0 to ensure that the app will compile. If you do not initialize myPoint, the com-
piler issues an error, because myPoint is not assigned a value in every case of the switch
statement—thus, the app could try to use myPoint before it’s definitely assigned a value.
By contrast, gameStatus does not require initialization because it’s assigned a value in ev-
ery branch of the switch statement—thus, it’s guaranteed to be initialized before it’s used.
However, as good practice, we initialize it anyway.

7.9.3 enum Type Status
Local variable gameStatus (line 27) is declared to be of a new type called Status, which
we declared in line 11. Status is a user-defined type called an enumeration, which declares
a set of constants represented by identifiers. An enumeration is introduced by the keyword
enum and a type name (in this case, Status). As with a class, braces ({ and }) delimit the

Player rolled 4 + 6 = 10
Point is 10
Player rolled 1 + 3 = 4
Player rolled 1 + 3 = 4
Player rolled 2 + 3 = 5
Player rolled 4 + 4 = 8
Player rolled 6 + 6 = 12
Player rolled 4 + 4 = 8
Player rolled 4 + 5 = 9
Player rolled 2 + 6 = 8
Player rolled 6 + 6 = 12
Player rolled 6 + 4 = 10
Player wins

Fig. 7.7 | Craps class simulates the dice game craps. (Part 4 of 4.)

ptg18189312

7.9 Case Study: A Game of Chance; Introducing Enumerations 173

body of an enum declaration. Inside the braces is a comma-separated list of enumeration
constants—by default, the first constant has the value 0 and each subsequent constant’s
value is incremented by 1. The enum constant names must be unique, but the value associ-
ated with each constant need not be. Type Status is declared as a private member of class
Craps, because Status is used only in that class.

Variables of type Status should be assigned only one of the three constants declared
in the enumeration. When the game is won, the app sets local variable gameStatus to
Status.Won (lines 37 and 59). When the game is lost, the app sets gameStatus to
Status.Lost (lines 42 and 66). Otherwise, the app sets gameStatus to Status.Continue
(line 45) to indicate that the dice must be rolled again.

7.9.4 The First Roll
Line 30 in method Main calls RollDice, which picks two random values from 1 to 6, dis-
plays the value of the first die, the value of the second die and the sum of the dice, and
returns the sum of the dice. Method Main next enters the switch statement at lines 33–
49, which uses the sumOfDice value to determine whether the game has been won or lost,
or whether it should continue with another roll.

7.9.5 enum Type DiceNames
The sums of the dice that would result in a win or loss on the first roll are declared in the
DiceNames enumeration in lines 14–21. These are used in the switch statement’s cases.
The identifier names use casino parlance for these sums. In the DiceNames enumeration,
we assign a value explicitly to each identifier name. When the enum is declared, each con-
stant in the enum declaration is a constant value of type int. If you do not assign a value
to an identifier in the enum declaration, the compiler will do so. If the first enum constant
is unassigned, the compiler gives it the value 0. If any other enum constant is unassigned,
the compiler gives it a value one higher than that of the preceding enum constant. For ex-
ample, in the Status enumeration, the compiler implicitly assigns 0 to Status.Continue,
1 to Status.Won and 2 to Status.Lost.

7.9.6 Underlying Type of an enum
You could also declare an enum’s underlying type to be byte, sbyte, short, ushort, int,
uint, long or ulong by writing

where typeName represents one of the integral simple types.

7.9.7 Comparing Integers and enum Constants
If you need to compare a simple integral type value to the underlying value of an enumer-
ation constant, you must use a cast operator to make the two types match—there are no
implicit conversions between enum and integral types. In the switch expression (line 33),

Good Programming Practice 7.2
Using enumeration constants (like Status.Won, Status.Lost and Status.Continue)
rather than literal integer values (such as 0, 1 and 2) can make code easier to read and
maintain.

private enum MyEnum : typeName {Constant1, Constant2, ...}

ptg18189312

174 Chapter 7 Methods: A Deeper Look

we use the cast operator to convert the int value in sumOfDice to type DiceNames and
compare it to each of the constants in DiceNames. Lines 35–36 determine whether the
player won on the first roll with Seven (7) or YoLeven (11). Lines 39–41 determine wheth-
er the player lost on the first roll with SnakeEyes (2), Trey (3) or BoxCars (12). After the
first roll, if the game is not over, the default case (lines 44–48) saves sumOfDice in
myPoint (line 46) and displays the point (line 47).

Additional Rolls of the Dice
If we’re still trying to “make our point” (i.e., the game is continuing from a prior roll), the
loop in lines 52–69 executes. Line 54 rolls the dice again. If sumOfDice matches myPoint
in line 57, line 59 sets gameStatus to Status.Won, and the loop terminates because the
game is complete. In line 64, we use the cast operator (int) to obtain the underlying value
of DiceNames.Seven so that we can compare it to sumOfDice. If sumOfDice is equal to Sev-
en (7), line 66 sets gameStatus to Status.Lost, and the loop terminates because the game
is over. When the game completes, lines 72–79 display a message indicating whether the
player won or lost, and the app terminates.

Control Statements in the Craps Example
Note the use of the various program-control mechanisms we’ve discussed. The Craps class
uses two methods—Main and RollDice (called twice from Main)—and the switch, while,
if…else and nested if control statements. Also, notice that we use multiple case labels
in the switch statement to execute the same statements for sums of Seven and YoLeven
(lines 35–36) and for sums of SnakeEyes, Trey and BoxCars (lines 39–41).

Code Snippets for Auto-Implemented Properties
Visual Studio has a feature called code snippets that allows you to insert predefined code
templates into your source code. One such snippet enables you to easily create a switch
statement with cases for all possible values for an enum type. Type switch in the C# code
then press Tab twice. If you specify a variable of an enum type in the switch statement’s
expression and press Enter, a case for each enum constant will be generated automatically.

To get a list of all available code snippets, type Ctrl + k, Ctrl + x. This displays the
Insert Snippet window in the code editor. You can navigate through the Visual C# snippet
folders with the mouse to see the snippets. This feature also can be accessed by right
clicking in the source code editor and selecting the Insert Snippet… menu item.

7.10 Scope of Declarations
You’ve seen declarations of C# entities, such as classes, methods, properties, variables and
parameters. Declarations introduce names that can be used to refer to such C# entities.
The scope of a declaration is the portion of the app that can refer to the declared entity by
its unqualified name. Such an entity is said to be “in scope” for that portion of the app.
This section introduces several important scope issues. The basic scope rules are as follows:

1. The scope of a parameter declaration is the body of the method in which the dec-
laration appears.

2. The scope of a local-variable declaration is from the point at which the declara-
tion appears to the end of the block containing the declaration.

ptg18189312

7.10 Scope of Declarations 175

3. The scope of a local-variable declaration that appears in the initialization section
of a for statement’s header is the body of the for statement and the other expres-
sions in the header.

4. The scope of a method, property or field of a class is the entire body of the class.
This enables non-static methods and properties of a class to use any of the
class’s fields, methods and properties, regardless of the order in which they’re de-
clared. Similarly, static methods and properties can use any of the static mem-
bers of the class.

Any block may contain variable declarations. If a local variable or parameter in a
method has the same name as a field, the field is hidden until the block terminates—in
Chapter 10, we discuss how to access hidden fields. A compilation error occurs if a nested
block in a method contains a variable with the same name as a local variable in an outer
block of the method. The app in Fig. 7.8 demonstrates scoping issues with fields and local
variables.

Error-Prevention Tip 7.1
Use different names for fields and local variables to help prevent subtle logic errors that
occur when a method is called and a local variable of the method hides a field of the same
name in the class.

1 // Fig. 7.8: Scope.cs
2 // Scope class demonstrates static- and local-variable scopes.
3 using System;
4
5 class Scope
6 {
7
8
9

10 // Main creates and initializes local variable x
11 // and calls methods UseLocalVariable and UseStaticVariable
12 static void Main()
13 {
14
15
16 Console.WriteLine($"local x in method Main is {x}");
17
18 // UseLocalVariable has its own local x
19 UseLocalVariable();
20
21 // UseStaticVariable uses class Scope's static variable x
22 UseStaticVariable();
23
24 // UseLocalVariable reinitializes its own local x
25 UseLocalVariable();
26
27 // class Scope's static variable x retains its value
28 UseStaticVariable();

Fig. 7.8 | Scope class demonstrates static- and local-variable scopes. (Part 1 of 2.)

// static variable that’s accessible to all methods of this class
private static int x = 1;

int x = 5; // method's local variable x hides static variable x

ptg18189312

176 Chapter 7 Methods: A Deeper Look

Line 8 declares and initializes the static variable x to 1. This static variable is
hidden in any block (or method) that declares a local variable named x. Method Main (lines
12–31) declares local variable x (line 14) and initializes it to 5. This local variable’s value
is output to show that static variable x (whose value is 1) is hidden in method Main. The
app declares two other methods—UseLocalVariable (lines 34–43) and UseStaticVari-
able (lines 46–53)—that each take no arguments and do not return results. Method Main
calls each method twice (lines 19–28). Method UseLocalVariable declares local variable
x (line 36). When UseLocalVariable is first called (line 19), it creates local variable x and

29
30 Console.WriteLine($"\nlocal x in method Main is {x}");
31 }
32
33 // create and initialize local variable x during each call
34 static void UseLocalVariable()
35 {
36
37
38 Console.WriteLine(
39 $"\nlocal x on entering method UseLocalVariable is {x}");
40
41 Console.WriteLine(
42 $"local x before exiting method UseLocalVariable is {x}");
43 }
44
45 // modify class Scope's static variable x during each call
46 static void UseStaticVariable()
47 {
48 Console.WriteLine("\nstatic variable x on entering method " +
49 $"UseStaticVariable is {x}");
50
51 Console.WriteLine("static variable x before exiting " +
52 $"method UseStaticVariable is {x}");
53 }
54 }

local x in method Main is 5

local x on entering method UseLocalVariable is 25
local x before exiting method UseLocalVariable is 26

static variable x on entering method UseStaticVariable is 1
static variable x before exiting method UseStaticVariable is 10

local x on entering method UseLocalVariable is 25
local x before exiting method UseLocalVariable is 26

static variable x on entering method UseStaticVariable is 10
static variable x before exiting method UseStaticVariable is 100

local x in method Main is 5

Fig. 7.8 | Scope class demonstrates static- and local-variable scopes. (Part 2 of 2.)

int x = 25; // initialized each time UseLocalVariable is called

++x; // modifies this method's local variable x

x *= 10; // modifies class Scope's static variable x

ptg18189312

7.11 Method-Call Stack and Activation Records 177

initializes it to 25 (line 36), outputs the value of x (lines 38–39), increments x (line 40)
and outputs the value of x again (lines 41–42). When UseLocalVariable is called a second
time (line 25), it re-creates local variable x and reinitializes it to 25, so the output of each
call to UseLocalVariable is identical.

Method UseStaticVariable does not declare any local variables. Therefore, when it
refers to x, static variable x (line 8) of the class is used. When method UseStaticVari-
able is first called (line 22), it outputs the value (1) of static variable x (lines 48–49),
multiplies the static variable x by 10 (line 50) and outputs the value (10) of static vari-
able x again (lines 51–52) before returning. The next time method UseStaticVariable is
called (line 28), the static variable has its modified value, 10, so the method outputs 10,
then 100. Finally, in method Main, the app outputs the value of local variable x again (line
30) to show that none of the method calls modified Main’s local variable x, because the
methods all referred to variables named x in other scopes.

7.11 Method-Call Stack and Activation Records
To understand how C# performs method calls, we first need to consider a data structure
(i.e., collection of related data items) known as a stack. Think of a stack as analogous to a
pile of dishes. When a dish is placed on the pile, it’s placed at the top—referred to as push-
ing the dish onto the stack. Similarly, when a dish is removed from the pile, it’s removed
from the top—referred to as popping the dish off the stack. Stacks are known as last-in,
first-out (LIFO) data structures—the last item pushed (inserted) on the stack is the first
item popped (removed) from the stack.

7.11.1 Method-Call Stack
The method-call stack (sometimes referred to as the program-execution stack) is a data
structure that works behind the scenes to support the method call/return mechanism. It
also supports the creation, maintenance and destruction of each called method’s local vari-
ables. As we’ll see in Figs. 7.10–7.12, the stack’s last-in, first-out (LIFO) behavior is exactly
what a method needs in order to return to the method that called it.

7.11.2 Stack Frames
As each method is called, it may, in turn, call other methods, which may, in turn, call other
methods—all before any of the methods return. Each method eventually must return con-
trol to the method that called it. So, somehow, the system must keep track of the return
addresses that each method needs in order to return control to the method that called it.
The method-call stack is the perfect data structure for handling this information. Each
time a method calls another method, an entry is pushed onto the stack. This entry, called
a stack frame or an activation record, contains the return address that the called method
needs in order to return to the calling method. It also contains some additional informa-
tion we’ll soon discuss. If the called method returns instead of calling another method be-
fore returning, the stack frame for the method call is popped, and control transfers to the
return address in the popped stack frame. The same techniques apply when a method ac-
cesses a property or when a property calls a method.

The beauty of the call stack is that each called method always finds the information it
needs to return to its caller at the top of the call stack. And, if a method makes a call to

ptg18189312

178 Chapter 7 Methods: A Deeper Look

another method, a stack frame for the new method call is simply pushed onto the call stack.
Thus, the return address required by the newly called method to return to its caller is now
located at the top of the stack.

7.11.3 Local Variables and Stack Frames
The stack frames have another important responsibility. Most methods have local vari-
ables—parameters and any local variables the method declares. Local variables need to ex-
ist while a method is executing. They need to remain active if the method makes calls to
other methods. But when a called method returns to its caller, the called method’s local
variables need to “go away.” The called method’s stack frame is a perfect place to reserve
the memory for the called method’s local variables. That stack frame exists as long as the
called method is active. When that method returns—and no longer needs its local vari-
ables—its stack frame is popped from the stack, and those local variables no longer exist.

7.11.4 Stack Overflow
Of course, the amount of memory in a computer is finite, so only a certain amount of mem-
ory can be used to store activation records on the method-call stack. If more method calls
occur than can have their activation records stored on the method-call stack, a fatal error
known as stack overflow occurs2—typically caused by infinite recursion (Section 7.16).

7.11.5 Method-Call Stack in Action
Now let’s consider how the call stack supports the operation of a Square method (lines
15–18 of Fig. 7.9) called by Main (lines 8–12).

2. This is how the website stackoverflow.com got its name. This is a popular website for getting an-
swers to your programming questions.

1 // Fig. 7.9: SquareTest.cs
2 // Square method used to demonstrate the method
3 // call stack and activation records.
4 using System;
5
6 class Program
7 {
8 static void Main()
9 {

10 int x = 10; // value to square (local variable in main)
11 Console.WriteLine($"x squared: { }");
12 }
13
14 // returns the square of an integer
15 static int Square(int y) // y is a local variable
16 {
17 return y * y; // calculate square of y and return result
18 }
19 }

Fig. 7.9 | Square method used to demonstrate the method-call stack and activation records.
(Part 1 of 2.)

Square(x)

ptg18189312

7.11 Method-Call Stack and Activation Records 179

First, the operating system calls Main—this pushes an activation record onto the stack
(Fig. 7.10). This tells Main how to return to the operating system (i.e., transfer to return
address R1) and contains the space for Main’s local variable x, which is initialized to 10.

Method Main—before returning to the operating system—calls method Square in
line 11 of Fig. 7.9. This causes a stack frame for Square (lines 15–18) to be pushed onto
the method-call stack (Fig. 7.11). This stack frame contains the return address that Square
needs to return to Main (i.e., R2) and the memory for Square’s local variable y.

After Square performs its calculation, it needs to return to Main—and no longer needs
the memory for y. So Square’s stack frame is popped from the stack—giving Square the
return location in Main (i.e., R2) and losing Square’s local variable (Step 3). Figure 7.12
shows the method-call stack after Square’s activation record has been popped.

Method Main now displays the result of calling Square (Fig. 7.9, line 11). Reaching
the closing right brace of Main causes its stack frame to be popped from the stack, giving
Main the address it needs to return to the operating system (i.e., R1 in Fig. 7.10)—at this
point, Main’s local variable x no longer exists.

You’ve now seen how valuable the stack data structure is in implementing a key mech-
anism that supports program execution. There’s a significant omission in the sequence of
illustrations in this section. See if you can spot it before reading the next sentence. The call
to the method Console.Writeln, of course, also involves the stack, which should be
reflected in this section’s illustrations and discussion.

x squared: 100

Fig. 7.10 | Method-call stack after the operating system calls main to execute the program.

Fig. 7.9 | Square method used to demonstrate the method-call stack and activation records.
(Part 2 of 2.)

Method call stack after operating system calls Main

Activation record
for method Main

Top of stack
Return location: R1

Local variables:

x 10

Lines that represent the operating
system executing instructions

Key

Step 1: Operating system calls Main to begin program execution

Operating system
static void Main()
{
 int x = 10;
 Console.WriteLine(
 $"x squared: {Square(x)}");
}

Return location R1

ptg18189312

180 Chapter 7 Methods: A Deeper Look

Fig. 7.11 | Method-call stack after Main calls square to perform the calculation.

s

Fig. 7.12 | Method-call stack after method square returns to Main.

Return location R2

Activation record for
method Square

Activation record
for method Main

Step 2: Main calls method Square to perform calculation

Return location: R1

Local variables:

x 10

Return location: R2

Local variables:

y 10

Top of stack

static void Main()
{
 int x = 10;
 Console.WriteLine(
 $"x squared: {Square(x)}");
}

static int Square(int y)
{
 return y * y;
}

Method call stack after Main calls Square

Method call stack after Square returns its result to Main

Return location R2

Activation record
for method Main

Step 3: Square returns its result to Main

Return location: R1

Local variables:

x 10

Top of stack

static void Main()
{
 int x = 10;
 Console.WriteLine(
 $"x squared: {Square(x)}");
}

static int Square(int y)
{
 return y * y;
}

ptg18189312

7.12 Method Overloading 181

7.12 Method Overloading
Methods of the same name can be declared in the same class, as long as they have different
sets of parameters (determined by the number, types and order of the parameters). This is
called method overloading. When an overloaded method is called, the C# compiler selects
the appropriate method by examining the number, types and order of the arguments in the
call. Method overloading is commonly used to create several methods with the same name
that perform the same or similar tasks, but on different types or different numbers of arguments.
For example, Random method Next (Section 7.8) has overloads that accept different numbers
of arguments, and Math method Max has overloads that accept different types of arguments
(ints vs. doubles). These find the minimum and maximum, respectively, of two values of
each of the numeric simple types. Our next example demonstrates declaring and invoking
overloaded methods. You’ll see examples of overloaded constructors in Chapter 10.

7.12.1 Declaring Overloaded Methods
In class MethodOverload (Fig. 7.13), we include two Square methods—one that calculates
the square of an int (and returns an int) and one that calculates the square of a double
(and returns a double). Although these methods have the same name and similar param-
eter lists and bodies, you can think of them simply as different methods. It may help to
think of the method names as “Square of int” and “Square of double,” respectively.

1 // Fig. 7.13: MethodOverload.cs
2 // Overloaded method declarations.
3 using System;
4
5 class MethodOverload
6 {
7 // test overloaded square methods
8 static void Main()
9 {

10 Console.WriteLine($"Square of integer 7 is {Square(7)}");
11 Console.WriteLine($"Square of double 7.5 is {Square(7.5)}");
12 }
13
14 // square method with int argument
15
16 {
17 Console.WriteLine($"Called square with int argument: {intValue}");
18 return intValue * intValue;
19 }
20
21 // square method with double argument
22
23 {
24 Console.WriteLine(
25 $"Called square with double argument: {doubleValue}");
26 return doubleValue * doubleValue;
27 }
28 }

Fig. 7.13 | Overloaded method declarations. (Part 1 of 2.)

static int Square(int intValue)

static double Square(double doubleValue)

ptg18189312

182 Chapter 7 Methods: A Deeper Look

Line 10 in Main invokes method Square with the argument 7. Literal integer values
are treated as type int, so the method call in line 10 invokes the version of Square at lines
15–19 that specifies an int parameter. Similarly, line 11 invokes method Square with the
argument 7.5. Literal real-number values are treated as type double, so the method call in
line 11 invokes the version of Square at lines 22–27 that specifies a double parameter.
Each method first outputs a line of text to prove that the proper method was called in each
case.

The overloaded methods in Fig. 7.13 perform the same calculation, but with two dif-
ferent types. C#’s generics feature provides a mechanism for writing a single “generic
method” that can perform the same tasks as an entire set of overloaded methods. We dis-
cuss generic methods in Chapter 18.

7.12.2 Distinguishing Between Overloaded Methods
The compiler distinguishes overloaded methods by their signature—a combination of the
method’s name and the number, types and order of its parameters. The signature also in-
cludes the way those parameters are passed, which can be modified by the ref and out key-
words (discussed in Section 7.18). If the compiler looked only at method names during
compilation, the code in Fig. 7.13 would be ambiguous—the compiler would not know
how to distinguish between the Square methods (lines 15–19 and 22–27). Internally, the
compiler uses signatures to determine whether a class’s methods are unique in that class.

For example, in Fig. 7.13, the compiler will use the method signatures to distinguish
between the “Square of int” method (the Square method that specifies an int parameter)
and the “Square of double” method (the Square method that specifies a double param-
eter). As another example, if Method1’s declaration begins as

then that method will have a different signature than a method that begins with

The order of the parameter types is important—the compiler considers the preceding two
Method1 headers to be distinct.

7.12.3 Return Types of Overloaded Methods
In discussing the logical names of methods used by the compiler, we did not mention the
methods’ return types. Methods cannot be distinguished by return type. If in a class named
MethodOverloadError you define overloaded methods with the following headers:

Called square with int argument: 7
Square of integer 7 is 49
Called square with double argument: 7.5
Square of double 7.5 is 56.25

void Method1(int a, float b)

void Method1(float a, int b)

int Square(int x)
double Square(int x)

Fig. 7.13 | Overloaded method declarations. (Part 2 of 2.)

ptg18189312

7.13 Optional Parameters 183

which each have the same signature but different return types, the compiler generates the
following error for the second Square method:

Overloaded methods can have the same or different return types if the parameter lists are
different. Also, overloaded methods need not have the same number of parameters.

7.13 Optional Parameters
Methods can have optional parameters that allow the calling method to vary the number
of arguments to pass. An optional parameter specifies a default value that’s assigned to the
parameter if the optional argument is omitted. You can create methods with one or more
optional parameters. All optional parameters must be placed to the right of the method’s non-
optional parameters—that is, at the end of the parameter list.

When a parameter has a default value, the caller has the option of passing that partic-
ular argument. For example, the method header

specifies an optional second parameter. Each call to Power must pass at least a baseValue
argument, or a compilation error occurs. Optionally, a second argument (for the expo-
nentValue parameter) can be passed to Power. Each optional parameter must specify a de-
fault value by using an equal (=) sign followed by the value. For example, the header for
Power sets 2 as exponentValue’s default value. Consider the following calls to Power:

• Power()—This call generates a compilation error because this method requires a
minimum of one argument.

• Power(10)—This call is valid because one argument (10) is being passed. The op-
tional exponentValue is not specified in the method call, so the compiler uses 2
for the exponentValue, as specified in the method header.

• Power(10, 3)—This call is also valid because 10 is passed as the required argu-
ment and 3 is passed as the optional argument.

Figure 7.14 demonstrates an optional parameter. The program calculates the result of
raising a base value to an exponent. Method Power (lines 15–25) specifies that its second
parameter is optional. In Main, lines 10–11 call method Power. Line 10 calls the method
without the optional second argument. In this case, the compiler provides the second
argument, 2, using the default value of the optional argument, which is not visible to you
in the call.

Type 'MethodOverloadError' already defines a member called 'Square'
with the same parameter types

Common Programming Error 7.9
Declaring overloaded methods with identical parameter lists is a compilation error re-
gardless of whether the return types are different.

Common Programming Error 7.10
Declaring a non-optional parameter to the right of an optional one is a compilation error.

static int Power(int baseValue, int exponentValue = 2)

ptg18189312

184 Chapter 7 Methods: A Deeper Look

7.14 Named Parameters
Normally, when calling a method, the argument values—in order—are assigned to the pa-
rameters from left to right in the parameter list. Consider a Time class that stores the time of
day in 24-hour clock format as int values representing the hour (0–23), minute (0–59) and
second (0–59). Such a class might provide a SetTime method with optional parameters like

In the preceding method header, all three of SetTime’s parameters are optional. Assuming
that we have a Time object named t, consider the following calls to SetTime:

• t.SetTime()—This call specifies no arguments, so the compiler assigns the de-
fault value 0 to each parameter. The resulting time is 12:00:00 AM.

• t.SetTime(12)—This call specifies the argument 12 for the first parameter,
hour, and the compiler assigns the default value 0 to the minute and second pa-
rameters. The resulting time is 12:00:00 PM.

• t.SetTime(12, 30)—This call specifies the arguments 12 and 30 for the param-
eters hour and minute, respectively, and the compiler assigns the default value 0
to the parameter second. The resulting time is 12:30:00 PM.

1 // Fig. 7.14: CalculatePowers.cs
2 // Optional parameter demonstration with method Power.
3 using System;
4
5 class CalculatePowers
6 {
7 // call Power with and without optional arguments
8 static void Main()
9 {

10 Console.WriteLine($"Power(10) = { }") ;
11 Console.WriteLine($"Power(2, 10) = { }");
12 }
13
14 // use iteration to calculate power
15 static int Power(int baseValue,)
16 {
17 int result = 1;
18
19 for (int i = 1; i <= exponentValue; ++i)
20 {
21 result *= baseValue;
22 }
23
24 return result;
25 }
26 }

Power(10) = 100
Power(2, 10) = 1024

Fig. 7.14 | Optional parameter demonstration with method Power.

public void SetTime(int hour = 0, int minute = 0, int second = 0)

Power(10)
Power(2, 10)

int exponentValue = 2

ptg18189312

7.15 C# 6 Expression-Bodied Methods and Properties 185

• t.SetTime(12, 30, 22)—This call specifies the arguments 12, 30 and 22 for the
parameters hour, minute and second, respectively, so the compiler does not pro-
vide any default values. The resulting time is 12:30:22 PM.

What if you wanted to specify only arguments for the hour and second? You might
think that you could call the method as follows:

C# doesn’t allow you to skip an argument as shown above. C# provides a feature called
named parameters, which enable you to call methods that receive optional parameters by
providing only the optional arguments you wish to specify. To do so, you explicitly specify
the parameter’s name and value—separated by a colon (:)—in the argument list of the
method call. For example, the preceding statement can be written as follows:

In this case, the compiler assigns parameter hour the argument 12 and parameter second
the argument 22. The parameter minute is not specified, so the compiler assigns it the de-
fault value 0. It’s also possible to specify the arguments out of order when using named pa-
rameters. The arguments for the required parameters must always be supplied. The
argumentName: value syntax may be used with any method’s required parameters.

7.15 C# 6 Expression-Bodied Methods and Properties
C# 6 introduces a new concise syntax for:

• methods that contain only a return statement that returns a value

• read-only properties in which the get accessor contains only a return statement

• methods that contain single statement bodies.

Consider the following Cube method:

In C# 6, this can be expressed with an expression-bodied method as

The value of x * x * x is returned to Cube’s caller implicitly. The symbol => follows the
method’s parameter list and introduces the method’s body—no braces or return state-
ment are required and this can be used with static and non-static methods alike. If the
expression to the right of => does not have a value (e.g., a call to a method that returns
void), the expression-bodied method must return void. Similarly, a read-only property
can be implemented as an expression-bodied property. The following reimplements the
IsNoFaultState property in Fig. 6.11 to return the result of a logical expression:

t.SetTime(12, , 22); // COMPILATION ERROR

t.SetTime(hour: 12, second: 22); // sets the time to 12:00:22

static int Cube(int x)
{

 return x * x * x;
}

static int Cube(int x) => x * x * x;

public bool IsNoFaultState =>
 State == "MA" || State == "NJ" || State == "NY" || State == "PA";

ptg18189312

186 Chapter 7 Methods: A Deeper Look

7.16 Recursion
The apps we’ve discussed thus far are generally structured as methods that call one another
in a disciplined, hierarchical manner. For some problems, however, it’s useful to have a
method call itself. A recursive method is a method that calls itself, either directly or indi-
rectly through another method. We consider recursion conceptually first. Then we examine
an app containing a recursive method.

7.16.1 Base Cases and Recursive Calls
Recursive problem-solving approaches have a number of elements in common. When a
recursive method is called to solve a problem, it actually is capable of solving only the sim-
plest case(s), or base case(s). If the method is called with a base case, it returns a result. If
the method is called with a more complex problem, it divides the problem into two con-
ceptual pieces (often called divide and conquer): a piece that the method knows how to do
and a piece that it does not know how to do. To make recursion feasible, the latter piece
must resemble the original problem, but be a slightly simpler or slightly smaller version of
it. Because this new problem looks like the original problem, the method calls a fresh copy
(or several fresh copies) of itself to work on the smaller problem; this is referred to as a re-
cursive call and is also called the recursion step. The recursion step normally includes a
return statement, because its result will be combined with the portion of the problem the
method knew how to solve to form a result that will be passed back to the original caller.

The recursion step executes while the original call to the method is still active (i.e.,
while it has not finished executing). The recursion step can result in many more recursive
calls, as the method divides each new subproblem into two conceptual pieces. For the
recursion to terminate eventually, each time the method calls itself with a slightly simpler
version of the original problem, the sequence of smaller and smaller problems must con-
verge on the base case(s). At that point, the method recognizes the base case and returns a
result to the previous copy of the method. A sequence of returns ensues until the original
method call returns the result to the caller. This process sounds complex compared with
the conventional problem solving we’ve performed to this point.

7.16.2 Recursive Factorial Calculations
Let’s write a recursive app to perform a popular mathematical calculation. The factorial of
a nonnegative integer n, written n! (and pronounced “n factorial”), is the product

1! is equal to 1 and 0! is defined to be 1. For example, 5! is the product 5 · 4 · 3 · 2 · 1,
which is equal to 120.

The factorial of an integer, number, greater than or equal to 0 can be calculated itera-
tively (nonrecursively) using the for statement as follows:

n · (n – 1) · (n – 2) · … · 1

long factorial = 1;

for (long counter = number; counter >= 1; --counter)
{

 factorial *= counter;
}

ptg18189312

7.16 Recursion 187

A recursive declaration of the factorial method is arrived at by observing the following
relationship:

For example, 5! is clearly equal to 5 · 4!, as is shown by the following equations:

The evaluation of 5! would proceed as shown in Fig. 7.15. Figure 7.15(a) shows how
the succession of recursive calls proceeds until 1! is evaluated to be 1, which terminates the
recursion. Figure 7.15(b) shows the values returned from each recursive call to its caller
until the value is calculated and returned.

7.16.3 Implementing Factorial Recursively
Figure 7.16 uses recursion to calculate and display the factorials of the integers from 0 to
10. The recursive method Factorial (lines 17–28) first tests to determine whether a ter-
minating condition (line 20) is true. If number is less than or equal to 1 (the base case),
Factorial returns 1 and no further recursion is necessary. If number is greater than 1, line
26 expresses the problem as the product of number and a recursive call to Factorial eval-
uating the factorial of number - 1, which is a slightly simpler problem than the original
calculation, Factorial(number).

n! = n · (n – 1)!

5! = 5 · 4 · 3 · 2 · 1
5! = 5 · (4 · 3 · 2 · 1)
5! = 5 · (4!)

Fig. 7.15 | Recursive evaluation of 5!.

1 // Fig. 7.16: FactorialTest.cs
2 // Recursive Factorial method.
3 using System;

Fig. 7.16 | Recursive Factorial method. (Part 1 of 2.)

(a) Sequence of recursive calls

5 * 4!

4 * 3!

3 * 2!

2 * 1!

5!

1

(b) Values returned from each recursive call

Final value = 120

5! = 5 * 24 = 120 is returned

4! = 4 * 6 = 24 is returned

3! = 3 * 2 = 6 is returned

2! = 2 * 1 = 2 is returned

1 returned

5 * 4!

4 * 3!

3 * 2!

2 * 1!

5!

1

ptg18189312

188 Chapter 7 Methods: A Deeper Look

Method Factorial (lines 17–28) receives a parameter of type long and returns a result
of type long. As you can see in Fig. 7.16, factorial values become large quickly. We chose
type long (which can represent relatively large integers) so that the app could calculate fac-
torials greater than 20!. Unfortunately, the Factorial method produces large values so
quickly that factorial values soon exceed even the maximum value that can be stored in a
long variable. Due to the restrictions on the integral types, variables of type float, double
or decimal might ultimately be needed to calculate factorials of larger numbers. This situ-
ation points to a weakness in some programming languages—the languages are not easily
extended to handle the unique requirements of various apps. As you know, C# allows you
to create new types. For example, you could create a type HugeInteger for arbitrarily large
integers. This class would enable an app to calculate the factorials of larger numbers. In fact,

4
5 class FactorialTest
6 {
7 static void Main()
8 {
9 // calculate the factorials of 0 through 10

10 for (long counter = 0; counter <= 10; ++counter)
11 {
12 Console.WriteLine($"{counter}! = { }");
13 }
14 }
15
16 // recursive declaration of method Factorial
17
18 {
19 // base case
20 if (number <= 1)
21 {
22 return 1;
23 }
24 else // recursion step
25 {
26 return number * ;
27 }
28 }
29 }

0! = 1
1! = 1
2! = 2
3! = 6
4! = 24
5! = 120
6! = 720
7! = 5040
8! = 40320
9! = 362880
10! = 3628800

Fig. 7.16 | Recursive Factorial method. (Part 2 of 2.)

Factorial(counter)

static long Factorial(long number)

Factorial(number - 1)

ptg18189312

7.17 Value Types vs. Reference Types 189

the .NET Framework’s BigInteger type (from namespace System.Numerics) supports
arbitrarily large integers.

7.17 Value Types vs. Reference Types
Types in C# are divided into two categories—value types and reference types.

Value Types
C#’s simple types (like int, double and decimal) are all value types. A variable of a value
type simply contains a value of that type. For example, Fig. 7.17 shows an int variable named
count that contains the value 7.

Reference Types
By contrast, a variable of a reference type (also called a reference) contains the location
where the data referred to by that variable is stored. Such a variable is said to refer to an
object in the program. For example, the statement

creates an object of our class Account (presented in Chapter 4), places it in memory and
stores the object’s reference in variable myAccount of type Account, as shown in Fig. 7.18.
The Account object is shown with its name instance variable.

Reference-Type Instance Variables Are Initialized to null by Default
Reference-type instance variables (such as myAccount in Fig. 7.18) are initialized by default
to null. The type string is a reference type. For this reason, string instance variable name

Common Programming Error 7.11
Either omitting the base case or writing the recursion step incorrectly so that it does not con-
verge on the base case will cause infinite recursion, eventually exhausting memory. This er-
ror is analogous to the problem of an infinite loop in an iterative (nonrecursive) solution.

Fig. 7.17 | Value-type variable.

Account myAccount = new Account();

Fig. 7.18 | Reference-type variable.

7
A variable (count) of a value type (int)
contains a value (7) of that type

count

int count = 7;

Account myAccount = new Account();

Account objectmyAccount

A variable (myAccount) of a reference
type (Account) contains the location
of an Account object

name
(The arrow represents
the location of the
Account object)

ptg18189312

190 Chapter 7 Methods: A Deeper Look

is shown in Fig. 7.18 with an empty box representing the null-valued variable. A string
variable with the value null is not an empty string, which is represented by "" or
string.Empty. Rather, the value null represents a reference that does not refer to an
object, whereas the empty string is a string object that does not contain any characters.
In Section 7.18, we discuss value types and reference types in more detail.

7.18 Passing Arguments By Value and By Reference
Two ways to pass arguments to methods in many programming languages are pass-by-val-
ue and pass-by-reference. When an argument is passed by value (the default in C#), a copy
of its value is made and passed to the called method. Changes to the copy do not affect
the original variable’s value in the caller. This prevents the accidental side effects that so
greatly hinder the development of correct and reliable software systems. Each argument
that’s been passed in the programs so far has been passed by value. When an argument is
passed by reference, the caller gives the method the ability to access and modify the caller’s
original variable—no copy is passed.

To pass an object by reference into a method, simply provide as an argument in the
method call the variable that refers to the object. Then, in the method body, reference the
object using the corresponding parameter name. The parameter refers to the original
object in memory, so the called method can access the original object directly.

In the previous section, we began discussing the differences between value types and
reference types. A major difference is that:

• value-type variables store values, so specifying a value-type variable in a method call
passes a copy of that variable’s value to the method, whereas

• reference-type variables store references to objects, so specifying a reference-type vari-
able as an argument passes the method a copy of the reference that refers to the object.

Even though the reference itself is passed by value, the method can still use the refer-
ence it receives to interact with—and possibly modify—the original object. Similarly,
when returning information from a method via a return statement, the method returns a
copy of the value stored in a value-type variable or a copy of the reference stored in a ref-
erence-type variable. When a reference is returned, the calling method can use that refer-
ence to interact with the referenced object.

Software Engineering Observation 7.4
A variable’s declared type (e.g., int or Account) indicates whether the variable is of a
value type or a reference type. If a variable’s type is one of the simple types (Appendix), an
enum type or a struct type (which we introduce in Section 10.13), then it’s a value type.
Classes like Account are reference types.

Performance Tip 7.1
A disadvantage of pass-by-value is that, if a large data item is being passed, copying that
data can take a considerable amount of execution time and memory space.

Performance Tip 7.2
Pass-by-reference improves performance by eliminating the pass-by-value overhead of
copying large objects.

ptg18189312

7.18 Passing Arguments By Value and By Reference 191

7.18.1 ref and out Parameters
What if you would like to pass a variable by reference so the called method can modify the
variable’s value in the caller? To do this, C# provides keywords ref and out.

ref Parameters
Applying the ref keyword to a parameter declaration allows you to pass a variable to a
method by reference—the method will be able to modify the original variable in the caller.
Keyword ref is used for variables that already have been initialized in the calling method.

out Parameters
Preceding a parameter with keyword out creates an output parameter. This indicates to
the compiler that the argument will be passed into the called method by reference and that
the called method will assign a value to the original variable in the caller. This also prevents
the compiler from generating an error message for an uninitialized variable that’s passed
as an argument to a method.

Passing Reference-Type Variables by Reference
You also can pass a reference-type variable by reference, which allows you to modify it so
that it refers to a new object. Passing a reference by reference is a tricky but powerful tech-
nique that we discuss in Section 8.13.

Software Engineering Observation 7.5
Pass-by-reference can weaken security; the called method can corrupt the caller’s data.

Common Programming Error 7.12
When a method call contains an uninitialized variable as an argument to a ref param-
eter, the compiler generates an error.

Common Programming Error 7.13
If the method does not assign a value to the out parameter in every possible path of execu-
tion, the compiler generates an error. Also, reading an out parameter before it’s assigned
a value is also a compilation error.

Software Engineering Observation 7.6
A method can return only one value to its caller via a return statement, but can return
many values by specifying multiple output (ref and/or out) parameters.

Software Engineering Observation 7.7
By default, C# does not allow you to choose whether to pass each argument by value or by
reference. Value types are passed by value. Objects are not passed to methods; rather,
references to objects are passed—the references themselves are passed by value. When a
method receives a reference to an object, the method can manipulate the object directly,
but the reference value cannot be changed to refer to a new object.

ptg18189312

192 Chapter 7 Methods: A Deeper Look

7.18.2 Demonstrating ref, out and Value Parameters
The app in Fig. 7.19 uses the ref and out keywords to manipulate integer values. The
class contains three methods that calculate the square of an integer.

1 // Fig. 7.19: ReferenceAndOutputParameters.cs
2 // Reference, output and value parameters.
3 using System;
4
5 class ReferenceAndOutputParameters
6 {
7 // call methods with reference, output and value parameters
8 static void Main()
9 {

10 int y = 5; // initialize y to 5
11 int z; // declares z, but does not initialize it
12
13 // display original values of y and z
14 Console.WriteLine($"Original value of y: {y}");
15 Console.WriteLine("Original value of z: uninitialized\n");
16
17 // pass y and z by reference
18 SquareRef(); // must use keyword ref
19 SquareOut(); // must use keyword out
20
21 // display values of y and z after they’re modified by
22 // methods SquareRef and SquareOut, respectively
23 Console.WriteLine($"Value of y after SquareRef: {y}");
24 Console.WriteLine($"Value of z after SquareOut: {z}\n");
25
26 // pass y and z by value
27 Square();
28 Square();
29
30 // display values of y and z after they’re passed to method Square
31 // to demonstrate that arguments passed by value are not modified
32 Console.WriteLine($"Value of y after Square: {y}");
33 Console.WriteLine($"Value of z after Square: {z}");
34 }
35
36 // uses reference parameter x to modify caller's variable
37 static void SquareRef()
38 {
39 x = x * x; // squares value of caller's variable
40 }
41
42 // uses output parameter x to assign a value
43 // to an uninitialized variable
44 static void SquareOut()
45 {
46 x = 6; // assigns a value to caller's variable
47 x = x * x; // squares value of caller's variable
48 }

Fig. 7.19 | Reference, output and value parameters. (Part 1 of 2.)

ref y
out z

y
z

ref int x

out int x

ptg18189312

7.18 Passing Arguments By Value and By Reference 193

Method SquareRef (lines 37–40) multiplies its parameter x by itself and assigns the
new value to x. SquareRef’s parameter is declared as ref int, which indicates that the
argument passed to this method must be an integer that’s passed by reference. Because the
argument is passed by reference, the assignment at line 39 modifies the original argument’s
value in the caller.

Method SquareOut (lines 44–48) assigns its parameter the value 6 (line 46), then
squares that value. SquareOut’s parameter is declared as out int, which indicates that the
argument passed to this method must be an integer that’s passed by reference and that the
argument does not need to be initialized in advance.

Method Square (lines 52–55) multiplies its parameter x by itself and assigns the new
value to x. When this method is called, a copy of the argument is passed to the parameter
x. Thus, even though parameter x is modified in the method, the original value in the
caller is not modified.

Method Main (lines 8–34) invokes methods SquareRef, SquareOut and Square. We
begin by initializing variable y to 5 and declaring, but not initializing, variable z. Lines 18–
19 call methods SquareRef and SquareOut. Notice that when you pass a variable to a
method with a reference parameter, you must precede the argument with the same key-
word (ref or out) that was used to declare the reference parameter. Lines 23–24 display
the values of y and z after the calls to SquareRef and SquareOut. Notice that y has been
changed to 25 and z has been set to 36.

Lines 27–28 call method Square with y and z as arguments. In this case, both vari-
ables are passed by value—only copies of their values are passed to Square. As a result, the
values of y and z remain 25 and 36, respectively. Lines 32–33 output the values of y and
z to show that they were not modified.

49
50 // parameter x receives a copy of the value passed as an argument,
51 // so this method cannot modify the caller's variable
52 static void Square()
53 {
54 x = x * x;
55 }
56 }

Original value of y: 5
Original value of z: uninitialized

Value of y after SquareRef: 25
Value of z after SquareOut: 36

Value of y after Square: 25
Value of z after Square: 36

Common Programming Error 7.14
The ref and out arguments in a method call must match the ref and out parameters
specified in the method declaration; otherwise, a compilation error occurs.

Fig. 7.19 | Reference, output and value parameters. (Part 2 of 2.)

int x

ptg18189312

194 Chapter 7 Methods: A Deeper Look

7.19 Wrap-Up
In this chapter, we discussed the difference between non-static and static methods, and
we showed how to call static methods by preceding the method name with the name of
the class in which it appears and the member-access operator (.). You saw that the Math
class in the .NET Framework Class Library provides many static methods to perform
mathematical calculations. We also discussed static class members and why method Main
is declared static.

We presented several commonly used Framework Class Library namespaces. You
learned how to use operator + to perform string concatenations. You also learned how to
declare constants with the const keyword and how to define sets of named constants with
enum types. We demonstrated simulation techniques and used class Random to generate sets
of random numbers. We discussed the scope of fields and local variables in a class. You saw
how to overload methods in a class by providing methods with the same name but dif-
ferent signatures. You learned how to use optional and named parameters.

We showed the concise notation of C# 6’s expression-bodied methods and read-only
properties for implementing methods and read-only property get accessors that contain
only a return statement. We discussed how recursive methods call themselves, breaking
larger problems into smaller subproblems until eventually the original problem is solved.
You learned the differences between value types and reference types with respect to how
they’re passed to methods, and how to use the ref and out keywords to pass arguments
by reference.

In Chapter 8, you’ll maintain lists and tables of data in arrays. You’ll see a more ele-
gant implementation of the app that rolls a die 60,000,000 times and two versions of a
GradeBook case study. You’ll also access an app’s command-line arguments that are passed
to method Main when a console app begins execution.

ptg18189312

8
Arrays; Introduction to

Exception Handling

O b j e c t i v e s
In this chapter you’ll:

■ Use arrays to store data in and retrieve data from lists and
tables of values.

■ Declare arrays, initialize arrays and refer to individual
elements of arrays.

■ Iterate through arrays with the foreach statement.

■ Use var to declare implicitly typed local variables and let
the compiler infer their types from their initializer values.

■ Use exception handling to process runtime problems.

■ Declare C# 6 getter-only auto-implemented properties.

■ Initialize auto-implemented properties with C# 6 auto-
property initializers.

■ Pass arrays to methods.

■ Declare and manipulate multidimensional arrays—both
rectangular and jagged.

■ Write methods that use variable-length argument lists.

■ Read command-line arguments into an app.

ptg18189312

196 Chapter 8 Arrays; Introduction to Exception Handling

O
u

tl
in

e

8.1 Introduction
Arrays are data structures consisting of related data items of the same type. They are fixed-
length entities—remaining the same length once they’re created, although an array variable
may be reassigned so that it refers to a new array of a different length.

We’ll discuss how to declare, create and initialize arrays, then show several examples
of common array manipulations. We’ll present the foreach iteration statement, which
provides a concise notation for accessing data in arrays (and collections, as you’ll see in
Section 9.4, Introduction to Collections, and in Chapter 19, Generic Collections; Func-
tional Programming with LINQ/PLINQ).

You’ll use keyword var to declare implicitly typed local variables—as you’ll see, the
compiler can determine a local variable’s type, based on its initializer value. We’ll introduce
exception handling for detecting and processing problems that occur at execution time.

Many of the chapter’s examples manipulate arrays of int simple-type values. To
demonstrate that arrays also can store reference types, we’ll create a card-shuffling-and-
dealing simulation that manipulates an array of Card objects. In that example, we’ll intro-
duce C# 6’s getter-only auto-implemented properties, which define properties that can be
used to get, but not set, a value.

We present two versions of an instructor GradeBook case study that use arrays to
maintain sets of student grades in memory and analyze them. We’ll also demonstrate how
to define methods that receive variable-length argument lists (which are implemented by
C# as arrays) and a version of method Main that can receive a string array containing an
app’s so-called command-line arguments.

8.1 Introduction
8.2 Arrays
8.3 Declaring and Creating Arrays
8.4 Examples Using Arrays

8.4.1 Creating and Initializing an Array
8.4.2 Using an Array Initializer
8.4.3 Calculating a Value to Store in Each Ar-

ray Element
8.4.4 Summing the Elements of an Array
8.4.5 Iterating Through Arrays with foreach
8.4.6 Using Bar Charts to Display Array Data

Graphically; Introducing Type Inference
with var

8.4.7 Using the Elements of an Array as
Counters

8.5 Using Arrays to Analyze Survey Re-
sults; Intro to Exception Handling

8.5.1 Summarizing the Results
8.5.2 Exception Handling: Processing the In-

correct Response
8.5.3 The try Statment
8.5.4 Executing the catch Block
8.5.5 Message Property of the Exception Pa-

rameter

8.6 Case Study: Card Shuffling and
Dealing Simulation

8.6.1 Class Card and Getter-Only Auto-
Implemented Properties

8.6.2 Class DeckOfCards
8.6.3 Shuffling and Dealing Cards

8.7 Passing Arrays and Array Elements
to Methods

8.8 Case Study: GradeBook Using an
Array to Store Grades

8.9 Multidimensional Arrays
8.9.1 Rectangular Arrays
8.9.2 Jagged Arrays
8.9.3 Two-Dimensional Array Example:

Displaying Element Values
8.10 Case Study: GradeBook Using a

Rectangular Array
8.11 Variable-Length Argument Lists
8.12 Using Command-Line Arguments
8.13 (Optional) Passing Arrays by Value

and by Reference
8.14 Wrap-Up

ptg18189312

8.2 Arrays 197

8.2 Arrays
An array is a group of variables—called elements—containing values of the same type. Arrays
are reference types—an array variable is actually a reference to an array object. An array’s el-
ements can be either value types or reference types, including other arrays—e.g., every ele-
ment of an int array is an int value, and every element of a string array is a reference to a
string object. Array names follow the same conventions as other variable names.

Logical Representation of an Array; Array-Access Expressions
Figure 8.1 shows a logical representation of an integer array called c that contains 12 ele-
ments. An app refers to any one of these elements with an array-access expression that in-
cludes the name of the reference to the array, c, followed by the index (i.e., position
number) of the particular element in square brackets ([]). The first element in every array
has index zero (0) and is sometimes called the zeroth element. Thus, the names of array
c’s elements are c[0], c[1], c[2] and so on. The highest index in array c is 11—one less
than the array’s number of elements, because indices begin at 0.

Indices Must Be Nonnegative Integer Values
An index must be a nonnegative integer or expression with an int, uint, long or ulong
value—or a value that can be implicitly promoted to one of these types (as discussed in
Section 7.6.1). If we assume that variable a is 5 and variable b is 6, then the statement

evaluates the expression a + b to determine the index and in this case adds 2 to element
c[11]. Array-access expressions can be used on the left side of an assignment to place a new
value into an array element.

Examining Array c in More Detail
Let’s examine array c in Fig. 8.1 more closely. The name of the variable that references the
array is c. Every array instance knows its own length and provides access to this information

Fig. 8.1 | A 12-element array.

c[a + b] += 2;

-45

62

-3

1

6453

78

0

-89

1543

72

0

6

c[0]
Name of array (c)

Index (or subcript) of the

c[7]

c[8]

c[9]

c[10]

c[11]

c[6]

c[5]

c[4]

c[3]

c[2]

c[1]

element in array c

ptg18189312

198 Chapter 8 Arrays; Introduction to Exception Handling

with the Length property. For example, the expression c.Length returns array c’s length
(that is, 12). The Length property of an array is read only, so it cannot be changed. The ar-
ray’s 12 elements are referred to as c[0], c[1], c[2], …, c[11]. Referring to elements out-
side of this range, such as c[-1] or c[12], is a runtime error (as we’ll demonstrate in
Fig. 8.9). The value of c[0] is -45, the value of c[1] is 6, the value of c[2] is 0, the value
of c[7] is 62 and the value of c[11] is 78. To calculate the sum of the values contained in
the first three elements of array c and store the result in variable sum, we’d write

To divide the value of c[6] by 2 and assign the result to the variable x, we’d write

8.3 Declaring and Creating Arrays
Arrays occupy space in memory. Since they’re objects, they’re typically created with key-
word new.1 To create an array object, you specify the type and the number of array ele-
ments in an array-creation expression that uses keyword new and returns a reference that
can be stored in an array variable. The following statement creates an array object contain-
ing 12 int elements—each initialized to 0 by default—and stores the array’s reference in
variable c:

When you create an array with new, each element of the array receives the default value for
the array’s element type—0 for the numeric simple-type elements, false for bool ele-
ments and null for references. The preceding statement creates the memory for the array
in Fig. 8.1 but does not populate the array with the values shown in that figure. In
Section 8.4.2, we’ll provide specific, nondefault initial values when we create an array.

Creating the array c also can be performed as follows:

In the declaration, the square brackets following int indicate that c will refer to an array
of ints (i.e., c will store a reference to an array object). In the assignment statement, the
array variable c receives the reference to a new array object of 12 int elements. The num-
ber of elements also can be specified as an expression that’s calculated at execution time.

Resizing an Array
Though arrays are fixed-length entities, you can use the static Array method Resize to
create a new array with the specified length—class Array defines many methods for com-
mon array manipulations. This method takes as arguments

sum = c[0] + c[1] + c[2];

x = c[6] / 2;

1. Section 8.4.2 shows a case in which new is not required.

int[] c = new int[12];

Common Programming Error 8.1
In an array variable declaration, specifying the number of elements in the square brackets
(e.g., int[12] c;) is a syntax error.

int[] c; // declare the array variable
c = new int[12]; // create the array; assign to array variable

ptg18189312

8.4 Examples Using Arrays 199

• the array to be resized and

• the new length

and copies the contents of the old array into the new one, then sets the variable it receives
as its first argument to reference the new array. For example, in the following statements:

newArray initially refers to a five-element array. The Resize method then sets newArray
to refer to a new 10-element array containing the original array’s element values. If the new
array is smaller than the old array, any content that cannot fit into the new array is trun-
cated without warning. The old array’s memory is reclaimed by the runtime if there are no
other array variables referring to that array.2

8.4 Examples Using Arrays
This section presents several examples that demonstrate declaring arrays, creating arrays,
initializing arrays and manipulating array elements.

8.4.1 Creating and Initializing an Array
In Fig. 8.2, line 10 of uses an array-creation expression to create a five-element int array
with values initialized to 0 by default. The resulting array’s reference initializes the variable
array to refer to the new array object.

int[] newArray = new int[5];
Array.Resize(ref newArray, 10);

2. Section 10.8 discusses how the runtime reclaims the memory of objects that are no longer used.

1 // Fig. 8.2: InitArray.cs
2 // Creating an array.
3 using System;
4
5 class InitArray
6 {
7 static void Main()
8 {
9 // create the space for array and initialize to default zeros

10
11
12 Console.WriteLine($"{"Index"}{"Value",8}"); // headings
13
14 // output each array element's value
15
16
17
18
19 }
20 }

Fig. 8.2 | Creating an array. (Part 1 of 2.)

int[] array = new int[5]; // array contains 5 int elements

for (int counter = 0; counter < array.Length; ++counter)
{
 Console.WriteLine($"{counter,5}{array[counter],8}");
}

ptg18189312

200 Chapter 8 Arrays; Introduction to Exception Handling

Line 12 displays column headings for the app’s output. The first column will display
each array element’s index (0–4 for a five-element array), and the second column contains
each element’s default value (0). The column head "Value" is right-aligned in a field width
of 8, as specified in the string-interpolation expression

The for statement (lines 15–18) displays each array element’s index (represented by
counter) and value (represented by array[counter]). The loop-control variable counter
is initially 0—index values start at 0, so zero-based counting allows the loop to access every
element. The loop-continuation condition uses the property array.Length (line 15) to
obtain array’s length. In this example, the length is 5, so the loop continues executing as
long as counter’s value is less than 5. The highest index in a five-element array is 4, so
using the less-than operator in the loop-continuation condition guarantees that the loop
does not attempt to access an element beyond the end of the array (i.e., during the final
iteration of the loop, counter is 4). We’ll soon see what happens when an out-of-range
index is encountered at execution time.

8.4.2 Using an Array Initializer
An app can create an array and initialize its elements with an array initializer—a comma-
separated list of expressions (called an initializer list) enclosed in braces. The array length
is determined by the number of elements in the initializer list. For example, the declaration

creates a five-element array with index values 0, 1, 2, 3 and 4. Element n[0] is initialized
to 10, n[1] is initialized to 20 and so on. This statement does not require new to create the
array object—the compiler counts the number of initializers (5) to determine the array’s
size, then sets up the appropriate new operation “behind the scenes.” The app in Fig. 8.3
initializes an integer array with 5 values (line 10) and displays the array in tabular format.
Lines 15–18 for displaying the array’s contents are identical to lines 15–18 of Fig. 8.2.

Index Value
 0 0
 1 0
 2 0
 3 0
 4 0

{"Value",8}

int[] n = {10, 20, 30, 40, 50};

1 // Fig. 8.3: InitArray.cs
2 // Initializing the elements of an array with an array initializer.
3 using System;
4
5 class InitArray
6 {

Fig. 8.3 | Initializing the elements of an array with an array initializer. (Part 1 of 2.)

Fig. 8.2 | Creating an array. (Part 2 of 2.)

ptg18189312

8.4 Examples Using Arrays 201

8.4.3 Calculating a Value to Store in Each Array Element
Figure 8.4 creates a 5-element array and assigns to its elements the even integers from 2 to
10 (2, 4, 6, 8 and 10). Then the app displays the array in tabular format. Lines 13–16 cal-
culate an array element’s value by multiplying the current value of the for loop’s control
variable counter by 2, then adding 2.

7 static void Main()
8 {
9 // initializer list specifies the value of each element

10
11
12 Console.WriteLine($"{"Index"}{"Value",8}"); // headings
13
14 // output each array element's value
15 for (int counter = 0; counter < array.Length; ++counter)
16 {
17 Console.WriteLine($"{counter,5}{array[counter],8}");
18 }
19 }
20 }

Index Value
 0 32
 1 27
 2 64
 3 18
 4 95

1 // Fig. 8.4: InitArray.cs
2 // Calculating values to be placed into the elements of an array.
3 using System;
4
5 class InitArray
6 {
7 static void Main()
8 {
9

10
11
12 // calculate value for each array element
13 for (int counter = 0; counter < array.Length; ++counter)
14 {
15
16 }
17
18 Console.WriteLine($"{"Index"}{"Value",8}"); // headings
19

Fig. 8.4 | Calculating values to be placed into the elements of an array. (Part 1 of 2.)

Fig. 8.3 | Initializing the elements of an array with an array initializer. (Part 2 of 2.)

int[] array = {32, 27, 64, 18, 95};

const int ArrayLength = 5; // create a named constant
int[] array = new int[ArrayLength]; // create array

array[counter] = 2 + 2 * counter;

ptg18189312

202 Chapter 8 Arrays; Introduction to Exception Handling

Declaring a Named Constant with const
Line 9 uses the modifier const to declare the constant ArrayLength, which is initialized to
5. Constants must be initialized in their declarations and cannot be modified thereafter.
Constants use the same Pascal Case naming conventions as classes, methods and properties.

8.4.4 Summing the Elements of an Array
Often, the elements of an array represent a series of values to be used in a calculation. For
example, if the elements of an array represent exam grades, an instructor may wish to sum

20 // output each array element's value
21 for (int counter = 0; counter < array.Length; ++counter)
22 {
23 Console.WriteLine($"{counter,5}{array[counter],8}");
24 }
25 }
26 }

Index Value
 0 2
 1 4
 2 6
 3 8
 4 10

Good Programming Practice 8.1
Constants are also called named constants. Apps using constants often are more readable
than those that use literal values (e.g., 5)—a named constant such as ArrayLength clearly
indicates its purpose, whereas the literal value 5 could have different meanings based on
the context in which it’s used. Another advantage to using named constants is that if the
constant’s value must be changed, the change is necessary only in the declaration, thus re-
ducing code-maintenance costs.

Good Programming Practice 8.2
Defining the size of an array as a named constant instead of a literal makes code clearer.
This technique eliminates so-called magic numbers. For example, repeatedly mentioning
the size 5 in array-processing code for a five-element array gives the number 5 an artificial
significance and can be confusing when the program includes other 5s that have nothing
to do with the array size.

Common Programming Error 8.2
Assigning a value to a named constant after it’s been initialized is a compilation error.

Common Programming Error 8.3
Attempting to declare a named constant without initializing it is a compilation error.

Fig. 8.4 | Calculating values to be placed into the elements of an array. (Part 2 of 2.)

ptg18189312

8.4 Examples Using Arrays 203

the elements then use the sum to calculate the class average. The GradeBook examples later
in the chapter (Sections 8.8 and 8.10) use this technique. Figure 8.5 sums the values con-
tained in a 10-element int array, which is declared and initialized in line 9. The for state-
ment performs the calculations by adding each element’s value to the total (line 15).3

8.4.5 Iterating Through Arrays with foreach
So far, we’ve used counter-controlled for statements to iterate through array elements. In
this section, we introduce the foreach statement, which iterates through an entire array’s
elements (or the elements of a collection, as you’ll see in Section 9.4). The syntax of a
foreach statement is

where type and identifier are the type and name (e.g., int number) of the iteration variable,
and arrayName is the array through which to iterate. The iteration variable’s type must be
consistent with the array’s element type. The iteration variable represents successive values
in the array on successive iterations of the foreach statement.

1 // Fig. 8.5: SumArray.cs
2 // Computing the sum of the elements of an array.
3 using System;
4
5 class SumArray
6 {
7 static void Main()
8 {
9 int[] array = {87, 68, 94, 100, 83, 78, 85, 91, 76, 87};

10 int total = 0;
11
12 // add each element's value to total
13 for (int counter = 0; counter < array.Length; ++counter)
14 {
15
16 }
17
18 Console.WriteLine($"Total of array elements: {total}");
19 }
20 }

Total of array elements: 849

Fig. 8.5 | Computing the sum of the elements of an array.

3. The values supplied as array initializers are often read into an app, rather than specified in an initial-
izer list. For example, an app could input the values from a user at the keyboard or from a file on disk
(as discussed in Chapter 17, Files and Streams). This makes the app more reusable, because it can be
used with different data sets.

foreach (type identifier in arrayName)
{

 statement
}

total += array[counter]; // add element value to total

ptg18189312

204 Chapter 8 Arrays; Introduction to Exception Handling

Figure 8.6 uses the foreach statement (lines 13–16) to calculate the sum of array’s
elements. The iteration variable number’s type is declared as int (line 13), because array
contains int values. The foreach statement iterates through successive int values in
array one by one, starting with the first element. The foreach header can be read con-
cisely as “for each iteration, assign array’s next element to int variable number, then exe-
cute the following statement.” Lines 13–16 are equivalent to the counter-controlled
iteration used in lines 13–16 of Fig. 8.5.

foreach vs. for
The foreach statement can be used in place of the for statement whenever code looping
through an array does not require access to the current array element’s index. For example,
totaling the integers in an array requires access only to the element values—each element’s
index is irrelevant. If an app must use a counter for some reason other than simply to loop
through an array (e.g., to calculate an element’s value based on the counter’s value, as in
Fig. 8.4), you should use the for statement.

Common Programming Error 8.4
Any attempt to change the iteration variable’s value in the body of a foreach statement
results in a compilation error.

1 // Fig. 8.6: ForEachTest.cs
2 // Using the foreach statement to total integers in an array.
3 using System;
4
5 class ForEachTest
6 {
7 static void Main()
8 {
9 int[] array = {87, 68, 94, 100, 83, 78, 85, 91, 76, 87};

10 int total = 0;
11
12 // add each element's value to total
13
14 {
15 total += number;
16 }
17
18 Console.WriteLine($"Total of array elements: {total}");
19 }
20 }

Total of array elements: 849

Fig. 8.6 | Using the foreach statement to total integers in an array.

Common Programming Error 8.5
Attempting to modify an array element’s value using a foreach statement’s iteration vari-
able is a logic error—the iteration variable can be used only to access each array element’s
value, not modify it.

foreach (int number in array)

ptg18189312

8.4 Examples Using Arrays 205

8.4.6 Using Bar Charts to Display Array Data Graphically; Introducing
Type Inference with var
Many apps present data to users in a graphical manner. For example, numeric values are
often displayed as bars in a bar chart. In such a chart, longer bars represent proportionally
larger numeric values. One simple way to display numeric data graphically is with a bar
chart that shows each numeric value as a bar of asterisks (*).

An instructor might graph the number of grades in each of several categories to visu-
alize the grade distribution for an exam. Suppose the grades on an exam were 87, 68, 94,
100, 83, 78, 85, 91, 76 and 87. Included were one grade of 100, two grades in the 90s,
four grades in the 80s, two grades in the 70s, one grade in the 60s and no grades below 60.
Our next app (Fig. 8.7) stores this grade-distribution data in an array of 11 elements, each
corresponding to a category of grades. For example, array[0] indicates the number of
grades in the range 0–9, array[7] the number of grades in the range 70–79 and
array[10] the number of 100 grades. The two versions of class GradeBook in Sections 8.8
and 8.10 contain code that calculates these grade frequencies based on a set of grades. For
now, we manually create array and initialize it with the number of grades in each range
(Fig. 8.7, line 9). We discuss the keyword var (lines 14 and 27) after we present the app’s
logic.

1 // Fig. 8.7: BarChart.cs
2 // Bar chart displaying app.
3 using System;
4
5 class BarChart
6 {
7 static void Main()
8 {
9 int[] array = {0, 0, 0, 0, 0, 0, 1, 2, 4, 2, 1}; // distribution

10
11 Console.WriteLine("Grade distribution:");
12
13 // for each array element, output a bar of the chart
14
15 {
16 // output bar labels ("00-09: ", ..., "90-99: ", "100: ")
17 if (counter == 10)
18 {
19 Console.Write(" 100: ");
20 }
21 else
22 {
23
24 }
25
26 // display bar of asterisks
27
28 {
29 Console.Write("*");
30 }

Fig. 8.7 | Bar chart displaying app. (Part 1 of 2.)

for (var counter = 0; counter < array.Length; ++counter)

Console.Write($"{counter * 10:D2}-{counter * 10 + 9:D2}: ");

for (var stars = 0; stars < array[counter]; ++stars)

ptg18189312

206 Chapter 8 Arrays; Introduction to Exception Handling

The app reads the numbers from the array and graphs the information as a bar chart.
Each grade range is followed by a bar of asterisks indicating the number of grades in that
range. To label each bar, lines 17–24 display a grade range (e.g., "70-79: ") based on the
current value of counter. When counter is 10, line 19 displays " 100: " to align the
colon with the other bar labels. When counter is not 10, line 23 formats the grade range’s
label using the string-interpolation expressions

and

The format specifier D indicates that the value should be formatted as an integer, and the
number after the D indicates how many digits this formatted integer must contain. The 2
indicates that values with fewer than two digits should begin with a leading 0.

The nested for statement (lines 27–30) displays the bars. Note the loop-continuation
condition at line 27 (stars < array[counter]). Each time the app reaches the inner for,
the loop counts from 0 up to one less than array[counter], thus using a value in array
to determine the number of asterisks to display. In this example, array[0]–array[5] con-
tain 0s because no students received a grade below 60. Thus, the app displays no asterisks
next to the first six grade ranges.

Implicitly Typed Local Variables and Keyword var
In line 14

notice var keyword rather than a type preceding the variable counter. This declares the
variable and lets the compiler determine the variable’s type, based on the variable’s initial-
izer. This process is known as type inference and local variables declared in this manner
are known as implicitly typed local variables. Here, the compiler infers that counter’s type
is int, because it’s initialized with the literal 0, which is an int.

31
32 Console.WriteLine(); // start a new line of output
33 }
34 }
35 }

Grade distribution:
00-09:
10-19:
20-29:
30-39:
40-49:
50-59:
60-69: *
70-79: **
80-89: ****
90-99: **

100: *

{counter * 10:D2}

{counter * 10 + 9:D2}

for (var counter = 0; counter < array.Length; ++counter)

Fig. 8.7 | Bar chart displaying app. (Part 2 of 2.)

ptg18189312

8.4 Examples Using Arrays 207

Similarly, consider line 11 of Fig. 4.9:

Notice that the type Account appears twice—once to declare variable account1’s type and
once to specify the type of the new object being created. From this point forward, the pre-
ferred way to write this statement is

Here, the compiler infers that account1’s type is Account, because the compiler can deter-
mine the type from the expression

which creates an Account object.
The Microsoft C# Coding Conventions

recommend using type inference when a local variable’s type is obvious, based on its initial
value.4 These coding conventions are just guidelines, not requirements. In industry, your
employer might have its own coding requirements that differ from Microsoft’s guidelines.

More on Implicitly Typed Local Variables
Implicitly typed local variables also can be used to initialize an array variable via an initial-
izer list. In the following statement, the type of values is inferred as int[]:

new[] specifies that the initializer list is for an array. The array’s element type, int, is
inferred from the initializers. The following statement—in which values is initialized di-
rectly without new[]—generates a compilation error:

8.4.7 Using the Elements of an Array as Counters
Sometimes, apps use counter variables to summarize data, such as the results of a survey.
In Fig. 7.6, we used separate counters in our die-rolling app to track the number of times
each face of a six-sided die appeared as the app rolled the die 60,000,000 times. An array
version of the app in Fig. 7.6 is shown in Fig. 8.8.

The app uses array frequency (line 10) to count the occurrences of each roll. The
single statement in line 15 replaces lines 24–44 of Fig. 7.6. Line 15 of Fig. 8.8 uses the
random value to determine which frequency array element to increment. The call to Next

Account account1 = new Account("Jane Green");

var account1 = new Account("Jane Green");

new Account("Jane Green")

https://msdn.microsoft.com/library/ff926074

4. You’ll see in Chapter 9 that type inference is particularly helpful with anonymous types—that is,
types that are created as the result of an expression and that do not have names.

var values = new[] {32, 27, 64, 18, 95, 14, 90, 70, 60, 37};

var values = {32, 27, 64, 18, 95, 14, 90, 70, 60, 37};

Common Programming Error 8.6
Initializer lists can be used with both arrays and collections. If an implicitly typed local
variable is initialized via an initializer list without new[], a compilation error occurs,
because the compiler cannot infer whether the variable should be an array or a collection.
We use a List collection in Chapter 9 and cover collections in detail in Chapter 19.

https://msdn.microsoft.com/library/ff926074

ptg18189312

208 Chapter 8 Arrays; Introduction to Exception Handling

produces a random number from 1 to 6, so frequency must be large enough to store six
counters. We use a seven-element array in which we ignore frequency[0]—it’s more log-
ical to have the face value 1 increment frequency[1] than frequency[0]. Thus, each face
value is used directly as an index for array frequency. We also replaced lines 48–50 of
Fig. 7.6 by looping through array frequency to output the results (Fig. 8.8, lines 21–24).

8.5 Using Arrays to Analyze Survey Results; Intro to
Exception Handling
Our next example uses arrays to summarize data collected in a survey. Consider the fol-
lowing problem statement:

Twenty students were asked to rate on a scale of 1 to 5 the quality of the food in the
student cafeteria, with 1 being “awful” and 5 being “excellent.” Place the 20 responses
in an integer array and determine the frequency of each rating.

1 // Fig. 8.8: RollDie.cs
2 // Roll a six-sided die 60,000,000 times.
3 using System;
4
5 class RollDie
6 {
7 static void Main()
8 {
9 var randomNumbers = new Random(); // random-number generator

10 var frequency = new int[7]; // array of frequency counters
11
12 // roll die 60,000,000 times; use die value as frequency index
13 for (var roll = 1; roll <= 60000000; ++roll)
14 {
15
16 }
17
18 Console.WriteLine($"{"Face"}{"Frequency",10}");
19
20 // output each array element's value
21 for (var face = 1; face < frequency.Length; ++face)
22 {
23 Console.WriteLine($"{face,4}{frequency[face],10}");
24 }
25 }
26 }

Face Frequency
 1 10004131
 2 9998200
 3 10003734
 4 9999332
 5 9999792
 6 9994811

Fig. 8.8 | Roll a six-sided die 60,000,000 times.

++frequency[randomNumbers.Next(1, 7)];

ptg18189312

8.5 Using Arrays to Analyze Survey Results; Intro to Exception Handling 209

This is a typical array-processing app (Fig. 8.9). We wish to summarize the number of re-
sponses of each type (that is, 1–5). Array responses (lines 10–11) is a 20-element integer
array containing the students’ survey responses. The last value in the array is intentionally
an incorrect response (14). When a C# program executes, the runtime checks array
element indices for validity—all indices must be greater than or equal to 0 and less than
the length of the array. Any attempt to access an element outside that range of indices re-
sults in a runtime error known as an IndexOutOfRangeException. At the end of this sec-
tion, we’ll discuss the invalid response, demonstrate array bounds checking and introduce
C#’s exception-handling mechanism, which can be used to detect and handle an Index-
OutOfRangeException.

1 // Fig. 8.9: StudentPoll.cs
2 // Poll analysis app.
3 using System;
4
5 class StudentPoll
6 {
7 static void Main()
8 {
9 // student response array (more typically, input at runtime)

10 int[] responses = {1, 2, 5, 4, 3, 5, 2, 1, 3, 3, 1, 4, 3, 3, 3,
11 2, 3, 3, 2, };
12 var frequency = new int[6]; // array of frequency counters
13
14 // for each answer, select responses element and use that value
15 // as frequency index to determine element to increment
16 for (var answer = 0; answer < responses.Length; ++answer)
17 {
18
19
20
21
22
23
24
25
26
27
28 }
29
30 Console.WriteLine($"{"Rating"}{"Frequency",10}");
31
32 // output each array element's value
33
34 {
35 Console.WriteLine($"{rating,6}{frequency[rating],10}");
36 }
37 }
38 }

Fig. 8.9 | Poll analysis app. (Part 1 of 2.)

14

try
{
 ++frequency[responses[answer]];
}
catch (IndexOutOfRangeException ex)
{
 Console.WriteLine(ex.Message);
 Console.WriteLine(

 $" responses[{answer}] = {responses[answer]}\n");
}

for (var rating = 1; rating < frequency.Length; ++rating)

ptg18189312

210 Chapter 8 Arrays; Introduction to Exception Handling

The frequency Array
We use the six-element array frequency (line 12) to count the number of occurrences of
each response. Each element is used as a counter for one of the possible types of survey
responses—frequency[1] counts the number of students who rated the food as 1, fre-
quency[2] counts the number of students who rated the food as 2, and so on.

8.5.1 Summarizing the Results
Lines 16–28 read the responses from the array responses one at a time and increments on
of the counters frequency[1] to frequency[5]; we ignore frequency[0] because the sur-
vey responses are limited to the range 1–5. The key statement in the loop appears in line
20. This statement increments the appropriate frequency counter as determined by the
value of responses[answer].

Let’s step through the first few iterations of the foreach statement:

• When the counter answer is 0, responses[answer] is the value of responses[0]
(that is, 1—see line 10). In this case, frequency[responses[answer]] is inter-
preted as frequency[1], and frequency[1] is incremented by one. To evaluate
the expression, we begin with the value in the innermost set of brackets (answer,
currently 0). The value of answer is plugged into the expression, and the next set
of brackets (responses[answer]) is evaluated. That value is used as the index for
the frequency array to determine which counter to increment (in this case, fre-
quency[1]).

• The next time through the loop answer is 1, responses[answer] is the value of
responses[1] (that is, 2—see line 10), so frequency[responses[answer]] is in-
terpreted as frequency[2], causing frequency[2] to be incremented.

• When answer is 2, responses[answer] is the value of responses[2] (that is, 5—
see line 10), so frequency[responses[answer]] is interpreted as frequency[5],
causing frequency[5] to be incremented, and so on.

Regardless of the number of responses processed in the survey, only a six-element array (in
which we ignore element zero) is required to summarize the results, because all the correct
response values are between 1 and 5, and the index values for a six-element array are 0–5.
In the output in Fig. 8.9, the frequency column summarizes only 19 of the 20 values in
the responses array—the last element of the array responses contains an incorrect re-
sponse that was not counted. Lines 16–28 could be simplified, by changing line 16 to

Index was outside the bounds of the array.
 responses[19] = 14

Rating Frequency
 1 3
 2 4
 3 8
 4 2
 5 2

foreach (var response in responses)

Fig. 8.9 | Poll analysis app. (Part 2 of 2.)

ptg18189312

8.5 Using Arrays to Analyze Survey Results; Intro to Exception Handling 211

line 20 to

and modifying the error message displayed by lines 25–26.

8.5.2 Exception Handling: Processing the Incorrect Response
An exception indicates a problem that occurs while a program executes. Exception han-
dling enables you to create fault-tolerant programs that can resolve (or handle) excep-
tions. In many cases, this allows a program to continue executing as if no problems were
encountered. For example, the Student Poll app still displays results (Fig. 8.9), even though
one of the responses was out of range. More severe problems might prevent a program
from continuing normal execution, instead requiring the program to notify the user of the
problem, then terminate. When the runtime or a method detects a problem, such as an
invalid array index or an invalid method argument, it throws an exception—that is, an ex-
ception occurs. The exception here is thrown by the runtime. In Section 10.2, you’ll see
how to throw your own exceptions.

8.5.3 The try Statement
To handle an exception, place any code that might throw an exception in a try statement
(Fig. 8.9, lines 18–27). The try block (lines 18–21) contains the code that might throw
an exception, and the catch block (lines 22–27) contains the code that handles the excep-
tion if one occurs. You can have many catch blocks to handle different types of exceptions
that might be thrown in the corresponding try block. When line 20 correctly increments
an element of the frequency array, lines 22–27 are ignored. The braces that delimit the
bodies of the try and catch blocks are required.

8.5.4 Executing the catch Block
When the program encounters the value 14 in the responses array, it attempts to add 1 to
frequency[14], which does not exist—the frequency array has only six elements. Because
the runtime performs array bounds checking, it generates an exception—specifically line 20
throws an IndexOutOfRangeException to notify the program of this problem. At this point
the try block terminates and the catch block begins executing—if you declared any vari-
ables in the try block, they no longer exist, so they’re not accessible in the catch block.

The catch block declares an exception parameter’s type (IndexOutOfRangeExcep-
tion) and name (ex). The catch block can handle exceptions of the specified type. Inside
the catch block, you can use the parameter’s identifier to interact with a caught exception
object.

8.5.5 Message Property of the Exception Parameter
When lines 22–27 catch the exception, the program displays a message indicating the
problem that occurred. Line 24 uses the exception object’s built-in Message property to

++frequency[response];

Error-Prevention Tip 8.1
When writing code to access an array element, ensure that the array index remains greater
than or equal to 0 and less than the length of the array. This will help prevent IndexOut-
OfRangeExceptions in your program.

ptg18189312

212 Chapter 8 Arrays; Introduction to Exception Handling

get the error message and display it. Once the message is displayed, the exception is con-
sidered handled and the program continues with the next statement after the catch block’s
closing brace. In this example, the end of the foreach statement is reached (line 28), so
the program continues with the next iteration of the loop. We use exception handling
again in Chapter 10, then Chapter 13 presents a deeper look at exception handling.

8.6 Case Study: Card Shuffling and Dealing Simulation
So far, this chapter’s examples have used arrays of value-type elements. This section uses
random-number generation and an array of reference-type elements—namely, objects repre-
senting playing cards—to develop a class that simulates card shuffling and dealing. This
class can then be used to implement apps that play card games.

We first develop class Card (Fig. 8.10), which represents a playing card that has a face
(e.g., "Ace", "Deuce", "Three", …, "Jack", "Queen", "King") and a suit (e.g., "Hearts",
"Diamonds", "Clubs", "Spades"). Next, we develop class DeckOfCards (Fig. 8.11), which
creates a deck of 52 playing cards in which each element is a Card object. Then we build
an app (Fig. 8.12) that uses class DeckOfCards’s card shuffling and dealing capabilities.

8.6.1 Class Card and Getter-Only Auto-Implemented Properties
Class Card (Fig. 8.10) contains two auto-implemented string properties—Face and
Suit—that store references to the face value and suit name for a specific Card. Prior to
C# 6, auto-implemented properties required both a get and a set accessor. Face and Suit
are declared as C# 6 getter-only auto-implemented properties, which client code can use
only to get each property’s value. Such properties are read only. Getter-only auto-imple-
mented properties can be initialized only either in their declarations or in all of the type’s
constructors. Initializing an auto-implemented property in its declaration is another C# 6
feature known as auto-property initializers. To do so, follow the property declaration with
an = and the initial value, as in

You can also initialize instance variables in their declarations.

Type PropertyName { get; set; } = initializer;

1 // Fig. 8.10: Card.cs
2 // Card class represents a playing card.
3 class Card
4 {
5 private string Face { get; } // Card’s face ("Ace", "Deuce", ...)
6 private string Suit { get; } // Card’s suit ("Hearts", "Diamonds", ...)
7
8 // two-parameter constructor initializes card's Face and Suit
9 public Card(string face, string suit)

10 {
11 Face = face; // initialize face of card
12 Suit = suit; // initialize suit of card
13 }
14

Fig. 8.10 | Card class represents a playing card. (Part 1 of 2.)

ptg18189312

8.6 Case Study: Card Shuffling and Dealing Simulation 213

The constructor (lines 9–13) receives two strings that it uses to initialize the class’s
properties. Method ToString (line 16)—implemented here as an expression-bodied
method—creates a string consisting of the Face of the card, the string " of " and the
Suit of the card (e.g., "Ace of Spades"). An object’s ToString method is called implicitly
in many cases when the object is used where a string is expected, such as

• when Write or WriteLine outputs the object,

• when the object is concatenated to a string using the + operator, or

• when the object is inserted into a string-interpolation expression.

ToString also can be invoked explicitly to obtain a string representation of an object.
ToString must be declared with the header exactly as shown in line 16 of Fig. 8.10.

We’ll explain the purpose of the override keyword in Section 11.4.1.

8.6.2 Class DeckOfCards
Class DeckOfCards (Fig. 8.11) creates and manages an array of Card references. The named
constant NumberOfCards (line 10) specifies the number of Cards in a deck (52). Line 11 de-
clares an instance-variable named deck that refers to an array of Card objects with Number-
OfCards (52) elements—the elements of the deck array are null by default. Like simple-
type array-variable declarations, the declaration of a variable for an array of objects (e.g.,
Card[] deck) includes the type of the array’s elements, followed by square brackets and the
name of the array variable. Class DeckOfCards also declares int instance variable current-
Card (line 12), representing the next Card to be dealt from the deck array. Note that we can-
not use var for type inference with NumberOfCards, deck and currentCard, because they
are not local variables of a method or property.

15 // return string representation of Card
16
17 }

1 // Fig. 8.11: DeckOfCards.cs
2 // DeckOfCards class represents a deck of playing cards.
3 using System;
4
5 class DeckOfCards
6 {
7 // create one Random object to share among DeckOfCards objects
8 private static Random randomNumbers = new Random();
9

10 private const int NumberOfCards = 52; // number of cards in a deck
11 private Card[] deck = new Card[NumberOfCards];
12 private int currentCard = 0; // index of next Card to be dealt (0-51)
13

Fig. 8.11 | DeckOfCards class represents a deck of playing cards. (Part 1 of 2.)

Fig. 8.10 | Card class represents a playing card. (Part 2 of 2.)

public override string ToString() => $"{Face} of {Suit}";

ptg18189312

214 Chapter 8 Arrays; Introduction to Exception Handling

Class DeckOfCards: Constructor
The constructor (lines 22–25) fills the deck array with Cards. The for statement initializes
count to 0 and loops while count is less than deck.Length, causing count to take on each
integer value from 0 to 51 (the deck array’s indices). Each Card is initialized with two

14 // constructor fills deck of Cards
15 public DeckOfCards()
16 {
17
18
19
20
21 // populate deck with Card objects
22 for (var count = 0; count < deck.Length; ++count)
23 {
24
25 }
26 }
27
28 // shuffle deck of Cards with one-pass algorithm
29 public void Shuffle()
30 {
31 // after shuffling, dealing should start at deck[0] again
32 currentCard = 0; // reinitialize currentCard
33
34 // for each Card, pick another random Card and swap them
35 for (var first = 0; first < deck.Length; ++first)
36 {
37 // select a random number between 0 and 51
38 var second = randomNumbers.Next(NumberOfCards);
39
40 // swap current Card with randomly selected Card
41
42
43
44 }
45 }
46
47 // deal one Card
48 public Card DealCard()
49 {
50 // determine whether Cards remain to be dealt
51 if ()
52 {
53 return deck[currentCard++]; // return current Card in array
54 }
55 else
56 {
57 return null; // indicate that all Cards were dealt
58 }
59 }
60 }

Fig. 8.11 | DeckOfCards class represents a deck of playing cards. (Part 2 of 2.)

string[] faces = {"Ace", "Deuce", "Three", "Four", "Five", "Six",
 "Seven", "Eight", "Nine", "Ten", "Jack", "Queen", "King"};
string[] suits = {"Hearts", "Diamonds", "Clubs", "Spades"};

deck[count] = new Card(faces[count % 13], suits[count / 13]);

Card temp = deck[first];
deck[first] = deck[second];
deck[second] = temp;

currentCard < deck.Length

ptg18189312

8.6 Case Study: Card Shuffling and Dealing Simulation 215

strings—one from the faces array at lines 17–18 (which contains "Ace" through "King")
and one from the suits array at line 19 (which contains "Hearts", "Diamonds", "Clubs"
and "Spades"). The calculation count % 13 (line 24) results in a value from 0 to 12—the 13
indices of array faces. Similarly, the calculation count / 13 always results in a value from
0 to 3—the four indices of array suits. When the deck array is initialized, it contains the
Cards with faces "Ace" through "King" in order for each suit. Note that we cannot use a
foreach loop in lines 22–25, because we need to modify each element of deck.

Class DeckOfCards: Shuffle Method
Method Shuffle (lines 29–45) shuffles the Cards in the deck. The method loops through
all 52 Cards and performs the following tasks:

• For each Card, a random number between 0 and 51 is picked to select another Card.

• Next, the current Card object and the randomly selected Card object are swapped.
This exchange is performed by the three assignments in lines 41–43. The extra
variable temp temporarily stores one of the two Card objects being swapped.

The swap cannot be performed with only the two statements

If deck[first] is the "Ace" of "Spades" and deck[second] is the "Queen" of "Hearts",
then after the first assignment, both array elements contain the "Queen" of "Hearts", and
the "Ace" of "Spades" is lost—hence, the extra variable temp is needed. After the for loop
terminates, the Card objects are randomly ordered. Only 52 swaps are made in a single pass
of the entire array, and the array of Card objects is shuffled.

Recommendation: Use an Unbiased Shuffling Algorithm
It’s recommended that you use a so-called unbiased shuffling algorithm for real card
games. Such an algorithm ensures that all possible shuffled card sequences are equally like-
ly to occur. A popular unbiased shuffling algorithm is the Fisher-Yates algorithm

This webpage also uses pseudocode to shows how to implement the algorithm.

Class DeckOfCards: DealCard Method
Method DealCard (lines 48–59) deals one Card. Recall that currentCard indicates the in-
dex of the Card at the top of the deck). Thus, line 51 compares currentCard to the length
of the deck array. If the deck is not empty (i.e., currentCard is less than 52), line 53 re-
turns the top Card and increments currentCard to prepare for the next call to DealCard—
otherwise, line 57 returns null to indicate that the end of deck has been reached.

8.6.3 Shuffling and Dealing Cards
Figure 8.12 demonstrates the card shuffling and dealing capabilities of class DeckOfCards
(Fig. 8.11). Line 10 of Fig. 8.12 creates a DeckOfCards object named myDeckOfCards and
uses type inference to determine the variable’s type. Recall that the DeckOfCards construc-
tor creates the deck with the 52 Card objects in order by suit and face. Line 11 invokes
myDeckOfCards’s Shuffle method to rearrange the Card objects. The for statement in

deck[first] = deck[second];
deck[second] = deck[first];

http://en.wikipedia.org/wiki/Fisher–Yates_shuffle

http://en.wikipedia.org/wiki/Fisher�Yates_shuffle

ptg18189312

216 Chapter 8 Arrays; Introduction to Exception Handling

lines 14–22 deals all 52 Cards in the deck and displays them in four columns of 13 Cards
each. Line 16 deals and displays a Card object by invoking myDeckOfCards’s DealCard
method. When a Card object is placed in a string-interpolation expression, the Card’s To-
String method is invoked implicitly. Because the field width is negative, the result is dis-
played left-aligned in a field of width 19.

8.7 Passing Arrays and Array Elements to Methods
To pass an array argument to a method, specify the name of the array without any brackets.
For example, if hourlyTemperatures is declared as

1 // Fig. 8.12: DeckOfCardsTest.cs
2 // Card-shuffling-and-dealing app.
3 using System;
4
5 class DeckOfCardsTest
6 {
7 // execute app
8 static void Main()
9 {

10
11
12
13 // display all 52 Cards in the order in which they are dealt
14 for (var i = 0; i < 52; ++i)
15 {
16 Console.Write($"{ ,-19}");
17
18 if ((i + 1) % 4 == 0)
19 {
20 Console.WriteLine();
21 }
22 }
23 }
24 }

Eight of Clubs Ten of Clubs Ten of Spades Four of Spades
Ace of Spades Jack of Spades Three of Spades Seven of Spades
Three of Diamonds Five of Clubs Eight of Spades Five of Hearts
Ace of Hearts Ten of Hearts Deuce of Hearts Deuce of Clubs
Jack of Hearts Nine of Spades Four of Hearts Seven of Clubs
Queen of Spades Seven of Diamonds Five of Diamonds Ace of Clubs
Four of Clubs Ten of Diamonds Jack of Clubs Six of Diamonds
Eight of Diamonds King of Hearts Three of Clubs King of Spades
King of Diamonds Six of Spades Deuce of Spades Five of Spades
Queen of Clubs King of Clubs Queen of Hearts Seven of Hearts
Ace of Diamonds Deuce of Diamonds Four of Diamonds Nine of Clubs
Queen of Diamonds Jack of Diamonds Six of Hearts Nine of Diamonds
Nine of Hearts Three of Hearts Six of Clubs Eight of Hearts

Fig. 8.12 | Card-shuffling-and-dealing app.

var hourlyTemperatures = new double[24];

var myDeckOfCards = new DeckOfCards();
myDeckOfCards.Shuffle(); // place Cards in random order

myDeckOfCards.DealCard()

ptg18189312

8.7 Passing Arrays and Array Elements to Methods 217

then the method call

passes the reference of array hourlyTemperatures to method ModifyArray. Every array
object “knows” its own length (and makes it available via its Length property). Thus, when
we pass an array object’s reference to a method, we need not pass the array length as an
additional argument.

Specifying an Array Parameter
For a method to receive an array reference through a method call, the method’s parameter
list must specify an array parameter. For example, the method header for method Modify-
Array might be written as

indicating that ModifyArray receives the reference of an array of doubles in parameter b.
The method call passes array hourlyTemperatures’ reference, so when the called method
uses the array variable b, it refers to the same array object as hourlyTemperatures in the
calling method.

Pass-By-Value vs. Pass-By-Reference
When an argument is an entire array or an individual array element of a reference type, the
called method receives a copy of the reference. However, when an argument to a method is
an individual array element of a value type, the called method receives a copy of the element’s
value. To pass an individual array element to a method, use the indexed name of the array
as an argument (e.g., hourlyTemperatures[2]). If you want to pass a value-type array el-
ement to a method by reference, you must use the ref keyword as shown in Section 7.18.

Passing an Entire Array vs. Passing a Single Array Element
Figure 8.13 demonstrates the difference between passing an entire array and passing a val-
ue-type array element to a method. The foreach statement at lines 16–19 outputs the five
int elements of array. Line 21 invokes method ModifyArray, passing array as an argu-
ment. Method ModifyArray (lines 38–44) receives a copy of array’s reference and uses the
reference to multiply each of array’s elements by 2. To prove that array’s elements (in
Main) were modified, the foreach statement at lines 25–28 outputs the five elements of ar-
ray again. As the output shows, method ModifyArray doubled the value of each element.

ModifyArray(hourlyTemperatures);

void ModifyArray(double[] b)

1 // Fig. 8.13: PassArray.cs
2 // Passing arrays and individual array elements to methods.
3 using System;
4
5 class PassArray
6 {
7 // Main creates array and calls ModifyArray and ModifyElement
8 static void Main()
9 {

10 int[] array = {1, 2, 3, 4, 5};

Fig. 8.13 | Passing arrays and individual array elements to methods. (Part 1 of 2.)

ptg18189312

218 Chapter 8 Arrays; Introduction to Exception Handling

11
12 Console.WriteLine("Effects of passing reference to entire array:");
13 Console.WriteLine("The values of the original array are:");
14
15 // output original array elements
16 foreach (var value in array)
17 {
18 Console.Write($" {value}");
19 }
20
21
22 Console.WriteLine("\n\nThe values of the modified array are:");
23
24 // output modified array elements
25 foreach (var value in array)
26 {
27 Console.Write($" {value}");
28 }
29
30 Console.WriteLine("\n\nEffects of passing array element value:\n" +
31 $"array[3] before ModifyElement: {array[3]}");
32
33
34 Console.WriteLine($"array[3] after ModifyElement: {array[3]}");
35 }
36
37 // multiply each element of an array by 2
38 static void ModifyArray()
39 {
40 for (var counter = 0; counter < array2.Length; ++counter)
41 {
42
43 }
44 }
45
46 // multiply argument by 2
47 static void ModifyElement()
48 {
49
50 Console.WriteLine($"Value of element in ModifyElement: {element}");
51 }
52 }

Effects of passing reference to entire array:
The values of the original array are:

 1 2 3 4 5

The values of the modified array are:
 2 4 6 8 10

Effects of passing array element value:
array[3] before ModifyElement: 8
Value of element in ModifyElement: 16
array[3] after ModifyElement: 8

Fig. 8.13 | Passing arrays and individual array elements to methods. (Part 2 of 2.)

ModifyArray(array); // pass array reference

ModifyElement(array[3]); // attempt to modify array[3]

int[] array2

array2[counter] *= 2;

int element

element *= 2;

ptg18189312

8.8 Case Study: GradeBook Using an Array to Store Grades 219

Figure 8.13 next demonstrates that when a copy of an individual value-type array ele-
ment is passed to a method, modifying the copy in the called method does not affect the
original value of that element in the calling method’s array. To show the value of array[3]
before invoking method ModifyElement, lines 30–31 display the value of array[3], which
is 8. Line 33 calls method ModifyElement (lines 47–51) and passes array[3] as an argu-
ment. Remember that array[3] is actually one int value (8) in array. Therefore, the app
passes a copy of the value of array[3]. Method ModifyElement multiplies the value
received as an argument by 2, stores the result in its parameter element, then outputs the
value of element (16). Since method parameters, like local variables, cease to exist when
the method in which they’re declared completes execution, the method parameter ele-
ment is destroyed when method ModifyElement terminates. When the app returns control
to Main, line 34 displays the unmodified value of array[3] (i.e., 8).

8.8 Case Study: GradeBook Using an Array to Store Grades
We now present the first version of a GradeBook class that instructors can use to maintain
students’ grades on an exam and display a grade report that includes the grades, class av-
erage, lowest grade, highest grade and a grade distribution bar chart. The version of class
GradeBook presented in this section stores the grades for one exam in a one-dimensional
array. In Section 8.10, we present a second version of class GradeBook that uses a two-di-
mensional array to store students’ grades for several exams.

Storing Student Grades in an array in Class GradeBook
Figure 8.14 shows the output that summarizes the 10 grades we store in an object of class
GradeBook (Fig. 8.15), which uses an array of integers to store the grades of 10 students
for a single exam. The array grades is declared as an instance variable in line 7 of
Fig. 8.15—therefore, each GradeBook object maintains its own set of grades.

Welcome to the grade book for
CS101 Introduction to C# Programming!

The grades are:

Student 1: 87
Student 2: 68
Student 3: 94
Student 4: 100
Student 5: 83
Student 6: 78
Student 7: 85
Student 8: 91
Student 9: 76
Student 10: 87

Class average is 84.90
Lowest grade is 68
Highest grade is 100

Fig. 8.14 | Output of the GradeBook example that stores one exam’s grades in an array. (Part 1
of 2.)

ptg18189312

220 Chapter 8 Arrays; Introduction to Exception Handling

Grade distribution:
00-09:
10-19:
20-29:
30-39:
40-49:
50-59:
60-69: *
70-79: **
80-89: ****
90-99: **

100: *

1 // Fig. 8.15: GradeBook.cs
2 // Grade book using an array to store test grades.
3 using System;
4
5 class GradeBook
6 {
7
8
9 // getter-only auto-implemented property CourseName

10 public string CourseName { get; }
11
12 // two-parameter constructor initializes
13 // auto-implemented property CourseName and grades array
14 public GradeBook(string name, int[] gradesArray)
15 {
16 CourseName = name; // set CourseName to name
17
18 }
19
20 // display a welcome message to the GradeBook user
21 public void DisplayMessage()
22 {
23 // auto-implemented property CourseName gets the name of course
24 Console.WriteLine(
25 $"Welcome to the grade book for\n{CourseName}!\n");
26 }
27
28 // perform various operations on the data
29 public void ProcessGrades()
30 {
31 // output grades array
32
33
34 // call method GetAverage to calculate the average grade
35 Console.WriteLine($"\nClass average is { :F}");

Fig. 8.15 | Grade book using an array to store test grades. (Part 1 of 4.)

Fig. 8.14 | Output of the GradeBook example that stores one exam’s grades in an array. (Part 2
of 2.)

private int[] grades; // array of student grades

grades = gradesArray; // initialize grades array

OutputGrades();

GetAverage()

ptg18189312

8.8 Case Study: GradeBook Using an Array to Store Grades 221

36
37 // call methods GetMinimum and GetMaximum
38 Console.WriteLine($"Lowest grade is { }");
39 Console.WriteLine($"Highest grade is { }\n");
40
41 // call OutputBarChart to display grade distribution chart
42
43 }
44
45 // find minimum grade
46 public int GetMinimum()
47 {
48 var lowGrade = grades[0]; // assume grades[0] is smallest
49
50 // loop through grades array
51
52
53
54
55
56
57
58
59
60 return lowGrade; // return lowest grade
61 }
62
63 // find maximum grade
64 public int GetMaximum()
65 {
66 var highGrade = grades[0]; // assume grades[0] is largest
67
68 // loop through grades array
69 foreach (var grade in grades)
70 {
71 // if grade greater than highGrade, assign it to highGrade
72 if (grade > highGrade)
73 {
74 highGrade = grade; // new highest grade
75 }
76 }
77
78 return highGrade; // return highest grade
79 }
80
81 // determine average grade for test
82 public double GetAverage()
83 {
84 var total = 0.0; // initialize total as a double
85

Fig. 8.15 | Grade book using an array to store test grades. (Part 2 of 4.)

GetMinimum()
GetMaximum()

OutputBarChart();

foreach (var grade in grades)
{
 // if grade lower than lowGrade, assign it to lowGrade
 if (grade < lowGrade)
 {

 lowGrade = grade; // new lowest grade
 }
}

ptg18189312

222 Chapter 8 Arrays; Introduction to Exception Handling

86 // sum students' grades
87
88
89
90
91
92 // return average of grades
93 return total / grades.Length;
94 }
95
96 // output bar chart displaying grade distribution
97 public void OutputBarChart()
98 {
99 Console.WriteLine("Grade distribution:");
100
101 // stores frequency of grades in each range of 10 grades
102 var frequency = new int[11];
103
104 // for each grade, increment the appropriate frequency
105
106
107
108
109
110 // for each grade frequency, display bar in chart
111 for (var count = 0; count < frequency.Length; ++count)
112 {
113 // output bar label ("00-09: ", ..., "90-99: ", "100: ")
114 if (count == 10)
115 {
116 Console.Write(" 100: ");
117 }
118 else
119 {
120 Console.Write($"{count * 10:D2}-{count * 10 + 9:D2}: ");
121 }
122
123 // display bar of asterisks
124 for (var stars = 0; stars < frequency[count]; ++stars)
125 {
126 Console.Write("*");
127 }
128
129 Console.WriteLine(); // start a new line of output
130 }
131 }
132
133 // output the contents of the grades array
134 public void OutputGrades()
135 {
136 Console.WriteLine("The grades are:\n");

Fig. 8.15 | Grade book using an array to store test grades. (Part 3 of 4.)

foreach (var grade in grades)
{
 total += grade;
}

foreach (var grade in grades)
{
 ++frequency[grade / 10];
}

ptg18189312

8.8 Case Study: GradeBook Using an Array to Store Grades 223

The constructor (lines 14–18) receives the name of the course and an array of grades.
When an app (e.g., class GradeBookTest in Fig. 8.16) creates a GradeBook object, the app
passes an existing int array to the constructor, which assigns the array’s reference to instance
variable grades (Fig. 8.15, line 17). The size of grades is determined by the class that passes
the array to the constructor. Thus, a GradeBook can process a variable number of grades—
as many as are in the array in the caller. The grade values in the passed array could have been
input from a user at the keyboard or read from a file on disk (as discussed in Chapter 17). In
our test app, we simply initialize an array with a set of grade values (Fig. 8.16, line 9). Once
the grades are stored in instance variable grades of class GradeBook, all the class’s methods
can access the elements of grades as needed to perform various calculations.

Methods ProcessGrades and OutputGrades
Method ProcessGrades (Fig. 8.15, lines 29–43) contains a series of method calls that result
in the output of a report summarizing the grades. Line 32 calls method OutputGrades to dis-
play the contents of array grades. Lines 139–143 in method OutputGrades use a for state-
ment to output the student grades. We use a for statement, rather than a foreach, because
lines 141–142 use counter variable student’s value to output each grade next to a particular
student number (see Fig. 8.14). Although array indices start at 0, an instructor would typi-
cally number students starting at 1. Thus, lines 141–142 (Fig. 8.15) output student + 1 as
the student number to produce grade labels "Student 1: ", "Student 2: " and so on.

Method GetAverage
Method ProcessGrades next calls method GetAverage (line 35) to obtain the average of
the grades in the array. Method GetAverage (lines 82–94) uses a foreach statement to
total the values in array grades before calculating the average. The iteration variable in the
foreach’s header indicates that for each iteration, grade takes on a value in array grades.
The average calculation in line 93 uses grades.Length to determine the number of grades
being averaged. Note that we initialized total as a double (0.0), so no cast is necessary.

Methods GetMinimum and GetMaximum
Lines 38–39 in method ProcessGrades call methods GetMinimum and GetMaximum to de-
termine the lowest and highest grades of any student on the exam, respectively. Each of
these methods uses a foreach statement to loop through array grades. Lines 51–58 in
method GetMinimum loop through the array, and lines 54–57 compare each grade to low-
Grade. If a grade is less than lowGrade, lowGrade is set to that grade. When line 60 exe-

137
138 // output each student's grade
139
140
141
142
143
144 }
145 }

Fig. 8.15 | Grade book using an array to store test grades. (Part 4 of 4.)

for (var student = 0; student < grades.Length; ++student)
{
 Console.WriteLine(

 $"Student {student + 1, 2}: {grades[student],3}");
}

ptg18189312

224 Chapter 8 Arrays; Introduction to Exception Handling

cutes, lowGrade contains the lowest grade in the array. Method GetMaximum (lines 64–79)
works the same way as method GetMinimum.

Method OutputBarChart
Finally, line 42 in method ProcessGrades calls method OutputBarChart to display a distri-
bution chart of the grade data, using a technique similar to that in Fig. 8.7. In that example,
we manually calculated the number of grades in each category (i.e., 0–9, 10–19, …, 90–99
and 100) by simply looking at a set of grades. In this example, lines 102–108 (Fig. 8.15) use
a technique similar to that in Figs. 8.8 and 8.9 to calculate the frequency of grades in each
category. Line 102 declares variable frequency and initializes it with an array of 11 ints to
store the frequency of grades in each grade category. For each grade in array grades, lines
105–108 increment the appropriate element of the frequency array. To determine which
element to increment, line 107 divides the current grade by 10, using integer division. For
example, if grade is 85, line 107 increments frequency[8] to update the count of grades in
the range 80–89. Lines 111–130 next display the bar chart (see Fig. 8.7) based on the values
in array frequency. Like lines 27–30 of Fig. 8.7, lines 124–127 of Fig. 8.15 use a value in
array frequency to determine the number of asterisks to display in each bar.

Class GradeBookTest That Demonstrates Class GradeBook
Lines 11–12 of Fig. 8.16 create an object of class GradeBook (Fig. 8.15) using int array
gradesArray (declared and initialized in line 9 of Fig. 8.16). Line 13 displays a welcome
message, and line 14 invokes the GradeBook object’s ProcessGrades method. The output
reveals the summary of the 10 grades in myGradeBook.

Software Engineering Observation 8.1
A test harness (or test app) creates an object of the class to test and provides it with data,
which could be placed directly into an array with an array initializer, come from the user
at the keyboard or come from a file (as you’ll see in Chapter 17). After initializing an
object, the test harness uses the object’s members to manipulate the data. Gathering data
in the test harness like this allows the class to manipulate data from several sources.

1 // Fig. 8.16: GradeBookTest.cs
2 // Create a GradeBook object using an array of grades.
3 class GradeBookTest
4 {
5 // Main method begins app execution
6 static void Main()
7 {
8
9

10
11 var myGradeBook = new GradeBook(
12 "CS101 Introduction to C# Programming", gradesArray);
13 myGradeBook.DisplayMessage();
14 myGradeBook.ProcessGrades();
15 }
16 }

Fig. 8.16 | Create a GradeBook object using an array of grades.

// one-dimensional array of student grades
int[] gradesArray = {87, 68, 94, 100, 83, 78, 85, 91, 76, 87};

ptg18189312

8.9 Multidimensional Arrays 225

8.9 Multidimensional Arrays
Two-dimensional arrays are often used to represent tables of values consisting of infor-
mation arranged in rows and columns. To identify a particular table element, we must
specify two indices. By convention, the first identifies the element’s row and the second its
column. (Multidimensional arrays can have more than two dimensions, but such arrays
are beyond the scope of this book.) C# supports two types of two-dimensional arrays—
rectangular arrays and jagged arrays.

8.9.1 Rectangular Arrays
Rectangular arrays are used to represent tables of information in the form of rows and col-
umns, where each row has the same number of columns. Figure 8.17 illustrates a rectan-
gular array named a containing three rows and four columns—a three-by-four array. In
general, an array with m rows and n columns is called an m-by-n array.

Array-Access Expression for a Two-Dimensional Rectangular Array
Every element in array a is identified in by an array-access expression of the form
a[row, column]; a is the name of the array, and row and column are the indices that uniquely
identify each element in array a by row and column number. The element names in row 0
all have a first index of 0, and the element names in column 3 all have a second index of 3.

Array Initializer for a Two-Dimensional Rectangular Array
Like one-dimensional arrays, multidimensional arrays can be initialized with array initial-
izers in declarations. A rectangular array b with two rows and two columns could be de-
clared and initialized with nested array initializers as follows:

The initializer values are grouped by row in braces. So, 1 and 2 initialize b[0, 0] and
b[0, 1], respectively, and 3 and 4 initialize b[1, 0] and b[1, 1], respectively. The compiler
counts the number of nested array initializers (represented by sets of two inner braces with-
in the outer braces) in the initializer list to determine the number of rows in array b. The
compiler counts the initializer values in the nested array initializer for a row to determine
the number of columns (two) in that row. The compiler will generate an error if the num-
ber of initializers in each row is not the same, because every row of a rectangular array must
have the same length (i.e., the same number of columns.

Fig. 8.17 | Rectangular array with three rows and four columns.

int[,] b = {{1, 2}, {3, 4}};

Row 0

Row 1

Row 2

Column index
Row index
Array name

a[0, 0]

a[1, 0]

a[2, 0]

a[0, 1]

a[1, 1]

a[2, 1]

a[0, 2]

a[1, 2]

a[2, 2]

a[0, 3]

Column 0 Column 1 Column 2 Column 3

a[1, 3]

a[2, 3]

ptg18189312

226 Chapter 8 Arrays; Introduction to Exception Handling

8.9.2 Jagged Arrays
A jagged array is a one-dimensional array in which each element refers to a one-dimensional
array. This makes them quite flexible, because the lengths of the rows in the array need not
be the same. For example, jagged arrays could be used to store a single student’s exam grades
across multiple courses, where the number of exams may vary from course to course.

Array Initializer for a Two-Dimensional Jagged Array
We can access the elements in a jagged array by an array-access expression of the form
arrayName[row][column]—similar to the array-access expression for rectangular arrays,
but with a separate set of square brackets for each dimension. A jagged array with three
rows of different lengths could be declared and initialized as follows:

where 1 and 2 initialize jagged[0][0] and jagged[0][1], respectively; 3 initializes jag-
ged[1][0]; and 4, 5 and 6 initialize jagged[2][0], jagged[2][1] and jagged[2][2], re-
spectively. So array jagged is actually composed of four separate one-dimensional arrays—
one for the rows, one per row. Thus, array jagged itself is an array of three elements, each
a reference to a one-dimensional array of int values.

Diagram of a Two-Dimensional Jagged Array in Memory
Observe the differences between the array-creation expressions for rectangular arrays and
for jagged arrays. Two sets of square brackets follow the type of jagged, indicating that
this is an array of int arrays. Furthermore, in the array initializer, C# requires the keyword
new to create an array object for each row. Figure 8.18 illustrates the array reference jagged
after it’s been declared and initialized.

Creating Two-Dimensional Arrays with Array-Creation Expressions
A rectangular array can be created with an array-creation expression. For example, the fol-
lowing lines declare variable b and assign it a reference to a three-by-four rectangular array:

In this case, we use the literal values 3 and 4 to specify the number of rows and number of
columns, respectively, but this is not required—apps also can use variables and expressions
to specify array dimensions. As with one-dimensional arrays, the elements of a rectangular
array are initialized when the array object is created.

int[][] jagged = {new int[] {1, 2},
 new int[] {3},
 new int[] {4, 5, 6}};

Fig. 8.18 | Jagged array with three rows of different lengths.

int[,] b;
b = new int[3, 4];

jagged

1 2

3

4 5 6

ptg18189312

8.9 Multidimensional Arrays 227

A jagged array cannot be completely created with a single array-creation expression.
The following statement is a syntax error:

Instead, each one-dimensional array in the jagged array must be initialized separately.
A jagged array can be created as follows:

The preceding statements create a jagged array with two rows. Row 0 has five columns,
and row 1 has three columns.

8.9.3 Two-Dimensional Array Example: Displaying Element Values
Figure 8.19 demonstrates initializing rectangular and jagged arrays with array initializers and
using nested for loops to traverse the arrays (i.e., visit every element of each array). Class
InitArray’s Main method creates two arrays. Line 12 uses nested array initializers to ini-
tialize variable rectangular with an array in which row 0 has the values 1, 2 and 3, and
row 1 has the values 4, 5 and 6. Lines 17–19 use nested initializers of different lengths to
initialize variable jagged. In this case, the initializer uses the keyword new to create a one-
dimensional array for each row. Row 0 is initialized to have two elements with values 1
and 2, respectively. Row 1 is initialized to have one element with value 3. Row 2 is initial-
ized to have three elements with the values 4, 5 and 6, respectively.

int[][] c = new int[2][5]; // error

int[][] c;
c = new int[2][]; // create 2 rows
c[0] = new int[5]; // create 5 columns for row 0
c[1] = new int[3]; // create 3 columns for row 1

1 // Fig. 8.19: InitArray.cs
2 // Initializing rectangular and jagged arrays.
3 using System;
4
5 class InitArray
6 {
7 // create and output rectangular and jagged arrays
8 static void Main()
9 {

10 // with rectangular arrays,
11 // every row must be the same length.
12
13
14 // with jagged arrays,
15 // we need to use "new int[]" for every row,
16 // but every row does not need to be the same length.
17
18
19
20
21 OutputArray(rectangular); // displays array rectangular by row
22 Console.WriteLine(); // output a blank line
23 OutputArray(jagged); // displays array jagged by row
24 }

Fig. 8.19 | Initializing jagged and rectangular arrays. (Part 1 of 2.)

int[,] rectangular = {{1, 2, 3}, {4, 5, 6}};

int[][] jagged = {new int[] {1, 2},
 new int[] {3},
 new int[] {4, 5, 6}};

ptg18189312

228 Chapter 8 Arrays; Introduction to Exception Handling

Overloaded Method OutputArray
Method OutputArray is overloaded. The first version (lines 27–42) specifies the array pa-
rameter as int[,] array to indicate that it takes a rectangular array. The second version
(lines 45–60) takes a jagged array, because its array parameter is listed as int[][] array.

25
26 // output rows and columns of a rectangular array
27 static void OutputArray()
28 {
29 Console.WriteLine("Values in the rectangular array by row are");
30
31
32
33
34
35
36
37
38
39
40
41
42 }
43
44 // output rows and columns of a jagged array
45 static void OutputArray()
46 {
47 Console.WriteLine("Values in the jagged array by row are");
48
49
50
51
52
53
54
55
56
57
58
59
60 }
61 }

Values in the rectangular array by row are
1 2 3
4 5 6

Values in the jagged array by row are
1 2
3
4 5 6

Fig. 8.19 | Initializing jagged and rectangular arrays. (Part 2 of 2.)

int[,] array

// loop through array's rows
for (var row = 0; row < array.GetLength(0); ++row)
{
 // loop through columns of current row
 for (var column = 0; column < array.GetLength(1); ++column)
 {

 Console.Write($"{array[row, column]} ");
 }

 Console.WriteLine(); // start new line of output
}

int[][] array

// loop through each row
foreach (var row in array)
{
 // loop through each element in current row
 foreach (var element in row)
 {

 Console.Write($"{element} ");
 }

 Console.WriteLine(); // start new line of output
}

ptg18189312

8.9 Multidimensional Arrays 229

Method OutputArray for Rectangular Arrays
Line 21 invokes method OutputArray with argument rectangular, so the version of Out-
putArray at lines 27–42 is called. The nested for statement (lines 32–41) outputs the
rows of a rectangular array. The loop-continuation condition of each for statement (lines
32 and 35) uses the rectangular array’s GetLength method to obtain the length of each di-
mension. Dimensions are numbered starting from 0, so the method call GetLength(0) on
array returns the size of the first dimension of the array (the number of rows), and the call
GetLength(1) returns the size of the second dimension (the number of columns). A
foreach statement also can iterate through all the elements in a rectangular array. In this
case, foreach iterates through all the rows and columns starting from row 0, as if the ele-
ments were in a one-dimensional array.

Method OutputArray for Jagged Arrays
Line 23 invokes method OutputArray with argument jagged, so OutputArray at lines 45–
60 is called. The nested foreach statement (lines 50–59) outputs the rows of a jagged ar-
ray. The inner foreach statement (lines 53–56) iterates through each element in the cur-
rent row. This allows the loop to determine the exact number of columns in each row.
Since the jagged array is created as an array of arrays, we can use nested foreach statements
to output the elements in the console window. The outer loop iterates through the ele-
ments of array, which are references to one-dimensional arrays of int values that repre-
sent each row. The inner loop iterates through the elements of the current row.

Common Multidimensional-Array Manipulations Performed with for Statements
Many common array manipulations use for statements. As an example, the following for
statement sets all the elements in row 2 of rectangular array a in Fig. 8.17 to 0:

We specified row 2; therefore, we know that the first index is always 2 (0 is the first row,
and 1 is the second row). This for loop varies only the second index (i.e., the column in-
dex). The preceding for statement is equivalent to the assignment statements

The following nested for statement totals the values of all the elements in array a one
row at a time:

for (int column = 0; column < a.GetLength(1); ++column)
{

 a[2, column] = 0;
}

a[2, 0] = 0;
a[2, 1] = 0;
a[2, 2] = 0;
a[2, 3] = 0;

int total = 0;

for (int row = 0; row < a.GetLength(0); ++row)
{

 for (int column = 0; column < a.GetLength(1); ++column)
 {

 total += a[row, column];
 }

}

ptg18189312

230 Chapter 8 Arrays; Introduction to Exception Handling

The outer loop begins by setting the row index to 0 so that row 0’s elements can be totaled
by the inner loop. The outer loop then increments row to 1 so that row 1’s elements can
be totaled, then increments row to 2 so that row 2’s elements can be totaled. The total
can be displayed when the outer for statement terminates. The next example shows how
to process a rectangular array in a more concise manner using foreach statements.

8.10 Case Study: GradeBook Using a Rectangular Array
In Section 8.8, we presented class GradeBook (Fig. 8.15), which used a one-dimensional
array to store student grades on a single exam. In most courses, students take several exams.
Instructors are likely to want to analyze grades across the entire course, both for a single
student and for the class as a whole.

Storing Student Grades in a Rectangular Array in Class GradeBook
Figure 8.20 shows the output that summarizes 10 students’ grades on three exams.
Figure 8.21 contains a version of class GradeBook that uses a rectangular array grades to
store the grades of a number of students on multiple exams. Each row of the array represents
a single student’s grades for the entire course, and each column represents the grades for the
whole class on one of the exams the students took during the course. An app such as Grade-
BookTest (Fig. 8.22) passes the array as an argument to the GradeBook constructor. In this
example, we use a 10-by-3 array containing 10 students’ grades on three exams.

Welcome to the grade book for
CS101 Introduction to C# Programming!

The grades are:

 Test 1 Test 2 Test 3 Average
Student 1 87 96 70 84.33
Student 2 68 87 90 81.67
Student 3 94 100 90 94.67
Student 4 100 81 82 87.67
Student 5 83 65 85 77.67
Student 6 78 87 65 76.67
Student 7 85 75 83 81.00
Student 8 91 94 100 95.00
Student 9 76 72 84 77.33
Student 10 87 93 73 84.33

Lowest grade in the grade book is 65
Highest grade in the grade book is 100

Overall grade distribution:
00-09:
10-19:
20-29:
30-39:
40-49:
50-59:

Fig. 8.20 | Output of GradeBook that uses two-dimensional arrays. (Part 1 of 2.)

ptg18189312

8.10 Case Study: GradeBook Using a Rectangular Array 231

60-69: ***
70-79: ******
80-89: ***********
90-99: *******

100: ***

1 // Fig. 8.21: GradeBook.cs
2 // Grade book using a rectangular array to store grades.
3 using System;
4
5 class GradeBook
6 {
7
8
9 // auto-implemented property CourseName

10 public string CourseName { get; }
11
12 // two-parameter constructor initializes
13 // auto-implemented property CourseName and grades array
14 public GradeBook(string name, int[,] gradesArray)
15 {
16 CourseName = name; // set CourseName to name
17
18 }
19
20 // display a welcome message to the GradeBook user
21 public void DisplayMessage()
22 {
23 // auto-implemented property CourseName gets the name of course
24 Console.WriteLine(
25 $"Welcome to the grade book for\n{CourseName}!\n");
26 }
27
28 // perform various operations on the data
29 public void ProcessGrades()
30 {
31 // output grades array
32 OutputGrades();
33
34 // call methods GetMinimum and GetMaximum
35 Console.WriteLine(
36 $"\nLowest grade in the grade book is {GetMinimum()}" +
37 $"\nHighest grade in the grade book is {GetMaximum()}\n");
38
39 // output grade distribution chart of all grades on all tests
40 OutputBarChart();
41 }
42

Fig. 8.21 | Grade book using a rectangular array to store grades. (Part 1 of 4.)

Fig. 8.20 | Output of GradeBook that uses two-dimensional arrays. (Part 2 of 2.)

private int[,] grades; // rectangular array of student grades

grades = gradesArray; // initialize grades array

ptg18189312

232 Chapter 8 Arrays; Introduction to Exception Handling

43 // find minimum grade
44 public int GetMinimum()
45 {
46 // assume first element of grades array is smallest
47 var lowGrade = grades[0, 0];
48
49
50
51
52
53
54
55
56
57
58
59 return lowGrade; // return lowest grade
60 }
61
62 // find maximum grade
63 public int GetMaximum()
64 {
65 // assume first element of grades array is largest
66 var highGrade = grades[0, 0];
67
68 // loop through elements of rectangular grades array
69 foreach (var grade in grades)
70 {
71 // if grade greater than highGrade, assign it to highGrade
72 if (grade > highGrade)
73 {
74 highGrade = grade;
75 }
76 }
77
78 return highGrade; // return highest grade
79 }
80
81
82
83
84
85
86
87
88
89
90
91
92
93

Fig. 8.21 | Grade book using a rectangular array to store grades. (Part 2 of 4.)

// loop through elements of rectangular grades array
foreach (var grade in grades)
{
 // if grade less than lowGrade, assign it to lowGrade
 if (grade < lowGrade)
 {

 lowGrade = grade;
 }
}

// determine average grade for particular student
public double GetAverage(int student)
{
 // get the number of grades per student
 var gradeCount = grades.GetLength(1);
 var total = 0.0; // initialize total

 // sum grades for one student
 for (var exam = 0; exam < gradeCount; ++exam)
 {

 total += grades[student, exam];
 }

ptg18189312

8.10 Case Study: GradeBook Using a Rectangular Array 233

94
95
96
97
98 // output bar chart displaying overall grade distribution
99 public void OutputBarChart()
100 {
101 Console.WriteLine("Overall grade distribution:");
102
103 // stores frequency of grades in each range of 10 grades
104 var frequency = new int[11];
105
106
107
108
109
110
111
112 // for each grade frequency, display bar in chart
113 for (var count = 0; count < frequency.Length; ++count)
114 {
115 // output bar label ("00-09: ", ..., "90-99: ", "100: ")
116 if (count == 10)
117 {
118 Console.Write(" 100: ");
119 }
120 else
121 {
122 Console.Write($"{count * 10:D2}-{count * 10 + 9:D2}: ");
123 }
124
125 // display bar of asterisks
126 for (var stars = 0; stars < frequency[count]; ++stars)
127 {
128 Console.Write("*");
129 }
130
131 Console.WriteLine(); // start a new line of output
132 }
133 }
134
135 // output the contents of the grades array
136 public void OutputGrades()
137 {
138 Console.WriteLine("The grades are:\n");
139 Console.Write(" "); // align column heads
140
141 // create a column heading for each of the tests
142 for (var test = 0; test < grades.GetLength(1); ++test)
143 {
144 Console.Write($"Test {test + 1} ");
145 }

Fig. 8.21 | Grade book using a rectangular array to store grades. (Part 3 of 4.)

 // return average of grades
 return total / gradeCount;
}

// for each grade in GradeBook, increment the appropriate frequency
foreach (var grade in grades)
{
 ++frequency[grade / 10];
}

ptg18189312

234 Chapter 8 Arrays; Introduction to Exception Handling

Five methods perform array manipulations to process the grades. Each is similar to its
counterpart in Fig. 8.15. Method GetMinimum (lines 44–60 in Fig. 8.21) determines the
lowest grade of any student. Method GetMaximum (lines 63–79) determines the highest grade
of any student. Method GetAverage (lines 82–96) determines a particular student’s semester
average. Method OutputBarChart (lines 99–133) outputs a bar chart of the distribution of
all student grades for the semester. Method OutputGrades (lines 136–164) outputs the two-
dimensional array in tabular format, along with each student’s semester average.

Processing a Two-Dimensional Array with a foreach Statement
Methods GetMinimum, GetMaximum and OutputBarChart each loop through array grades
using foreach—e.g., lines 50–57 in method GetMinimum. To find the lowest overall grade,
this foreach statement iterates through rectangular array grades and compares each ele-
ment to variable lowGrade. If a grade is less than lowGrade, lowGrade is set to that grade.

When the foreach statement traverses the elements of array grades, it looks at each
element of the first row in order by index, then each element of the second row in order
by index and so on. The foreach statement (lines 50–57) traverses the elements of grades
in the same order as the following equivalent code, expressed with nested for statements:

146
147 Console.WriteLine("Average"); // student average column heading
148
149 // create rows/columns of text representing array grades
150 for (var student = 0; student < grades.GetLength(0); ++student)
151 {
152 Console.Write($"Student {student + 1,2}");
153
154 // output student's grades
155 for (var grade = 0; grade < grades.GetLength(1); ++grade)
156 {
157 Console.Write($"{grades[student, grade],8}");
158 }
159
160 // call method GetAverage to calculate student's average grade;
161 // pass row number as the argument to GetAverage
162 Console.WriteLine($"{ ,9:F}");
163 }
164 }
165 }

for (var row = 0; row < grades.GetLength(0); ++row)
{

 for (var column = 0; column < grades.GetLength(1); ++column)
 {

 if (grades[row, column] < lowGrade)
 {

 lowGrade = grades[row, column];
 }

 }
}

Fig. 8.21 | Grade book using a rectangular array to store grades. (Part 4 of 4.)

GetAverage(student)

ptg18189312

8.10 Case Study: GradeBook Using a Rectangular Array 235

When the foreach statement completes, lowGrade contains the lowest grade in the rect-
angular array. Method GetMaximum works similarly to method GetMinimum. Note the sim-
plicity of using foreach vs. the preceding nested for statement.

Method OutputBarChart
Method OutputBarChart (lines 99–133) displays the grade distribution as a bar chart. The
syntax of the foreach statement (lines 107–110) is identical for one-dimensional and two-
dimensional arrays.

Method OutputGrades
Method OutputGrades (lines 136–164) uses nested for statements to output grades’ val-
ues, in addition to each student’s semester average. The output in Fig. 8.20 shows the re-
sult, which resembles the tabular format of an instructor’s physical grade book. Lines 142–
145 (in Fig. 8.21) display the column headings for each test. We use the for statement
rather than the foreach statement here so that we can identify each test with a number.
Similarly, the for statement in lines 150–163 first outputs a row label using a counter vari-
able to identify each student (line 152). Although array indices start at 0, lines 144 and
152 output test + 1 and student + 1, respectively, to produce test and student numbers
starting at 1 (see Fig. 8.20). The inner for statement in lines 155–158 of Fig. 8.21 uses
the outer for statement’s counter variable student to loop through a specific row of array
grades and output each student’s test grade. Finally, line 162 obtains each student’s se-
mester average by passing the row index of grades (i.e., student) to method GetAverage.

Method GetAverage
Method GetAverage (lines 82–96) takes one argument—the row index for a particular
student. When line 162 calls GetAverage, the argument is int value student, which spec-
ifies the particular row of rectangular array grades. Method GetAverage calculates the
sum of the array elements on this row, divides the total by the number of test results and
returns the floating-point result as a double value (line 95).

Class GradeBookTest That Demonstrates Class GradeBook
Figure 8.22 creates an object of class GradeBook (Fig. 8.21) using the two-dimensional ar-
ray of ints that gradesArray references (Fig. 8.22, lines 9–18). Lines 20–21 pass a course
name and gradesArray to the GradeBook constructor. Lines 22–23 then invoke myGrade-
Book’s DisplayMessage and ProcessGrades methods to display a welcome message and
obtain a report summarizing the students’ grades for the semester, respectively.

Software Engineering Observation 8.2
“Keep it simple” is good advice for most of the code you’ll write.

1 // Fig. 8.22: GradeBookTest.cs
2 // Create a GradeBook object using a rectangular array of grades.
3 class GradeBookTest
4 {

Fig. 8.22 | Create a GradeBook object using a rectangular array of grades. (Part 1 of 2.)

ptg18189312

236 Chapter 8 Arrays; Introduction to Exception Handling

8.11 Variable-Length Argument Lists
Variable-length argument lists allow you to create methods that receive an arbitrary num-
ber of arguments. A one-dimensional array-type argument preceded by the keyword
params in a method’s parameter list indicates that the method receives a variable number
of arguments with the type of the array’s elements. This use of a params modifier can occur
only in the parameter list’s last parameter. While you can use method overloading and ar-
ray passing to accomplish much of what is accomplished with variable-length argument
lists, using the params modifier is more concise.

Figure 8.23 demonstrates method Average (lines 8–19), which receives a variable-
length sequence of doubles (line 8). C# treats the variable-length argument list as a one-
dimensional array whose elements are all of the same type. Hence, the method body can
manipulate the parameter numbers as an array of doubles. Lines 13–16 use the foreach
loop to walk through the array and calculate the total of the doubles in the array. Line 18
accesses numbers.Length to obtain the size of the numbers array for use in the averaging
calculation. Lines 30, 32 and 34 in Main call method Average with two, three and four
arguments, respectively. Method Average has a variable-length argument list, so it can
average as many double arguments as the caller passes. The output reveals that each call to
method Average returns the correct value.

5 // Main method begins app execution
6 static void Main()
7 {
8 // rectangular array of student grades
9

10
11
12
13
14
15
16
17
18
19
20 GradeBook myGradeBook = new GradeBook(
21 "CS101 Introduction to C# Programming", gradesArray);
22 myGradeBook.DisplayMessage();
23 myGradeBook.ProcessGrades();
24 }
25 }

Common Programming Error 8.7
The params modifier may be used only with the last parameter of the parameter list.

Fig. 8.22 | Create a GradeBook object using a rectangular array of grades. (Part 2 of 2.)

int[,] gradesArray = {{87, 96, 70},
 {68, 87, 90},
 {94, 100, 90},
 {100, 81, 82},
 {83, 65, 85},
 {78, 87, 65},
 {85, 75, 83},
 {91, 94, 100},
 {76, 72, 84},
 {87, 93, 73}};

ptg18189312

8.12 Using Command-Line Arguments 237

8.12 Using Command-Line Arguments
On many systems, it’s possible to pass arguments from the command line (these are known
as command-line arguments) to an app by including a parameter of type string[] (i.e.,
an array of strings) in the parameter list of Main. By convention, this parameter is named

1 // Fig. 8.23: ParamArrayTest.cs
2 // Using variable-length argument lists.
3 using System;
4
5 class ParamArrayTest
6 {
7 // calculate average
8 static double Average()
9 {

10 var total = 0.0; // initialize total
11
12 // calculate total using the foreach statement
13
14 {
15 total += d;
16 }
17
18 return numbers.Length != 0 ? total / numbers.Length : 0.0;
19 }
20
21 static void Main()
22 {
23 var d1 = 10.0;
24 var d2 = 20.0;
25 var d3 = 30.0;
26 var d4 = 40.0;
27
28 Console.WriteLine(
29 $"d1 = {d1:F1}\nd2 = {d2:F1}\nd3 = {d3:F1}\nd4 = {d4:F1}\n");
30 Console.WriteLine($"Average of d1 and d2 is { :F1}");
31 Console.WriteLine(
32 $"Average of d1, d2 and d3 is { ");
33 Console.WriteLine(
34 $"Average of d1, d2, d3 and d4 is { :F1}");
35 }
36 }

d1 = 10.0
d2 = 20.0
d3 = 30.0
d4 = 40.0

Average of d1 and d2 is 15.0
Average of d1, d2 and d3 is 20.0
Average of d1, d2, d3 and d4 is 25.0

Fig. 8.23 | Using variable-length argument lists.

params double[] numbers

foreach (var d in numbers)

Average(d1, d2)

Average(d1, d2, d3):F1}

Average(d1, d2, d3, d4)

ptg18189312

238 Chapter 8 Arrays; Introduction to Exception Handling

args (Fig. 8.24, line 7). You can execute an app directly from the Command Prompt by
changing to the directory containing the app’s .exe file, typing the file’s name (possibly
followed by command-line arguments) and pressing Enter. When you do this, the execu-
tion environment passes any command-line arguments that appear after the app name to
the app’s Main method as strings in the one-dimensional array args. The number of ar-
guments passed from the command line is obtained by accessing the array’s Length prop-
erty. For example, the command "MyApp a b" passes two command-line arguments to app
MyApp. You must enter command-line arguments separated by whitespace, not commas.
When the preceding command executes, the Main method entry point receives the two-
element array args (i.e., args.Length is 2) in which args[0] contains the string "a" and
args[1] contains the string "b". Common uses of command-line arguments include
passing options and filenames to apps.

1 // Fig. 8.24: InitArray.cs
2 // Using command-line arguments to initialize an array.
3 using System;
4
5 class InitArray
6 {
7 static void Main()
8 {
9 // check number of command-line arguments

10 if ()
11 {
12 Console.WriteLine(
13 "Error: Please re-enter the entire command, including\n" +
14 "an array size, initial value and increment.");
15 }
16 else
17 {
18 // get array size from first command-line argument
19
20 var array = new int[]; // create array
21
22 // get initial value and increment from command-line argument
23 var initialValue = int.Parse(args[1]);
24 var increment = int.Parse(args[2]);
25
26 // calculate value for each array element
27 for (var counter = 0; counter < array.Length; ++counter)
28 {
29 array[counter] = + * counter;
30 }
31
32 Console.WriteLine($"{"Index"}{"Value",8}");
33
34 // display array index and value
35 for (int counter = 0; counter < array.Length; ++counter)
36 {

Fig. 8.24 | Using command-line arguments to initialize an array. (Part 1 of 2.)

string[] args

args.Length != 3

var arrayLength = int.Parse(args[0]);
arrayLength

initialValue increment

ptg18189312

8.12 Using Command-Line Arguments 239

Figure 8.24 uses three command-line arguments to initialize an array. When the app
executes, if args.Length is not 3, the app displays an error message and terminates (lines
10–15). Otherwise, lines 16–39 initialize and display the array based on the values of the
command-line arguments.

The command-line arguments become available to Main as strings in args. Line 19
gets args[0]—a string that specifies the array size—and converts it to an int value,
which the app uses to create the array in line 20.

Lines 23–24 convert the args[1] and args[2] command-line arguments to int
values and store them in initialValue and increment, respectively—as always, these
lines could result in exceptions if the user does not enter valid integers. Line 29 calculates
the value for each array element.

The first sample execution indicates that the app received an insufficient number of
command-line arguments. The second sample execution uses command-line arguments 5,
0 and 4 to specify the size of the array (5), the value of the first element (0) and the incre-
ment of each value in the array (4), respectively. The corresponding output indicates that
these values create an array containing the integers 0, 4, 8, 12 and 16. The output from the

37 Console.WriteLine($"{counter,5}{array[counter],8}");
38 }
39 }
40 }
41 }

C:\Users\PaulDeitel\Documents\examples\ch08\fig08_24>InitArray.exe
Error: Please re-enter the entire command, including
an array size, initial value and increment.

C:\Users\PaulDeitel\Documents\examples\ch08\fig08_24>InitArray.exe 5 0 4
Index Value

 0 0
 1 4
 2 8
 3 12
 4 16

C:\Users\PaulDeitel\Documents\examples\ch08\fig08_24>InitArray.exe 10 1 2
Index Value

 0 1
 1 3
 2 5
 3 7
 4 9
 5 11
 6 13
 7 15
 8 17
 9 19

Fig. 8.24 | Using command-line arguments to initialize an array. (Part 2 of 2.)

ptg18189312

240 Chapter 8 Arrays; Introduction to Exception Handling

third sample execution illustrates that the command-line arguments 10, 1 and 2 produce
an array whose 10 elements are the nonnegative odd integers from 1 to 19.

Specifying Command-Line Arguments in Visual Studio
We ran this example from a Command Prompt window. You also can supply command-line
arguments in the IDE. To do so, right click the project’s Properties node in the Solution

Explorer, then select Open. Select the Debug tab, then enter the arguments in the text box
labeled Command line arguments. When you run the app, the IDE will pass the command-
line arguments to the app.

8.13 (Optional) Passing Arrays by Value and by
Reference
In C#, a variable that “stores” an object, such as an array, does not actually store the object
itself. Instead, such a variable stores a reference to the object. The distinction between ref-
erence-type variables and value-type variables raises some subtle issues that you must un-
derstand to create secure, stable programs.

As you know, when an app passes an argument to a method, the called method
receives a copy of that argument’s value. Changes to the local copy in the called method do
not affect the original variable in the caller. If the argument is a reference type, the method
makes a copy of the reference, not a copy of the actual object that’s referenced. The local copy
of the reference also refers to the original object, which means that changes to the object
in the called method affect the original object.

Section 7.18 showed that C# allows variables to be passed by reference with keyword
ref. You also can use keyword ref to pass a reference-type variable by reference, which
allows the called method to modify the original variable in the caller and make that vari-
able refer to a different object. This is a capability, which, if misused, can lead to subtle
problems. For instance, when a reference-type object like an array is passed with ref, the
called method actually gains control over the reference itself, allowing the called method to
replace the original reference in the caller with a reference to a different object, or even
with null. Such behavior can lead to unpredictable effects, which can be disastrous in mis-
sion-critical apps.

Figure 8.25 demonstrates the subtle difference between passing a reference by value
and passing a reference by reference with keyword ref. Lines 11 and 14 declare two integer
array variables, firstArray and firstArrayCopy. Line 11 initializes firstArray with the
values 1, 2 and 3. The assignment statement at line 14 copies the reference stored in
firstArray to variable firstArrayCopy, causing these variables to reference the same
array object. We make the copy of the reference so that we can determine later whether
reference firstArray gets overwritten. The foreach statement at lines 21–24 displays the
contents of firstArray before it’s passed to method FirstDouble (line 27) so that we can
verify that the called method indeed changes the array’s contents.

Performance Tip 8.1
Passing references to arrays and other objects makes sense for performance reasons. If arrays
were passed by value, a copy of each element would be passed. For large, frequently passed
arrays, this would waste time and consume considerable storage for the copies of the arrays.

ptg18189312

8.13 (Optional) Passing Arrays by Value and by Reference 241

1 // Fig. 8.25: ArrayReferenceTest.cs
2 // Testing the effects of passing array references
3 // by value and by reference.
4 using System;
5
6 class ArrayReferenceTest
7 {
8 static void Main(string[] args)
9 {

10 // create and initialize firstArray
11 int[] firstArray = {1, 2, 3};
12
13 // copy the reference in variable firstArray
14 int[] firstArrayCopy = firstArray;
15
16 Console.WriteLine("Test passing firstArray reference by value");
17 Console.Write(
18 "Contents of firstArray before calling FirstDouble:\n\t");
19
20 // display contents of firstArray
21 foreach (var element in firstArray)
22 {
23 Console.Write($"{element} ");
24 }
25
26
27
28
29 Console.Write(
30 "\nContents of firstArray after calling FirstDouble\n\t");
31
32 // display contents of firstArray
33 foreach (var element in firstArray)
34 {
35 Console.Write($"{element} ");
36 }
37
38 // test whether reference was changed by FirstDouble
39 if (firstArray == firstArrayCopy)
40 {
41 Console.WriteLine("\n\nThe references refer to the same array");
42 }
43 else
44 {
45 Console.WriteLine(
46 "\n\nThe references refer to different arrays");
47 }
48
49 // create and initialize secondArray
50 int[] secondArray = {1, 2, 3};
51
52 // copy the reference in variable secondArray
53 int[] secondArrayCopy = secondArray;

Fig. 8.25 | Testing the effects of passing an array reference by value and by reference. (Part 1 of 3.)

// pass variable firstArray by value to FirstDouble
FirstDouble(firstArray);

ptg18189312

242 Chapter 8 Arrays; Introduction to Exception Handling

54
55 Console.WriteLine(
56 "\nTest passing secondArray reference by reference");
57 Console.Write(
58 "Contents of secondArray before calling SecondDouble:\n\t");
59
60 // display contents of secondArray before method call
61 foreach (var element in secondArray)
62 {
63 Console.Write($"{element} ");
64 }
65
66
67
68
69 Console.Write(
70 "\nContents of secondArray after calling SecondDouble:\n\t");
71
72 // display contents of secondArray after method call
73 foreach (var element in secondArray)
74 {
75 Console.Write($"{element} ");
76 }
77
78 // test whether reference was changed by SecondDouble
79 if (secondArray == secondArrayCopy)
80 {
81 Console.WriteLine("\n\nThe references refer to the same array");
82 }
83 else
84 {
85 Console.WriteLine(
86 "\n\nThe references refer to different arrays");
87 }
88 }
89
90 // modify elements of array and attempt to modify reference
91 static void FirstDouble()
92 {
93 // double each element's value
94 for (var i = 0; i < array.Length; ++i)
95 {
96 array[i] *= 2;
97 }
98
99
100
101 }
102
103 // modify elements of array and change reference array
104 // to refer to a new array
105 static void SecondDouble()
106 {

Fig. 8.25 | Testing the effects of passing an array reference by value and by reference. (Part 2 of 3.)

// pass variable secondArray by reference to SecondDouble
SecondDouble(ref secondArray);

int[] array

// create new object and assign its reference to array
array = new int[] {11, 12, 13};

ref int[] array

ptg18189312

8.13 (Optional) Passing Arrays by Value and by Reference 243

Method FirstDouble
Lines 94–97 in FirstDouble multiply the values of the array’s elements by 2. Line 100 cre-
ates a new array containing the values 11, 12 and 13, and assigns the array’s reference to pa-
rameter array in an attempt to overwrite reference firstArray in the caller—this, of course,
does not happen, because the reference was passed by value. After method FirstDouble ex-
ecutes, the foreach statement at lines 33–36 displays firstArray’s contents, demonstrating
that the values of the elements have been changed by the method. The if…else statement
at lines 39–47 uses the == operator to compare references firstArray (which we just at-
tempted to overwrite) and firstArrayCopy. The expression in line 39 evaluates to true if
the operands of operator == reference the same object. In this case, the object represented by
firstArray is the array created in line 11—not the array created in method FirstDouble
(line 100)—so the original reference stored in firstArray was not modified.

Method SecondDouble
Lines 50–87 perform similar tests, using array variables secondArray and second-
ArrayCopy, and method SecondDouble (lines 105–115). Method SecondDouble performs
the same operations as FirstDouble, but receives its array argument using keyword ref.
In this case, the reference stored in secondArray after the method call is a reference to the
array created in line 114 of SecondDouble, demonstrating that a variable passed with key-
word ref can be modified by the called method so that the variable in the caller actually
points to a different object—in this case, an array created in SecondDouble. The if...else
statement in lines 79–87 confirms that secondArray and secondArrayCopy no longer re-
fer to the same array.

107 // double each element's value
108 for (var i = 0; i < array.Length; ++i)
109 {
110 array[i] *= 2;
111 }
112
113
114
115 }
116 }

Test passing firstArray reference by value
Contents of firstArray before calling FirstDouble:

1 2 3
Contents of firstArray after calling FirstDouble

2 4 6

The references refer to the same array

Test passing secondArray reference by reference
Contents of secondArray before calling SecondDouble:

1 2 3
Contents of secondArray after calling SecondDouble:

11 12 13

The references refer to different arrays

Fig. 8.25 | Testing the effects of passing an array reference by value and by reference. (Part 3 of 3.)

// create new object and assign its reference to array
array = new int[] {11, 12, 13};

ptg18189312

244 Chapter 8 Arrays; Introduction to Exception Handling

8.14 Wrap-Up
This chapter began our discussion of C# data structures, using arrays to store data in and
retrieve data from lists and tables of values. You declared, created and initialized arrays.
We presented examples demonstrating common array manipulations. We introduced
C#’s last control statement—the foreach iteration statement—which provides a concise
and less error-prone notation for accessing data in arrays and other data structures.

We demonstrated implicitly typed local variables (with keyword var) for which the
compiler determines variable types, based on their initializer values. We introduced the
exception-handling mechanism and used it to allow a program to continue executing
when it attempted to access an array element outside the array’s bounds.

We used arrays to simulate shuffling and dealing playing cards. In that example, we
introduced C# 6’s getter-only auto-implemented properties, which define properties that
can be used to get, but not set, a value. We also discussed auto-property initialization for
auto-implemented properties.

We presented two versions of an instructor GradeBook case study that used arrays to
maintain sets of student grades in memory and analyze student grades. Finally, we demon-
strate how to define methods that receive variable-length argument lists and how to pro-
cess command-line arguments passed to Main as a string array.

We continue our coverage of data structures in Chapter 9, where we discuss List,
which is a dynamically resizable array-based collection. Chapter 18 presents generics,
which provide the means to create general models of methods and classes that can be
declared once, but used with many different data types. Chapter 19 introduces the data-
structure classes provided by the .NET Framework, which use generics to allow you to
specify the exact types of objects that a particular data structure will store. You should
almost always use these predefined data structures instead of building your own. The
.NET Framework also provides class Array, which contains utility methods for array
manipulation, such as the Resize method introduced in this chapter.

In Chapter 9, we introduce Language Integrated Query (LINQ), which enables you
to write expressions that can retrieve information from a wide variety of data sources, such
as arrays. You’ll see how to search, sort and filter data using LINQ.

Software Engineering Observation 8.3
When a method receives a reference-type parameter by value, a copy of the object’s
reference is passed. This prevents a method from overwriting references passed to that
method. In the vast majority of cases, protecting the caller’s reference from modification is
the desired behavior. If you encounter a situation where you truly want the called
procedure to modify the caller’s reference, pass the reference-type parameter using keyword
ref—but, again, such situations are rare.

Software Engineering Observation 8.4
In C#, references to objects (including arrays) are passed to called methods. A called
method—receiving a reference to an object in a caller—can interact with, and possibly
change, the caller’s object.

ptg18189312

9
Introduction to LINQ and the

List Collection

O b j e c t i v e s
In this chapter you’ll:

■ Learn basic LINQ concepts.
■ Query an array using a range variable and the from, where

and select clauses.
■ Iterate over LINQ query results.
■ Sort a LINQ query’s results with the orderby clause.
■ Learn basic interface concepts and how the
IEnumerable<T> interface enables a foreach to iterate
over an array or collection’s elements.

■ Learn basic .NET collections concepts.
■ Become familiar with commonly used methods of generic

class List.
■ Create and use a generic List collection.
■ Query a generic List collection using LINQ.
■ Declare multiple range variables in a LINQ query with the
let clause.

■ Understand how deferred execution helps make LINQ
queries reusable.

ptg18189312

246 Chapter 9 Introduction to LINQ and the List Collection

O
u

tl
in

e

9.1 Introduction
Chapter 8 introduced arrays—simple data structures used to store items of a specific type.
Although commonly used, arrays have limited capabilities. For instance, you must specify
an array’s size when you create it. If, at execution time, you wish to modify that size, you
must do so manually by creating a new array and copying elements into it or by using class
Array’s Resize method, which performs those tasks for you.

In this chapter, we introduce the .NET Framework’s List collection class—which
offers greater capabilities than traditional arrays. A List is similar to an array but provides
additional functionality, such as dynamic resizing—a List can increase its size when items
are added to it. We use the List collection to implement several data manipulations sim-
ilar to those in the preceding chapter. List and the .NET Framework’s other collections
are reusable, reliable, powerful and efficient and have been carefully designed and tested
to ensure correctness and good performance.

Large amounts of data that need to persist beyond an app’s execution are typically
stored in a database—an organized collection of data (discussed in Chapter 20). A database
management system (DBMS) provides mechanisms for storing, organizing, retrieving and
modifying data in a database. A language called SQL (Structured Query Language)—pro-
nounced “sequel”—is the international standard used to perform queries (i.e., to request
information that satisfies given criteria) and to manipulate data in relational databases.
These organize data in tables that maintain relationships between pieces of data stored in
each table—a key goal is to eliminate duplicate data. For years, programs accessing a rela-
tional database passed SQL queries to the database management system, then processed
the returned results. This chapter introduces C#’s LINQ (Language Integrated Query)
capabilities. LINQ allows you to write query expressions, similar to SQL queries, that
retrieve information from a variety of data sources, not just databases. In this chapter, we
use LINQ to Objects to manipulate objects in memory, such as arrays and Lists.

9.1 Introduction
9.2 Querying an Array of int Values Us-

ing LINQ
9.2.1 The from Clause
9.2.2 The where Clause
9.2.3 The select Clause
9.2.4 Iterating Through the Results of the

LINQ Query
9.2.5 The orderby Clause
9.2.6 Interface IEnumerable<T>

9.3 Querying an Array of Employee Ob-
jects Using LINQ

9.3.1 Accessing the Properties of a LINQ
Query’s Range Variable

9.3.2 Sorting a LINQ Query’s Results by
Multiple Properties

9.3.3 Any, First and Count Extension
Methods

9.3.4 Selecting a Property of an Object
9.3.5 Creating New Types in the select

Clause of a LINQ Query
9.4 Introduction to Collections

9.4.1 List<T> Collection
9.4.2 Dynamically Resizing a List<T> Col-

lection
9.5 Querying the Generic List Collec-

tion Using LINQ
9.5.1 The let Clause
9.5.2 Deferred Execution
9.5.3 Extension Methods ToArray and

ToList
9.5.4 Collection Initializers

9.6 Wrap-Up
9.7 Deitel LINQ Resource Center

ptg18189312

9.2 Querying an Array of int Values Using LINQ 247

LINQ Providers
The syntax of LINQ is built into C#, but LINQ queries may be used in many contexts via
libraries known as providers. A LINQ provider is a set of classes that implement LINQ op-
erations and enable programs to interact with data sources to perform tasks such as sorting,
grouping and filtering elements. Many LINQ providers are more specialized, allowing you
to interact with a specific website or data format. Figure 9.1 shows where and how we use
LINQ throughout the book.

LINQ Query Syntax vs. Method-Call Syntax
There are two LINQ approaches—one uses a SQL-like syntax and the other uses method-
call syntax. This chapter shows the simpler SQL-like syntax. In Chapter 19, we’ll show the
method-call syntax, introducing the notions of delegates and lambdas—mechanisms that
enable you to pass methods to other methods to help them perform their tasks.

9.2 Querying an Array of int Values Using LINQ
Figure 9.2 shows how to use LINQ to Objects to query an array of integers, selecting ele-
ments that satisfy a set of conditions—a process called filtering. Iteration statements that
filter arrays focus on the process of getting the results—iterating through the elements and
checking whether they satisfy the desired criteria. LINQ specifies the conditions that se-
lected elements must satisfy. This is known as declarative programming—as opposed to
imperative programming (which we’ve been doing so far) in which you specify the actual
actions to perform a task. The query in lines 22–24 specifies that the results should consist

Chapter Used to

Chapter 9, Introduction to LINQ
and the List Collection

Query arrays and Lists.

Chapter 16, Strings and Charac-
ters: A Deeper Look

Select GUI controls in a Windows Forms app (located in
the online Regular Expressions section of the chapter on this
book’s webpage at www.deitel.com/books/CSharp6FP).

Chapter 17, Files and Streams Search a directory and manipulate text files.

Chapter 19, Generic Collections;
Functional Programming with
LINQ/PLINQ

Show LINQ method-call syntax with delegates and lamb-
das. Introduces functional-programming concepts, using
LINQ to Objects to write code more concisely and with
fewer bugs than programs written with previous techniques.
Shows how PLINQ (Parallel LINQ) can improve LINQ to
Objects performance substantially with multicore systems.

Chapter 20, Databases and LINQ Query information from a database using LINQ to Entities.
Like LINQ to Objects, LINQ to Entities is built into C#
and the .NET Framework.

Chapter 21, Asynchronous Pro-
gramming with async and await

Query an XML response from a web service using LINQ to
XML. Like LINQ to Objects, LINQ to XML is built into
C# and the .NET Framework.

Fig. 9.1 | LINQ usage throughout the book.

http://www.deitel.com/books/CSharp6FP

ptg18189312

248 Chapter 9 Introduction to LINQ and the List Collection

of all the ints in the values array that are greater than 4. It does not specify how those re-
sults are obtained—the C# compiler generates all the necessary code, which is one of the
great strengths of LINQ. Using LINQ to Objects requires the System.Linq namespace
(line 4).

1 // Fig. 9.2: LINQWithSimpleTypeArray.cs
2 // LINQ to Objects using an int array.
3 using System;
4
5
6 class LINQWithSimpleTypeArray
7 {
8 static void Main()
9 {

10 // create an integer array
11 var values = new[] {2, 9, 5, 0, 3, 7, 1, 4, 8, 5};
12
13 // display original values
14 Console.Write("Original array:");
15 foreach (var element in values)
16 {
17 Console.Write($" {element}");
18 }
19
20 // LINQ query that obtains values greater than 4 from the array
21 var filtered =
22 // data source is values
23
24
25
26 // display filtered results
27 Console.Write("\nArray values greater than 4:");
28 foreach (var element in filtered)
29 {
30 Console.Write($" {element}");
31 }
32
33 // use orderby clause to sort original values in ascending order
34 var sorted =
35 // data source is values
36
37
38
39 // display sorted results
40 Console.Write("\nOriginal array, sorted:");
41 foreach (var element in sorted)
42 {
43 Console.Write($" {element}");
44 }
45

Fig. 9.2 | LINQ to Objects using an int array. (Part 1 of 2.)

using System.Linq;

from value in values
where value > 4
select value;

from value in values
orderby value
select value;

ptg18189312

9.2 Querying an Array of int Values Using LINQ 249

9.2.1 The from Clause
A LINQ query begins with a from clause (line 22), which specifies a range variable (value)
and the data source to query (values). The range variable represents each item in the data
source (one at a time), much like the control variable in a foreach statement. Since value
is assigned one element at a time from the array values—an int array—the compiler in-
fers that value should be of type int. You also may declare the range variable’s type explic-
itly between the from keyword and the range-variable’s name.

Introducing the range variable in the from clause allows the IDE to provide Intelli-
Sense as you type the rest of the query. When you enter the range variable’s name followed
by a dot (.) in the code editor, the IDE displays the range variable’s methods and proper-
ties, making it easier for you to construct queries.

46 // sort the filtered results into descending order
47 var sortFilteredResults =
48 // data source is LINQ query filtered
49
50
51
52 // display the sorted results
53 Console.Write(
54 "\nValues greater than 4, descending order (two queries):");
55 foreach (var element in sortFilteredResults)
56 {
57 Console.Write($" {element}");
58 }
59
60 // filter original array and sort results in descending order
61 var sortAndFilter =
62 // data source is values
63
64
65
66
67 // display the filtered and sorted results
68 Console.Write(
69 "\nValues greater than 4, descending order (one query):");
70 foreach (var element in sortAndFilter)
71 {
72 Console.Write($" {element}");
73 }
74
75 Console.WriteLine();
76 }
77 }

Original array: 2 9 5 0 3 7 1 4 8 5
Array values greater than 4: 9 5 7 8 5
Original array, sorted: 0 1 2 3 4 5 5 7 8 9
Values greater than 4, descending order (two queries): 9 8 7 5 5
Values greater than 4, descending order (one query): 9 8 7 5 5

Fig. 9.2 | LINQ to Objects using an int array. (Part 2 of 2.)

from value in filtered
orderby value descending
select value;

from value in values
where value > 4
orderby value descending
select value;

ptg18189312

250 Chapter 9 Introduction to LINQ and the List Collection

Implicitly Typed Local Variables
Typically, implicitly typed local variables (declared with var) are used for the collections
of data returned by LINQ queries, as we do in lines 21, 34, 47 and 61. We also use this
feature to declare the control variable in the foreach statements.

9.2.2 The where Clause
If the condition in the where clause (line 23) evaluates to true, the element is selected—
i.e., it’s included in the results. Here, the ints in the array are included in the result only
if they’re greater than 4. An expression that takes a value and returns true or false by test-
ing a condition on that value is known as a predicate.

9.2.3 The select Clause
For each item in the data source, the select clause (line 24) determines what value ap-
pears in the results. In this case, it’s the int that the range variable currently represents,
but you’ll soon see that the select clause may contain an expression that transforms a val-
ue before including it in the results. Most LINQ queries end with a select clause.

9.2.4 Iterating Through the Results of the LINQ Query
Lines 28–31 use a foreach statement to display the query results. As you know, a foreach
statement can iterate through the contents of an array, allowing you to process each ele-
ment in the array. Actually, the foreach statement can iterate through the contents of ar-
rays, collections and the results of LINQ queries. The foreach statement in lines 28–31
iterates over the query result filtered, displaying each of its int items.

LINQ vs. Iteration Statements
It would be simple to display the integers greater than 4 using a iteration statement that
tests each value before displaying it. However, this would intertwine the code that selects
elements and the code that displays them. With LINQ, these are kept separate:

• the LINQ query specifies how to locate the values and

• a loop accesses the results

making the code easier to understand and maintain.

9.2.5 The orderby Clause
The orderby clause (line 36) sorts the query results in ascending order. Lines 49 and 64
use the descending modifier in the orderby clause to sort the results in descending order.
An ascending modifier also exists but isn’t normally used, because it’s the default. Any
value that can be compared with other values of the same type may be used with the or-
derby clause. A value of a simple type (e.g., int) can always be compared to another value
of the same type; we’ll discuss how to compare values of reference types in Chapter 12.

The queries in lines 48–50 and 62–65 generate the same results, but in different ways.
Lines 48–50 uses LINQ to sort the results of the query filtered from lines 22–24. The
second query uses both the where and orderby clauses. Because queries can operate on the
results of other queries, it’s possible to build a query one step at a time, passing the results
of queries between methods for further processing.

ptg18189312

9.3 Querying an Array of Employee Objects Using LINQ 251

9.2.6 Interface IEnumerable<T>
As we mentioned, the foreach statement can iterate through the contents of arrays, collec-
tions and LINQ query results. Actually, foreach iterates over any so-called IEnumerable<T>
object, which just happens to be what most LINQ queries return.

IEnumerable<T> is an interface. Interfaces define and standardize the ways in which
people and systems can interact with one another. For example, the controls on a radio
serve as an interface between radio users and the radio’s internal components. The controls
allow users to perform a limited set of operations (e.g., changing the station, adjusting the
volume, and choosing between AM and FM), and different radios may implement the
controls in different ways (e.g., using push buttons, dials or voice commands). The inter-
face specifies what operations a radio permits users to perform but does not specify how
the operations are implemented. Similarly, the interface between a driver and a car with a
manual transmission includes the steering wheel, the gear shift, the clutch, the gas pedal
and the brake pedal. This same interface is found in nearly all manual-transmission cars,
enabling someone who knows how to drive one manual-transmission car to drive another.

Software objects also communicate via interfaces. A C# interface describes a set of
methods and properties that can be called on an object—to tell the object, for example, to
perform some task or return some piece of information. The IEnumerable<T> interface
describes the functionality of any object that can be iterated over and thus offers methods
and properties to access each element. A class that implements an interface must declare all
the methods and properties described by that interface.

Most LINQ queries return an IEnumerable<T> object—some queries return a single
value (e.g., the sum of an int array’s elements). For queries that return an IEnumerable<T>
object, you can use a foreach statement to iterate over the query results. The notation <T>
indicates that the interface is a generic interface that can be used with any type of data (for
example, ints, strings or Employees). You’ll learn more about the <T> notation in
Section 9.4. In Section 12.7, we’ll discuss interfaces and show how to define your own
interfaces. In Chapter 18, we’ll cover generics in detail.

9.3 Querying an Array of Employee Objects Using LINQ
LINQ is not limited to querying arrays of simple types such as ints. It can be used with
arrays of any data type, including strings and user-defined classes. It cannot be used when
a query does not have a defined meaning—for example, you cannot use orderby on values
that are not comparable. Comparable types in .NET are those that implement the ICom-
parable interface, which is discussed in Section 18.4. All built-in types, such as string,
int and double implement IComparable. Figure 9.3 presents an Employee class.
Figure 9.4 uses LINQ to query an array of Employee objects.

1 // Fig. 9.3: Employee.cs
2 // Employee class with FirstName, LastName and MonthlySalary properties.
3 class Employee
4 {

Fig. 9.3 | Employee class with FirstName, LastName and MonthlySalary properties. (Part 1 of 2.)

ptg18189312

252 Chapter 9 Introduction to LINQ and the List Collection

5 public string FirstName { get; } // read-only auto-implemented property
6 public string LastName { get; } // read-only auto-implemented property
7 private decimal monthlySalary; // monthly salary of employee
8
9 // constructor initializes first name, last name and monthly salary

10 public Employee(string firstName, string lastName,
11 decimal monthlySalary)
12 {
13 FirstName = firstName;kll
14 LastName = lastName;
15 MonthlySalary = monthlySalary;
16 }
17
18 // property that gets and sets the employee's monthly salary
19 public decimal MonthlySalary
20 {
21 get
22 {
23 return monthlySalary;
24 }
25 set
26 {
27 if (value >= 0M) // validate that salary is nonnegative
28 {
29 monthlySalary = value;
30 }
31 }
32 }
33
34 // return a string containing the employee's information
35 public override string ToString() =>
36 $"{FirstName,-10} {LastName,-10} {MonthlySalary,10:C}";
37 }

1 // Fig. 9.4: LINQWithArrayOfObjects.cs
2 // LINQ to Objects querying an array of Employee objects.
3 using System;
4 using System.Linq;
5
6 class LINQWithArrayOfObjects
7 {
8 static void Main()
9 {

10 // initialize array of employees
11 var employees = new[] {
12 new Employee("Jason", "Red", 5000M),
13 new Employee("Ashley", "Green", 7600M),
14 new Employee("Matthew", "Indigo", 3587.5M),
15 new Employee("James", "Indigo", 4700.77M),

Fig. 9.4 | LINQ to Objects querying an array of Employee objects. (Part 1 of 3.)

Fig. 9.3 | Employee class with FirstName, LastName and MonthlySalary properties. (Part 2 of 2.)

ptg18189312

9.3 Querying an Array of Employee Objects Using LINQ 253

16 new Employee("Luke", "Indigo", 6200M),
17 new Employee("Jason", "Blue", 3200M),
18 new Employee("Wendy", "Brown", 4236.4M)};
19
20 // display all employees
21 Console.WriteLine("Original array:");
22 foreach (var element in employees)
23 {
24 Console.WriteLine(element);
25 }
26
27 // filter a range of salaries using && in a LINQ query
28 var between4K6K =
29
30
31
32
33 // display employees making between 4000 and 6000 per month
34 Console.WriteLine("\nEmployees earning in the range" +
35 $"{4000:C}-{6000:C} per month:");
36 foreach (var element in between4K6K)
37 {
38 Console.WriteLine(element);
39 }
40
41 // order the employees by last name, then first name with LINQ
42 var nameSorted =
43
44
45
46
47 // header
48 Console.WriteLine("\nFirst employee when sorted by name:");
49
50 // attempt to display the first result of the above LINQ query
51 if ()
52 {
53 Console.WriteLine();
54 }
55 else
56 {
57 Console.WriteLine("not found");
58 }
59
60 // use LINQ to select employee last names
61 var lastNames =
62
63
64
65 // use method Distinct to select unique last names
66 Console.WriteLine("\nUnique employee last names:");

Fig. 9.4 | LINQ to Objects querying an array of Employee objects. (Part 2 of 3.)

from e in employees
where (e.MonthlySalary >= 4000M) && (e.MonthlySalary <= 6000M)
select e;

from e in employees
orderby e.LastName, e.FirstName
select e;

nameSorted.Any()

nameSorted.First()

from e in employees
select e.LastName;

ptg18189312

254 Chapter 9 Introduction to LINQ and the List Collection

67 foreach (var element in)
68 {
69 Console.WriteLine(element);
70 }
71
72 // use LINQ to select first and last names
73 var names =
74
75
76
77 // display full names
78 Console.WriteLine("\nNames only:");
79 foreach (var element in names)
80 {
81 Console.WriteLine(element);
82 }
83
84 Console.WriteLine();
85 }
86 }

Original array:
Jason Red $5,000.00
Ashley Green $7,600.00
Matthew Indigo $3,587.50
James Indigo $4,700.77
Luke Indigo $6,200.00
Jason Blue $3,200.00
Wendy Brown $4,236.40

Employees earning in the range $4,000.00-$6,000.00 per month:
Jason Red $5,000.00
James Indigo $4,700.77
Wendy Brown $4,236.40

First employee when sorted by name:
Jason Blue $3,200.00

Unique employee last names:
Red
Green
Indigo
Blue
Brown

Names only:
{ FirstName = Jason, LastName = Red }
{ FirstName = Ashley, LastName = Green }
{ FirstName = Matthew, LastName = Indigo }
{ FirstName = James, LastName = Indigo }
{ FirstName = Luke, LastName = Indigo }
{ FirstName = Jason, LastName = Blue }
{ FirstName = Wendy, LastName = Brown }

Fig. 9.4 | LINQ to Objects querying an array of Employee objects. (Part 3 of 3.)

lastNames.Distinct()

from e in employees
select new {e.FirstName, e.LastName};

ptg18189312

9.3 Querying an Array of Employee Objects Using LINQ 255

9.3.1 Accessing the Properties of a LINQ Query’s Range Variable
The where clause in line 30 (Fig. 9.4) accesses the range variable’s properties. The compil-
er infers that the range variable is of type Employee, because employees was defined as an
array of Employee objects (lines 11–18). Any bool expression can be used in a where
clause. Line 30 uses the && (conditional AND) operator to combine conditions. Here, only
employees that have a salary between $4,000 and $6,000 per month, inclusive, are includ-
ed in the query result, which is displayed in lines 36–39.

9.3.2 Sorting a LINQ Query’s Results by Multiple Properties
Line 44 uses orderby to sort the results according to multiple properties—specified in a
comma-separated list. Here, the employees are sorted alphabetically by last name. Employ-
ees that have the same last name are sorted by first name.

9.3.3 Any, First and Count Extension Methods
Line 51 introduces the Any method, which returns true if the query to which it’s applied
has at least one element. The query result’s First method (line 53) returns the first ele-
ment in the result. You should check that the query result is not empty (line 51) before
calling First, which throws an InvalidOperationException if the collection is empty.

We’ve not specified the class that defines methods First and Any. Your intuition
probably tells you they’re methods of interface IEnumerable<T>, but they aren’t. They’re
actually extension methods that enhance a class’s capabilities without modifying the
class’s definition. The LINQ extension methods can be used as if they were methods of
IEnumerable<T>. Section 10.14 shows how to create extension methods.

LINQ defines many more extension methods, such as Count, which returns the
number of elements in the results. Rather than using Any, we could have checked that
Count was nonzero, but it’s more efficient to determine whether there’s at least one ele-
ment than to count all the elements. The LINQ query syntax is actually transformed by
the compiler into extension method calls, with the results of one method call used in the
next. It’s this design that allows queries to be run on the results of previous queries, as it
simply involves passing the result of a method call to another method. For a complete list
of IEnumerable<T> extension methods, visit

9.3.4 Selecting a Property of an Object
Line 63 uses the select clause to select the range variable’s LastName property rather than
the range variable itself. This causes the results of the query to consist of only the last
names (as strings), instead of complete Employee objects. Lines 67–70 display the unique
last names. The Distinct extension method (line 67) removes duplicate elements, caus-
ing all elements in the resulting collection to be unique.

9.3.5 Creating New Types in the select Clause of a LINQ Query
The last LINQ query in the example (lines 74–75) selects the properties FirstName and
LastName. The syntax

https://msdn.microsoft.com/library/9eekhta0

new {e.FirstName, e.LastName}

https://msdn.microsoft.com/library/9eekhta0

ptg18189312

256 Chapter 9 Introduction to LINQ and the List Collection

creates a new object of an anonymous type (a type with no name), which the compiler
generates for you, based on the properties listed in the curly braces ({}). In this case, each
new object of the anonymous type is initialized with the FirstName and LastName values
from the corresponding Employee object. These selected properties can then be accessed
when iterating over the results. Implicitly typed local variables allow you to use anonymous
types because you do not have to explicitly state the type when declaring such variables.

When the compiler creates an anonymous type, it automatically generates a ToString
method that returns a string representation of the object. You can see this in the pro-
gram’s output—it consists of the property names and their values, enclosed in braces.
Anonymous types are discussed more in Chapter 20.

Projections
The query in lines 74–75 is an example of a projection, which transforms an object into
a new form. In this case, the transformation creates new objects containing only the
FirstName and LastName properties, but projections also can manipulate the data. For ex-
ample, a projection that includes the MonthlySalary could give all employees a 10% raise
by multiplying their MonthlySalary properties by 1.1 with the expression

Changing the Names of Properties in Anonymous Types
You can specify a new name for a selected property in an anonymous type. For example,
if line 75 is written as

the anonymous type would have properties named First and Last, rather than FirstName
and LastName. If you don’t specify a new name, the property’s original name is used.

9.4 Introduction to Collections
The .NET Framework Class Library provides several classes, called collections, used to store
groups of related objects. These classes provide efficient methods that organize, store and
retrieve your data without requiring knowledge of how the data is being stored. This
reduces app development time.

You’ve used arrays to store sequences of objects. Arrays do not automatically change
their size at execution time to accommodate additional elements—you must do so manu-
ally by creating a new array or by using the Array class’s Resize method.

9.4.1 List<T> Collection
The generic collection class List<T> (from namespace System.Collections.Generic)
provides a convenient solution to this problem. The T is a placeholder—when declaring a
new List, replace it with the type of elements that you want the List to hold. This is sim-
ilar to specifying the type when declaring an array. For example,

declares intList as a List collection that can store only int values, and

e.MonthlySalary * 1.1M

new {First = e.FirstName, Last = e.LastName}

List<int> intList;

List<string> stringList;

ptg18189312

9.4 Introduction to Collections 257

declares stringList as a List of references to strings. Classes with this kind of place-
holder enabling them to be used with any type are called generic classes. Generic classes
are discussed in Chapter 18. Additional generic collection classes are discussed in
Chapter 19. Figure 19.2 provides a table of collection classes. Figure 9.5 shows some com-
mon methods and properties of class List<T>.

9.4.2 Dynamically Resizing a List<T> Collection
Figure 9.6 demonstrates dynamically resizing a List object. Line 11 creates a List of
strings, then lines 14–15 display the List’s initial Count and Capacity, respectively:

• The Count property returns the number of elements currently in the List.

• The Capacity property indicates how many items the List can hold without
having to grow.

When the List is created, both are initially 0—though the Capacity is implementation
dependent.

Method or
property Description

Add Adds an element to the end of the List.
AddRange Adds the elements of its collection argument to the end of the List.
Capacity Property that gets or sets the number of elements a List can store without resizing.
Clear Removes all the elements from the List.
Contains Returns true if the List contains the specified element and false otherwise.
Count Property that returns the number of elements stored in the List.
IndexOf Returns the index of the first occurrence of the specified value in the List.
Insert Inserts an element at the specified index.
Remove Removes the first occurrence of the specified value.
RemoveAt Removes the element at the specified index.
RemoveRange Removes a specified number of elements starting at a specified index.
Sort Sorts the List.
TrimExcess Sets the Capacity of the List to the number of elements the List currently con-

tains (Count).

Fig. 9.5 | Some methods and properties of class List<T>.

1 // Fig. 9.6: ListCollection.cs
2 // Generic List<T> collection demonstration.
3 using System;
4 using System.Collections.Generic;
5
6 class ListCollection
7 {

Fig. 9.6 | Generic List<T> collection demonstration. (Part 1 of 3.)

ptg18189312

258 Chapter 9 Introduction to LINQ and the List Collection

8 static void Main()
9 {

10 // create a new List of strings
11 var items = new List<string>();
12
13 // display List’s Count and Capacity before adding elements
14 Console.WriteLine("Before adding to items: " +
15 $"Count = { }; Capacity = { }");
16
17
18
19
20 // display List’s Count and Capacity after adding two elements
21 Console.WriteLine("After adding two elements to items: " +
22 $"Count = { }; Capacity = { }");
23
24 // display the colors in the list
25 Console.Write(
26 "\nDisplay list contents with counter-controlled loop:");
27
28 {
29 Console.Write($" { }");
30 }
31
32 // display colors using foreach
33 Console.Write("\nDisplay list contents with foreach statement:");
34
35 {
36 Console.Write($" { }");
37 }
38
39 items.Add("green"); // add "green" to the end of the List
40 items.Add("yellow"); // add "yellow" to the end of the List
41
42 // display List’s Count and Capacity after adding two more elements
43 Console.WriteLine("\n\nAfter adding two more elements to items: " +
44 $"Count = { }; Capacity = { }");
45
46 // display the List
47 Console.Write("\nList with two new elements:");
48 foreach (var item in items)
49 {
50 Console.Write($" {item}");
51 }
52
53
54
55 // display the List
56 Console.Write("\n\nRemove first instance of yellow:");
57 foreach (var item in items)
58 {
59 Console.Write($" {item}");
60 }

Fig. 9.6 | Generic List<T> collection demonstration. (Part 2 of 3.)

items.Count items.Capacity

items.Add("red"); // append an item to the List
items.Insert(0, "yellow"); // insert the value at index 0

items.Count items.Capacity

for (var i = 0; i < items.Count; i++)

items[i]

foreach (var item in items)

item

items.Count items.Capacity

items.Remove("yellow"); // remove the first "yellow"

ptg18189312

9.4 Introduction to Collections 259

61
62
63
64 // display the List
65 Console.Write("\nRemove second list element (green):");
66 foreach (var item in items)
67 {
68 Console.Write($" {item}");
69 }
70
71 // display List’s Count and Capacity after removing two elements
72 Console.WriteLine("\nAfter removing two elements from items: " +
73 $"Count = { }; Capacity = { }");
74
75 // check if a value is in the List
76 Console.WriteLine("\n\"red\" is " +
77 $"{(? string.Empty : "not ")}in the list");
78
79 items.Add("orange"); // add "orange" to the end of the List
80 items.Add("violet"); // add "violet" to the end of the List
81 items.Add("blue"); // add "blue" to the end of the List
82
83 // display List’s Count and Capacity after adding three elements
84 Console.WriteLine("\nAfter adding three more elements to items: " +
85 $"Count = { }; Capacity = { }");
86
87 // display the List
88 Console.Write("List with three new elements:");
89 foreach (var item in items)
90 {
91 Console.Write($" {item}");
92 }
93 Console.WriteLine();
94 }
95 }

Before adding to items: Count = 0; Capacity = 0
After adding two elements to items: Count = 2; Capacity = 4

Display list contents with counter-controlled loop: yellow red
Display list contents with foreach statement: yellow red

After adding two more elements to items: Count = 4; Capacity = 4
List with two new elements: yellow red green yellow

Remove first instance of yellow: red green yellow
Remove second list element (green): red yellow
After removing two elements from items: Count = 2; Capacity = 4

"red" is in the list

After adding three more elements to items: Count = 5; Capacity = 8
List with three new elements: red yellow orange violet blue

Fig. 9.6 | Generic List<T> collection demonstration. (Part 3 of 3.)

items.RemoveAt(1); // remove item at index 1

items.Count items.Capacity

items.Contains("red")

items.Count items.Capacity

ptg18189312

260 Chapter 9 Introduction to LINQ and the List Collection

Adding and Inserting Elements
The Add and Insert methods add elements to the List (lines 17–18):

• The Add method appends its argument to the end of the List.

• The Insert method inserts a new element at the specified position.

Insert’s first argument is an index—as with arrays, collection indices start at zero. The
second argument is the value to insert at the specified index. To make room for the new
element, the indices of the elements at the specified index and above each increase by
one—in this case, "red" initially was at index 0, but now is at index 1, so that "yellow"
can be inserted at index 0.

Count and Capacity
Lines 21–22 display the List’s Count (2) and Capacity (4) after the Add and Insert op-
erations. When line 17 executes, the List grows, increasing its Capacity to 4 so that the
List can accommodate four elements. One of these elements is immediately occupied by
"red". At this point, the List’s Count is 1. When line 18 executes, there’s still room for
three more elements, so "yellow" is inserted and the Count becomes 2.

Iterating Through a List’s Contents
Lines 27–30 display the items in the List. Like array elements, List elements can be ac-
cessed by placing the index in square brackets after the List variable’s name. The indexed
List expression can be used to modify the element at the index. Lines 34–37 display the
List using the preferred foreach statement.

Adding More Elements and Growing the List
Lines 39–51 add more elements to the List, then display its Count, Capacity and con-
tents once again.

Removing Elements
The Remove method deletes the first element with a specific value (line 53), returning true
if successful and false otherwise. Lines 57–60 show the List’s contents after line 53 ex-
ecutes. A similar method, RemoveAt, removes the element at the specified index (line 62).
When an element is removed through either of these methods, the indices of all elements
above that index decrease by one—the opposite of the Insert method. Lines 66–69 show
the List’s contents after line 62 executes. Lines 72–73 display the List’s Count (2) and
Capacity (4) after the remove operations. At this point, there’s room in the List for two
more elements.

Determining Whether an Element Is in the List
Line 77 uses the Contains method to check whether an item is in the List. The Contains
method returns true if the element is found in the List and false otherwise. The method
compares its argument to each element of the List in order until the item is found, so us-
ing Contains on a large List is inefficient.

Adding More Elements and Growing the List
Lines 79–81 add three more elements to the List. Before lines 79–80 execute, Count is 2
and Capacity is 4, so there’s room in the List for the two new elements added by those

ptg18189312

9.5 Querying the Generic List Collection Using LINQ 261

statements. When Line 81 executes, however, Count and Capacity are both 4, so the List
doubles its Capacity to 8 and the Count becomes 5, leaving room for three more elements.

Doubling the Capacity
When a List grows, it must (behind the scenes) create a larger internal array and copy each
element to the new array. This is a time-consuming operation. It would be inefficient for
the List to grow each time an element is added. To minimize the number of memory re-
allocations, a List doubles its capacity when more memory is required.1

9.5 Querying the Generic List Collection Using LINQ
As with arrays, you can use LINQ to Objects to query Lists. In Fig. 9.7, a List of strings
is converted to uppercase and searched for those that begin with "R".

Performance Tip 9.1
Doubling a List’s Capacity is an efficient way for a List to grow quickly to be “about
the right size.” This operation is much more efficient than growing a List by only as much
space as it takes to hold the element(s) being added. A disadvantage is that the List might
occupy more space than it requires. This is a classic example of the space/time trade-off.

Performance Tip 9.2
It can be wasteful to double a List’s size when more space is needed. For example, a full
List of 1,000,000 elements resizes to accommodate 2,000,000 elements when one new
element is added. This leaves 999,999 unused elements. You can use TrimExcess (as in
yourListObject.TrimExcess()) to reduce a List’s Capacity to its current Count. You
also can set the Capacity directly to control space usage better—for example, if you know
a List will never grow beyond 100 elements, you can preallocate that space by assigning
100 to the List’s Capacity or using the List constructor that receives an initial capacity.

1. This is not required and could be implementation dependent.

1 // Fig. 9.7: LINQWithListCollection.cs
2 // LINQ to Objects using a List<string>.
3 using System;
4 using System.Linq;
5 using System.Collections.Generic;
6
7 class LINQWithListCollection
8 {
9 static void Main()

10 {
11 // populate a List of strings
12 var items = new List<string>();
13 items.Add("aQua"); // add "aQua" to the end of the List
14 items.Add("RusT"); // add "RusT" to the end of the List
15 items.Add("yElLow"); // add "yElLow" to the end of the List
16 items.Add("rEd"); // add "rEd" to the end of the List
17

Fig. 9.7 | LINQ to Objects using a List<string>. (Part 1 of 2.)

ptg18189312

262 Chapter 9 Introduction to LINQ and the List Collection

18 // display initial List
19 Console.Write("items contains:");
20 foreach (var item in items)
21 {
22 Console.Write($" {item}");
23 }
24
25 Console.WriteLine(); // output end of line
26
27 // convert to uppercase, select those starting with "R" and sort
28 var startsWithR =
29 from item in items
30
31
32 orderby uppercaseString
33 select uppercaseString;
34
35 // display query results
36 Console.Write("results of query startsWithR:");
37
38 {
39 Console.Write($" {item}");
40 }
41
42 Console.WriteLine(); // output end of line
43
44
45
46
47 // display initial List
48 Console.Write("items contains:");
49 foreach (var item in items)
50 {
51 Console.Write($" {item}");
52 }
53
54 Console.WriteLine(); // output end of line
55
56 // display updated query results
57 Console.Write("results of query startsWithR:");
58
59 {
60 Console.Write($" {item}");
61 }
62
63 Console.WriteLine(); // output end of line
64 }
65 }

items contains: aQua RusT yElLow rEd
results of query startsWithR: RED RUST
items contains: aQua RusT yElLow rEd rUbY SaFfRon
results of query startsWithR: RED RUBY RUST

Fig. 9.7 | LINQ to Objects using a List<string>. (Part 2 of 2.)

let uppercaseString = item.ToUpper()
where uppercaseString.StartsWith("R")

foreach (var item in startsWithR)

items.Add("rUbY"); // add "rUbY" to the end of the List
items.Add("SaFfRon"); // add "SaFfRon" to the end of the List

foreach (var item in startsWithR)

ptg18189312

9.5 Querying the Generic List Collection Using LINQ 263

9.5.1 The let Clause
Line 30 uses LINQ’s let clause to create a new range variable. This is useful if you need
to store a temporary result for use later in the LINQ query. Typically, let declares a new
range variable to which you assign the result of an expression that operates on the query’s
original range variable. In this case, we use string method ToUpper to convert each item
to uppercase, then store the result in the new range variable uppercaseString. We then
use uppercaseString in the where, orderby and select clauses. The where clause (line
31) uses string method StartsWith to determine whether uppercaseString starts with
the character "R". Method StartsWith performs a case-sensitive comparison to determine
whether a string starts with the string received as an argument. If uppercaseString
starts with "R", method StartsWith returns true, and the element is included in the query
results. More powerful string matching can be done using the regular-expression capabil-
ities introduced in the online part of Chapter 16, Strings and Characters: A Deeper Look
(http://www.deitel.com/books/CSharp6FP).

9.5.2 Deferred Execution
We create the query only once (lines 29–33), yet iterating over the results (lines 37–40 and
58–61) gives two different lists of colors. This demonstrates LINQ’s deferred execution.
A LINQ query executes only when you access the results—such as iterating over them or
using the Count method—not when you define the query. This allows you to create a que-
ry once and execute it many times. Any changes to the data source are reflected in the re-
sults each time the query executes.

9.5.3 Extension Methods ToArray and ToList
There may be times when you want to retrieve a collection of the results immediately.
LINQ provides extension methods ToArray and ToList for this purpose. These methods
execute the query on which they’re called and give you the results as an array or List<T>,
respectively. We use ToArray in Section 19.12.

9.5.4 Collection Initializers
Collection initializers provide a convenient syntax (similar to array initializers) for initial-
izing a collection. For example, lines 12–16 of Fig. 9.7 could be replaced with the follow-
ing statement:

Performance Tip 9.3
Deferred execution can improve performance when a query’s results are not immediately
needed.

Performance Tip 9.4
Methods ToArray and ToList also can improve efficiency if you’ll be iterating over the
same results multiple times, as you execute the query only once.

var items = new List<string> {"aQua", "RusT", "yElLow", "rEd"};

http://www.deitel.com/books/CSharp6FP

ptg18189312

264 Chapter 9 Introduction to LINQ and the List Collection

In the preceding declaration, we explicitly created the List<string> with new, so the com-
piler knows that the initializer list contains elements for a List<string>. The following
declaration would generate a compilation error, because the compiler cannot determine
whether you wish to create an array or a collection

9.6 Wrap-Up
This chapter introduced LINQ (Language Integrated Query), a powerful feature for query-
ing data. We showed how to filter an array or collection using LINQ’s where clause, and how
to sort the query results using the orderby clause. We used the select clause to select specific
properties of an object, and the let clause to introduce a new range variable to make writing
queries more convenient. The StartsWith method of class string was used to filter strings
starting with a specified character or series of characters. We used several LINQ extension
methods to perform operations not provided by the query syntax—the Distinct method to
remove duplicates from the results, the Any method to determine if the results contain any
items, and the First method to retrieve the first element in the results.

We introduced the List<T> generic collection, which provides all the functionality of
arrays, along with other useful capabilities such as dynamic resizing. We used method Add
to append new items to the end of the List, method Insert to insert new items into spec-
ified locations in the List, method Remove to remove the first occurrence of a specified
item, method RemoveAt to remove an item at a specified index and method Contains to
determine if an item was in the List. We used property Count to get the number of items
in the List, and property Capacity to determine the number of elements the List can
hold without growing. We use more advanced features of LINQ in later chapters.

In Chapter 10 we take a deeper look at class concepts. We’ll discuss the this refer-
ence, additional constructor concepts, how the runtime manages memory with garbage
collection, static class members, read-only class members, object initializers and operator
overloading.

9.7 Deitel LINQ Resource Center
Our LINQ Resource Center (http://www.deitel.com/LINQ/) contains many links to ad-
ditional information, including blogs by Microsoft LINQ team members, books, sample
chapters, FAQs, tutorials, videos, webcasts and more.

var items = {"aQua", "RusT", "yElLow", "rEd"};

http://www.deitel.com/LINQ/

ptg18189312

10
Classes and Objects:

A Deeper Look

O b j e c t i v e s
In this chapter you’ll:

■ Use composition to allow a class to have references to
objects of other classes as members.

■ Throw an exception to indicate that an argument is out of
range.

■ Enable an object to refer to itself with the keyword this.
■ Use static variables and methods.
■ Use readonly fields.
■ Take advantage of C#’s memory-management features.
■ Use the IDE’s Class View and Object Browser windows.
■ Use object initializers to create an object and initialize it in

the same statement.
■ Overload built-in operators to work with objects of your

own types.
■ Define your own value type with struct.
■ Use extension methods to enhance an existing class’s

capabilities.

ptg18189312

266 Chapter 10 Classes and Objects: A Deeper Look

O
u

tl
in

e

10.1 Introduction
In this chapter, we take a deeper look at building classes, controlling access to members of
a class and creating constructors. We discuss composition—a capability that allows a class
to have references to objects of other classes as members. The chapter also discusses static
class members and readonly instance variables and properties.

We also introduce operator overloading. In previous chapters, we declared our own
classes and used methods to perform tasks on objects of those classes. Operator over-
loading allows us to define the behavior of the built-in operators, such as + and -, when
used on objects of our own classes. This can provide a more convenient notation than
calling methods for performing certain tasks (such as arithmetic) using objects.

We show how to create your own value types using struct, discuss key differences
between structs and classes, and discuss when struct types should be used. Finally, we
demonstrate how to create your own extension methods to add functionality to an existing
type that you did not define.

10.2 Time Class Case Study; Throwing Exceptions
Our first example consists of classes Time1 (Fig. 10.1) and Time1Test (Fig. 10.2). Class
Time1 represents the time of day.1 Class Time1Test’s Main method creates an object of
class Time1 and invokes its methods. The output of this app appears in Fig. 10.2.

10.1 Introduction
10.2 Time Class Case Study; Throwing Ex-

ceptions
10.2.1 Time1 Class Declaration
10.2.2 Using Class Time1

10.3 Controlling Access to Members
10.4 Referring to the Current Object’s Mem-

bers with the this Reference
10.5 Time Class Case Study: Overloaded

Constructors
10.5.1 Class Time2 with Overloaded Con-

structors
10.5.2 Using Class Time2’s Overloaded Con-

structors
10.6 Default and Parameterless Constructors
10.7 Composition

10.7.1 Class Date
10.7.2 Class Employee

10.7.3 Class EmployeeTest
10.8 Garbage Collection and Destructors
10.9 static Class Members

10.10 readonly Instance Variables
10.11 Class View and Object Browser

10.11.1 Using the Class View Window
10.11.2 Using the Object Browser

10.12 Object Initializers
10.13 Operator Overloading; Introducing

struct
10.13.1 Creating Value Types with struct
10.13.2 Value Type ComplexNumber
10.13.3 Class ComplexTest

10.14 Time Class Case Study: Extension
Methods

10.15 Wrap-Up

1. C# has the types like DateTime and DateTimeOffset for date and time manipulations. Our time ex-
amples are for demonstration purposes—you do not need to create your own types for dates and
times. We use DateTime in Section 15.4.

ptg18189312

10.2 Time Class Case Study; Throwing Exceptions 267

10.2.1 Time1 Class Declaration
Class Time1 contains three public properties of type int—Hour, Minute and Second
(Fig. 10.1, lines 7–9). These represent the time in universal-time format (24-hour clock
format, in which hours are in the range 0–23). Class Time1 contains public methods Set-
Time (lines 13–25), ToUniversalString (lines 28–29) and ToString (lines 32–34). These
are the public services or the public interface that this class provides to its clients. In this
example, class Time1 does not declare a constructor, so the compiler defines a default con-
structor. Each property receives the default value 0 for an int. Instance variables and auto-
implemented properties also can be assigned values in their declarations.

public Class
In Fig. 10.1, we declared class Time1 as a public class, meaning that it potentially can be re-
used in other projects. Although we use class Time1 only in this project, from this point for-
ward, we’ll declare as public any class that could potentially be reused in another project.

1 // Fig. 10.1: Time1.cs
2 // Time1 class declaration maintains the time in 24-hour format.
3 using System; // namespace containing ArgumentOutOfRangeException
4
5 public class Time1
6 {
7 public int Hour { get; set; } // 0 - 23
8 public int Minute { get; set; } // 0 - 59
9 public int Second { get; set; } // 0 - 59

10
11 // set a new time value using universal time; throw an
12 // exception if the hour, minute or second is invalid
13 public void SetTime(int hour, int minute, int second)
14 {
15 // validate hour, minute and second
16 if ((hour < 0 || hour > 23) || (minute < 0 || minute > 59) ||
17 (second < 0 || second > 59))
18 {
19
20 }
21
22 = hour;
23 = minute;
24 = second;
25 }
26
27 // convert to string in universal-time format (HH:MM:SS)
28 public string ToUniversalString() =>
29 ;
30
31 // convert to string in standard-time format (H:MM:SS AM or PM)
32 public override string ToString() =>
33
34
35 }

Fig. 10.1 | Time1 class declaration maintains the time in 24-hour format.

throw new ArgumentOutOfRangeException();

Hour
Minute
Second

$"{Hour:D2}:{Minute:D2}:{Second:D2}"

$"{((Hour == 0 || Hour == 12) ? 12 : Hour % 12)}:" +
$"{Minute:D2}:{Second:D2} {(Hour < 12 ? "AM" : "PM")}";

ptg18189312

268 Chapter 10 Classes and Objects: A Deeper Look

Method SetTime and Throwing Exceptions
Method SetTime (lines 13–25) is a public method that declares three int parameters and
uses them to set the time. Lines 16–17 test each argument to determine whether the value
is out of range. If all the values are in range, lines 22–24 assign the values to the Hour, Min-
ute and Second properties. The hour (line 13) must be in the range 0 to 23, because uni-
versal-time format represents hours as integers from 0 to 23 (e.g., 1 PM is hour 13 and 11
PM is hour 23; midnight is hour 0 and noon is hour 12). Similarly, both minute and sec-
ond values must be in the range 0 to 59. For values outside these ranges, line 19 throws an
exception of type ArgumentOutOfRangeException (namespace System), which notifies the
client code that an invalid argument was passed to the method. As you learned in
Chapter 8, you can use try...catch to catch exceptions and attempt to recover from them,
which we’ll do in Fig. 10.2. The throw statement (line 19) creates a new object of type
ArgumentOutOfRangeException. The parentheses following the class name indicate a call
to the ArgumentOutOfRangeException constructor. After the exception object is created,
the throw statement immediately terminates method SetTime and the exception is re-
turned to the code that attempted to set the time, where it can be caught and dealt with.

Method ToUniversalString
Method ToUniversalString (lines 28–29) is an expression-bodied method—recall this is
a shorthand notation for a method that contains only a return statement. The method
takes no arguments and returns a string in universal-time format, consisting of six dig-
its—two for the hour, two for the minute and two for the second. For example, if the time
were 1:30:07 PM, method ToUniversalString would return 13:30:07. The method im-
plicitly returns the value of the string-interpolation expression in line 29. The D2 format
specifier formats an integer with two digits and, where needed, a leading 0 if the integer
has fewer than two digits.

Method ToString
Method ToString (lines 32–34) is an expression-bodied method that takes no arguments
and returns a string in which the Hour, Minute and Second values are separated by colons
and followed by an AM or PM indicator (e.g., 1:27:06 PM). Like method ToUniver-
salString, method ToString implicitly returns the value of a string-interpolation ex-
pression. In this case, we do not format the Hour, but we format the Minute and Second
as two-digit values with leading 0s, if necessary. Line 33 uses a conditional operator (?:)
to determine the value for Hour in the string—if the hour is 0 or 12 (AM or PM), it appears
as 12—otherwise, it appears as a value from 1 to 11. The conditional operator in line 34
determines whether AM or PM will be inserted in the string.

10.2.2 Using Class Time1
The Time1Test app class (Fig. 10.2) uses class Time1. Line 10 creates a Time1 object and
assigns it to local variable time. Operator new invokes class Time1’s default constructor,
since Time1 does not declare any constructors. Lines 13–17 output the time, first in uni-
versal-time format (by invoking time’s ToUniversalString method in line 14), then in
standard-time format (by explicitly invoking time’s ToString method in line 16) to con-
firm that the Time1 object was initialized properly. Line 20 invokes method SetTime of
the time object to change the time. Then lines 21–24 output the time again in both for-
mats to confirm that the time was set correctly.

ptg18189312

10.2 Time Class Case Study; Throwing Exceptions 269

1 // Fig. 10.2: Time1Test.cs
2 // Time1 object used in an app.
3 using System;
4
5 class Time1Test
6 {
7 static void Main()
8 {
9 // create and initialize a Time1 object

10
11
12 // output string representations of the time
13 Console.WriteLine(
14 $"The initial universal time is: { }");
15 Console.WriteLine(
16 $"The initial standard time is: { }");
17 Console.WriteLine(); // output a blank line
18
19 // change time and output updated time
20
21 Console.WriteLine(
22 $"Universal time after SetTime is: { }");
23 Console.WriteLine(
24 $"Standard time after SetTime is: { }");
25 Console.WriteLine(); // output a blank line
26
27 // attempt to set time with invalid values
28 try
29 {
30
31 }
32 catch (ArgumentOutOfRangeException ex)
33 {
34 Console.WriteLine(ex.Message + "\n");
35 }
36
37 // display time after attempt to set invalid values
38 Console.WriteLine("After attempting invalid settings:");
39 Console.WriteLine($"Universal time: { }");
40 Console.WriteLine($"Standard time: { }");
41 }
42 }

The initial universal time is: 00:00:00
The initial standard time is: 12:00:00 AM

Universal time after SetTime is: 13:27:06
Standard time after SetTime is: 1:27:06 PM

Specified argument was out of the range of valid values.

After attempting invalid settings:
Universal time: 13:27:06
Standard time: 1:27:06 PM

Fig. 10.2 | Time1 object used in an app.

var time = new Time1(); // invokes Time1 constructor

time.ToUniversalString()

time.ToString()

time.SetTime(13, 27, 6);

time.ToUniversalString()

time.ToString()

time.SetTime(99, 99, 99);

time.ToUniversalString()
time.ToString()

ptg18189312

270 Chapter 10 Classes and Objects: A Deeper Look

Calling Time Method SetTime with Invalid Values
To illustrate that method SetTime validates its arguments, line 30 calls method SetTime
with invalid arguments of 99 for the hour, minute and second. This statement is placed in
a try block (lines 28–31) in case SetTime throws an ArgumentOutOfRangeException,
which it will do since the arguments are all invalid. When this occurs, the exception is
caught at lines 32–35 and the exception’s Message property is displayed. Lines 38–40 out-
put the time again in both formats to confirm that SetTime did not change the time when
invalid arguments were supplied.

Notes on the Time1 Class Declaration
Consider several class-design issues with respect to class Time1. The time is represented as
three integers for the hour, minute and second. However, the actual data representation used
within the class is of no concern to the class’s clients. For example, it would be perfectly rea-
sonable for Time1 to represent the time internally as the number of seconds since midnight
or the number of minutes and seconds since midnight. Clients could use the same public
methods and properties to get the same results without being aware of this—of course, the
Hour, Minute and Second properties would need to be reimplemented to work with the new
data representation. As an exercise, you can change the time representation to the number of
seconds since midnight, then use the updated class with the existing client code.

10.3 Controlling Access to Members
The access modifiers public and private control access to a class’s variables, methods and
properties. (In Chapter 11, we’ll introduce the additional access modifier protected.) As
we stated in Section 10.2, the primary purpose of public methods and properties is to
present to the class’s clients a view of the services the class provides (that is, the class’s public
interface). Clients of the class need not be concerned with how the class accomplishes its
tasks. For this reason, a class’s private variables, properties and methods (i.e., the class’s
implementation details) are not directly accessible to the class’s clients.

Software Engineering Observation 10.1
Classes simplify programming because the client can use only the public members exposed
by the class. Such members are usually client oriented rather than implementation
oriented. Clients are neither aware of, nor involved in, a class’s implementation. Clients
generally care about what the class does but not how the class does it. Clients do, of course,
care that the class operates correctly and efficiently.

Software Engineering Observation 10.2
Interfaces change less frequently than implementations. When an implementation
changes, implementation-dependent code must change accordingly. Hiding the
implementation reduces the possibility that other parts of the app become dependent on
class-implementation details.

Software Engineering Observation 10.3
Date and time manipulations are more complex than the simplified classes we use in this
book. For applications that require date and time processing, check out .NET’s
DateTimeOffest, DateTime, TimeSpan and TimeZoneInfo value types in namespace
System.

ptg18189312

10.4 Referring to the Current Object’s Members with the this Reference 271

Figure 10.3 demonstrates that private class members are not directly accessible out-
side the class. In this app, we use a modified version of class Time1 that declares private
instance variables hour, minute and second, rather than public properties Hour, Minute
and Second. Lines 9–11 attempt to directly access private instance variables hour, minute
and second of Time1 object time. When this app is compiled, the compiler generates error
messages stating that these private members are not accessible.

10.4 Referring to the Current Object’s Members with the
this Reference
Every object can access a reference to itself with keyword this (also called the this refer-
ence). When a non-static method (or property) is called for a particular object, the meth-
od’s body implicitly uses keyword this to refer to the object’s instance variables and other
non-static class members. As you’ll see in Fig. 10.4, you also can use keyword this explic-
itly in a non-static method’s body. Section 10.5 shows a more interesting use of keyword
this. Section 10.9 explains why keyword this cannot be used in a static method.

1 // Fig. 10.3: MemberAccessTest.cs
2 // Private members of class Time1 are not accessible outside the class.
3 class MemberAccessTest
4 {
5 static void Main()
6 {
7 var time = new Time1(); // create and initialize Time1 object
8
9 time.hour = 7; // error: hour has private access in Time1

10 time.minute = 15; // error: minute has private access in Time1
11 time.second = 30; // error: second has private access in Time1
12 }
13 }

Fig. 10.3 | Private members of class Time1 are not accessible outside the class.

1 // Fig. 10.4: ThisTest.cs
2 // this used implicitly and explicitly to refer to members of an object.
3 using System;
4
5 class ThisTest
6 {

Fig. 10.4 | this used implicitly and explicitly to refer to members of an object. (Part 1 of 2.)

ptg18189312

272 Chapter 10 Classes and Objects: A Deeper Look

Figure 10.4 demonstrates implicit and explicit use of the this reference to enable class
ThisTest’s Main method to display the private data of a SimpleTime object. For the sake
of brevity, we declare two classes in one file—class ThisTest is declared in lines 5–12, and
class SimpleTime is declared in lines 15–42.

Class SimpleTime declares three private instance variables—hour, minute and
second (lines 17–19). The constructor (lines 24–29) receives three int arguments to ini-
tialize a SimpleTime object (without validation for simplicity). Here, we used parameter
names that are identical to the class’s instance-variable names (lines 17–19). We did this
intentionally to hide the corresponding instance variables so that we could illustrate
explicit use of the this reference. If a method contains a local variable with the same name

7 static void Main()
8 {
9 var time = new SimpleTime(15, 30, 19);

10 Console.WriteLine(time.BuildString());
11 }
12 }
13
14 // class SimpleTime demonstrates the "this" reference
15 public class SimpleTime
16 {
17 private int hour; // 0-23
18 private int minute; // 0-59
19 private int second; // 0-59
20
21 // if the constructor uses parameter names identical to
22 // instance-variable names, the "this" reference is
23 // required to distinguish between the names
24 public SimpleTime(int hour, int minute, int second)
25 {
26
27
28
29 }
30
31 // use explicit and implicit "this" to call ToUniversalString
32 public string BuildString() =>
33 $"{"this.ToUniversalString()",24}: { }" +
34 $"\n{"ToUniversalString()",24}: { }";
35
36 // convert to string in universal-time format (HH:MM:SS);
37 // "this" is not required here to access instance variables,
38 // because the method does not have local variables with the same
39 // names as the instance variables
40 public string ToUniversalString() =>
41 $"{ :D2}:{ :D2}:{ :D2}";
42 }

this.ToUniversalString(): 15:30:19
 ToUniversalString(): 15:30:19

Fig. 10.4 | this used implicitly and explicitly to refer to members of an object. (Part 2 of 2.)

this.hour = hour; // set "this" object's hour instance variable
this.minute = minute; // set "this" object's minute
this.second = second; // set "this" object's second

this.ToUniversalString()
ToUniversalString()

this.hour this.minute this.second

ptg18189312

10.5 Time Class Case Study: Overloaded Constructors 273

as an instance variable, the local variable is said to shadow (or hide) the instance variable in
the method’s body. However, you can use this to access the hidden instance variable
explicitly, as shown in lines 26–28 for SimpleTime’s hidden instance variables.

Method BuildString (lines 32–34) returns a string created by a statement that uses
the this reference explicitly and implicitly. Line 33 uses the this reference explicitly to call
method ToUniversalString. Line 34 uses the this reference implicitly to call the same
method. Programmers typically do not use the this reference explicitly to reference other
methods in the current object. Also, line 41 in method ToUniversalString explicitly uses
the this reference to access each instance variable. This is not necessary here, because the
method does not have any local variables that hide the instance variables of the class.

Class ThisTest (lines 5–12) demonstrates class SimpleTime. Line 9 creates an
instance of class SimpleTime and invokes its constructor. Line 10 invokes the object’s
BuildString method, then displays the results.

10.5 Time Class Case Study: Overloaded Constructors
Next, we demonstrate a class with several overloaded constructors that enable objects of
that class to be conveniently initialized in different ways. To overload constructors, simply
provide multiple constructor declarations with different signatures.

10.5.1 Class Time2 with Overloaded Constructors
By default, the properties Hour, Minute and Second of class Time1 (Fig. 10.1) are initial-
ized to their default values of 0—midnight in universal time. Class Time1 doesn’t enable
the class’s clients to initialize the time with specific nonzero values, because it does not de-
fine such a constructor. Class Time2 (Fig. 10.5) contains overloaded constructors. In this
app, one constructor invokes the other, which in turn calls SetTime to set the private in-
stance variables hour, minute and second via the class’s Hour, Minute and Second proper-
ties, which perform validation. The compiler invokes the appropriate Time2 constructor
by matching the number and types of the arguments specified in the constructor call with
the number and types of the parameters specified in each constructor declaration.

Software Engineering Observation 10.4
Using properties throughout a class to access the class’s instance variables normally
eliminates shadowing because property names use Pascal Case naming (capital first letter)
and parameter names use Camel Case (lowercase first letter).

1 // Fig. 10.5: Time2.cs
2 // Time2 class declaration with overloaded constructors.
3 using System; // for class ArgumentOutOfRangeException
4
5 public class Time2
6 {
7 private int hour; // 0 - 23
8 private int minute; // 0 - 59
9 private int second; // 0 - 59

Fig. 10.5 | Time2 class declaration with overloaded constructors. (Part 1 of 3.)

ptg18189312

274 Chapter 10 Classes and Objects: A Deeper Look

10
11 // constructor can be called with zero, one, two or three arguments
12
13 {
14 SetTime(hour, minute, second); // invoke SetTime to validate time
15 }
16
17 // Time2 constructor: another Time2 object supplied as an argument
18
19
20
21 // set a new time value using universal time; invalid values
22 // cause the properties' set accessors to throw exceptions
23 public void SetTime(int hour, int minute, int second)
24 {
25 Hour = hour; // set the Hour property
26 Minute = minute; // set the Minute property
27 Second = second; // set the Second property
28 }
29
30 // property that gets and sets the hour
31 public int Hour
32 {
33 get
34 {
35 return hour;
36 }
37 set
38 {
39 if (value < 0 || value > 23)
40 {
41 throw new ArgumentOutOfRangeException(,
42 value, $"{ } must be 0-23");
43 }
44
45 hour = value;
46 }
47 }
48
49 // property that gets and sets the minute
50 public int Minute
51 {
52 get
53 {
54 return minute;
55 }
56 set
57 {
58 if (value < 0 || value > 59)
59 {
60 throw new ArgumentOutOfRangeException(nameof(value),
61 value, $"{nameof(Minute)} must be 0-59");
62 }

Fig. 10.5 | Time2 class declaration with overloaded constructors. (Part 2 of 3.)

public Time2(int hour = 0, int minute = 0, int second = 0)

public Time2(Time2 time)
 : this(time.Hour, time.Minute, time.Second) { }

nameof(value)
nameof(Hour)

ptg18189312

10.5 Time Class Case Study: Overloaded Constructors 275

Class Time2’s Three-Argument Constructor
Lines 12–15 declare a constructor with three default parameters. We did not define a con-
structor with an empty parameter list, so for class Time2 the constructor at lines 12–15 is
also considered to be the class’s parameterless constructor—you can call the constructor
without arguments and the compiler will provide the default values. This constructor also
can be called with one argument for the hour, two for the hour and minute, or three for
the hour, minute and second. This constructor calls SetTime to set the time.

Constructor Initializers
Lines 18–19 declare another Time2 constructor that receives a reference to a Time2 object.
In this case, the values from the Time2 argument are passed to the three-parameter con-

63
64 minute = value;
65 }
66 }
67
68 // property that gets and sets the second
69 public int Second
70 {
71 get
72 {
73 return second;
74 }
75 set
76 {
77 if (value < 0 || value > 59)
78 {
79 throw new ArgumentOutOfRangeException(nameof(value),
80 value, $"{nameof(Second)} must be 0-59");
81 }
82
83 second = value;
84 }
85 }
86
87 // convert to string in universal-time format (HH:MM:SS)
88 public string ToUniversalString() =>
89 $"{Hour:D2}:{Minute:D2}:{Second:D2}";
90
91 // convert to string in standard-time format (H:MM:SS AM or PM)
92 public override string ToString() =>
93 $"{((Hour == 0 || Hour == 12) ? 12 : Hour % 12)}:" +
94 $"{Minute:D2}:{Second:D2} {(Hour < 12 ? "AM" : "PM")}";
95 }

Common Programming Error 10.1
A constructor can call methods of its class. Be aware that the instance variables might not
yet be initialized, because the constructor is in the process of initializing the object. Using
instance variables before they have been initialized properly is a logic error.

Fig. 10.5 | Time2 class declaration with overloaded constructors. (Part 3 of 3.)

ptg18189312

276 Chapter 10 Classes and Objects: A Deeper Look

structor at lines 12–15 to initialize the hour, minute and second. In this constructor, we
use this in a manner that’s allowed only in the constructor’s header. In line 19,

: this followed by parentheses containing arguments indicates a call to one of the class’s
other constructors—in this case, the Time2 constructor that takes three int arguments
(lines 12–15). Line 19 passes the values of the time argument’s Hour, Minute and Second
properties to initialize the Time2 object being constructed. Any initialization code in the
body of the constructor at lines 18–19 would execute after the other constructor is called.

Using this as in line 19 is called a constructor initializer. It enables a class to reuse
initialization code provided by a constructor, rather than defining similar code in another
constructor. If we needed to change how objects of class Time2 are initialized, only the con-
structor at lines 12–15 would need to be modified. Even that constructor might not need
modification—it simply calls the SetTime method to perform the actual initialization, so
it’s possible that the changes the class might require would be localized to SetTime.

Line 19 could have directly accessed instance variables hour, minute and second of
the constructor’s time argument with the expressions time.hour, time.minute and
time.second—even though they’re declared as private variables of class Time2.

SetTime Method and the Hour, Minute and Second Properties
Method SetTime (lines 23–28) invokes the set accessors of the properties Hour (lines 31–
47), Minute (lines 50–66) and Second (lines 69–85), which ensure that the hour is in the
range 0 to 23 and that the values for the minute and second are each in the range 0 to 59.
If a value is out of range, each set accessor throws an ArgumentOutOfRangeException
(lines 41–42, 60–61 and 79–80). In this example, we use the exception class’s overloaded
constructor that receives three arguments:

• the string name of the item that was out of range

• the value that was supplied for that item and

• a string error message.

It’s common to include in an exception’s error message a variable’s or property’s identifier.
This information can help a client-code programmer understand the context in which the
exception occurred. Prior to C# 6, you had to hard code these identifiers into your error-
message strings. As of C# 6, you can instead use the nameof operator (lines 41–42, 60–
61 and 79–80), which returns a string representation of the identifier enclosed in paren-
theses. For example, the expression

: this(time.Hour, time.Minute, time.Second) { }

Software Engineering Observation 10.5
Constructor initializers make classes easier to maintain, modify and debug, because the
common initialization code can be defined in one constructor and called by others.

Software Engineering Observation 10.6
When executing a method of a class, if that method has a reference to another object of the
same class (typically received via a parameter), the method can access all of that other
object’s data and methods (including those that are private).

nameof(value)

ptg18189312

10.5 Time Class Case Study: Overloaded Constructors 277

in line 41 returns the string "value" and the expression

in line 42 returns the string "Hour".

Notes Regarding Class Time2’s Methods, Properties and Constructors
Time2’s properties are accessed throughout the class’s body—SetTime assigns values to Hour,
Minute and Second in lines 25–27, and ToUniversalString and ToString use properties
Hour, Minute and Second in line 89 and lines 93–94, respectively. These methods could ac-
cess the class’s private data directly. However, consider changing the time’s representation
from three int values (requiring 12 bytes of memory) to one int value representing the total
number of elapsed seconds since midnight (requiring only four bytes of memory). If we
make this change, only code that accesses the private data directly would need to change—
for class Time2, the bodies of properties Hour, Minute and Second. There would be no need
to modify SetTime, ToUniversalString or ToString, because they access the private data
indirectly through Hour, Minute and Second. Designing a class in this manner reduces the
likelihood of programming errors when altering the class’s implementation.

Similarly, each constructor could include a copy of the appropriate statements from
method SetTime. Doing so may be slightly more efficient, because the extra constructor
call and the call to SetTime are eliminated. However, duplicating statements in multiple
methods or constructors makes changing the class’s internal data representation more dif-
ficult and error-prone. Having one constructor call the other or even call SetTime directly
allows any changes to SetTime’s implementation to be made only once.

10.5.2 Using Class Time2’s Overloaded Constructors
Class Time2Test (Fig. 10.6) creates six Time2 objects (lines 9–13 and 41) to invoke the
overloaded Time2 constructors.

nameof(Hour)

Good Programming Practice 10.1
When you need to include an identifier in a string literal, use the nameof operator rather
than hard coding the identifier’s name in the string. If you right click an identifier in
Visual Studio then use the Rename… option to change the identifier’s name throughout
your code, the string that nameof returns will be updated automatically with the iden-
tifier’s new name.

Software Engineering Observation 10.7
When implementing a method of a class, using the class’s properties to access the class’s
private data simplifies code maintenance and reduces the likelihood of errors.

1 // Fig. 10.6: Time2Test.cs
2 // Overloaded constructors used to initialize Time2 objects.
3 using System;
4
5 public class Time2Test
6 {

Fig. 10.6 | Overloaded constructors used to initialize Time2 objects. (Part 1 of 3.)

ptg18189312

278 Chapter 10 Classes and Objects: A Deeper Look

7 static void Main()
8 {
9

10
11
12
13
14
15 Console.WriteLine("Constructed with:\n");
16 Console.WriteLine("t1: all arguments defaulted");
17 Console.WriteLine($" {t1.ToUniversalString()}"); // 00:00:00
18 Console.WriteLine($" {t1.ToString()}\n"); // 12:00:00 AM
19
20 Console.WriteLine(
21 "t2: hour specified; minute and second defaulted");
22 Console.WriteLine($" {t2.ToUniversalString()}"); // 02:00:00
23 Console.WriteLine($" {t2.ToString()}\n"); // 2:00:00 AM
24
25 Console.WriteLine(
26 "t3: hour and minute specified; second defaulted");
27 Console.WriteLine($" {t3.ToUniversalString()}"); // 21:34:00
28 Console.WriteLine($" {t3.ToString()}\n"); // 9:34:00 PM
29
30 Console.WriteLine("t4: hour, minute and second specified");
31 Console.WriteLine($" {t4.ToUniversalString()}"); // 12:25:42
32 Console.WriteLine($" {t4.ToString()}\n"); // 12:25:42 PM
33
34 Console.WriteLine("t5: Time2 object t4 specified");
35 Console.WriteLine($" {t5.ToUniversalString()}"); // 12:25:42
36 Console.WriteLine($" {t5.ToString()}"); // 12:25:42 PM
37
38 // attempt to initialize t6 with invalid values
39 try
40 {
41
42 }
43 catch (ArgumentOutOfRangeException ex)
44 {
45 Console.WriteLine("\nException while initializing t6:");
46 Console.WriteLine(ex.Message);
47 }
48 }
49 }

Constructed with:

t1: all arguments defaulted
 00:00:00
 12:00:00 AM

t2: hour specified; minute and second defaulted
 02:00:00
 2:00:00 AM

Fig. 10.6 | Overloaded constructors used to initialize Time2 objects. (Part 2 of 3.)

var t1 = new Time2(); // 00:00:00
var t2 = new Time2(2); // 02:00:00
var t3 = new Time2(21, 34); // 21:34:00
var t4 = new Time2(12, 25, 42); // 12:25:42
var t5 = new Time2(t4); // 12:25:42

var t6 = new Time2(27, 74, 99); // invalid values

ptg18189312

10.6 Default and Parameterless Constructors 279

Lines 9–13 demonstrate passing arguments to the Time2 constructors. C# invokes the
appropriate overloaded constructor by matching the number and types of the arguments
in the constructor call with the number and types of the parameters in each constructor
declaration. Lines 9–12 each invoke the constructor at lines 12–15 of Fig. 10.5:

• Line 9 of Fig. 10.6 invokes the constructor with no arguments—the compiler
supplies the default value 0 for each of the three parameters.

• Line 10 invokes the constructor with one argument that represents the hour—
the compiler supplies the default value 0 for the minute and second.

• Line 11 invokes the constructor with two arguments that represent the hour and
minute—the compiler supplies the default value 0 for the second.

• Line 12 invoke the constructor with values for the hour, minute and second.

Line 13 invokes the constructor at lines 18–19 of Fig. 10.5. Lines 15–36 (Fig. 10.6) dis-
play the string representation of each initialized Time2 object to confirm that each was
initialized properly.

Line 41 attempts to initialize t6 by creating a new Time2 object and passing three
invalid values to the constructor. When the constructor attempts to use the invalid hour
value to initialize the Hour property, an ArgumentOutOfRangeException occurs. We catch
this exception at line 43 and display its Message property, which results in the last three
lines of the output in Fig. 10.6. Because we used the three-argument Argument-
OutOfRangeException constructor when the exception object was created, the exception’s
Message property also includes the information about the out-of-range value.

10.6 Default and Parameterless Constructors
Every class must have at least one constructor—if you do not provide any constructors in
a class’s declaration, the compiler creates a default constructor that takes no arguments
when it’s invoked. In Section 11.4.1, you’ll learn that the default constructor implicitly
performs a special task.

t3: hour and minute specified; second defaulted
 21:34:00
 9:34:00 PM

t4: hour, minute and second specified
 12:25:42
 12:25:42 PM

t5: Time2 object t4 specified
 12:25:42
 12:25:42 PM

Exception while initializing t6:
Hour must be 0-23
Parameter name: value
Actual value was 27.

Fig. 10.6 | Overloaded constructors used to initialize Time2 objects. (Part 3 of 3.)

ptg18189312

280 Chapter 10 Classes and Objects: A Deeper Look

The compiler will not create a default constructor for a class that explicitly declares at
least one constructor. In this case, if you want to be able to invoke the constructor with no
arguments, you must declare a parameterless constructor—that is, one that’s declared with
no parameters or one in which all the parameters have default values (e.g., line 12 of
Fig. 10.5). Like a default constructor, a parameterless constructor is invoked with empty
parentheses. If you call class Time2’s three-argument constructor with no arguments, the
compiler explicitly passes 0 to each parameter. If we omit from class Time2 a constructor
that can be called with no arguments, clients of this class would not be able to create a
Time2 object with the expression new Time2(). If a class provides both a parameterless con-
structor and a constructor with a default arguments for all of its parameters, the compiler
will use the parameterless constructor when you pass no arguments to the constructor.

10.7 Composition
A class can have objects of values types or references to objects of other classes as members.
This is called composition and is sometimes referred to as a has-a relationship. For exam-
ple, an object of class AlarmClock needs to know the current time and the time when it’s
supposed to sound its alarm, so it’s reasonable to include two references to Time objects in
an AlarmClock object.

10.7.1 Class Date
Our example of composition contains three classes—Date (Fig. 10.7), Employee

(Fig. 10.8) and EmployeeTest (Fig. 10.9). Class Date (Fig. 10.7) declares int instance
variables month and day (lines 7–8) and auto-implemented property Year (line 9) to repre-
sent a date.

Software Engineering Observation 10.8
One form of software reuse is composition, in which a class contains references to other
objects. Recall that classes are reference types. A class can have a property of its own type—
for example, a Person class could have Mother and Father properties of type Person that
reference other Person objects.

1 // Fig. 10.7: Date.cs
2 // Date class declaration.
3 using System;
4
5 public class Date
6 {
7 private int month; // 1-12
8 private int day; // 1-31 based on month
9 public int Year { get; } // auto-implemented property Year

10
11 // constructor: use property Month to confirm proper value for month;
12 // use property Day to confirm proper value for day
13 public Date(int month, int day, int year)
14 {
15 Month = month; // validates month

Fig. 10.7 | Date class declaration. (Part 1 of 3.)

private set;

ptg18189312

10.7 Composition 281

16 Year = year; // could validate year
17 Day = day; // validates day
18 Console.WriteLine($"Date object constructor for date {this}");
19 }
20
21 // property that gets and sets the month
22 public int Month
23 {
24 get
25 {
26 return month;
27 }
28 // make writing inaccessible outside the class
29 {
30 if (value <= 0 || value > 12) // validate month
31 {
32 throw new ArgumentOutOfRangeException(
33 nameof(value), value, $"{nameof(Month)} must be 1-12");
34 }
35
36 month = value;
37 }
38 }
39
40 // property that gets and sets the day
41 public int Day
42 {
43 get
44 {
45 return day;
46 }
47 // make writing inaccessible outside the class
48 {
49 int[] daysPerMonth =
50 {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
51
52 // check if day in range for month
53 if (value <= 0 || value > daysPerMonth[Month])
54 {
55 throw new ArgumentOutOfRangeException(nameof(value), value,
56 $"{nameof(Day)} out of range for current month/year");
57 }
58 // check for leap year
59 if (Month == 2 && value == 29 &&
60 !(Year % 400 == 0 || (Year % 4 == 0 && Year % 100 != 0)))
61 {
62 throw new ArgumentOutOfRangeException(nameof(value), value,
63 $"{nameof(Day)} out of range for current month/year");
64 }
65
66 day = value;
67 }
68 }

Fig. 10.7 | Date class declaration. (Part 2 of 3.)

private set

private set

ptg18189312

282 Chapter 10 Classes and Objects: A Deeper Look

Constructor
The constructor (lines 13–19) receives three ints. Line 15 invokes property Month’s set
accessor (lines 28–37) to validate the month—if the value is out-of-range the accessor
throws an exception. Line 16 uses property Year to set the year. Since Year is an auto-im-
plemented property, it provides no validation—we’re assuming in this example that Year’s
value is correct. Line 17 uses property Day’s set accessor (lines 47–67) to validate and as-
sign the value for day based on the current Month and Year (by using properties Month and
Year in turn to obtain the values of month and Year).

The order of initialization is important, because property Day’s set accessor performs
its validation assuming that Month and Year are correct. Line 53 determines whether the
day is out of range, based on the number of days in the Month and, if so, throw an excep-
tion. Lines 59–60 determine whether the Month is February, the day is 29 and the Year is
not a leap year (in which case, 29 is out of range) and, if so, throw an exception. If no excep-
tions are thrown, the value for day is correct and assigned to the instance variable at line
66. Line 18 in the constructor formats the this reference as a string. Since this is a ref-
erence to the current Date object, the object’s ToString method (line 71) is called implic-
itly to obtain the Date’s string representation.

private set Accessors
Class Date uses access modifiers to ensure that clients of the class must use the appropriate
methods and properties to access private data. In particular, the properties Year, Month
and Day declare private set accessors (lines 9, 28 and 47, respectively)—these set acces-
sors can be used only within the class. We declare these private for the same reasons that
we declare instance variables private—to simplify code maintenance and control access
to the class’s data. Although the constructor, method and properties in class Date still have
all the advantages of using the set accessors to perform validation, clients of the class must
use the class’s constructor to initialize the data in a Date object. The get accessors of Year,
Month and Day are implicitly public—when there’s no access modifier before a get or set
accessor, the property’s access modifier is used.

10.7.2 Class Employee
Class Employee (Fig. 10.8) has public auto-implemented, getter-only properties First-
Name, LastName, BirthDate and HireDate. BirthDate and HireDate (lines 7–8) refer to
Date objects, demonstrating that a class can have references to objects of other classes as mem-
bers. This, of course, also is true of FirstName and LastName, which refer to String objects.
The Employee constructor (lines 11–18) uses its four parameters to initialize the class’s
properties. When class Employee’s ToString method is called, it returns a string contain-
ing the string representations of the two Date objects. Each of these strings is obtained
with an implicit call to the Date class’s ToString method.

69
70 // return a string of the form month/day/year
71 public override string ToString() => $"{Month}/{Day}/{Year}";
72 }

Fig. 10.7 | Date class declaration. (Part 3 of 3.)

ptg18189312

10.7 Composition 283

10.7.3 Class EmployeeTest
Class EmployeeTest (Fig. 10.9) creates two Date objects (lines 9–10) to represent an Em-
ployee’s birthday and hire date, respectively. Line 11 creates an Employee and initializes
its instance variables by passing to the constructor two strings (representing the Employ-
ee’s first and last names) and two Date objects (representing the birthday and hire date).
Line 13 implicitly invokes the Employee’s ToString method to display the Employee’s
string representation and demonstrate that the object was initialized properly.

1 // Fig. 10.8: Employee.cs
2 // Employee class with references to other objects.
3 public class Employee
4 {
5 public string FirstName { get; }
6 public string LastName { get; }
7
8
9

10 // constructor to initialize name, birth date and hire date
11 public Employee(string firstName, string lastName,
12 Date birthDate, Date hireDate)
13 {
14 FirstName = firstName;
15 LastName = lastName;
16 BirthDate = birthDate;
17 HireDate = hireDate;
18 }
19
20 // convert Employee to string format
21 public override string ToString() => $"{LastName}, {FirstName} " +
22 $"Hired: {HireDate} Birthday: {BirthDate}";
23 }

Fig. 10.8 | Employee class with references to other objects.

1 // Fig. 10.9: EmployeeTest.cs
2 // Composition demonstration.
3 using System;
4
5 class EmployeeTest
6 {
7 static void Main()
8 {
9 var birthday = new Date(7, 24, 1949);

10 var hireDate = new Date(3, 12, 1988);
11
12
13
14 }
15 }

Fig. 10.9 | Composition demonstration. (Part 1 of 2.)

public Date BirthDate { get; }
public Date HireDate { get; }

var employee = new Employee("Bob", "Blue", birthday, hireDate);

Console.WriteLine(employee);

ptg18189312

284 Chapter 10 Classes and Objects: A Deeper Look

10.8 Garbage Collection and Destructors
Every object you create uses various system resources, such as memory. In many program-
ming languages, these system resources are reserved for the object’s use until they’re explic-
itly released by the programmer. If all the references to the object that manages a resource
are lost before the resource is explicitly released, the app can no longer access the resource
to release it. This is known as a resource leak.

To avoid resource leaks, we need a disciplined way to give resources back to the system
when they’re no longer needed. The Common Language Runtime (CLR) performs auto-
matic memory management by using a garbage collector that reclaims the memory occu-
pied by objects no longer in use, so the memory can be used for other objects. When there
are no more references to an object, the object becomes eligible for destruction. Every
object has a special member, called a destructor, that’s invoked by the garbage collector to
perform termination housekeeping on an object before the garbage collector reclaims the
object’s memory. A destructor is declared like a parameterless constructor, except that its
name is the class name, preceded by a tilde (~), and it has no access modifier in its header.
After the garbage collector calls the object’s destructor, the object becomes eligible for gar-
bage collection. The memory for such an object can be reclaimed by the garbage collector.

Memory leaks, which are common in other languages such as C and C++ (because
memory is not automatically reclaimed in those languages), are less likely in C#, but some
can still happen in subtle ways. Other types of resource leaks can occur. For example, an
app could open a file on disk to modify its contents. If the app does not close the file, no
other app can modify (or possibly even use) the file until the app that opened it terminates.

A problem with the garbage collector is it doesn’t guarantee that it will perform its
tasks at a specified time. Therefore, the garbage collector may call the destructor any time
after the object becomes eligible for destruction, and may reclaim the memory any time
after the destructor executes. In fact, it’s possible that neither will happen before the app
terminates. Thus, it’s unclear whether, or when, the destructor will be called. For this
reason, destructors are rarely used.

10.9 static Class Members
Every object has its own copy of its class’s instance variables. In certain cases, only one copy
of a particular variable should be shared by all objects of a class. A static variable (or prop-

Date object constructor for date 7/24/1949
Date object constructor for date 3/12/1988
Blue, Bob Hired: 3/12/1988 Birthday: 7/24/1949

Software Engineering Observation 10.9
A class that uses resources, such as files on disk, should provide a method to eventually
release the resources. Many Framework Class Library classes provide Close or Dispose
methods for this purpose. Section 13.6 introduces the Dispose method, which is then used
in many later examples. Close methods are typically used with objects that are associated
with files (Chapter 17) and other types of so-called streams of data.

Fig. 10.9 | Composition demonstration. (Part 2 of 2.)

ptg18189312

10.9 static Class Members 285

erty) is used in such cases. A static variable or property represents classwide informa-
tion—all objects of the class share the same piece of data. The declaration of a static
variable or property begins with the keyword static.

Let’s motivate static data with an example. Suppose that we have a video game with
Martians and other space creatures. Each Martian tends to be brave and willing to attack
other space creatures when it’s aware that there are at least four other Martians present. If
fewer than five Martians are present, each Martian becomes cowardly. Thus each Martian
needs to know the martianCount. We could endow class Martian with martianCount as an
instance variable (or as a property, but we’ll use an instance variable for discussion purposes
here). If we do this, every Martian will have a separate copy of the instance variable, and
every time we create a new Martian, we’ll have to update the instance variable martian-
Count in every Martian. This wastes space on redundant copies, wastes time updating the
separate copies and is error prone. Instead, we declare martianCount to be static, making
martianCount classwide data. Every Martian can access the martianCount, but only one
copy of the static martianCount is maintained. This saves space. We save time by having
the Martian constructor increment the static martianCount—there’s only one copy, so we
do not have to increment separate copies of martianCount for each Martian object.

static Variable Scope
The scope of a static variable is the body of its class. A class’s public static members
can be accessed by qualifying the member name with the class name and the member ac-
cess (.) operator, as in Math.PI. A class’s private static class members can be accessed
only through the class’s methods and properties. To access a private static member from
outside its class, a public static method or property can be provided.

static Methods and Non-static Class Members
A static method (or property) cannot access non-static class members directly, because
a static method (or property) can be called even when no objects of the class exist. For
the same reason, this cannot be used in a static method—the this reference always re-
fers to a specific object of the class. When a static method is called, it does not know which
object to manipulate and there might not be any objects of its class in memory.

Class Employee
Our next app contains classes Employee (Fig. 10.10) and EmployeeTest (Fig. 10.11). Class
Employee declares private static auto-implemented property Count to maintain a count

Software Engineering Observation 10.10
Use a static variable when all objects of a class must share the same copy of the variable.

Common Programming Error 10.2
It’s a compilation error to access or invoke a static member by referencing it through an
instance of the class, like a non-static member.

Software Engineering Observation 10.11
static variables, methods and properties exist, and can be used, even if no objects of that
class have been instantiated. static members are available as soon as the class is loaded
into memory at execution time.

ptg18189312

286 Chapter 10 Classes and Objects: A Deeper Look

of the number of Employee objects that have been created. We declare Count’s set accessor
private, because only class Employee should be able to modify Count’s value. Count is a
static auto-implemented property, so the compiler creates a corresponding private
static variable that Count manages. When you declare a static variable and do not ini-
tialize it, the compiler initializes it to the type’s default value (in this case, 0).

When Employee objects exist, Count can be used in any method or property of class
Employee—this example increments Count in the constructor (line 19). Client code can
access the Count with the expression Employee.Count, which evaluates to the number of
Employee objects that have been created.

Class EmployeeTest
EmployeeTest method Main (Fig. 10.11) instantiates two Employee objects (lines 14–15).
When each object’s constructor is invoked, lines 17–18 of Fig. 10.10 assign the Employ-
ee’s first name and last name to properties FirstName and LastName. These two state-
ments do not make copies of the original string arguments.

1 // Fig. 10.10: Employee.cs
2 // static property used to maintain a count of the number of
3 // Employee objects that have been created.
4 using System;
5
6 public class Employee
7 {
8
9

10 public string FirstName { get; }
11 public string LastName { get; }
12
13 // initialize employee, add 1 to static Count and
14 // output string indicating that constructor was called
15 public Employee(string firstName, string lastName)
16 {
17 FirstName = firstName;
18 LastName = lastName;
19
20 Console.WriteLine("Employee constructor: " +
21 $"{FirstName} {LastName}; Count = {Count}");
22 }
23 }

Fig. 10.10 | static property used to maintain a count of the number of Employee objects that
have been created.

Software Engineering Observation 10.12
Actually, string objects in C# are immutable—they cannot be modified after they’re
created. Therefore, it’s safe to have many references to one string. This is not normally
the case for objects of most other classes. If string objects are immutable, you might
wonder why we’re able to use operators + and += to concatenate strings. String-
concatenation operations actually result in a new string object containing the
concatenated values. The original string objects are not modified.

public static int Count { get; private set; } // objects in memory

++Count; // increment static count of employees

ptg18189312

10.9 static Class Members 287

Lines 18–19 of Fig. 10.11 display the updated Count. When Main has finished using the
two Employee objects, references e1 and e2 are set to null at lines 28–29, so they no longer
refer to the objects that were instantiated in lines 14–15. The objects become eligible for
destruction because there are no more references to them. After the objects’ destructors are
called, the objects become eligible for garbage collection. (Note that we did not need to set
e1 and e2 are set to null here as they’re local variables—when a local variable of a reference
type goes out of scope, the object’s reference count is decremented automatically.)

Eventually, the garbage collector might reclaim the memory for these objects (or the
operating system will reclaim it when the app terminates). C# does not guarantee when,
or even whether, the garbage collector will execute. When the garbage collector does run,
it’s possible that no objects or only a subset of the eligible objects will be collected.

1 // Fig. 10.11: EmployeeTest.cs
2 // static member demonstration.
3 using System;
4
5 class EmployeeTest
6 {
7 static void Main()
8 {
9 // show that Count is 0 before creating Employees

10 Console.WriteLine(
11 $"Employees before instantiation: { }");
12
13 // create two Employees; Count should become 2
14
15
16
17 // show that Count is 2 after creating two Employees
18 Console.WriteLine(
19 $"\nEmployees after instantiation: { }");
20
21 // get names of Employees
22 Console.WriteLine($"\nEmployee 1: {e1.FirstName} {e1.LastName}");
23 Console.WriteLine($"Employee 2: {e2.FirstName} {e2.LastName}");
24
25
26
27
28
29
30 }
31 }

Employees before instantiation: 0
Employee constructor: Susan Baker; Count = 1
Employee constructor: Bob Blue; Count = 2

Employees after instantiation: 2

Employee 1: Susan Baker
Employee 2: Bob Blue

Fig. 10.11 | static member demonstration.

Employee.Count

var e1 = new Employee("Susan", "Baker");
var e2 = new Employee("Bob", "Blue");

Employee.Count

// in this example, there is only one reference to each Employee,
// so the following statements cause the CLR to mark each
// Employee object as being eligible for garbage collection
e1 = null; // mark object referenced by e1 as no longer needed
e2 = null; // mark object referenced by e2 as no longer needed

ptg18189312

288 Chapter 10 Classes and Objects: A Deeper Look

10.10 readonly Instance Variables
The principle of least privilege is fundamental to good software engineering. In the con-
text of an app, the principle states that code should be granted the amount of privilege and
access needed to accomplish its designated task, but no more. Let’s see how this principle ap-
plies to instance variables.

Some instance variables need to be modifiable, and some do not. In Section 8.4, we
used keyword const to declare a constant, which must be initialized in its declaration—
all objects of the class have the same value for that constant. Suppose, however, we want a
constant that can have a different value for each object of a class. For this purpose, C# pro-
vides keyword readonly to specify that an instance variable of an object is not modifiable
and that any attempt to modify it after the object is constructed is an error. For example,

declares readonly instance variable Increment of type int. Like a constant, a readonly
variable’s identifier uses Pascal Case by convention. Although readonly instance variables
can be initialized when they’re declared, this isn’t required. A readonly variable should be
initialized by each of the class’s constructors or in the variable’s declaration. Each construc-
tor can assign values to a readonly instance variable multiple times—the variable doesn’t
become unmodifiable until after the constructor completes execution. If a constructor
does not initialize the readonly variable, the variable uses the same default value as any
other instance variable (0 for numeric simple types, false for bool type and null for ref-
erence types)—these values actually are set before a constructor executes and can be over-
written by the called constructor.

const members must be assigned values at compile time. Therefore, const members
can be initialized only with other constant values, such as integers, string literals, charac-
ters and other const members. Constant members with values that cannot be determined
at compile time—such as constants that are initialized with the result of a method call—
must be declared with keyword readonly, so they can be initialized at execution time. Vari-
ables that are readonly can be initialized with more complex expressions, such as an array
initializer or a method call that returns a value or a reference to an object.

private readonly int Increment;

Software Engineering Observation 10.13
Declaring an instance variable as readonly helps enforce the principle of least privilege.
If an instance variable should not be modified after the object is constructed, declare it to
be readonly to prevent modification.

Common Programming Error 10.3
Attempting to modify a readonly instance variable anywhere but in its declaration or the
object’s constructors is a compilation error.

Error-Prevention Tip 10.1
Attempts to modify a readonly instance variable are caught at compilation time rather
than causing execution-time errors. It’s always preferable to get bugs out at compile time,
if possible, rather than allowing them to slip through to execution time (where studies
have found that repairing bugs is often much more costly).

ptg18189312

10.11 Class View and Object Browser 289

C# 6 Getter-Only Auto-Implemented Properties and readonly
Section 8.6.1 introduced C# 6’s getter-only auto-implemented properties. When an auto-
implemented property has only a get accessor, the property can be used only to read the
value, so the compiler implicitly declares the corresponding private instance variable as
readonly. Getter-only auto-implemented properties can be initialized in their declara-
tions or in constructors.

10.11 Class View and Object Browser
Now that we have introduced key concepts of object-oriented programming, we present
two Visual Studio features that facilitate the design of object-oriented apps—the Class
View and the Object Browser.

10.11.1 Using the Class View Window
The Class View displays the fields, methods and properties for all classes in a project. Select
View > Class View to display the Class View as a tab in the same position within the IDE as
the Solution Explorer. Figure 10.12 shows the Class View for the Time1 project of Fig. 10.1
(class Time1) and Fig. 10.2 (class Time1Test).

The view follows a hierarchical structure, positioning the project name (Time1) as the
root and including a series of nodes that represent the classes, variables, methods and prop-
erties in the project. If a

Software Engineering Observation 10.14
If a readonly instance variable is initialized to a constant only in its declaration, it’s not
necessary to have a separate copy of the instance variable for every object of the class. The
variable should be declared const instead. Constants declared with const are implicitly
static, so there will only be one copy for the entire class.

Fig. 10.12 | Class View of class Time1 (Fig. 10.1) and class Time1Test (Fig. 10.2).

ptg18189312

290 Chapter 10 Classes and Objects: A Deeper Look

appears to the left of a node, that node can be expanded to show other nodes. If a

appears to the left of a node, that node can be collapsed. According to the Class View, proj-
ect Time1 contains class Time1 and class Time1Test as children. When class Time1 is select-
ed, the class’s members appear in the lower half of the window. Class Time1 contains
methods SetTime, ToString and ToUniversalString, indicated by purple boxes

and public properties Hour, Minute and Second, indicated by wrench icons

If a class has any private members, those members’ icons contain small padlocks. Both
class Time1 and class Time1Test contain the Base Types node. If you expand this node,
you’ll see class Object in each case, because each class inherits from class System.Object—
we discuss this concept in Chapter 11.

10.11.2 Using the Object Browser
Visual Studio’s Object Browser lists all classes in the .NET library. You can use the Object

Browser to learn about the functionality provided by a specific class. To open the Object

Browser, select View > Object Browser. Figure 10.13 depicts the Object Browser when the user
navigates to the Math class in namespace System. To do this, we expanded the node for
mscorlib (Microsoft Core Library) in the upper-left pane of the Object Browser, then ex-
panded its subnode for System. The most common classes from the System namespace,
such as System.Math, are in mscorlib.

Fig. 10.13 | Object Browser for class Math.

ptg18189312

10.12 Object Initializers 291

The Object Browser lists all methods provided by class Math in the upper-right pane—
this offers you “instant access” to information regarding the functionality of various
objects. Clicking the name of a member in the upper-right pane displays a description of
that member in the lower-right pane. The Object Browser can be used to quickly learn
about a class or one of its methods. You also can view the complete description of a class
or a method in the online documentation by selecting the type or member in the Object

Browser and pressing F1.

10.12 Object Initializers
Object initializers allow you to create an object and initialize its public properties (and
public instance variables, if any) in the same statement. This can be useful when a class
does not provide an appropriate constructor to meet your needs, but does provide a con-
structor that can be called with no arguments and properties that you can use to set the
class’s data. The following statements demonstrate object initializers using the class Time2
from Fig. 10.5.

The first statement creates a Time2 object (aTime), initializes it with class Time2’s construc-
tor that can be called with no arguments, then uses an object initializer to set its Hour, Min-
ute and Second properties. Notice that new Time2 is immediately followed by an object-
initializer list—a comma-separated list in curly braces ({ }) of properties and their values.
Each property name can appear only once in the object-initializer list. The object initializer
executes the property initializers in the order in which they appear.

The second statement creates a new Time2 object (anotherTime), initializes it with class
Time2’s constructor that can be called with no arguments, then sets only its Minute property
using an object initializer. When the Time2 constructor is called with no arguments, it ini-
tializes the time to midnight. The object initializer then sets each specified property to the
supplied value. In this case, the Minute property is set to 45. The Hour and Second properties
retain their default values, because no values are specified for them in the object initializer.

10.13 Operator Overloading; Introducing struct
Method-call notation can be cumbersome for certain kinds of operations, such as arithme-
tic. In these cases, it would be convenient to use C#’s rich set of built-in operators instead.
This section shows how to create operators that work with objects of your own types—via
a process called operator overloading.

You can overload most operators. Some are overloaded more frequently than others,
especially the arithmetic operators, such as + and -, where operator notation is more nat-
ural than calling methods. For a list of overloadable operators, see

// create a Time2 object and initialize its properties
var aTime = new Time2 {Hour = 14, Minute = 30, Second = 12};

// create a Time2 object and initialize only its Minute property
var anotherTime = new Time2 {Minute = 45};

https://msdn.microsoft.com/library/8edha89s

https://msdn.microsoft.com/library/8edha89s

ptg18189312

292 Chapter 10 Classes and Objects: A Deeper Look

10.13.1 Creating Value Types with struct
To demonstrate operator overloading, we’ll define type ComplexNumber (Section 10.13.2).
Complex numbers have the form

where i is . Like integers and floating-point numbers, complex numbers are arithmetic
types that are commonly used in calculations. As you know, C#’s simple numeric types are
value types. To mimic the simple numeric types, we’ll define ComplexNumber as a value type
by using a struct (short for “structure”) rather than a class. C#’s simple types like int
and double are actually aliases for struct types—an int is defined by the struct Sys-
tem.Int32, a long by System.Int64, a double by System.Double and so on. The operator
overloading techniques shown in Section 10.13.2 also can be applied to classes.

When to Declare a struct Type
Microsoft recommends using classes for most new types, but recommends a struct if:

• the type represents a single value—a complex number represents one number
that happens to have a real part and an imaginary part.

• the size of an object is 16 bytes or smaller—we’ll represent a complex number’s
real and imaginary parts using two doubles (a total of 16 bytes).

For the complete list of struct recommendations, see

10.13.2 Value Type ComplexNumber
Value type ComplexNumber (Fig. 10.14) overloads the plus (+), minus (-) and multiplica-
tion (*) operators to enable programs to add, subtract and multiply instances of class Com-
plexNumber using common mathematical notation. Lines 9–10 define getter-only auto-
implemented properties for the ComplexNumber’s Real and Imaginary components.

realPart + imaginaryPart * i

https://msdn.microsoft.com/library/ms229017

1 // Fig. 10.14: ComplexNumber.cs
2 // Value type that overloads operators for adding, subtracting
3 // and multiplying complex numbers.
4 using System;
5
6
7 {
8 // read-only properties that get the real and imaginary components
9 public double Real { get; }

10 public double Imaginary { get; }
11
12 // constructor
13 public ComplexNumber(double real, double imaginary)
14 {

Fig. 10.14 | Value type that overloads operators for adding, subtracting and multiplying com-
plex numbers. (Part 1 of 2.)

1–

public struct ComplexNumber

https://msdn.microsoft.com/library/ms229017

ptg18189312

10.13 Operator Overloading; Introducing struct 293

Constructor
Lines 13–17 define a ComplexNumber constructor that receives parameters to initialize the
Real and Imaginary properties. Unlike a class, you cannot define a parameterless con-
structor for a struct—the compiler always provides a default constructor that initializes
the struct’s instance variables to their default values. Also, structs cannot specify initial
values in instance variable or property declarations.

Overloaded Operators
Lines 24–28 overload the plus operator (+) to add ComplexNumbers. Keyword operator,
followed by an operator symbol (such as +), indicates that a method overloads the specified
operator. Overloaded operator methods are required to be public and static.

Methods that overload binary operators must take two arguments—the first is the left
operand and the second is the right operand. Class ComplexNumber’s overloaded + operator
takes two ComplexNumbers as arguments and returns a ComplexNumber that represents the
sum of the arguments. The method’s body adds the ComplexNumbers and returns the result
as a new ComplexNumber.

15 Real = real;
16 Imaginary = imaginary;
17 }
18
19 // return string representation of ComplexNumber
20 public override string ToString() =>
21 $"({Real} {(Imaginary < 0 ? "-" : "+")} {Math.Abs(Imaginary)}i)";
22
23 // overload the addition operator
24
25 {
26 return new ComplexNumber(x.Real + y.Real,
27 x.Imaginary + y.Imaginary);
28 }
29
30 // overload the subtraction operator
31
32 {
33 return new ComplexNumber(x.Real - y.Real,
34 x.Imaginary - y.Imaginary);
35 }
36
37 // overload the multiplication operator
38
39 {
40 return new ComplexNumber(
41 x.Real * y.Real - x.Imaginary * y.Imaginary,
42 x.Real * y.Imaginary + y.Real * x.Imaginary);
43 }
44 }

Fig. 10.14 | Value type that overloads operators for adding, subtracting and multiplying com-
plex numbers. (Part 2 of 2.)

public static ComplexNumber operator+(ComplexNumber x, ComplexNumber y)

public static ComplexNumber operator-(ComplexNumber x, ComplexNumber y)

public static ComplexNumber operator*(ComplexNumber x, ComplexNumber y)

ptg18189312

294 Chapter 10 Classes and Objects: A Deeper Look

We do not modify the contents of either of the original operands passed as arguments
x and y. This matches our intuitive sense of how this operator should behave—adding two
numbers does not modify either of the original values. Lines 31–43 declare similar over-
loaded operators to subtract and multiply ComplexNumbers.

10.13.3 Class ComplexTest
Class ComplexTest (Fig. 10.15) demonstrates the overloaded ComplexNumber operators +,
- and *. Lines 10–21 prompt the user to enter the real and imaginary parts of two complex
numbers, then use this input to create two ComplexNumber objects for use in calculations.

Software Engineering Observation 10.15
Overload operators to perform the same function or similar functions on objects as the
operators perform on objects of simple types. Avoid nonintuitive use of operators.

Software Engineering Observation 10.16
At least one parameter of an overloaded operator method must be of the type in which the
operator is overloaded. This prevents you from changing how operators work on simple
types.

Software Engineering Observation 10.17
Though you cannot overload the arithmetic assignment operators (e.g., += and -=), C#
allows you to use them with any type that declares the corresponding arithmetic operator
(e.g., + and -).

1 // Fig. 10.15: ComplexTest.cs
2 // Overloading operators for complex numbers.
3 using System;
4
5 class ComplexTest
6 {
7 static void Main()
8 {
9 // prompt the user to enter the first complex number

10 Console.Write("Enter the real part of complex number x: ");
11 double realPart = double.Parse(Console.ReadLine());
12 Console.Write("Enter the imaginary part of complex number x: ");
13 double imaginaryPart = double.Parse(Console.ReadLine());
14 var x = new ComplexNumber(realPart, imaginaryPart);
15
16 // prompt the user to enter the second complex number
17 Console.Write("\nEnter the real part of complex number y: ");
18 realPart = double.Parse(Console.ReadLine());
19 Console.Write("Enter the imaginary part of complex number y: ");
20 imaginaryPart = double.Parse(Console.ReadLine());
21 var y = new ComplexNumber(realPart, imaginaryPart);
22
23 // display the results of calculations with x and y
24 Console.WriteLine();

Fig. 10.15 | Overloading operators for complex numbers. (Part 1 of 2.)

ptg18189312

10.14 Time Class Case Study: Extension Methods 295

Lines 25–27 add, subtract and multiply x and y with the overloaded operators (in
string-interpolation expressions), then output the results. In line 25, we use the + oper-
ator with ComplexNumber operands x and y. Without operator overloading, the expression
x + y wouldn’t make sense—the compiler wouldn’t know how to add two ComplexNumber
objects. This expression makes sense here because we’ve defined the + operator for two
ComplexNumbers in lines 24–28 of Fig. 10.14. When the two ComplexNumbers are “added”
in line 25 of Fig. 10.15, this invokes the operator+ declaration, passing the left operand
as the first argument and the right operand as the second argument. When we use the sub-
traction and multiplication operators in lines 26–27, their respective overloaded operator
declarations are invoked similarly.

Each calculation’s result is the new ComplexNumber object returned by the corre-
sponding overloaded operator method. When this new object is placed in a string-inter-
polation expression, its ToString method (Fig. 10.14, lines 20–21) is implicitly invoked.
The expression x + y in line 25 of Fig. 10.15 could be rewritten to explicitly invoke the
ToString method of the resulting ComplexNumber object, as in:

10.14 Time Class Case Study: Extension Methods
You can use extension methods to add functionality to an existing type without modifying
the type’s source code. You saw in Section 9.3.3 that LINQ’s capabilities are implemented
as extension methods. Figure 10.16 uses extension methods to add two new methods to
class Time2 (Section 10.5)—DisplayTime and AddHours.

25
26
27
28 }
29 }

Enter the real part of complex number x: 2
Enter the imaginary part of complex number x: 4

Enter the real part of complex number y: 4
Enter the imaginary part of complex number y: -2

(2 + 4i) + (4 - 2i) = (6 + 2i)
(2 + 4i) - (4 - 2i) = (-2 + 6i)
(2 + 4i) * (4 - 2i) = (16 + 12i)

(x + y).ToString()

1 // Fig. 10.16: TimeExtensionsTest.cs
2 // Demonstrating extension methods.
3 using System;
4
5 class TimeExtensionsTest
6 {

Fig. 10.16 | Demonstrating extension methods. (Part 1 of 2.)

Fig. 10.15 | Overloading operators for complex numbers. (Part 2 of 2.)

Console.WriteLine($"{x} + {y} = {x + y}");
Console.WriteLine($"{x} - {y} = {x - y}");
Console.WriteLine($"{x} * {y} = {x * y}");

ptg18189312

296 Chapter 10 Classes and Objects: A Deeper Look

7 static void Main()
8 {
9 var myTime = new Time2(); // call Time2 constructor

10 myTime.SetTime(11, 34, 15); // set the time to 11:34:15
11
12 // test the DisplayTime extension method
13 Console.Write("Use the DisplayTime extension method: ");
14
15
16 // test the AddHours extension method
17 Console.Write("Add 5 hours with the AddHours extension method: ");
18
19
20
21 // add hours and display the time in one statement
22 Console.Write("Add 15 hours with the AddHours extension method: ");
23
24
25 // use fully qualified extension-method name to display the time
26 Console.Write("Use fully qualified extension-method name: ");
27
28 }
29 }
30
31 // extension-methods class
32
33 {
34 // display the Time2 object in console
35 public static void DisplayTime()
36 {
37 Console.WriteLine(aTime.ToString());
38 }
39
40 // add the specified number of hours to the time
41 // and return a new Time2 object
42 public static Time2 AddHours()
43 {
44 // create a new Time2 object
45 var newTime = new Time2() {
46 Minute = aTime.Minute, Second = aTime.Second};
47
48 // add the specified number of hours to the given time
49 newTime.Hour = (aTime.Hour + hours) % 24;
50
51 return newTime; // return the new Time2 object
52 }
53 }

Use the DisplayTime extension method: 11:34:15 AM
Add 5 hours with the AddHours extension method: 4:34:15 PM
Add 15 hours with the AddHours extension method: 2:34:15 AM
Use fully qualified extension-method name: 11:34:15 AM

Fig. 10.16 | Demonstrating extension methods. (Part 2 of 2.)

myTime.DisplayTime();

var timeAdded = myTime.AddHours(5); // add five hours
timeAdded.DisplayTime(); // display the new Time2 object

myTime.AddHours(15).DisplayTime(); // add hours and display time

TimeExtensions.DisplayTime(myTime);

static class TimeExtensions

this Time2 aTime

this Time2 aTime, int hours

ptg18189312

10.14 Time Class Case Study: Extension Methods 297

Extension Method DisplayTime
Extension method DisplayTime (lines 35–38) displays the string representation of the
time. The key new feature of method DisplayTime is the this keyword that precedes the
Time2 parameter in the method header (line 35)—this notifies the compiler that Display-
Time is an extension method for an existing class (Time2). The type of an extension meth-
od’s first parameter specifies the type of object on which you can call the method—for this
reason, each extension method must define at least one parameter. Also, extension methods
must be defined as static methods in a static class such as TimeExtensions (lines 32–
53). A static class can contain only static members and cannot be instantiated.

Calling Extension Method DisplayTime
Line 14 uses Time2 object myTime to call the DisplayTime extension method. Note that we
do not provide an argument to the method call. The compiler implicitly passes the object
that calls the method (myTime) as the extension method’s first argument. This allows you to
call DisplayTime as if it were a Time2 instance method. In fact, IntelliSense displays exten-
sion methods with the class’s instance methods and identifies them with a distinct icon

The down-arrow in the icon denotes an extension method. Also, when you select an ex-
tension method in the IntelliSense window, the tool tip that describes the method includes
the text (extension) for each extension method.

Extension Method AddHours
Lines 42–52 of Fig. 10.16 declare the AddHours extension method. Again, the this keyword
in the first parameter’s declaration indicates that AddHours can be called on a Time2 object.
The second parameter is an int value specifying the number of hours to add to the time. The
AddHours method returns a new Time2 object with the specified number of hours added.

Lines 45–46 create the new Time2 object and use an object initializer to set its Minute
and Second properties to the corresponding values in the parameter aTime—these are not
modified when we add hours to the time. Line 49 adds the second argument’s number of
hours to the original Time2 object’s Hour property, then uses the % operator to ensure the
value remains in the range 0–23. The result is assigned to the new Time2 object’s Hour
property. Line 51 returns the new Time2 object to the caller.

Calling Extension Method AddHours
Line 18 calls the AddHours extension method to add five hours to the myTime object’s hour
value. Note that the method call specifies only one argument—the number of hours to
add. Again, the compiler implicitly passes the object that’s used to call the method (my-
Time) as the extension method’s first argument. The Time2 object returned by AddHours
is assigned to a local variable (timeAdded) and displayed in the console using the Display-
Time extension method (line 19).

Calling Both Extension Methods in a Single Statement
Line 23 uses both extension methods (DisplayTime and AddHours) in a single statement
to add 15 hours to the original myTime and display the result in the console. Multiple
method calls in the same statement are known as cascaded method calls. When a method
returns an object, you can follow the method call with a member access operator (.) then

ptg18189312

298 Chapter 10 Classes and Objects: A Deeper Look

call a method on the object that was returned. The methods are called from left to right.
In line 23, the DisplayTime method is called on the Time2 object returned by method
AddHours. This eliminates the need to assign the object returned by AddHours to a variable,
then call DisplayTime in a separate statement.

Calling an Extension Method With Its Fully Qualified Name
Line 27 calls extension method DisplayTime using its fully qualified name—the name of the
class in which the extension method is defined (TimeExtensions), followed by the member
access operator (.), the method name (DisplayTime) and its argument list. Note in line 27
that the call to DisplayTime passes a Time2 object as an argument to the method. When us-
ing the fully qualified method name, you must specify an argument for extension method’s
first parameter. This use of the extension method uses the syntax of a static method call.

Extension Method Cautions
If a type for which you declare an extension method already defines an instance method
with the same name and a compatible signature, the instance method will shadow (i.e.,
hide) the extension method. Also, if a predefined type is later updated to include an in-
stance method that shadows an extension method, the compiler does not report any errors
and the extension method does not appear in IntelliSense.

10.15 Wrap-Up
In this chapter, we discussed additional class concepts. The time examples concluded with
a complete class declaration consisting of private data, overloaded public constructors
for initialization flexibility, properties for manipulating the class’s data and methods that
returned string representations of a time in two different formats.

We mentioned that the this reference is used implicitly in a class’s non-static
methods and properties to access the current object’s instance variables and other non-
static members. You saw explicit uses of the this reference to access the class’s members
(including shadowed instance variables) and how to use keyword this in a constructor to
call another constructor of the same class.

You saw that composition enables a class to have references to objects of other classes as
members. We discussed garbage collection and how it reclaims the memory of objects that
are no longer used. We motivated the notion of static class variables and demonstrated how
to declare and use static variables and methods in your own classes. You saw how to declare
and initialize readonly variables and we discussed that the compiler automatically marks as
readonly the instance variable for a getter-only auto-implemented variable.

We also showed how to use Visual Studio’s Class View and Object Browser windows to
navigate the classes of the Framework Class Library and your own apps to discover infor-
mation about those classes. You initialized an object’s properties as you created it with an
object initializer. We showed how to define the behavior of the built-in operators on
objects of your own classes with operator overloading, and demonstrated how to create
your own value types with struct. Finally, we showed how to use extension methods to
add capabilities to existing types without modifying their source code.

In the next chapter, you’ll learn about inheritance. You’ll see that all classes in C# are
related directly or indirectly to the object root class and begin to understand how inher-
itance enables you to build related classes faster.

ptg18189312

11
Object-Oriented Programming:

Inheritance

O b j e c t i v e s
In this chapter you’ll:

■ Understand how inheritance promotes software reusability.
■ Create a derived class that inherits attributes and behaviors

from a base class.
■ Override base-class methods in derived classes.
■ Use access modifier protected to give derived-class

methods access to base-class members.
■ Access base-class members with base.
■ Understand how constructors are used in inheritance

hierarchies.
■ See an overview of the methods of class object, the direct

or indirect base class of all classes.

ptg18189312

300 Chapter 11 Object-Oriented Programming: Inheritance

O
u

tl
in

e

11.1 Introduction
This chapter continues our discussion of object-oriented programming (OOP) by intro-
ducing one of its primary features—inheritance, a form of software reuse in which a new
class is created by absorbing an existing class’s members and enhancing them with new or
modified capabilities. Inheritance lets you save time during app development by reusing
proven, high-performance and debugged high-quality software. This also increases the
likelihood that a system will be implemented effectively.

The existing class from which a new class inherits members is called the base class,
and the new class is the derived class. Each derived class can become the base class for
future derived classes. A derived class normally adds its own fields, properties and
methods. Therefore, it’s more specific than its base class and represents a more specialized
group of objects. Typically, the derived class exhibits the behaviors of its base class and
additional ones that are specific to itself.

The direct base class is the base class from which a derived class explicitly inherits. An
indirect base class is any class above the direct base class in the class hierarchy, which
defines the inheritance relationships among classes. The class hierarchy begins with class
object—a C# keyword that’s an alias for System.Object in the Framework Class Library.
Every class directly or indirectly extends (or “inherits from”) object. Section 11.7 lists class
object’s methods, which every other class inherits. In single inheritance, a class is derived
from one direct base class. C# supports only single inheritance. In Chapter 12, OOP: Poly-
morphism and Interfaces, we explain how you can use interfaces to realize many of the ben-
efits of multiple inheritance (i.e., inheriting from multiple direct base classes) while
avoiding the associated problems that occur in some programming languages.

Experience in building software systems indicates that significant amounts of code deal
with closely related special cases. When you’re preoccupied with special cases, the details
can obscure the big picture. With object-oriented programming, you can, when appro-
priate, focus on the commonalities among objects in the system rather than the special cases.

We distinguish between the is-a relationship and the has-a relationship. Is-a rep-
resents inheritance. In an is-a relationship, an object of a derived class also can be treated
as an object of its base class. For example, a car is a vehicle, and a truck is a vehicle. By

11.1 Introduction
11.2 Base Classes and Derived Classes
11.3 protected Members
11.4 Relationship between Base Classes

and Derived Classes
11.4.1 Creating and Using a Commission-

Employee Class
11.4.2 Creating a BasePlusCommission-

Employee Class without Using In-
heritance

11.4.3 Creating a CommissionEmployee–
BasePlusCommissionEmployee
Inheritance Hierarchy

11.4.4 CommissionEmployee–Base-
PlusCommissionEmployee Inheri-
tance Hierarchy Using protected
Instance Variables

11.4.5 CommissionEmployee–Base-
PlusCommissionEmployee Inheri-
tance Hierarchy Using private
Instance Variables

11.5 Constructors in Derived Classes
11.6 Software Engineering with Inheri-

tance
11.7 Class object
11.8 Wrap-Up

ptg18189312

11.2 Base Classes and Derived Classes 301

contrast, has-a represents composition (see Chapter 10). In a has-a relationship, an object
contains as members references to other objects. For example, a car has a steering wheel,
and a car object has a reference to a steering-wheel object.

New classes can inherit from classes in class libraries. Organizations develop their
own class libraries and can take advantage of others available worldwide. Some day, most
new software likely will be constructed from standardized reusable components, just as
automobiles and most computer hardware are constructed today. This will facilitate the
development of more powerful, abundant and economical software.

11.2 Base Classes and Derived Classes
Often, an object of one class is an object of another class as well. For example, in geometry,
a rectangle is a quadrilateral (as are squares, parallelograms and trapezoids). Thus, class
Rectangle can be said to inherit from class Quadrilateral. In this context, class Quadri-
lateral is a base class and class Rectangle is a derived class. A rectangle is a specific type
of quadrilateral, but it’s incorrect to claim that every quadrilateral is a rectangle—the
quadrilateral could be a parallelogram or some other shape. Figure 11.1 lists several simple
examples of base classes and derived classes—base classes tend to be more general, and de-
rived classes tend to be more specific.

Because every derived-class object is an object of its base class, and one base class can
have many derived classes, the set of objects represented by a base class is typically larger
than the set of objects represented by any of its derived classes. For example, the base class
Vehicle represents all vehicles—cars, trucks, boats, bicycles and so on. By contrast,
derived class Car represents a smaller, more specific subset of vehicles.

Inheritance relationships form treelike hierarchical structures (Figs. 11.2 and 11.3). A
base class exists in a hierarchical relationship with its derived classes. When classes partic-
ipate in inheritance relationships, they become “affiliated” with other classes. A class
becomes either a base class, supplying members to other classes, or a derived class, inher-
iting its members from another class. Sometimes, a class is both a base and a derived class.

Let us develop a sample class hierarchy, also called an inheritance hierarchy
(Fig. 11.2). The UML class diagram of Fig. 11.2 shows a university community that has
many types of members, including employees, students and alumni. Employees are either
faculty members or staff members. Faculty members are either administrators (such as
deans and department chairpersons) or teachers. The hierarchy could contain many other

Base class Derived classes

Student GraduateStudent, UndergraduateStudent
Shape Circle, Triangle, Rectangle
Loan CarLoan, HomeImprovementLoan, MortgageLoan
Employee Faculty, Staff, HourlyWorker, CommissionWorker
SpaceObject Star, Moon, Planet, FlyingSaucer
BankAccount CheckingAccount, SavingsAccount

Fig. 11.1 | Inheritance examples.

ptg18189312

302 Chapter 11 Object-Oriented Programming: Inheritance

classes. For example, students can be graduate or undergraduate students. Undergraduate
students can be freshmen, sophomores, juniors or seniors.

Each arrow with a hollow triangular arrowhead in the hierarchy diagram represents an
is-a relationship. As we follow the arrows, we can state, for instance, that “an Employee is
a CommunityMember” and “a Teacher is a Faculty member.” CommunityMember is the direct
base class of Employee, Student and Alumnus and is an indirect base class of all the other
classes in the diagram. Starting from the bottom, you can follow the arrows and apply the
is-a relationship up to the topmost base class. For example, an Administrator is a Faculty
member, is an Employee and is a CommunityMember.

Now consider the Shape hierarchy in Fig. 11.3, which begins with base class Shape.
This class is extended by derived classes TwoDimensionalShape and ThreeDimensional-
Shape—a Shape is either a TwoDimensionalShape or a ThreeDimensionalShape. The third
level of this hierarchy contains specific TwoDimensionalShapes and ThreeDimensional-
Shapes. We can follow the arrows from the bottom to the topmost base class in this hier-
archy to identify the is-a relationships. For instance, a Triangle is a TwoDimensionalShape
and is a Shape, while a Sphere is a ThreeDimensionalShape and is a Shape. This hierarchy
could contain many other classes. For example, ellipses and trapezoids also are TwoDimen-
sionalShapes.

Fig. 11.2 | Inheritance hierarchy UML class diagram for university CommunityMembers.

Fig. 11.3 | UML class diagram showing an inheritance hierarchy for Shapes.

Student

CommunityMember

Administrator

AlumnusEmployee

StaffFaculty

Teacher

ThreeDimensionalShape

TetrahedronCubeSphereSquare TriangleCircle

Shape

TwoDimensionalShape

ptg18189312

11.3 protected Members 303

Not every class relationship is an inheritance relationship. In Chapter 10 we discussed
the has-a relationship, in which classes have members that are references to objects of other
classes. Such relationships create classes by composition of existing classes. For example,
given the classes Employee, BirthDate and TelephoneNumber, it’s improper to say that an
Employee is a BirthDate or that an Employee is a TelephoneNumber. However, an
Employee has a BirthDate, and an Employee has a TelephoneNumber.

It’s possible to treat base-class objects and derived-class objects similarly—their com-
monalities are expressed in the base class’s members. Objects of all classes that extend a
common base class can be treated as objects of that base class—such objects have an is-a
relationship with the base class. However, base-class objects cannot be treated as objects of
their derived classes. For example, all cars are vehicles, but not all vehicles are cars (other
vehicles could be trucks, planes, bicycles, etc.). This chapter and Chapter 12 consider
many examples of is-a relationships.

A derived class can customize methods it inherits from its base class. In such cases, the
derived class can override (redefine) the base-class method with an appropriate implemen-
tation, as we’ll see often in the chapter’s code examples.

11.3 protected Members
Chapter 10 discussed access modifiers public and private. A class’s public members are
accessible wherever the app has a reference to an object of that class or one of its derived
classes. A class’s private members are accessible only within the class itself. A base class’s
private members are inherited by its derived classes, but are not directly accessible by de-
rived-class methods and properties. In this section, we introduce access modifier protect-
ed. Using protected access offers an intermediate level of access between public and
private. A base class’s protected members can be accessed by members of that base class
and by members of its derived classes, but not by clients of the class.

All non-private base-class members retain their original access modifier when they
become members of the derived class—public members of the base class become public
members of the derived class, and protected members of the base class become protected
members of the derived class.

Derived-class methods can refer to public and protected members inherited from
the base class simply by using the member names. When a derived-class method overrides
a base-class method, the base-class version can be accessed from the derived class by pre-
ceding the base-class method name with the keyword base and the member access (.)
operator. We discuss accessing overridden members of the base class in Section 11.4.

Software Engineering Observation 11.1
Properties and methods of a derived class cannot directly access private members of the
base class. A derived class can change the state of private base-class fields only through
non-private methods and properties provided in the base class.

Software Engineering Observation 11.2
Declaring private fields in a base class helps you test, debug and correctly modify systems.
If a derived class could access its base class’s private fields, classes that inherit from that
derived class could access the fields as well. This would propagate access to what should be
private fields, and the benefits of information hiding would be lost.

ptg18189312

304 Chapter 11 Object-Oriented Programming: Inheritance

11.4 Relationship between Base Classes and Derived
Classes
In this section, we use an inheritance hierarchy containing types of employees in a com-
pany’s payroll app to discuss the relationship between a base class and a derived class. In
this company:

• commission employees—who will be represented as objects of a base class—are paid
a percentage of their sales, while

• base-salaried commission employees—who will be represented as objects of a de-
rived class—receive a base salary plus a percentage of their sales.

We divide our discussion of the relationship between these employee types into an
evolutionary set of five examples that was carefully designed to teach key capabilities for
good software engineering with inheritance:

1. The first example creates class CommissionEmployee, which directly inherits from
class object. The class declares public auto-implemented properties for the first
name, last name and social security number, and private instance variables for
the commission rate and gross (i.e., total) sales amount.

2. The second example declares class BasePlusCommissionEmployee, which also di-
rectly inherits from object. The class declares public auto-implemented prop-
erties for the first name, last name and social security number, and private
instance variables for the commission rate, gross sales amount and base salary. We
create the class by writing every line of code the class requires—we’ll soon see that
it’s more efficient to create this class by inheriting from CommissionEmployee.

3. The third example declares a separate BasePlusCommissionEmployee class that
extends class CommissionEmployee—that is, a BasePlusCommissionEmployee is
a CommissionEmployee who also has a base salary. BasePlusCommissionEmploy-
ee attempts to access class CommissionEmployee’s private members, but this re-
sults in compilation errors because a derived class cannot access its base class’s
private instance variables.

4. The fourth example shows that if base class CommissionEmployee’s instance vari-
ables are declared as protected, a BasePlusCommissionEmployee class that in-
herits from CommissionEmployee can access that data directly.

5. The fifth and final example demonstrates best practice by setting the Commission-
Employee instance variables back to private in class CommissionEmployee to
enforce good software engineering. Then we show how a separate BasePlusCom-
missionEmployee class that inherits from class CommissionEmployee can use
CommissionEmployee’s public methods and properties to manipulate Commis-
sionEmployee’s private instance variables in a controlled manner.

In the first four examples, we’ll directly access instance variables in several cases where
properties should be used. In the fifth example, we’ll apply effective software engineering
techniques that we’ve presented up to this point in the book to create classes that are easy
to maintain, modify and debug.

ptg18189312

11.4 Relationship between Base Classes and Derived Classes 305

11.4.1 Creating and Using a CommissionEmployee Class
We begin with class CommissionEmployee (Fig. 11.4). The colon (:) followed by class name
object in line 5 indicates that class CommissionEmployee extends (i.e., inherits from) class ob-
ject (an alias for class Object in namespace System). You use inheritance to create classes
from existing classes. Every class (except object) extends an existing class. Because class
CommissionEmployee extends object, class CommissionEmployee inherits object’s meth-
ods—object has no fields. (Section 11.7 summarizes object’s methods.) Every C# class di-
rectly or indirectly inherits object’s methods. If a class does not specify that it inherits from
another class, the new class implicitly inherits from object. For this reason, you typically do
not include “: object” in your code—we do so in this example, then not again in the book.

1 // Fig. 11.4: CommissionEmployee.cs
2 // CommissionEmployee class represents a commission employee.
3 using System;
4
5
6 {
7 public string FirstName { get; }
8 public string LastName { get; }
9 public string SocialSecurityNumber { get; }

10
11
12
13 // five-parameter constructor
14 public CommissionEmployee(string firstName, string lastName,
15 string socialSecurityNumber, decimal grossSales,
16 decimal commissionRate)
17 {
18 // implicit call to object constructor occurs here
19 FirstName = firstName;
20 LastName = lastName;
21 SocialSecurityNumber = socialSecurityNumber;
22 GrossSales = grossSales; // validates gross sales
23 CommissionRate = commissionRate; // validates commission rate
24 }
25
26 // property that gets and sets commission employee's gross sales
27 public decimal GrossSales
28 {
29 get
30 {
31 return grossSales;
32 }
33 set
34 {
35 if (value < 0) // validation
36 {
37 throw new ArgumentOutOfRangeException(nameof(value),
38 value, $"{nameof(GrossSales)} must be >= 0");
39 }

Fig. 11.4 | CommissionEmployee class represents a commission employee. (Part 1 of 2.)

public class CommissionEmployee : object

private decimal grossSales; // gross weekly sales
private decimal commissionRate; // commission percentage

ptg18189312

306 Chapter 11 Object-Oriented Programming: Inheritance

CommissionEmployee Class Overview
CommissionEmployee’s attributes include public, getter-only, auto-implemented proper-
ties FirstName, LastName and SocialSecurityNumber, and private instance variables
grossSales and commissionRate. The class provides

• a constructor (lines 14–24)

• public properties (lines 27–62) to set and get grossSales and commissionRate, and

• expression-bodied methods Earnings (line 65) and ToString (lines 68–72).

Because instance variables grossSales and commissionRate are private, other
classes cannot directly access these variables. Declaring instance variables as private and
providing public properties to manipulate and validate them helps enforce good software
engineering. The set accessors of properties GrossSales and CommissionRate validate
their arguments before assigning the values to instance variables grossSales and commis-
sionRate, respectively.

40
41 grossSales = value;
42 }
43 }
44
45 // property that gets and sets commission employee's commission rate
46 public decimal CommissionRate
47 {
48 get
49 {
50 return commissionRate;
51 }
52 set
53 {
54 if (value <= 0 || value >= 1) // validation
55 {
56 throw new ArgumentOutOfRangeException(nameof(value),
57 value, $"{nameof(CommissionRate)} must be > 0 and < 1");
58 }
59
60 commissionRate = value;
61 }
62 }
63
64 // calculate commission employee's pay
65 public decimal Earnings() => * ;
66
67 // return string representation of CommissionEmployee object
68 public string ToString() =>
69 $"commission employee: {FirstName} {LastName}\n" +
70 $"social security number: {SocialSecurityNumber}\n" +
71 $"gross sales: { :C}\n" +
72 $"commission rate: { :F2}";
73 }

Fig. 11.4 | CommissionEmployee class represents a commission employee. (Part 2 of 2.)

commissionRate grossSales

override

grossSales
commissionRate

ptg18189312

11.4 Relationship between Base Classes and Derived Classes 307

CommissionEmployee Constructor
Constructors are not inherited, so class CommissionEmployee does not inherit class
object’s constructor. However, class CommissionEmployee’s constructor calls object’s
constructor implicitly. In fact, before executing the code in its own body, every derived
class’s constructor calls a constructor in its direct base class, either explicitly or implicitly
(if no constructor call is specified), to ensure that the instance variables inherited from the
base class are initialized properly.

Calling a base-class constructor explicitly is discussed in Section 11.4.3. If the code
does not explicitly call the base-class constructor, the compiler generates an implicit call to
the base class’s default or parameterless constructor, or a constructor with all default argu-
ments. The comment in line 18 indicates where the implicit call to the base class object’s
constructor is made (you do not write the code for this call). Even if a class does not have
constructors, the default constructor that the compiler implicitly declares for the class will
call the base class’s default or parameterless constructor. Class object is the only class that
does not have a base class.

After the implicit call to object’s constructor occurs, lines 19–23 in the constructor
assign values to the class’s properties. We do not validate the values of arguments first-
Name, lastName and socialSecurityNumber. We certainly could validate the first and last
names—perhaps by ensuring that they’re of a reasonable length. Similarly, a social security
number could be validated to ensure that it contains nine digits, with or without dashes
(e.g., 123-45-6789 or 123456789).

CommissionEmployee Method Earnings
Method Earnings (line 65) calculates a CommissionEmployee’s earnings by multiplying
the commissionRate and the grossSales, then returns the result. As a best practice, we
should use the properties CommissionRate and GrossSales to access the instance variables
in line 65. We access them directly here and in the next few examples to help motivate
then demonstrate the protected access modifier. In this chapter’s final example, we’ll fol-
low best practice.

CommissionEmployee Method ToString
Method ToString (lines 68–72) is special—it’s one of the methods that every class inherits
directly or indirectly from class object. Method ToString returns a string representing
an object. It can be called explicitly, but it’s called implicitly by an app whenever an object
must be converted to a string representation, such as when displaying an object with Con-
sole’s Write or WriteLine methods or inserting an object in a string-interpolation ex-
pression. By default, class object’s ToString method returns the object’s fully qualified
class name. For object, ToString returns

because object is an alias for class Object in the System namespace. ToString is primarily
a placeholder that can be (and typically should be) overridden by a derived class to specify
an appropriate string representation of the data in a derived class object.

Method ToString of class CommissionEmployee overrides (redefines) class object’s
ToString method. When invoked, CommissionEmployee’s ToString method returns a
string containing information about the CommissionEmployee. Line 71 uses the format

System.Object

ptg18189312

308 Chapter 11 Object-Oriented Programming: Inheritance

specifier C (in "{grossSales:C}") to format grossSales as currency and line 72 uses the
format specifier F2 (in "{commissionRate:F2}") to format the commissionRate with two
digits to the right of the decimal point.

To override a base-class method, a derived class must declare a method with keyword
override and with the same signature (method name, number of parameters and param-
eter types) and return type as the base-class method—object’s ToString method takes no
parameters and returns type string, so CommissionEmployee declares ToString with the
same parameter list and return type. As you’ll soon see, the base-class method also must be
declared virtual, which is the case for object method ToString.

Class CommissionEmployeeTest
Figure 11.5 tests class CommissionEmployee. Lines 10–11 create a CommissionEmployee
object and invoke its constructor (lines 14–24 of Fig. 11.4) to initialize it. Again, we append
the M suffix to the gross sales amount and the commission rate to indicate these are decimal
literals. Lines 16–22 in Fig. 11.5 use CommissionEmployee’s properties to retrieve the ob-
ject’s instance-variable values for output. Line 23 outputs the amount calculated by the
Earnings method. Lines 25–26 invoke the set accessors of the object’s GrossSales and
CommissionRate properties to change the values of instance variables grossSales and com-
missionRate. Line 30 outputs the string representation of the updated CommissionEm-
ployee. When an object is output by Console’s WriteLine method, which displays the
object’s string representation, the ToString method is invoked implicitly. Line 31 outputs
the updated earnings.

Common Programming Error 11.1
It’s a compilation error to override a method with one that has a different access modifier.
Overriding a method with a more restrictive access modifier would break the is-a rela-
tionship. If a public method could be overridden as a protected or private method, the
derived-class objects would not be able to respond to the same method calls as base-class
objects. In particular, once a method is declared in a base class, the method must have the
same access modifier for all that class’s direct and indirect derived classes.

1 // Fig. 11.5: CommissionEmployeeTest.cs
2 // Testing class CommissionEmployee.
3 using System;
4
5 class CommissionEmployeeTest
6 {
7 static void Main()
8 {
9 // instantiate CommissionEmployee object

10
11
12
13 // display CommissionEmployee data
14 Console.WriteLine(
15 "Employee information obtained by properties and methods: \n");
16 Console.WriteLine($"First name is { }");

Fig. 11.5 | Testing class CommissionEmployee. (Part 1 of 2.)

var employee = new CommissionEmployee("Sue", "Jones",
 "222-22-2222", 10000.00M, .06M);

employee.FirstName

ptg18189312

11.4 Relationship between Base Classes and Derived Classes 309

11.4.2 Creating a BasePlusCommissionEmployee Class without
Using Inheritance
We now discuss the second part of our introduction to inheritance by declaring and testing
the completely new and independent class BasePlusCommissionEmployee (Fig. 11.6),
which contains a first name, last name, social security number, gross sales amount, com-
mission rate and base salary—“Base” in the class name stands for “base salary” not base
class.

17 Console.WriteLine($"Last name is { }");
18 Console.WriteLine(
19 $"Social security number is { }");
20 Console.WriteLine($"Gross sales are { :C}");
21 Console.WriteLine(
22 $"Commission rate is { :F2}");
23 Console.WriteLine($"Earnings are { :C}");
24
25
26
27
28 Console.WriteLine(
29 "\nUpdated employee information obtained by ToString:\n");
30 Console.WriteLine();
31 Console.WriteLine($"earnings: { :C}");
32 }
33 }

Employee information obtained by properties and methods:

First name is Sue
Last name is Jones
Social security number is 222-22-2222
Gross sales are $10,000.00
Commission rate is 0.06
Earnings are $600.00

Updated employee information obtained by ToString:

commission employee: Sue Jones
social security number: 222-22-2222
gross sales: $5,000.00
commission rate: 0.10
earnings: $500.00

1 // Fig. 11.6: BasePlusCommissionEmployee.cs
2 // BasePlusCommissionEmployee class represents an employee that receives
3 // a base salary in addition to a commission.
4 using System;
5

Fig. 11.6 | BasePlusCommissionEmployee class represents an employee that receives a base
salary in addition to a commission. (Part 1 of 3.)

Fig. 11.5 | Testing class CommissionEmployee. (Part 2 of 2.)

employee.LastName

employee.SocialSecurityNumber
employee.GrossSales

employee.CommissionRate
employee.Earnings()

employee.GrossSales = 5000.00M; // set gross sales
employee.CommissionRate = .1M; // set commission rate

employee
employee.Earnings()

ptg18189312

310 Chapter 11 Object-Oriented Programming: Inheritance

6 public class BasePlusCommissionEmployee
7 {
8 public string FirstName { get; }
9 public string LastName { get; }

10 public string SocialSecurityNumber { get; }
11 private decimal grossSales; // gross weekly sales
12 private decimal commissionRate; // commission percentage
13
14
15 // six-parameter constructor
16 public BasePlusCommissionEmployee(string firstName, string lastName,
17 string socialSecurityNumber, decimal grossSales,
18 decimal commissionRate, decimal baseSalary)
19 {
20 // implicit call to object constructor occurs here
21 FirstName = firstName;
22 LastName = lastName;
23 SocialSecurityNumber = socialSecurityNumber;
24 GrossSales = grossSales; // validates gross sales
25 CommissionRate = commissionRate; // validates commission rate
26
27 }
28
29 // property that gets and sets gross sales
30 public decimal GrossSales
31 {
32 get
33 {
34 return grossSales;
35 }
36 set
37 {
38 if (value < 0) // validation
39 {
40 throw new ArgumentOutOfRangeException(nameof(value),
41 value, $"{nameof(GrossSales)} must be >= 0");
42 }
43
44 grossSales = value;
45 }
46 }
47
48 // property that gets and sets commission rate
49 public decimal CommissionRate
50 {
51 get
52 {
53 return commissionRate;
54 }
55 set
56 {

Fig. 11.6 | BasePlusCommissionEmployee class represents an employee that receives a base
salary in addition to a commission. (Part 2 of 3.)

private decimal baseSalary; // base salary per week

BaseSalary = baseSalary; // validates base salary

ptg18189312

11.4 Relationship between Base Classes and Derived Classes 311

BasePlusCommissionEmployee’s attributes include public, getter-only, auto-imple-
mented properties for the FirstName, LastName and SocialSecurityNumber, and private
instance variables for the grossSales, commissionRate and baseSalary. The class provides

• a constructor (lines 16–27)

• public properties (lines 30–84) for manipulating the grossSales, commission-
Rate and baseSalary, and

• expression-bodied methods Earnings (lines 87–88) and ToString (lines 91–96).

57 if (value <= 0 || value >= 1) // validation
58 {
59 throw new ArgumentOutOfRangeException(nameof(value),
60 value, $"{nameof(CommissionRate)} must be > 0 and < 1");
61 }
62
63 commissionRate = value;
64 }
65 }
66
67 // property that gets and sets BasePlusCommissionEmployee's base salary
68
69 {
70 get
71 {
72 return baseSalary;
73 }
74 set
75 {
76 if (value < 0) // validation
77 {
78 throw new ArgumentOutOfRangeException(nameof(value),
79 value, $"{nameof(BaseSalary)} must be >= 0");
80 }
81
82 baseSalary = value;
83 }
84 }
85
86 // calculate earnings
87 public decimal Earnings() =>
88 + (commissionRate * grossSales);
89
90 // return string representation of BasePlusCommissionEmployee
91 public override string ToString() =>
92 $"base-salaried commission employee: {FirstName} {LastName}\n" +
93 $"social security number: {SocialSecurityNumber}\n" +
94 $"gross sales: {grossSales:C}\n" +
95 $"commission rate: {commissionRate:F2}\n" +
96 ;
97 }

Fig. 11.6 | BasePlusCommissionEmployee class represents an employee that receives a base
salary in addition to a commission. (Part 3 of 3.)

public decimal BaseSalary

baseSalary

$"base salary: {baseSalary:C}"

ptg18189312

312 Chapter 11 Object-Oriented Programming: Inheritance

Instance variables grossSales, commissionRate and baseSalary are private, so objects of
other classes cannot directly access these variables. The set accessors of properties Gross-
Sales, CommissionRate and BaseSalary validate their arguments before assigning the val-
ues to instance variables grossSales, commissionRate and baseSalary, respectively.

BasePlusCommissionEmployee’s variables, properties and methods encapsulate all the
necessary features of a base-salaried commission employee. Note the similarity between
this class and class CommissionEmployee (Fig. 11.4)—in this example, we do not yet exploit
that similarity.

Class BasePlusCommissionEmployee does not specify that it extends object with the
syntax “: object” in line 6, so the class implicitly extends object. Also, like class Commis-
sionEmployee’s constructor (lines 14–24 of Fig. 11.4), class BasePlusCommissionEm-
ployee’s constructor invokes class object’s default constructor implicitly, as noted in the
comment in line 20 of Fig. 11.6.

Class BasePlusCommissionEmployee’s Earnings method (lines 87–88) computes the
earnings of a base-salaried commission employee. Line 88 adds the employee’s base salary
to the product of the commission rate and the gross sales, and returns the result.

Class BasePlusCommissionEmployee overrides object method ToString (lines 91–
96) to return a string containing the BasePlusCommissionEmployee’s information. Once
again, we use format specifier C to format the gross sales and base salary as currency and
format specifier F2 to format the commission rate with two digits of precision to the right
of the decimal point.

Class BasePlusCommissionEmployeeTest
Figure 11.7 tests class BasePlusCommissionEmployee. Lines 10–11 instantiate a Base-
PlusCommissionEmployee object and pass "Bob", "Lewis", "333-33-3333", 5000.00M,
.04M and 300.00M to the constructor as the first name, last name, social security number,
gross sales, commission rate and base salary, respectively. Lines 16–24 use BasePlusCom-
missionEmployee’s properties and methods to retrieve the values of the object’s instance
variables and calculate the earnings for output. Line 26 invokes the object’s BaseSalary
property to change the base salary. Property BaseSalary’s set accessor (Fig. 11.6, lines 68–
84) ensures that instance variable baseSalary is not assigned a negative value, because an
employee’s base salary cannot be negative. Lines 30–31 of Fig. 11.7 invoke the object’s To-
String method implicitly and invoke the object’s Earnings method.

1 // Fig. 11.7: BasePlusCommissionEmployeeTest.cs
2 // Testing class BasePlusCommissionEmployee.
3 using System;
4
5 class BasePlusCommissionEmployeeTest
6 {
7 static void Main()
8 {
9 // instantiate BasePlusCommissionEmployee object

10
11
12

Fig. 11.7 | Testing class BasePlusCommissionEmployee. (Part 1 of 2.)

var employee = new BasePlusCommissionEmployee("Bob", "Lewis",
 "333-33-3333", 5000.00M, .04M, 300.00M);

ptg18189312

11.4 Relationship between Base Classes and Derived Classes 313

Code Duplication
Much of the code for class BasePlusCommissionEmployee (Fig. 11.6) is similar, or identical,
to that of class CommissionEmployee (Fig. 11.4). For example, in class BasePlusCommis-
sionEmployee, properties FirstName, LastName and SocialSecurityNumber are identical
to those of class CommissionEmployee. Classes CommissionEmployee and BasePlusCom-
missionEmployee also both contain private instance variables commissionRate and
grossSales, as well as identical properties to manipulate these variables. In addition, the
BasePlusCommissionEmployee constructor is almost identical to that of class Commis-
sionEmployee, except that BasePlusCommissionEmployee’s constructor also sets the
BaseSalary.

13 // display BasePlusCommissionEmployee's data
14 Console.WriteLine(
15 "Employee information obtained by properties and methods: \n");
16 Console.WriteLine($"First name is { }");
17 Console.WriteLine($"Last name is { }");
18 Console.WriteLine(
19 $"Social security number is { }");
20 Console.WriteLine($"Gross sales are { :C}");
21 Console.WriteLine(
22 $"Commission rate is { :F2}");
23 Console.WriteLine($"Earnings are { :C}");
24 Console.WriteLine($"Base salary is { :C}");
25
26
27
28 Console.WriteLine(
29 "\nUpdated employee information obtained by ToString:\n");
30 Console.WriteLine();
31 Console.WriteLine($"earnings: { :C}");
32 }
33 }

Employee information obtained by properties and methods:

First name is Bob
Last name is Lewis
Social security number is 333-33-3333
Gross sales are $5,000.00
Commission rate is 0.04
Earnings are $500.00
Base salary is $300.00

Updated employee information obtained by ToString:

base-salaried commission employee: Bob Lewis
social security number: 333-33-3333
gross sales: $5,000.00
commission rate: 0.04
base salary: $1,000.00
earnings: $1,200.00

Fig. 11.7 | Testing class BasePlusCommissionEmployee. (Part 2 of 2.)

employee.FirstName
employee.LastName

employee.SocialSecurityNumber
employee.GrossSales

employee.CommissionRate
employee.Earnings()

employee.BaseSalary

employee.BaseSalary = 1000.00M; // set base salary

employee
employee.Earnings()

ptg18189312

314 Chapter 11 Object-Oriented Programming: Inheritance

The other additions to class BasePlusCommissionEmployee are private instance vari-
able baseSalary and public property BaseSalary. Class BasePlusCommissionEmployee’s
Earnings method is nearly identical to that of class CommissionEmployee, except that
BasePlusCommissionEmployee’s Earnings also adds the baseSalary. Similarly, class
BasePlusCommissionEmployee’s ToString method is nearly identical to that of class Com-
missionEmployee, except that BasePlusCommissionEmployee’s ToString also formats the
value of instance variable baseSalary as currency.

We literally copied the code from class CommissionEmployee and pasted it into class
BasePlusCommissionEmployee, then modified class BasePlusCommissionEmployee to
include a base salary and methods and properties that manipulate the base salary. This
“copy-and-paste” approach is error prone and time consuming. Worse yet, it can spread
many physical copies of the same code throughout a system, creating a code-maintenance
nightmare. Is there a way to “absorb” the members of one class in a way that makes them
part of other classes without copying code? In the next several examples we answer this
question, using a more elegant approach to building classes—namely, inheritance.

11.4.3 Creating a CommissionEmployee–
BasePlusCommissionEmployee Inheritance Hierarchy
Now we declare class BasePlusCommissionEmployee (Fig. 11.8), which extends (inherits
from) class CommissionEmployee (Fig. 11.4).1 A BasePlusCommissionEmployee object is a
CommissionEmployee (because inheritance passes on the capabilities of class CommissionEm-
ployee), but class BasePlusCommissionEmployee also has instance variable baseSalary
(Fig. 11.8, line 7). The colon (:) in line 5 of the class declaration indicates inheritance. As a
derived class, BasePlusCommissionEmployee inherits CommissionEmployee’s members and
can access only those that are non-private. CommissionEmployee’s constructor is not inher-
ited. Thus, the public services of BasePlusCommissionEmployee include its constructor
(lines 11–18), public methods and properties inherited from class CommissionEmployee,
property BaseSalary (lines 22–38), method Earnings (lines 41–42) and method ToString
(lines 45–51). We’ll explain the errors in Fig. 11.8 momentarily.

Error-Prevention Tip 11.1
Copying and pasting code from one class to another can spread errors across multiple
source-code files. To avoid duplicating code (and possibly errors) in situations where you
want one class to “absorb” the members of another class, use inheritance rather than the
“copy-and-paste” approach.

Software Engineering Observation 11.3
With inheritance, the common members of all the classes in the hierarchy are declared in
a base class. When changes are required for these common features, you need to make the
changes only in the base class—derived classes then inherit the changes. Without
inheritance, changes would need to be made to all the source-code files that contain a copy
of the code in question.

1. For this purpose, we created a project containing a copy of CommissionEmployee.cs from Fig. 11.4.

ptg18189312

11.4 Relationship between Base Classes and Derived Classes 315

1 // Fig. 11.8: BasePlusCommissionEmployee.cs
2 // BasePlusCommissionEmployee inherits from CommissionEmployee.
3 using System;
4
5
6 {
7 private decimal baseSalary; // base salary per week
8
9 // six-parameter derived-class constructor

10 // with call to base class CommissionEmployee constructor
11 public BasePlusCommissionEmployee(string firstName, string lastName,
12 string socialSecurityNumber, decimal grossSales,
13 decimal commissionRate, decimal baseSalary)
14
15
16 {
17 BaseSalary = baseSalary; // validates base salary
18 }
19
20 // property that gets and sets
21 // BasePlusCommissionEmployee's base salary
22 public decimal BaseSalary
23 {
24 get
25 {
26 return baseSalary;
27 }
28 set
29 {
30 if (value < 0) // validation
31 {
32 throw new ArgumentOutOfRangeException(nameof(value),
33 value, $"{nameof(BaseSalary)} must be >= 0");
34 }
35
36 baseSalary = value;
37 }
38 }
39
40 // calculate earnings
41 public override decimal Earnings() =>
42 baseSalary + (commissionRate * grossSales);
43
44 // return string representation of BasePlusCommissionEmployee
45 public override string ToString() =>
46 // not allowed: attempts to access private base-class members
47 $"base-salaried commission employee: {FirstName} {LastName}\n" +
48 $"social security number: {SocialSecurityNumber}\n" +
49 $"gross sales: {grossSales:C}\n" +
50 $"commission rate: {commissionRate:F2}\n" +
51 $"base salary: {baseSalary}";
52 }

Fig. 11.8 | BasePlusCommissionEmployee inherits from CommissionEmployee. (Part 1 of 2.)

public class BasePlusCommissionEmployee : CommissionEmployee

: base(firstName, lastName, socialSecurityNumber,
 grossSales, commissionRate)

ptg18189312

316 Chapter 11 Object-Oriented Programming: Inheritance

A Derived Class’s Constructor Must Call Its Base Class’s Constructor
Each derived-class constructor must implicitly or explicitly call its base-class constructor to
ensure that the instance variables inherited from the base class are initialized properly.
BasePlusCommissionEmployee’s six-parameter constructor explicitly calls class Commis-
sionEmployee’s five-parameter constructor to initialize the CommissionEmployee portion
of a BasePlusCommissionEmployee object—that is, the FirstName, LastName, SocialSe-
curityNumber, GrossSales and CommissionRate.

Lines 14–15 in BasePlusCommissionEmployee’s constructor invoke CommissionEm-
ployee’s constructor (declared at lines 14–24 of Fig. 11.4) via a constructor initializer. In
Section 10.5, we used a constructor initializer with keyword this to call an overloaded
constructor in the same class. Line 14 of Fig. 11.8 uses a constructor initializer with key-
word base to invoke the base-class constructor, passing arguments to initialize the base
class’s corresponding properties that were inherited into the derived-class object. If Base-
PlusCommissionEmployee’s constructor did not invoke CommissionEmployee’s con-
structor explicitly, C# would attempt to invoke class CommissionEmployee’s parameterless
or default constructor implicitly. CommissionEmployee does not have such a constructor,
so the compiler would issue an error.

BasePlusCommissionEmployee Method Earnings
Lines 41–42 of Fig. 11.8 declare method Earnings using keyword override to override
the CommissionEmployee’s Earnings method, as we did with method ToString in previ-
ous examples. Line 41 causes the first compilation error shown in Fig. 11.8, indicating
that we cannot override the base class’s Earnings method because it was not explicitly
“marked virtual, abstract, or override.” The virtual and abstract keywords indicate that
a base-class method can be overridden in derived classes.2 The override modifier declares

Common Programming Error 11.2
A compilation error occurs if a derived-class constructor calls one of its base-class construc-
tors with arguments that do not match the number and types of parameters specified in
one of the base-class constructor declarations.

2. As you’ll learn in Section 12.4, abstract methods are implicitly virtual.

Fig. 11.8 | BasePlusCommissionEmployee inherits from CommissionEmployee. (Part 2 of 2.)

ptg18189312

11.4 Relationship between Base Classes and Derived Classes 317

that a derived-class method overrides a virtual or abstract base-class method. This
modifier also implicitly declares the derived-class method virtual and allows it to be over-
ridden in derived classes further down the inheritance hierarchy. Adding the keyword vir-
tual to method Earnings’ declaration in Fig. 11.4, as in

eliminates the first compilation error in Fig. 11.8.
The compiler generates additional errors for line 42 of Fig. 11.8, because base class

CommissionEmployee’s instance variables commissionRate and grossSales are pri-
vate—derived class BasePlusCommissionEmployee’s methods are not allowed to access
the base class’s private members. The compiler also issues errors at lines 49–50 in method
ToString for the same reason. The errors in BasePlusCommissionEmployee could have
been prevented by using the public properties inherited from class CommissionEmployee.
For example, lines 42, 49 and 50 could have invoked the get accessors of properties Com-
missionRate and GrossSales to access CommissionEmployee’s private instance variables
commissionRate and grossSales, respectively.

11.4.4 CommissionEmployee–BasePlusCommissionEmployee
Inheritance Hierarchy Using protected Instance Variables
To enable class BasePlusCommissionEmployee to directly access base-class instance vari-
ables grossSales and commissionRate, we can declare those members as protected in
the base class. As we discussed in Section 11.3, a base class’s protected members are ac-
cessible to all derived classes of that base class. Class CommissionEmployee in this example
is a modification of the version from Fig. 11.4 that declares its instance variables gross-
Sales and commissionRate as

rather than private. We also declare the Earnings method virtual so that BasePlusCom-
missionEmployee can override the method. The rest of class CommissionEmployee in this
example is identical to Fig. 11.4. The complete source code for class CommissionEmployee
is included in this example’s project.

Class BasePlusCommissionEmployee
Class BasePlusCommissionEmployee (Fig. 11.9) in this example extends the version of class
CommissionEmployee with protected instance variables grossSales and commissionRate.
Each BasePlusCommissionEmployee object contains these CommissionEmployee instance
variables, which are inherited into BasePlusCommissionEmployee as protected members.
As a result, directly accessing instance variables grossSales and commissionRate no longer
generates compilation errors in methods Earnings and ToString. If another class extends
BasePlusCommissionEmployee, the new derived class also inherits grossSales and com-
missionRate as protected members.

Class BasePlusCommissionEmployee does not inherit class CommissionEmployee’s
constructor. However, class BasePlusCommissionEmployee’s constructor (lines 12–19)
calls class CommissionEmployee’s constructor with a constructor initializer. Again, Base-
PlusCommissionEmployee’s constructor must explicitly call CommissionEmployee’s con-

 public virtual decimal Earnings()

protected decimal grossSales; // gross weekly sales
protected decimal commissionRate; // commission percentage

ptg18189312

318 Chapter 11 Object-Oriented Programming: Inheritance

structor, because CommissionEmployee does not provide a parameterless constructor that
could be invoked implicitly.

1 // Fig. 11.9: BasePlusCommissionEmployee.cs
2 // BasePlusCommissionEmployee inherits from CommissionEmployee and has
3 // access to CommissionEmployee's protected members.
4 using System;
5
6
7 {
8 private decimal baseSalary; // base salary per week
9

10 // six-parameter derived-class constructor
11 // with call to base class CommissionEmployee constructor
12 public BasePlusCommissionEmployee(string firstName, string lastName,
13 string socialSecurityNumber, decimal grossSales,
14 decimal commissionRate, decimal baseSalary)
15
16
17 {
18 BaseSalary = baseSalary; // validates base salary
19 }
20
21 // property that gets and sets
22 // BasePlusCommissionEmployee's base salary
23 public decimal BaseSalary
24 {
25 get
26 {
27 return baseSalary;
28 }
29 set
30 {
31 if (value < 0) // validation
32 {
33 throw new ArgumentOutOfRangeException(nameof(value),
34 value, $"{nameof(BaseSalary)} must be >= 0");
35 }
36
37 baseSalary = value;
38 }
39 }
40
41 // calculate earnings
42 public override decimal Earnings() =>
43 baseSalary + (commissionRate * grossSales);
44
45 // return string representation of BasePlusCommissionEmployee
46 public override string ToString() =>
47 $"base-salaried commission employee: {FirstName} {LastName}\n" +
48 $"social security number: {SocialSecurityNumber}\n" +

Fig. 11.9 | BasePlusCommissionEmployee inherits from CommissionEmployee and has
access to CommissionEmployee's protected members. (Part 1 of 2.)

public class BasePlusCommissionEmployee : CommissionEmployee

: base(firstName, lastName, socialSecurityNumber,
 grossSales, commissionRate)

ptg18189312

11.4 Relationship between Base Classes and Derived Classes 319

Testing Class BasePlusCommissionEmployee
The BasePlusCommissionEmployeeTest class in this example’s project is identical to that
of Fig. 11.7 and produces the same output, so we do not show the code here. Although the
version of class BasePlusCommissionEmployee in Fig. 11.6 does not use inheritance and
the version in Fig. 11.9 does, both classes provide the same functionality. The source code
in Fig. 11.9 (52 lines) is considerably shorter than that in Fig. 11.6 (97 lines), because a
large portion of the class’s functionality is now inherited from CommissionEmployee—
there’s now only one copy of the CommissionEmployee functionality. This makes the code
easier to maintain, modify and debug, because the code related to a CommissionEmployee
exists only in that class.

public vs. protected Data
We could have declared base class CommissionEmployee’s instance variables grossSales
and commissionRate as public to enable derived class BasePlusCommissionEmployee to
access the base-class instance variables. However, declaring public instance variables is
poor software engineering, because it allows unrestricted access to the instance variables by
any of the class’s clients, greatly increasing the chance of errors and inconsistencies. With
protected instance variables, the derived class gets access to the instance variables, but
classes that are not derived from the base class cannot access its variables directly.

Problems with protected Instance Variables
In this example, we declared base-class instance variables as protected so that derived
classes could access them. Inheriting protected instance variables enables you to directly
access the variables in the derived class without invoking the set or get accessors of the
corresponding property, thus violating encapsulation. In most cases, it’s better to use pri-
vate instance variables and access them via properties to encourage proper software engi-
neering. Your code will be easier to maintain, modify and debug.

Using protected instance variables creates several potential problems. First, since the
derived-class object can set an inherited variable’s value directly without using a property’s
set accessor, a derived-class object can assign an invalid value to the variable. For example,
if we were to declare CommissionEmployee’s instance variable grossSales as protected,
a derived-class object (e.g., BasePlusCommissionEmployee) could then directly assign a
negative value to grossSales, making it invalid.

The second problem with protected instance variables is that derived-class methods
are more likely to be written to depend on the base class’s data implementation. In practice,
derived classes should depend only on the base-class services (i.e., non-private methods
and properties) and not on the base-class data implementation. With protected instance
variables in the base class, we may need to modify all the derived classes of the base class if
the base-class implementation changes. For example, if for some reason we were to change

49 $"gross sales: {grossSales:C}\n" +
50 $"commission rate: {commissionRate:F2}\n" +
51 $"base salary: {baseSalary}";
52 }

Fig. 11.9 | BasePlusCommissionEmployee inherits from CommissionEmployee and has
access to CommissionEmployee's protected members. (Part 2 of 2.)

ptg18189312

320 Chapter 11 Object-Oriented Programming: Inheritance

the names of instance variables grossSales and commissionRate, then we’d have to do so
for all occurrences in which a derived class directly references base-class instance variables
grossSales and commissionRate. In such a case, the software is said to be fragile or
brittle, because a small change in the base class can “break” derived-class implementation.
You should be able to change the base-class implementation while still providing the same
services to the derived classes. Of course, if the base-class services change, we must reimple-
ment our derived classes.

11.4.5 CommissionEmployee–BasePlusCommissionEmployee
Inheritance Hierarchy Using private Instance Variables
We now reexamine our hierarchy, this time using the best software engineering practices.

Base Class CommissionEmployee
Class CommissionEmployee (Fig. 11.10) once again declares instance variables grossSales
and commissionRate as private (lines 10–11). Methods Earnings (line 65) and To-
String (lines 68–72) no longer directly access these instance variables—rather they use
properties GrossSales and CommissionRate to access the data. If we decide to change the
instance-variable names, the Earnings and ToString declarations will not require modifi-
cation—only the bodies of the properties GrossSales and CommissionRate that directly
manipulate the instance variables will need to change. These changes occur solely within
the base class—no changes to the derived class are needed. Localizing the effects of changes
like this is a good software engineering practice. Derived class BasePlusCommissionEm-
ployee (Fig. 11.11) inherits from CommissionEmployee’s and can access the private base-
class members via the inherited public properties.

Software Engineering Observation 11.4
Declaring base-class instance variables private (as opposed to protected) enables the
base-class implementation of these instance variables to change without affecting derived-
class implementations.

1 // Fig. 11.10: CommissionEmployee.cs
2 // CommissionEmployee class represents a commission employee.
3 using System;
4
5 public class CommissionEmployee
6 {
7 public string FirstName { get; }
8 public string LastName { get; }
9 public string SocialSecurityNumber { get; }

10
11
12
13 // five-parameter constructor
14 public CommissionEmployee(string firstName, string lastName,
15 string socialSecurityNumber, decimal grossSales,
16 decimal commissionRate)
17 {

Fig. 11.10 | CommissionEmployee class represents a commission employee. (Part 1 of 3.)

private decimal grossSales; // gross weekly sales
private decimal commissionRate; // commission percentage

ptg18189312

11.4 Relationship between Base Classes and Derived Classes 321

18 // implicit call to object constructor occurs here
19 FirstName = firstName;
20 LastName = lastName;
21 SocialSecurityNumber = socialSecurityNumber;
22 GrossSales = grossSales; // validates gross sales
23 CommissionRate = commissionRate; // validates commission rate
24 }
25
26 // property that gets and sets commission employee's gross sales
27 public decimal GrossSales
28 {
29 get
30 {
31 return grossSales;
32 }
33 set
34 {
35 if (value < 0) // validation
36 {
37 throw new ArgumentOutOfRangeException(nameof(value),
38 value, $"{nameof(GrossSales)} must be >= 0");
39 }
40
41 grossSales = value;
42 }
43 }
44
45 // property that gets and sets commission employee's commission rate
46 public decimal CommissionRate
47 {
48 get
49 {
50 return commissionRate;
51 }
52 set
53 {
54 if (value <= 0 || value >= 1) // validation
55 {
56 throw new ArgumentOutOfRangeException(nameof(value),
57 value, $"{nameof(CommissionRate)} must be > 0 and < 1");
58 }
59
60 commissionRate = value;
61 }
62 }
63
64 // calculate commission employee's pay
65 public virtual decimal Earnings() => ;
66
67 // return string representation of CommissionEmployee object
68 public override string ToString() =>
69 $"commission employee: {FirstName} {LastName}\n" +
70 $"social security number: {SocialSecurityNumber}\n" +

Fig. 11.10 | CommissionEmployee class represents a commission employee. (Part 2 of 3.)

CommissionRate * GrossSales

ptg18189312

322 Chapter 11 Object-Oriented Programming: Inheritance

Derived Class BasePlusCommissionEmployee
Class BasePlusCommissionEmployee (Fig. 11.11) has several changes to its method imple-
mentations that distinguish it from the version in Fig. 11.9. Methods Earnings
(Fig. 11.11, line 43) and ToString (lines 46–47) each invoke property BaseSalary’s get
accessor to obtain the base-salary value, rather than accessing baseSalary directly. If we
decide to rename instance variable baseSalary, only the body of property BaseSalary will
need to change.

71 $"gross sales: { :C}\n" +
72 $"commission rate: { :F2}";
73 }

1 // Fig. 11.11: BasePlusCommissionEmployee.cs
2 // BasePlusCommissionEmployee inherits from CommissionEmployee and has
3 // controlled access to CommissionEmployee's private data via
4 // its public properties.
5 using System;
6
7
8 {
9 private decimal baseSalary; // base salary per week

10
11 // six-parameter derived-class constructor
12 // with call to base class CommissionEmployee constructor
13 public BasePlusCommissionEmployee(string firstName, string lastName,
14 string socialSecurityNumber, decimal grossSales,
15 decimal commissionRate, decimal baseSalary)
16 : base(firstName, lastName, socialSecurityNumber,
17 grossSales, commissionRate)
18 {
19 BaseSalary = baseSalary; // validates base salary
20 }
21
22 // property that gets and sets
23 // BasePlusCommissionEmployee's base salary
24 public decimal BaseSalary
25 {
26 get
27 {
28 return baseSalary;
29 }
30 set
31 {
32 if (value < 0) // validation
33 {

Fig. 11.11 | BasePlusCommissionEmployee inherits from CommissionEmployee and has
access to CommissionEmployee's private data via its public properties. (Part 1 of 2.)

Fig. 11.10 | CommissionEmployee class represents a commission employee. (Part 3 of 3.)

GrossSales
CommissionRate

public class BasePlusCommissionEmployee : CommissionEmployee

ptg18189312

11.4 Relationship between Base Classes and Derived Classes 323

BasePlusCommissionEmployee Method Earnings
Class BasePlusCommissionEmployee’s Earnings method (Fig. 11.11, line 43) overrides
class CommissionEmployee’s Earnings method (Fig. 11.10, line 65) to calculate the earn-
ings of a BasePlusCommissionEmployee. The new version obtains the portion of the em-
ployee’s earnings based on commission alone by calling CommissionEmployee’s Earnings
method with the expression base.Earnings() (Fig. 11.11, line 43), then adds the base sal-
ary to this value to calculate the total earnings of the employee. Note the syntax used to
invoke an overridden base-class method from a derived class—place the keyword base and
the member access operator (.) before the base-class method name. This method invoca-
tion is a good software engineering practice—by having BasePlusCommissionEmployee’s
Earnings method invoke CommissionEmployee’s Earnings method to calculate part of a
BasePlusCommissionEmployee object’s earnings, we avoid duplicating the code and re-
duce code-maintenance problems.

BasePlusCommissionEmployee Method ToString
Similarly, BasePlusCommissionEmployee’s ToString method (Fig. 11.11, lines 46–47)
overrides CommissionEmployee’s (Fig. 11.10, lines 68–72) to return a string representa-
tion that’s appropriate for a base-salaried commission employee. The new version creates
part of BasePlusCommissionEmployee string representation (i.e., the string "commis-
sion employee" and the values of CommissionEmployee’s data) by calling CommissionEm-
ployee’s ToString method with the expression base.ToString() (Fig. 11.11, line 47)
and incorporating the result into the string returned by the derived class’s ToString
method, which includes the base salary.

34 throw new ArgumentOutOfRangeException(nameof(value),
35 value, $"{nameof(BaseSalary)} must be >= 0");
36 }
37
38 baseSalary = value;
39 }
40 }
41
42 // calculate earnings
43 public override decimal Earnings() => + ;
44
45 // return string representation of BasePlusCommissionEmployee
46 public override string ToString() =>
47 $"base-salaried { }\nbase salary: { :C}";
48 }

Common Programming Error 11.3
When a base-class method is overridden in a derived class, the derived-class version often
calls the base-class version to do a portion of the work. Failure to prefix the base-class
method name with the keyword base and the member access (.) operator when referenc-
ing the base class’s method from the derived-class version causes the derived-class method
to call itself, creating infinite recursion.

Fig. 11.11 | BasePlusCommissionEmployee inherits from CommissionEmployee and has
access to CommissionEmployee's private data via its public properties. (Part 2 of 2.)

BaseSalary base.Earnings()

base.ToString() BaseSalary

ptg18189312

324 Chapter 11 Object-Oriented Programming: Inheritance

Testing Class BasePlusCommissionEmployee
Class BasePlusCommissionEmployeeTest performs the same manipulations on a Base-
PlusCommissionEmployee object as in Fig. 11.7 and produces the same output, so we do
not show it here. Although each BasePlusCommissionEmployee class you’ve seen behaves
identically, the version in Fig. 11.11 is the best engineered. By using inheritance and by us-
ing properties that hide the data and ensure consistency, we have efficiently and effectively con-
structed a well-engineered class.

11.5 Constructors in Derived Classes
As we explained in the preceding section, instantiating a derived-class object begins a chain
of constructor calls. The derived-class constructor, before performing its own tasks, in-
vokes its direct base class’s constructor either explicitly (via a constructor initializer with
the base reference) or implicitly (calling the base class’s default constructor or parameter-
less constructor). Similarly, if the base class is derived from another class, the base-class
constructor invokes the constructor of the next class up in the hierarchy, and so on. The
last constructor called in the chain is always the constructor for class object. The original
derived-class constructor’s body finishes executing last. Each base class’s constructor ma-
nipulates the base-class data that the derived-class object inherits.

For example, consider again the CommissionEmployee–BasePlusCommissionEm-
ployee hierarchy from Figs. 11.10 and 11.11. When an app creates a BasePlusCommis-
sionEmployee object, the BasePlusCommissionEmployee constructor is called. That
constructor immediately calls CommissionEmployee’s constructor, which in turn immedi-
ately calls object’s constructor implicitly. Class object’s constructor performs its task,
then immediately returns control to CommissionEmployee’s constructor, which then ini-
tializes the CommissionEmployee data that’s part of the BasePlusCommissionEmployee
object. When CommissionEmployee’s constructor completes execution, it returns control
to BasePlusCommissionEmployee’s constructor, which then initializes the BasePlusCom-
missionEmployee object’s BaseSalary.

11.6 Software Engineering with Inheritance
This section discusses customizing existing software with inheritance. When a new class
extends an existing class, the new class inherits the members of the existing class. We can
customize the new class to meet our needs by including additional members and by over-
riding base-class members. C# simply requires access to the compiled base-class code, so it
can compile and execute any app that uses or extends the base class. This powerful capa-
bility is attractive to independent software vendors (ISVs), who can develop proprietary
classes for sale or license and make them available to users in class libraries. Users then can
derive new classes from these library classes rapidly, without accessing the ISVs’ propri-
etary source code.

Software Engineering Observation 11.5
Although inheriting from a class does not require access to the class’s source code, developers
often insist on seeing the source code to understand how the class is implemented. They
may, for example, want to ensure that they’re extending a class that performs well and is
implemented securely.

ptg18189312

11.7 Class object 325

People experienced with the scope of the problems faced by designers who work on
large-scale software projects say that effective software reuse improves the software-devel-
opment process. Object-oriented programming facilitates software reuse, potentially
shortening development times. The availability of substantial and useful class libraries
helps deliver the maximum benefits of software reuse through inheritance.

Reading derived-class declarations can be confusing, because inherited members are
not declared explicitly in the derived classes, but are nevertheless present in them. A similar
problem exists in documenting derived-class members.

11.7 Class object
As we discussed earlier in this chapter, all classes inherit directly or indirectly from class
object—an alias for System.Object in the Framework Class Library—so its non-static
methods are inherited by all classes. Figure 11.12 summarizes object’s methods. You can
learn more about object’s methods at:

Software Engineering Observation 11.6
At the design stage in an object-oriented system, the designer often finds that certain classes
are closely related. The designer should “factor out” common members and place them in
a base class. Then the designer should use inheritance to develop derived classes,
specializing them with capabilities beyond those inherited from the base class.

Software Engineering Observation 11.7
Declaring a derived class does not affect its base class’s source code. Inheritance preserves
the integrity of the base class.

http://msdn.microsoft.com/library/system.object

Method Description

Equals This method compares the current object to another object for equality and
returns true if they’re equal and false otherwise. It takes any object as an
argument. When objects of a particular class must be compared for equality,
the class should override method Equals to compare the contents of the two
objects. The website http://bit.ly/OverridingEqualsCSharp explains the
requirements for a properly overridden Equals method.

Finalize This method cannot be explicitly declared or called. When a class contains a
destructor, the compiler implicitly renames it to override the protected
method Finalize, which is called only by the garbage collector before it
reclaims an object’s memory. The garbage collector is not guaranteed to
reclaim an object, thus it’s not guaranteed that an object’s Finalize method
will execute. When a derived class’s Finalize method executes, it performs its
task, then invokes the base class’s Finalize method. In general, you should
avoid using Finalize.

Fig. 11.12 | object methods that are inherited directly or indirectly by all classes. (Part 1 of 2.)

http://msdn.microsoft.com/library/system.object
http://bit.ly/OverridingEqualsCSharp

ptg18189312

326 Chapter 11 Object-Oriented Programming: Inheritance

11.8 Wrap-Up
This chapter introduced inheritance—the ability to create classes by absorbing an existing
class’s members and enhancing them with new capabilities. You learned the notions of
base classes and derived classes and created a derived class that inherits members from a
base class and overrides inherited virtual methods. We introduced access modifier pro-
tected; derived-class members can access protected base-class members. You learned
how to access base-class members with base. You also saw how constructors are used in
inheritance hierarchies. Finally, you learned about the methods of class object, the direct
or indirect base class of all classes.

In Chapter 12, we build on our discussion of inheritance by introducing polymor-
phism—an object-oriented concept that enables us to write apps that handle, in a more
general manner, objects of a wide variety of classes related by inheritance. After studying
Chapter 12, you’ll be familiar with classes, objects, encapsulation, inheritance and poly-
morphism—the most essential aspects of object-oriented programming.

GetHashCode A hashtable data structure relates objects, called keys, to corresponding objects,
called values. When a value is initially inserted in a hashtable, the key’s Get-
HashCode method is called. The value returned is used by the hashtable to
determine the location at which to insert the corresponding value. The key’s
hashcode is also used by the hashtable to locate the key’s corresponding value.

GetType Every object knows its own type at execution time. Method GetType (used in
Section 12.5) returns an object of class Type (namespace System) that contains
information about the object’s type, such as its class name (obtained from
Type property FullName).

MemberwiseClone This protected method, which takes no arguments and returns an object ref-
erence, makes a copy of the object on which it’s called. The implementation of
this method performs a shallow copy—instance-variable values in one object
are copied into another object of the same type. For reference types, only the
references are copied.

ReferenceEquals This static method receives two object references and returns true if they’re
the same instance or if they’re null references. Otherwise, it returns false.

ToString This method (introduced in Section 7.4) returns a string representation of
the current object. The default implementation of this method returns the
namespace followed by a dot and the class name of the object’s class.

Method Description

Fig. 11.12 | object methods that are inherited directly or indirectly by all classes. (Part 2 of 2.)

ptg18189312

12
OOP: Polymorphism and

Interfaces

O b j e c t i v e s
In this chapter you’ll:

■ Understand how polymorphism enables you to “program in
the general” and make systems extensible.

■ Use overridden methods to effect polymorphism.
■ Create abstract classes and methods.
■ Determine an object’s type at execution time with operator
is, then use downcasting to perform type-specific
processing.

■ Create sealed methods and classes.
■ Declare and implement interfaces.
■ Be introduced to interfaces IComparable, IComponent,
IDisposable and IEnumerator of the .NET Framework
Class Library.

ptg18189312

328 Chapter 12 OOP: Polymorphism and Interfaces

O
u

tl
in

e

12.1 Introduction
We now continue our study of object-oriented programming by explaining and demon-
strating polymorphism with inheritance hierarchies. Polymorphism enables us to program
in the general rather than program in the specific. In particular, polymorphism enables us to
write apps that process objects that share the same base class in a class hierarchy as if they
were all objects of the base class.

Let’s consider a polymorphism example. Suppose we create an app that simulates
moving several types of animals for a biological study. Classes Fish, Frog and Bird repre-
sent the types of animals under investigation. Imagine that each class extends base class
Animal, which contains a method Move and maintains an animal’s current location as x–
y–z coordinates. Each derived class implements method Move differently. Our app main-
tains a collection of references to objects of the various Animal-derived classes. To simulate
an animal’s movements, the app sends each object the same message once per second—
namely, Move. Each specific type of Animal responds to a Move message in a unique way—
a Fish might swim three feet, a Frog might jump five feet and a Bird might fly 10 feet.
The app issues the Move message to each animal object generically, but each object modifies
its x–y–z coordinates appropriately for its specific type of movement. Relying on each
object to “do the right thing” in response to the same method call is the key concept of
polymorphism. The same message (in this case, Move) sent to a variety of objects has many
forms of results—hence the term polymorphism.

Systems Are Easy to Extend
With polymorphism, we can design and implement systems that are easily extensible—new
classes can be added with little or no modification to the polymorphic portions of the app,
as long as the new classes are part of the inheritance hierarchy that the app processes ge-

12.1 Introduction
12.2 Polymorphism Examples
12.3 Demonstrating Polymorphic Behavior
12.4 Abstract Classes and Methods
12.5 Case Study: Payroll System Using Poly-

morphism
12.5.1 Creating Abstract Base Class Employee
12.5.2 Creating Concrete Derived Class Sala-

riedEmployee
12.5.3 Creating Concrete Derived Class Hour-

lyEmployee
12.5.4 Creating Concrete Derived Class Com-

missionEmployee
12.5.5 Creating Indirect Concrete Derived Class

BasePlusCommissionEmployee
12.5.6 Polymorphic Processing, Operator is

and Downcasting
12.5.7 Summary of the Allowed Assignments

Between Base-Class and Derived-Class
Variables

12.6 sealed Methods and Classes
12.7 Case Study: Creating and Using In-

terfaces
12.7.1 Developing an IPayable Hierarchy
12.7.2 Declaring Interface IPayable
12.7.3 Creating Class Invoice
12.7.4 Modifying Class Employee to Im-

plement Interface IPayable
12.7.5 Using Interface IPayable to Pro-

cess Invoices and Employees
Polymorphically

12.7.6 Common Interfaces of the .NET
Framework Class Library

12.8 Wrap-Up

ptg18189312

12.1 Introduction 329

nerically. The only parts of an app that must be altered to accommodate new classes are
those that require direct knowledge of the new classes that you add to the hierarchy. For
example, if we extend class Animal to create class Tortoise (which might respond to a
Move message by crawling one inch), we need to write only the Tortoise class and the part
of the simulation that instantiates a Tortoise object. The portions of the simulation that
process each Animal generically can remain the same.

This chapter has several parts. First, we discuss common examples of polymorphism.
We then provide an example demonstrating polymorphic behavior. As you’ll soon see,
you’ll use base-class references to manipulate both base-class objects and derived-class
objects polymorphically.

Polymorphic Employee Inheritance Hierarchy
We then present a case study that revisits the Employee hierarchy of Section 11.4.5. We
develop a simple payroll app that polymorphically calculates the weekly pay of several dif-
ferent types of employees using each employee’s Earnings method. Though the earnings
of each type of employee are calculated in a specific way, polymorphism allows us to process
the employees “in the general.” In the case study, we enlarge the hierarchy to include two
new classes—SalariedEmployee (for people paid a fixed weekly salary) and HourlyEm-
ployee (for people paid an hourly salary and “time-and-a-half” for overtime). We declare
a common set of functionality for all the classes in the updated hierarchy in a base class Em-
ployee (Section 12.5.1) from which classes SalariedEmployee, HourlyEmployee and
CommissionEmployee inherit directly and class BasePlusCommissionEmployee inherits in-
directly. As you’ll soon see, when we invoke each employee’s Earnings method via a base-
class Employee reference, the correct earnings calculation is performed due to C#’s poly-
morphic capabilities.

Determining the Type of an Object at Execution Time
Occasionally, when performing polymorphic processing, we need to program “in the spe-
cific.” Our Employee case study demonstrates that an app can determine the type of an ob-
ject at execution time and act on that object accordingly. In the case study, we use these
capabilities to determine whether a particular employee object is a BasePlus-

CommissionEmployee. If so, we increase that employee’s base salary by 10%.

Interfaces
The chapter continues with an introduction to C# interfaces. An interface describes a set
of methods and properties that can be called on an object, but does not provide concrete
implementations for them. You can declare classes that implement (i.e., provide concrete
implementations for the methods and properties of) one or more interfaces. Each interface
member must be defined for all the classes that implement the interface. Once a class im-
plements an interface, all objects of that class have an is-a relationship with the interface
type, and all objects of the class are guaranteed to provide the functionality described by
the interface. This is true of all derived classes of that class as well.

Interfaces are particularly useful for assigning common functionality to possibly unre-
lated classes. This allows objects of unrelated classes to be processed polymorphically—
objects of classes that implement the same interface can respond to the same method calls.
To demonstrate creating and using interfaces, we modify our payroll app to create a gen-
eral accounts-payable app that can calculate payments due for the earnings of company

ptg18189312

330 Chapter 12 OOP: Polymorphism and Interfaces

employees and for invoice amounts to be billed for purchased goods. As you’ll see, inter-
faces enable polymorphic capabilities similar to those enabled by inheritance.

12.2 Polymorphism Examples
Let’s consider several additional examples of polymorphism.

Quadrilateral Inheritance Hierarchy
If class Rectangle is derived from class Quadrilateral (a four-sided shape), then a Rect-
angle is a more specific version of a Quadrilateral. Any operation (e.g., calculating the
perimeter or the area) that can be performed on a Quadrilateral object also can be per-
formed on a Rectangle object. These operations also can be performed on other Quadri-
laterals, such as Squares, Parallelograms and Trapezoids. The polymorphism occurs
when an app invokes a method through a base-class variable—at execution time, the cor-
rect derived-class version of the method is called, based on the type of the referenced ob-
ject. You’ll see a simple code example that illustrates this process in Section 12.3.

Video Game SpaceObject Inheritance Hierarchy
As another example, suppose we design a video game that manipulates objects of many dif-
ferent types, including objects of classes Martian, Venusian, Plutonian, SpaceShip and
LaserBeam. Imagine that each class inherits from the common base class SpaceObject,
which contains method Draw. Each derived class implements this method. A screen-man-
ager app maintains a collection (e.g., a SpaceObject array) of references to objects of the
various classes. To refresh the screen, the screen manager periodically sends each object the
same message—namely, Draw. However, each object responds in a unique way. For exam-
ple, a Martian object might draw itself in red with the appropriate number of antennae. A
SpaceShip object might draw itself as a bright silver flying saucer. A LaserBeam object
might draw itself as a bright red beam across the screen. Again, the same message (in this
case, Draw) sent to a variety of objects has many forms of results.

A screen manager might use polymorphism to facilitate adding new classes to a system
with minimal modifications to the system’s code. Suppose we want to add Mercurian
objects to our video game. To do so, we must build a Mercurian class that extends Space-
Object and provides its own Draw method implementation. When objects of class Mercu-
rian appear in the SpaceObject collection, the screen-manager code invokes method
Draw, exactly as it does for every other object in the collection, regardless of its type, so the
new Mercurian objects simply “plug right in” without any modification of the screen-
manager code by the programmer. Thus, without modifying the system (other than to
build new classes and modify the code that creates new objects), you can use polymor-
phism to include additional types that might not have been envisioned when the system
was created.

Software Engineering Observation 12.1
Polymorphism promotes extensibility: Software that invokes polymorphic behavior is
independent of the object types to which messages are sent. New object types that can
respond to existing method calls can be incorporated into a system without requiring
modification of the polymorphic system logic. Only client code that instantiates new
objects must be modified to accommodate new types.

ptg18189312

12.3 Demonstrating Polymorphic Behavior 331

12.3 Demonstrating Polymorphic Behavior
Section 11.4 created a commission-employee class hierarchy, in which class BasePlusCom-
missionEmployee inherited from class CommissionEmployee. The examples in that section
manipulated CommissionEmployee and BasePlusCommissionEmployee objects by using
references to them to invoke their methods. We aimed base-class references at base-class
objects and derived-class references at derived-class objects. These assignments are natural
and straightforward—base-class references are intended to refer to base-class objects, and
derived-class references are intended to refer to derived-class objects. However, other as-
signments are possible.

The next example aims a base-class reference at a derived-class object, then shows how
invoking a method on a derived-class object via a base-class reference invokes the derived-
class functionality—the type of the actual referenced object, not the type of the reference, deter-
mines which method is called. This demonstrates the key concept that a derived-class object
can be treated as an object of its base class, which enables various interesting manipulations.
An app can create a collection of base-class references that refer to objects of many derived-
class types, because each derived-class object is an object of its base class. For instance, we can
assign the reference of a BasePlusCommissionEmployee object to a base-class Commission-
Employee variable because a BasePlusCommissionEmployee is a CommissionEmployee—so
we can treat a BasePlusCommissionEmployee as a CommissionEmployee.

A base-class object is not an object of any of its derived classes. For example, we cannot
directly assign the reference of a CommissionEmployee object to a derived-class BasePlus-
CommissionEmployee variable, because a CommissionEmployee is not a BasePlusCommis-
sionEmployee—a CommissionEmployee does not, for example, have a baseSalary instance
variable and does not have a BaseSalary property. The compiler allows the assignment of a
base-class reference to a derived-class variable if we explicitly cast the base-class reference to
the derived-class type—a technique we discuss in greater detail in Section 12.5.6.

Figure 12.1 demonstrates three ways to use base-class and derived-class variables to
store references to base-class and derived-class objects. The first two are straightforward—
as in Section 11.4, we assign a base-class reference to a base-class variable, and we assign a
derived-class reference to a derived-class variable. Then we demonstrate the relationship
between derived classes and base classes (i.e., the is-a relationship) by assigning a derived-
class reference to a base-class variable. [Note: This app uses classes CommissionEmployee
and BasePlusCommissionEmployee from Fig. 11.10 and Fig. 11.11, respectively.]

Software Engineering Observation 12.2
The is-a relationship applies from a derived class to its direct and indirect base classes, but
not vice versa.

1 // Fig. 12.1: PolymorphismTest.cs
2 // Assigning base-class and derived-class references to base-class and
3 // derived-class variables.
4 using System;
5

Fig. 12.1 | Assigning base-class and derived-class references to base-class and derived-class
variables. (Part 1 of 3.)

ptg18189312

332 Chapter 12 OOP: Polymorphism and Interfaces

6 class PolymorphismTest
7 {
8 static void Main()
9 {

10 // assign base-class reference to base-class variable
11
12
13
14 // assign derived-class reference to derived-class variable
15
16
17
18 // invoke ToString and Earnings on base-class object
19 // using base-class variable
20 Console.WriteLine(
21 "Call CommissionEmployee's ToString and Earnings methods " +
22 "with base-class reference to base class object\n");
23 Console.WriteLine();
24 Console.WriteLine($"earnings: { }\n");
25
26 // invoke ToString and Earnings on derived-class object
27 // using derived-class variable
28 Console.WriteLine("Call BasePlusCommissionEmployee's ToString and" +
29 " Earnings methods with derived class reference to" +
30 " derived-class object\n");
31 Console.WriteLine();
32 Console.WriteLine(
33 $"earnings: { }\n");
34
35 // invoke ToString and Earnings on derived-class object
36 // using base-class variable
37
38 Console.WriteLine(
39 "Call BasePlusCommissionEmployee's ToString and Earnings " +
40 "methods with base class reference to derived-class object");
41 Console.WriteLine();
42 Console.WriteLine(
43 $"earnings: { }\n");
44 }
45 }

Call CommissionEmployee's ToString and Earnings methods with base class
reference to base class object:

commission employee: Sue Jones
social security number: 222-22-2222
gross sales: $10,000.00
commission rate: 0.06
earnings: $600.00

Fig. 12.1 | Assigning base-class and derived-class references to base-class and derived-class
variables. (Part 2 of 3.)

var commissionEmployee = new CommissionEmployee(
 "Sue", "Jones", "222-22-2222", 10000.00M, .06M);

var basePlusCommissionEmployee = new BasePlusCommissionEmployee(
 "Bob", "Lewis", "333-33-3333", 5000.00M, .04M, 300.00M);

commissionEmployee.ToString()
commissionEmployee.Earnings()

basePlusCommissionEmployee.ToString()

basePlusCommissionEmployee.Earnings()

CommissionEmployee commissionEmployee2 = basePlusCommissionEmployee;

commissionEmployee2.ToString()

basePlusCommissionEmployee.Earnings()

ptg18189312

12.3 Demonstrating Polymorphic Behavior 333

In Fig. 12.1, lines 11–12 create a new CommissionEmployee object and assign its ref-
erence to a CommissionEmployee variable and lines 15–16 create a new BasePlusCommis-
sionEmployee object and assign its reference to a BasePlusCommissionEmployee variable.
These assignments are natural—a CommissionEmployee variable’s primary purpose is to
hold a reference to a CommissionEmployee object. Lines 23–24 use the reference commis-
sionEmployee to invoke methods ToString and Earnings. Because commissionEmployee
refers to a CommissionEmployee object, base class CommissionEmployee’s version of the
methods are called. Similarly, lines 31–33 use the reference basePlusCommissionEm-
ployee to invoke the methods ToString and Earnings on the BasePlusCommissionEm-
ployee object. This invokes derived class BasePlusCommissionEmployee’s version of the
methods.

Line 37 then assigns the reference to derived-class object basePlusCommissionEm-
ployee to a base-class CommissionEmployee variable, which lines 41–43 use to invoke
methods ToString and Earnings. Note that the call commissionEmployee2.ToString()
in line 41 actually calls derived class BasePlusCommissionEmployee’s ToString method.
The compiler allows this “crossover” because an object of a derived class is an object of its
base class (but not vice versa). When the compiler encounters a virtual method call made
through a variable, the compiler checks the variable’s class type to determine if the method
can be called. If that class contains the proper method declaration (or inherits one), the
call compiles. At execution time, the type of the object to which the variable refers determines
the actual method to use.

Call BasePlusCommissionEmployee's ToString and Earnings methods with derived
class reference to derived class object:

base-salaried commission employee: Bob Lewis
social security number: 333-33-3333
gross sales: $5,000.00
commission rate: 0.04
base salary: $300.00
earnings: $500.00

Call BasePlusCommissionEmployee's ToString and Earnings methods with base
class reference to derived class object:

base-salaried commission employee: Bob Lewis
social security number: 333-33-3333
gross sales: $5,000.00
commission rate: 0.04
base salary: $300.00
earnings: $500.00

Software Engineering Observation 12.3
A base-class variable that contains a reference to a derived-class object and is used to call
a virtual method actually calls the overriding derived-class version of the method.

Fig. 12.1 | Assigning base-class and derived-class references to base-class and derived-class
variables. (Part 3 of 3.)

ptg18189312

334 Chapter 12 OOP: Polymorphism and Interfaces

12.4 Abstract Classes and Methods
When we think of a class type, we assume that apps will create objects of that type. In some
cases, however, it’s useful to declare classes for which you never intend to instantiate objects.
Such classes are called abstract classes. Because they’re used only as base classes in inheri-
tance hierarchies, we refer to them as abstract base classes. These classes cannot be used to
instantiate objects, because, as you’ll soon see, abstract classes are incomplete—derived
classes must define the “missing pieces.” Section 12.5.1 demonstrates abstract classes.

Purpose of an Abstract Class
The purpose of an abstract class is primarily to provide an appropriate base class from
which other classes can inherit, and thus share a common design. In the Shape hierarchy of
Fig. 11.3, for example, derived classes inherit the notion of what it means to be a Shape—
common attributes such as Location, Color and BorderThickness, and behaviors such as
Draw, Move, Resize and ChangeColor. Classes that can be used to instantiate objects are
called concrete classes. Such classes provide implementations of every method they declare
(some of the implementations can be inherited). For example, we could derive concrete
classes Circle, Square and Triangle from abstract base class TwoDimensionalShape. Sim-
ilarly, we could derive concrete classes Sphere, Cube and Tetrahedron from abstract base
class ThreeDimensionalShape. Abstract classes are too general to create real objects—they
specify only what is common among derived classes. We need to be more specific before
we can create objects. For example, if you send the Draw message to abstract class
TwoDimensionalShape, the class knows that two-dimensional shapes should be drawable,
but it does not know what specific shape to draw, so it cannot implement a real Draw meth-
od. Concrete classes provide the specifics needed to instantiate objects.

Client Code That Uses Only Abstract Base-Class Types
Not all inheritance hierarchies contain abstract classes. However, you’ll often write client
code that uses only abstract base-class types to reduce client code’s dependencies on a range
of specific derived-class types. For example, you can write a method with a parameter of an
abstract base-class type. When called, such a method can be passed an object of any concrete
class that directly or indirectly extends the abstract base class specified as the parameter’s type.

Multiple Levels of Abstract Base-Class Types in a Hierarchy
Abstract classes sometimes constitute several levels of the hierarchy. For example, the Shape
hierarchy of Fig. 11.3 begins with abstract class Shape. On the next level of the hierarchy are
two more abstract classes, TwoDimensionalShape and ThreeDimensionalShape. The next
level of the hierarchy declares concrete classes for TwoDimensionalShapes (Circle, Square
and Triangle) and for ThreeDimensionalShapes (Sphere, Cube and Tetrahedron).

Creating an Abstract Class
You make a class abstract by declaring it with the keyword abstract. An abstract class nor-
mally contains one or more abstract methods. An abstract method is one with keyword
abstract in its declaration, as in

Abstract methods are implicitly virtual and do not provide implementations. A class that con-
tains abstract methods must be declared as an abstract class even if it contains some con-

public abstract void Draw(); // abstract method

ptg18189312

12.4 Abstract Classes and Methods 335

crete (non-abstract) methods. Each concrete derived class of an abstract base class also
must provide concrete implementations of the base class’s abstract methods. We show an
example of an abstract class with an abstract method in Fig. 12.4.

Abstract Properties
Properties also can be declared abstract or virtual, then overridden in derived classes
with the override keyword, just like methods. This allows an abstract base class to specify
common properties of its derived classes. Abstract property declarations have the form:

The semicolons after the get and set keywords indicate that we provide no implementa-
tion for these accessors. An abstract property omits implementations for the get accessor
and/or the set accessor. Concrete derived classes must provide implementations for every
accessor declared in the abstract property. When both get and set accessors are specified,
every concrete derived class must implement both. If one accessor is omitted, the derived
class is not allowed to implement that accessor. Doing so causes a compilation error.

Constructors and static Methods Cannot be abstract or virtual
Constructors and static methods cannot be declared abstract or virtual. Constructors
are not inherited, so such a constructor could never be implemented. Similarly, derived class-
es cannot override static methods, so such as static method could never be implemented.

Declaring Variables of Abstract Base-Class Types
Although we cannot instantiate objects of abstract base classes, you’ll soon see that we can
use abstract base classes to declare variables that can hold references to objects of any con-
crete classes derived from those abstract classes. Apps typically use such variables to manip-
ulate derived-class objects polymorphically. Also, you can use abstract base-class names to
invoke static methods declared in those abstract base classes.

Polymorphism and Device Drivers
Polymorphism is particularly effective for implementing so-called layered software systems.
In operating systems, for example, each different type of physical device could operate
quite differently from the others. Even so, common commands can read or write data from

public abstract PropertyType MyProperty { get; set; }

Software Engineering Observation 12.4
An abstract class declares common attributes and behaviors of the various classes that
inherit from it, either directly or indirectly, in a class hierarchy. An abstract class typically
contains one or more abstract methods or properties that concrete derived classes must
override. The instance variables, concrete methods and concrete properties of an abstract
class are subject to the normal rules of inheritance.

Common Programming Error 12.1
Attempting to instantiate an object of an abstract class is a compilation error.

Common Programming Error 12.2
Failure to implement a base class’s abstract methods and properties in a derived class is a
compilation error unless the derived class is also declared abstract.

ptg18189312

336 Chapter 12 OOP: Polymorphism and Interfaces

and to the devices. For each device, the operating system uses a piece of software called a
device driver to control all communication between the system and the device. The write
message sent to a device-driver object needs to be interpreted specifically in the context of
that driver and how it manipulates a specific device. However, the write call itself really is
no different from the write to any other device in the system: Place some number of bytes
from memory onto that device. An object-oriented operating system might use an abstract
base class to provide an “interface” appropriate for all device drivers. Then, through inher-
itance from that abstract base class, derived classes are formed that all behave similarly. The
device-driver methods are declared as abstract methods in the abstract base class. The im-
plementations of these abstract methods are provided in the derived classes that corre-
spond to the specific types of device drivers. New devices are always being developed, often
long after the operating system has been released. When you buy a new device, it comes
with a device driver provided by the device vendor. The device is immediately operational
after you connect it to your computer and install the device driver. This is another elegant
example of how polymorphism makes systems extensible.

12.5 Case Study: Payroll System Using Polymorphism
This section reexamines the CommissionEmployee-BasePlusCommissionEmployee hierar-
chy that we explored in Section 11.4. Now we use an abstract method and polymorphism
to perform payroll calculations based on the type of employee. We create an enhanced em-
ployee hierarchy to solve the following problem:

A company pays its employees on a weekly basis. The employees are of four types:

1. Salaried employees are paid a fixed weekly salary regardless of the number of hours
worked.

2. Hourly employees are paid by the hour and receive "time-and-a-half" overtime pay for all
hours worked in excess of 40 hours

3. Commission employees are paid a percentage of their sales.

4. Salaried-commission employees receive a base salary plus a percentage of their sales.

For the current pay period, the company has decided to reward salaried-commission
employees by adding 10% to their base salaries. The company wants to implement an
app that performs its payroll calculations polymorphically.

We use abstract class Employee to represent the general concept of an employee. The
classes that extend Employee are SalariedEmployee, CommissionEmployee and Hourly-
Employee. Class BasePlusCommissionEmployee—which extends CommissionEmployee—
represents the last employee type. The UML class diagram in Fig. 12.2 shows the inheri-
tance hierarchy for our polymorphic employee payroll app. Abstract class Employee is ital-
icized, as per the convention of the UML.

Abstract base class Employee declares the “interface” to the hierarchy—that is, the set
of members that an app can invoke on all Employee objects. We use the term “interface”
here in a general sense to refer to the various ways apps can communicate with objects of
any Employee derived class. Be careful not to confuse the general notion of an “interface”
with the formal notion of a C# interface, the subject of Section 12.7. Each employee,
regardless of the way his or her earnings are calculated, has a first name, a last name and a
social security number, so those pieces of data appear in abstract base class Employee.

ptg18189312

12.5 Case Study: Payroll System Using Polymorphism 337

The following subsections implement the Employee class hierarchy. Section 12.5.1
implements abstract base class Employee. Sections 12.5.2–12.5.5 each implement one of
the concrete classes. Section 12.5.6 implements a test app that builds objects of all these
classes and processes those objects polymorphically.

12.5.1 Creating Abstract Base Class Employee
Class Employee (Fig. 12.4) provides methods Earnings and ToString, in addition to the
auto-implemented properties that manipulate Employee’s data. An Earnings method cer-
tainly applies generically to all employees. But each earnings calculation depends on the
employee’s class. So we declare Earnings as abstract in base class Employee, because a
default implementation does not make sense for that method—there’s not enough infor-
mation to determine what amount Earnings should return. Each derived class overrides
Earnings with a specific implementation. To calculate an employee’s earnings, the app as-
signs a reference to the employee’s object to a base class Employee variable, then invokes
the Earnings method on that variable. We maintain a List of Employee variables, each of
which holds a reference to an Employee object (of course, there cannot be Employee objects
because Employee is an abstract class—because of inheritance, however, all objects of all
derived classes of Employee may nevertheless be thought of as Employee objects). The app
iterates through the List and calls method Earnings for each Employee object. These
method calls are processed polymorphically. Including Earnings as an abstract method in
Employee forces every directly derived concrete class of Employee to override Earnings with
a method that performs an appropriate pay calculation.

Method ToString in class Employee returns a string containing the employee’s first
name, last name and social security number. Each derived class of Employee overrides
method ToString to create a string representation of an object of that class containing
the employee’s type (e.g., "salaried employee:"), followed by the rest of the employee’s
information.

The diagram in Fig. 12.3 shows each of the five classes in the hierarchy down the left
side and methods Earnings and ToString across the top. For each class, the diagram
shows the desired results of each method. [Note: We do not list base class Employee’s prop-
erties because they’re not overridden in any of the derived classes—each of these properties
is inherited and used “as is” by each of the derived classes.]

Fig. 12.2 | Employee hierarchy UML class diagram.

Employee

CommissionEmployee HourlyEmployeeSalariedEmployee

BasePlusCommissionEmployee

ptg18189312

338 Chapter 12 OOP: Polymorphism and Interfaces

Class Employee
Let’s consider class Employee’s declaration (Fig. 12.4). The class includes auto-imple-
mented, getter-only properties for the first name, last name and social security number
(lines 5–7); a constructor that initializes the first name, last name and social security num-
ber (lines 10–16); expression-bodied method ToString (lines 19–20), which uses proper-
ties to return an Employee’s string representation; and abstract method Earnings (line
23), which must be implemented by concrete derived classes. The Employee constructor
does not validate the social security number in this example. Normally, such validation
should be provided.

Fig. 12.3 | Polymorphic interface for the Employee hierarchy classes.

1 // Fig. 12.4: Employee.cs
2 // Employee abstract base class.
3
4 {
5 public string FirstName { get; }
6 public string LastName { get; }
7 public string SocialSecurityNumber { get; }

Fig. 12.4 | Employee abstract base class. (Part 1 of 2.)

weeklySalary

abstract

Commission-
Employee

BasePlus-
Commission-
Employee

Hourly-
Employee

Salaried-
Employee

Employee

ToStringEarnings

If hours <= 40
 wage * hours
If hours > 40
 40 * wage +
 (hours - 40) *
 wage * 1.5

commissionRate *
grossSales

baseSalary +
(commissionRate *
grossSales)

salaried employee: firstName lastName
social security number: SSN
weekly salary: weeklysalary

hourly employee: firstName lastName
social security number: SSN
hourly wage: wage
hours worked: hours

commission employee: firstName lastName
social security number: SSN
gross sales: grossSales
commission rate: commissionRate

base salaried commission employee:
 firstName lastName
social security number: SSN
gross sales: grossSales
commission rate: commissionRate
base salary: baseSalary

firstName lastName
social security number: SSN

public abstract class Employee

ptg18189312

12.5 Case Study: Payroll System Using Polymorphism 339

Why did we declare Earnings as an abstract method? As explained earlier, it simply
does not make sense to provide an implementation of this method in class Employee. We
cannot calculate the earnings for a general Employee—we first must know the specific
Employee type to determine the appropriate earnings calculation. By declaring this
method abstract, we indicate that each concrete derived class must provide an appropriate
Earnings implementation and that an app will be able to use base-class Employee variables
to invoke method Earnings polymorphically for any type of Employee.

12.5.2 Creating Concrete Derived Class SalariedEmployee
Class SalariedEmployee (Fig. 12.5) extends class Employee (line 5) and overrides Earn-
ings (line 37), which makes SalariedEmployee a concrete class. The class includes a con-
structor (lines 10–15) that takes a first name, a last name, a social security number and a
weekly salary as arguments; property WeeklySalary (lines 18–34) to manipulate instance
variable weeklySalary, including a set accessor that ensures we assign only nonnegative
values to weeklySalary; method Earnings (line 37) to calculate a SalariedEmployee’s
earnings; and method ToString (lines 40–42), which returns a string including the em-
ployee’s type, namely, "salaried employee: ", followed by employee-specific informa-
tion produced by base class Employee’s ToString method and SalariedEmployee’s
WeeklySalary property. Class SalariedEmployee’s constructor passes the first name, last
name and social security number to the Employee constructor (line 12) via a constructor
initializer to initialize the base class’s data. Method Earnings overrides Employee’s
abstract method Earnings to provide a concrete implementation that returns the
SalariedEmployee’s weekly salary. If we do not implement Earnings, class Salaried-
Employee must be declared abstract—otherwise, a compilation error occurs (and, of
course, we want SalariedEmployee to be a concrete class).

8
9 // three-parameter constructor

10 public Employee(string firstName, string lastName,
11 string socialSecurityNumber)
12 {
13 FirstName = firstName;
14 LastName = lastName;
15 SocialSecurityNumber = socialSecurityNumber;
16 }
17
18 // return string representation of Employee object, using properties
19 => $"{FirstName} {LastName}\n" +
20 $"social security number: {SocialSecurityNumber}";
21
22 // abstract method overridden by derived classes
23 // no implementation here
24 }

Fig. 12.4 | Employee abstract base class. (Part 2 of 2.)

public override string ToString()

public abstract decimal Earnings();

ptg18189312

340 Chapter 12 OOP: Polymorphism and Interfaces

SalariedEmployee method ToString (lines 40–42) overrides Employee’s version. If
class SalariedEmployee did not override ToString, SalariedEmployee would have inher-
ited the Employee version. In that case, SalariedEmployee’s ToString method would
simply return the employee’s full name and social security number, which does not ade-
quately represent a SalariedEmployee.

To produce a complete SalariedEmployee string representation, the derived class’s
ToString method returns "salaried employee: ", followed by the base-class Employee-

1 // Fig. 12.5: SalariedEmployee.cs
2 // SalariedEmployee class that extends Employee.
3 using System;
4
5
6 {
7 private decimal weeklySalary;
8
9 // four-parameter constructor

10 public SalariedEmployee(string firstName, string lastName,
11 string socialSecurityNumber, decimal weeklySalary)
12
13 {
14 WeeklySalary = weeklySalary; // validate salary
15 }
16
17 // property that gets and sets salaried employee's salary
18 public decimal WeeklySalary
19 {
20 get
21 {
22 return weeklySalary;
23 }
24 set
25 {
26 if (value < 0) // validation
27 {
28 throw new ArgumentOutOfRangeException(nameof(value),
29 value, $"{nameof(WeeklySalary)} must be >= 0");
30 }
31
32 weeklySalary = value;
33 }
34 }
35
36 // calculate earnings; override abstract method Earnings in Employee
37 => WeeklySalary;
38
39 // return string representation of SalariedEmployee object
40 =>
41 $"salaried employee: {base.ToString()}\n" +
42 $"weekly salary: {WeeklySalary:C}";
43 }

Fig. 12.5 | SalariedEmployee class that extends Employee.

public class SalariedEmployee : Employee

: base(firstName, lastName, socialSecurityNumber)

public override decimal Earnings()

public override string ToString()

ptg18189312

12.5 Case Study: Payroll System Using Polymorphism 341

specific information (i.e., first name, last name and social security number) obtained by
invoking the base class’s ToString via keyword base (line 41)—this is a nice example of
code reuse. The string representation also contains the employee’s weekly salary,
obtained via property WeeklySalary.

12.5.3 Creating Concrete Derived Class HourlyEmployee
Class HourlyEmployee (Fig. 12.6) also extends class Employee (line 5). The class includes
a constructor (lines 11–18) that takes as arguments a first name, a last name, a social secu-
rity number, an hourly wage and the number of hours worked. Lines 21–37 and 40–56
declare properties Wage and Hours for instance variables wage and hours (lines 7–8),
respectively. Wage’s set accessor ensures that wage is nonnegative, and Hours’ set accessor
ensures that hours is in the range 0–168 (the total number of hours in a week) inclusive.
The class overrides method Earnings (lines 59–69) to calculate an HourlyEmployee’s
earnings and method ToString (lines 72–74) to return an HourlyEmployee’s string rep-
resentation. The HourlyEmployee constructor passes the first name, last name and social
security number to the base-class Employee constructor (line 14) to initialize the base
class’s data. Also, method ToString calls base-class method ToString (line 73) to get the
string representation of the Employee-specific information (i.e., first name, last name and
social security number).

1 // Fig. 12.6: HourlyEmployee.cs
2 // HourlyEmployee class that extends Employee.
3 using System;
4
5
6 {
7 private decimal wage; // wage per hour
8 private decimal hours; // hours worked for the week
9

10 // five-parameter constructor
11 public HourlyEmployee(string firstName, string lastName,
12 string socialSecurityNumber, decimal hourlyWage,
13 decimal hoursWorked)
14
15 {
16 Wage = hourlyWage; // validate hourly wage
17 Hours = hoursWorked; // validate hours worked
18 }
19
20 // property that gets and sets hourly employee's wage
21 public decimal Wage
22 {
23 get
24 {
25 return wage;
26 }
27 set
28 {

Fig. 12.6 | HourlyEmployee class that extends Employee. (Part 1 of 2.)

public class HourlyEmployee : Employee

: base(firstName, lastName, socialSecurityNumber)

ptg18189312

342 Chapter 12 OOP: Polymorphism and Interfaces

12.5.4 Creating Concrete Derived Class CommissionEmployee
Class CommissionEmployee (Fig. 12.7) extends class Employee (line 5). The class includes
a constructor (lines 11–18) that takes a first name, a last name, a social security number,

29 if (value < 0) // validation
30 {
31 throw new ArgumentOutOfRangeException(nameof(value),
32 value, $"{nameof(Wage)} must be >= 0");
33 }
34
35 wage = value;
36 }
37 }
38
39 // property that gets and sets hourly employee's hours
40 public decimal Hours
41 {
42 get
43 {
44 return hours;
45 }
46 set
47 {
48 if (value < 0 || value > 168) // validation
49 {
50 throw new ArgumentOutOfRangeException(nameof(value),
51 value, $"{nameof(Hours)} must be >= 0 and <= 168");
52 }
53
54 hours = value;
55 }
56 }
57
58 // calculate earnings; override Employee’s abstract method Earnings
59
60 {
61 if (Hours <= 40) // no overtime
62 {
63 return Wage * Hours;
64 }
65 else
66 {
67 return (40 * Wage) + ((Hours - 40) * Wage * 1.5M);
68 }
69 }
70
71 // return string representation of HourlyEmployee object
72 =>
73 $"hourly employee: {base.ToString()}\n" +
74 $"hourly wage: {Wage:C}\nhours worked: {Hours:F2}";
75 }

Fig. 12.6 | HourlyEmployee class that extends Employee. (Part 2 of 2.)

public override decimal Earnings()

public override string ToString()

ptg18189312

12.5 Case Study: Payroll System Using Polymorphism 343

a sales amount and a commission rate; properties GrossSales and CommissionRate (lines
21–37 and 40–56) to manipulate instance variables grossSales and commissionRate, re-
spectively; overridden method Earnings (line 59) to calculate a CommissionEmployee’s
earnings; and overridden method ToString (lines 62–65), which returns a Commission-
Employee’s string representation. The constructor also passes the first name, last name
and social security number to the Employee constructor (line 14) to initialize Employee’s
data. Method ToString calls base-class method ToString (line 63) to get the string rep-
resentation of the Employee-specific information (i.e., first name, last name and social se-
curity number).

1 // Fig. 12.7: CommissionEmployee.cs
2 // CommissionEmployee class that extends Employee.
3 using System;
4
5
6 {
7 private decimal grossSales; // gross weekly sales
8 private decimal commissionRate; // commission percentage
9

10 // five-parameter constructor
11 public CommissionEmployee(string firstName, string lastName,
12 string socialSecurityNumber, decimal grossSales,
13 decimal commissionRate)
14
15 {
16 GrossSales = grossSales; // validates gross sales
17 CommissionRate = commissionRate; // validates commission rate
18 }
19
20 // property that gets and sets commission employee's gross sales
21 public decimal GrossSales
22 {
23 get
24 {
25 return grossSales;
26 }
27 set
28 {
29 if (value < 0) // validation
30 {
31 throw new ArgumentOutOfRangeException(nameof(value),
32 value, $"{nameof(GrossSales)} must be >= 0");
33 }
34
35 grossSales = value;
36 }
37 }
38
39 // property that gets and sets commission employee's commission rate
40 public decimal CommissionRate
41 {

Fig. 12.7 | CommissionEmployee class that extends Employee. (Part 1 of 2.)

public class CommissionEmployee : Employee

: base(firstName, lastName, socialSecurityNumber)

ptg18189312

344 Chapter 12 OOP: Polymorphism and Interfaces

12.5.5 Creating Indirect Concrete Derived Class
BasePlusCommissionEmployee
Class BasePlusCommissionEmployee (Fig. 12.8) extends class CommissionEmployee (line
5) and therefore is an indirect derived class of class Employee. BasePlusCommissionEm-
ployee has a constructor (lines 10–17) that takes as arguments a first name, a last name,
a social security number, a sales amount, a commission rate and a base salary. It then passes
the first name, last name, social security number, sales amount and commission rate to the
CommissionEmployee constructor (lines 13–14) to initialize the base class’s data. Base-
PlusCommissionEmployee also contains property BaseSalary (lines 21–37) to manipulate
instance variable baseSalary. Overridden method Earnings (line 40) calculates a Base-
PlusCommissionEmployee’s earnings, calling base class CommissionEmployee’s Earnings
to calculate the commission-based portion of the BasePlusCommissionEmployee’s earn-
ings. Again, this shows the benefits of code reuse. The overridden ToString method (lines
43–44) creates a string representation of a BasePlusCommissionEmployee that contains
"base-salaried", followed by the string returned by base class CommissionEmployee’s
ToString method (another example of code reuse), then the base salary. The result is a
string beginning with "base-salaried commission employee", followed by the rest of
the BasePlusCommissionEmployee’s information. Recall that CommissionEmployee’s To-
String method obtains the employee’s first name, last name and social security number
by invoking the ToString method of its base class (i.e., Employee)—a further demonstra-
tion of code reuse. BasePlusCommissionEmployee’s ToString initiates a chain of method
calls that spans all three levels of the Employee hierarchy.

42 get
43 {
44 return commissionRate;
45 }
46 set
47 {
48 if (value <= 0 || value >= 1) // validation
49 {
50 throw new ArgumentOutOfRangeException(nameof(value),
51 value, $"{nameof(CommissionRate)} must be > 0 and < 1");
52 }
53
54 commissionRate = value;
55 }
56 }
57
58 // calculate earnings; override abstract method Earnings in Employee
59 => CommissionRate * GrossSales;
60
61 // return string representation of CommissionEmployee object
62 =>
63 $"commission employee: {base.ToString()}\n" +
64 $"gross sales: {GrossSales:C}\n" +
65 $"commission rate: {CommissionRate:F2}";
66 }

Fig. 12.7 | CommissionEmployee class that extends Employee. (Part 2 of 2.)

public override decimal Earnings()

public override string ToString()

ptg18189312

12.5 Case Study: Payroll System Using Polymorphism 345

12.5.6 Polymorphic Processing, Operator is and Downcasting
To test our Employee hierarchy, the app in Fig. 12.9 creates an object of each of the four
concrete classes SalariedEmployee, HourlyEmployee, CommissionEmployee and Base-
PlusCommissionEmployee (lines 11–19). The app manipulates these objects, first via vari-
ables of each object’s own type (lines 23–30), then polymorphically, using a List of

1 // Fig. 12.8: BasePlusCommissionEmployee.cs
2 // BasePlusCommissionEmployee class that extends CommissionEmployee.
3 using System;
4
5
6 {
7 private decimal baseSalary; // base salary per week
8
9 // six-parameter constructor

10 public BasePlusCommissionEmployee(string firstName, string lastName,
11 string socialSecurityNumber, decimal grossSales,
12 decimal commissionRate, decimal baseSalary)
13
14
15 {
16 BaseSalary = baseSalary; // validates base salary
17 }
18
19 // property that gets and sets
20 // BasePlusCommissionEmployee's base salary
21 public decimal BaseSalary
22 {
23 get
24 {
25 return baseSalary;
26 }
27 set
28 {
29 if (value < 0) // validation
30 {
31 throw new ArgumentOutOfRangeException(nameof(value),
32 value, $"{nameof(BaseSalary)} must be >= 0");
33 }
34
35 baseSalary = value;
36 }
37 }
38
39 // calculate earnings
40 => BaseSalary + base.Earnings();
41
42 // return string representation of BasePlusCommissionEmployee
43 =>
44 $"base-salaried {base.ToString()}\nbase salary: {BaseSalary:C}";
45 }

Fig. 12.8 | BasePlusCommissionEmployee class that extends CommissionEmployee.

public class BasePlusCommissionEmployee : CommissionEmployee

: base(firstName, lastName, socialSecurityNumber,
 grossSales, commissionRate)

public override decimal Earnings()

public override string ToString()

ptg18189312

346 Chapter 12 OOP: Polymorphism and Interfaces

Employee variables (lines 33–56)—each object’s ToString method is called implicitly by
WriteLine when the object is output as a string. While processing the objects polymor-
phically, the app increases the base salary of each BasePlusCommissionEmployee by 10%
(this, of course, requires determining the object’s type at execution time). Finally, lines 59–
63 polymorphically determine and output the type of each object in the Employee List.

1 // Fig. 12.9: PayrollSystemTest.cs
2 // Employee hierarchy test app.
3 using System;
4 using System.Collections.Generic;
5
6 class PayrollSystemTest
7 {
8 static void Main()
9 {

10 // create derived-class objects
11
12
13
14
15
16
17
18
19
20
21 Console.WriteLine("Employees processed individually:\n");
22
23 Console.WriteLine($"{salariedEmployee}\nearned: " +
24 $"{salariedEmployee.Earnings():C}\n");
25 Console.WriteLine(
26 $"{hourlyEmployee}\nearned: {hourlyEmployee.Earnings():C}\n");
27 Console.WriteLine($"{commissionEmployee}\nearned: " +
28 $"{commissionEmployee.Earnings():C}\n");
29 Console.WriteLine($"{basePlusCommissionEmployee}\nearned: " +
30 $"{basePlusCommissionEmployee.Earnings():C}\n");
31
32 // create List<Employee> and initialize with employee objects
33
34
35
36 Console.WriteLine("Employees processed polymorphically:\n");
37
38 // generically process each element in employees
39
40 {
41 Console.WriteLine(); // invokes ToString
42
43 // determine whether element is a BasePlusCommissionEmployee
44 if ()
45 {

Fig. 12.9 | Employee hierarchy test app. (Part 1 of 3.)

var salariedEmployee = new SalariedEmployee("John", "Smith",
 "111-11-1111", 800.00M);

var hourlyEmployee = new HourlyEmployee("Karen", "Price",
 "222-22-2222", 16.75M, 40.0M);
var commissionEmployee = new CommissionEmployee("Sue", "Jones",
 "333-33-3333", 10000.00M, .06M);
var basePlusCommissionEmployee =
 new BasePlusCommissionEmployee("Bob", "Lewis",
 "444-44-4444", 5000.00M, .04M, 300.00M);

var employees = new List<Employee>() {salariedEmployee,
 hourlyEmployee, commissionEmployee, basePlusCommissionEmployee};

foreach (var currentEmployee in employees)

currentEmployee

currentEmployee is BasePlusCommissionEmployee

ptg18189312

12.5 Case Study: Payroll System Using Polymorphism 347

46 // downcast Employee reference to
47 // BasePlusCommissionEmployee reference
48
49
50 employee.BaseSalary *= 1.10M;
51 Console.WriteLine("new base salary with 10% increase is: " +
52 $"{employee.BaseSalary:C}");
53 }
54
55 Console.WriteLine($"earned: { :C}\n");
56 }
57
58 // get type name of each object in employees
59 for (int j = 0; j < employees.Count; j++)
60 {
61 Console.WriteLine(
62 $"Employee {j} is a { }");
63 }
64 }
65 }

Employees processed individually:

salaried employee: John Smith
social security number: 111-11-1111
weekly salary: $800.00
earned: $800.00

hourly employee: Karen Price
social security number: 222-22-2222
hourly wage: $16.75
hours worked: 40.00
earned: $670.00

commission employee: Sue Jones
social security number: 333-33-3333
gross sales: $10,000.00
commission rate: 0.06
earned: $600.00

base-salaried commission employee: Bob Lewis
social security number: 444-44-4444
gross sales: $5,000.00
commission rate: 0.04
base salary: $300.00
earned: $500.00

Employees processed polymorphically:

salaried employee: John Smith
social security number: 111-11-1111
weekly salary: $800.00
earned: $800.00

Fig. 12.9 | Employee hierarchy test app. (Part 2 of 3.)

var employee = (BasePlusCommissionEmployee) currentEmployee;

currentEmployee.Earnings()

employees[j].GetType()

ptg18189312

348 Chapter 12 OOP: Polymorphism and Interfaces

Assigning Derived-Class Objects to Base-Class References
Lines 33–34 create the List<Employee> named employees and initialize it with the Sal-
ariedEmployee, HourlyEmployee, CommissionEmployee and BasePlusCommissionEm-
ployee created in lines 11–19. Each element of the List is an Employee variable. The
derived-class objects can each be assigned to an element of employees, because a
SalariedEmployee is an Employee, an HourlyEmployee is an Employee, a Commission-
Employee is an Employee and a BasePlusCommissionEmployee is an Employee. This is al-
lowed even though Employee is an abstract class.

Polymorphic Processing of Employees
Lines 39–56 iterate through employees and invoke methods ToString and Earnings with
Employee variable currentEmployee, which is assigned the reference of a different Em-
ployee during each iteration. The output illustrates that the appropriate methods for each
class are indeed invoked. All calls to virtual methods ToString and Earnings are re-
solved at execution time, based on the type of the object to which currentEmployee refers.
This process is known as dynamic binding or late binding. For example, line 41 implicitly
invokes method ToString of the object to which currentEmployee refers. Only the meth-
ods of class Employee can be called via an Employee variable—and Employee includes class
object’s methods, such as ToString. (Section 11.7 discussed the methods that all classes
inherit from class object.) A base-class reference can be used to invoke only methods that
were originally declared in the base class or higher in the class hierarchy.

Giving BasePlusCommissionEmployees 10% Raises
We perform special processing on BasePlusCommissionEmployee objects—as we encoun-
ter them, we increase their base salary by 10%. When processing objects polymorphically,

hourly employee: Karen Price
social security number: 222-22-2222
hourly wage: $16.75
hours worked: 40.00
earned: $670.00

commission employee: Sue Jones
social security number: 333-33-3333
gross sales: $10,000.00
commission rate: 0.06
earned: $600.00

base-salaried commission employee: Bob Lewis
social security number: 444-44-4444
gross sales: $5,000.00
commission rate: 0.04
base salary: $300.00
new base salary with 10% increase is: $330.00
earned: $530.00

Employee 0 is a SalariedEmployee
Employee 1 is a HourlyEmployee
Employee 2 is a CommissionEmployee
Employee 3 is a BasePlusCommissionEmployee

Fig. 12.9 | Employee hierarchy test app. (Part 3 of 3.)

ptg18189312

12.5 Case Study: Payroll System Using Polymorphism 349

we typically do not need to worry about the specifics, but to adjust the base salary, we do
have to determine the specific type of each Employee object at execution time. Line 44 uses
the is operator to determine whether a particular Employee object’s type is BasePlusCom-
missionEmployee. The condition in line 44 is true only if the object referenced by
currentEmployee is a BasePlusCommissionEmployee. This would also be true for any ob-
ject of a BasePlusCommissionEmployee derived class (if there were any), because an object
of any BasePlusCommissionEmployee derived class is a BasePlusCommissionEmployee.

Line 48 casts currentEmployee from type Employee to type BasePlusCommissionEm-
ployee and assigns the result to BasePlusCommissionEmployee variable employee. This is
known as a downcast, because the cast is to a type lower down in the class hierarchy. This
downcast is allowed only if the object to which currentEmployee refers has an is-a rela-
tionship with BasePlusCommissionEmployee—the condition at line 44 ensures this is the
case. Why would we ever want to perform such a downcast? A base-class reference can be
used to invoke only the methods declared in the base class—attempting to invoke a derived-
class-only method through a base-class reference results in a compilation error. If an app
needs to perform a derived-class-specific operation on a derived-class object referenced by
a base-class variable, the app must first cast the base-class reference to a derived-class ref-
erence. So, this cast is required in this program for us to use derived class BasePlusCom-
missionEmployee’s BaseSalary property on the currentEmployee.

When downcasting an object, an InvalidCastException (of namespace System)
occurs if at execution time the object does not have an is a relationship with the type spec-
ified in the cast operator. An object can be cast only to its own type or to the type of one
of its base classes. You can avoid a potential InvalidCastException by using the as oper-
ator to perform a downcast rather than a cast operator. For example, in the statement

employee is assigned a reference to an object that is a BasePlusCommissionEmployee, or
the value null if currentEmployee is not a BasePlusCommissionEmployee. You can then
compare employee with null to determine whether the cast succeeded.

If the is expression in line 44 is true, the if statement (lines 44–53) performs the
special processing required for the BasePlusCommissionEmployee object. Using Base-
PlusCommissionEmployee variable employee, line 50 accesses the derived-class-only prop-
erty BaseSalary to retrieve and update the employee’s base salary with the 10% raise.

Line 55 invokes method Earnings on currentEmployee, which calls the appropriate
derived-class object’s Earnings method polymorphically. Obtaining the earnings of the Sal-

Common Programming Error 12.3
Assigning a base-class variable to a derived-class variable (without an explicit downcast)
is a compilation error.

Software Engineering Observation 12.5
If at execution time the reference to a derived-class object has been assigned to a variable
of one of its direct or indirect base classes, it’s acceptable to cast the reference stored in that
base-class variable back to a reference of the derived-class type. Before performing such a
cast, use the is operator to ensure that the object is indeed an object of an appropriate
derived-class type.

var employee = currentEmployee as BasePlusCommissionEmployee;

ptg18189312

350 Chapter 12 OOP: Polymorphism and Interfaces

ariedEmployee, HourlyEmployee and CommissionEmployee polymorphically in line 55
produces the same result as obtaining these employees’ earnings individually in lines 24, 26
and 28. However, the earnings amount obtained for the BasePlusCommissionEmployee in
lines 55 is higher than that obtained in line 30, due to the 10% increase in its base salary.

Every Object Knows Its Own Type
Lines 59–63 display each employee’s type as a string. Every object knows its own type
and can access this information through method GetType, which all classes inherit from
class object. This method returns an object of class Type (of namespace System), which
contains information about the object’s type, including its class name, the names of its
methods and the name of its base class. Line 62 invokes method GetType on the object to
get its runtime class (i.e., a Type object that represents the object’s type). Then method
ToString is implicitly invoked on the object returned by GetType. The Type class’s To-
String method returns the class name.

Avoiding Compilation Errors with Downcasting
In the previous example, we avoid compilation errors by downcasting an Employee variable
to a BasePlusCommissionEmployee variable in line 48—the type BasePlusCommissionEm-
ployee is inferred from the cast operation. If we remove the cast operator and attempt to
assign Employee variable currentEmployee directly to a BasePlusCommissionEmployee
variable named employee (with its type explicitly declared, rather than using var), we’d re-
ceive a “Cannot implicitly convert type” compilation error. This error indicates that the
attempt to assign the reference of base-class object currentEmployee to derived-class variable
employee is not allowed without an appropriate cast operator. The compiler prevents this
assignment, because a CommissionEmployee is not a BasePlusCommissionEmployee—again,
the is-a relationship applies only between the derived class and its base classes, not vice versa.

Similarly, if lines 50 and 52 use base-class variable currentEmployee, rather than
derived-class variable employee, when accessing derived-class-only property BaseSalary,
we receive an “'Employee' does not contain a definition for 'BaseSalary'” compila-
tion error on each of these lines. Attempting to invoke derived-class-only methods or properties
on a base-class reference is not allowed. While lines 50 and 52 execute only if is in line 44
returns true to indicate that currentEmployee refers to a BasePlusCommissionEmployee
object, we cannot attempt to use derived-class BasePlusCommissionEmployee property
BaseSalary with base-class Employee reference currentEmployee. The compiler would
generate errors in lines 50 and 52, because BaseSalary is not a base-class member and
cannot be used with a base-class variable. Although the actual method that’s called
depends on the object’s type at execution time, a variable can be used to invoke only those
methods that are members of that variable’s type, which the compiler verifies. Using a base-
class Employee variable, we can invoke only methods and properties found in class
Employee—methods Earnings and ToString, and properties FirstName, LastName and
SocialSecurityNumber—and methods inherited from class object.

12.5.7 Summary of the Allowed Assignments Between Base-Class and
Derived-Class Variables
Now that you’ve seen a complete app that processes diverse derived-class objects polymor-
phically, we summarize what you can and cannot do with base-class and derived-class ob-

ptg18189312

12.6 sealed Methods and Classes 351

jects and variables. Although a derived-class object also is a base-class object, the two are
nevertheless different. As discussed previously, derived-class objects can be treated as if
they were base-class objects. However, the derived class can have additional derived-class-
only members. For this reason, assigning a base-class reference to a derived-class variable
is not allowed without an explicit cast—such an assignment would leave the derived-class
members undefined for a base-class object.

We’ve discussed four ways to assign base-class and derived-class references to variables
of base-class and derived-class types:

1. Assigning a base-class reference to a base-class variable is straightforward.

2. Assigning a derived-class reference to a derived-class variable is straightforward.

3. Assigning a derived-class reference to a base-class variable is safe, because the de-
rived-class object is an object of its base class. However, this reference can be used
to refer only to base-class members. If this code refers to derived-class-only mem-
bers through the base-class variable, the compiler reports errors.

4. Attempting to assign a base-class reference to a derived-class variable is a compilation
error. To avoid this error, the base-class reference must be cast to a derived-class
type explicitly or must be converted using the as operator. At execution time, if
the object to which the reference refers is not a derived-class object, an exception
will occur (unless you use the as operator, in which case you’ll have to check the
expression’s result for null). The is operator can be used to ensure that such a
cast is performed only if the object is a derived-class object.

12.6 sealed Methods and Classes
Only methods declared virtual, override or abstract can be overridden in derived class-
es. A method declared sealed in a base class cannot be overridden in a derived class. Meth-
ods that are declared private are implicitly sealed, because it’s impossible to override
them in a derived class (though the derived class can declare a new method with the same
signature as the private method in the base class). Methods that are declared static also
are implicitly sealed, because static methods cannot be overridden either. A derived-
class method declared both override and sealed can override a base-class method, but
cannot be overridden in derived classes further down the inheritance hierarchy.

A sealed method’s declaration can never change, so all derived classes use the same
method implementation, and calls to sealed methods (and non-virtual methods) are
resolved at compile time—this is known as static binding. Since the compiler knows that
sealed methods cannot be overridden, it can often optimize code by removing calls to
sealed methods and replacing them with the expanded code of their declarations at each
method-call location—a technique known as inlining the code.

A class that’s declared sealed cannot be a base class (i.e., a class cannot extend a
sealed class). All methods in a sealed class are implicitly sealed. Class string is a sealed

Performance Tip 12.1
The compiler can decide to inline a sealed method call and will do so for small, simple
sealed methods. Inlining does not violate encapsulation or information hiding, but does
improve performance, because it eliminates the overhead of making a method call.

ptg18189312

352 Chapter 12 OOP: Polymorphism and Interfaces

class. This class cannot be extended, so apps that use strings can rely on the functionality
of string objects as specified in the Framework Class Library.

12.7 Case Study: Creating and Using Interfaces
Our next example (Figs. 12.11–12.14) reexamines the payroll system of Section 12.5. Sup-
pose that the company involved wishes to perform several accounting operations in a single
accounts-payable app—in addition to calculating the payroll earnings that must be paid to
each employee, the company must also calculate the payment due on each of several invoices
(i.e., bills for goods purchased). Though applied to unrelated things (i.e., employees and in-
voices), both operations have to do with calculating some kind of payment amount. For an
employee, the payment refers to the employee’s earnings. For an invoice, the payment refers
to the total cost of the goods listed on the invoice. Can we calculate such different things as
the payments due for employees and invoices polymorphically in a single app? Is there a ca-
pability that can require unrelated classes to implement a set of common methods (e.g., a
method that calculates a payment amount)? Interfaces offer exactly this capability.

Standardized Interactions
Interfaces define and standardize the ways in which people and systems can interact with
one another. For example, the controls on a radio serve as an interface between a radio’s
users and its internal components. The controls allow users to perform a limited set of op-
erations (e.g., changing the station, adjusting the volume, choosing between AM and FM),
and different radios may implement the controls in different ways (e.g., using push buttons,
dials, voice commands). The interface specifies what operations a radio must permit users
to perform but does not specify how they’re performed. Similarly, the interface between a
driver and a car with a manual transmission includes the steering wheel, the gear shift, the
clutch pedal, the gas pedal and the brake pedal. This same interface is found in nearly all
manual-transmission cars, enabling someone who knows how to drive one particular man-
ual-transmission car to drive just about any other. The components of each car may look a
bit different, but the general purpose is the same—to allow people to drive the car.

Interfaces in Software
Software objects also communicate via interfaces. A C# interface describes a set of methods
and properties that can be called on an object—to tell it, for example, to perform some
task or return some piece of information. The next example introduces an interface named
IPayable that describes the functionality of any object that must be capable of being paid
and thus must offer a method to determine the proper payment amount due. An interface
declaration begins with the keyword interface and can contain only

• abstract methods,

• abstract properties,

• abstract indexers (not covered in this book) and

• abstract events (events are discussed in Chapter 14, Graphical User Interfaces
with Windows Forms: Part 1).

Common Programming Error 12.4
Attempting to declare a derived class of a sealed class is a compilation error.

ptg18189312

12.7 Case Study: Creating and Using Interfaces 353

All interface members are implicitly declared both public and abstract. In addition, each
interface can extend one or more other interfaces to create a more elaborate interface that
other classes can implement.

Implementing an Interface
A class must specify that it implements the interface by listing the interface name after the
colon (:) in the class declaration. This is the same syntax used to indicate inheritance from
a base class. A concrete class implementing the interface must declare each member of the
interface with the signature specified in the interface declaration. A class that implements
an interface but does not implement all its members is an abstract class—it must be de-
clared abstract and must contain an abstract declaration for each unimplemented
member of the interface. Implementing an interface is like signing a contract with the
compiler that states, “I will provide an implementation for all the members specified by
the interface, or I will declare them abstract.”

Common Methods for Unrelated Classes
An interface is typically used when unrelated classes need to share common methods. This
allows objects of unrelated classes to be processed polymorphically—objects of classes that
implement the same interface can respond to the same method calls. You can create an in-
terface that describes the desired functionality, then implement this interface in any classes
requiring that functionality. For example, in the accounts-payable app developed in this
section, we implement interface IPayable in each class (e.g., Employee, Invoice) that
must be able to calculate a payment amount.

Interfaces vs. Abstract Classes
An interface often is used in place of an abstract class when there’s no default implemen-
tation to inherit—that is, no fields and no default method implementations. Like ab-
stract classes, interfaces are typically public types, so they’re normally declared in files
by themselves with the same name as the interface and the .cs filename extension.

12.7.1 Developing an IPayable Hierarchy
To build an app that can determine payments for employees and invoices alike, we first
create an interface named IPayable. Interface IPayable contains method GetPayment-
Amount that returns a decimal amount to be paid for an object of any class that imple-
ments the interface. Method GetPaymentAmount is a general-purpose version of method
Earnings of the Employee hierarchy—method Earnings calculates a payment amount
specifically for an Employee, while GetPaymentAmount can be applied to a broad range of
unrelated objects. After declaring interface IPayable, we introduce class Invoice, which

Common Programming Error 12.5
It’s a compilation error to explicitly declare an interface member public or abstract, be-
cause they’re redundant in interface-member declarations. It’s also a compilation error to
specify in an interface any implementation details, such as concrete method declarations.

Common Programming Error 12.6
Failing to define or declare any member of an interface in a class that implements the in-
terface results in a compilation error.

ptg18189312

354 Chapter 12 OOP: Polymorphism and Interfaces

implements interface IPayable. We then modify class Employee such that it also imple-
ments interface IPayable.

Classes Invoice and Employee both represent things for which the company must be
able to calculate a payment amount. Both classes implement IPayable, so an app can
invoke method GetPaymentAmount on Invoice objects and Employee objects alike. This
enables the polymorphic processing of Invoices and Employees required for our com-
pany’s accounts-payable app.

UML Diagram Containing an Interface
The UML class diagram in Fig. 12.10 shows the interface and class hierarchy used in our
accounts-payable app. The hierarchy begins with interface IPayable. The UML distin-
guishes an interface from a class by placing the word “interface” in guillemets (« and »)

above the interface name. The UML expresses the relationship between a class and an in-
terface through a realization. A class is said to “realize,” or implement, an interface. A class
diagram models a realization as a dashed arrow with a hollow arrowhead pointing from the
implementing class to the interface. The diagram in Fig. 12.10 indicates that classes In-
voice and Employee each realize (i.e., implement) interface IPayable. As in the class dia-
gram of Fig. 12.2, class Employee appears in italics, indicating that it’s an abstract class.
Concrete class SalariedEmployee extends Employee and inherits its base class’s realization
relationship with interface IPayable. Figure 12.10 could include Section 12.5’s entire Em-
ployee class hierarchy—to keep the forthcoming example small, we did not include classes
HourlyEmployee, CommissionEmployee and BasePlusCommissionEmployee.

Good Programming Practice 12.1
By convention, the name of an interface begins with I (e.g., IPayable). This helps distin-
guish interfaces from classes, improving code readability.

Good Programming Practice 12.2
When declaring a method in an interface, choose a name that describes the method’s pur-
pose in a general manner, because the method may be implemented by a broad range of
unrelated classes.

Fig. 12.10 | IPayable interface and class hierarchy UML class diagram.

Invoice Employee

SalariedEmployee

«interface»
IPayable

ptg18189312

12.7 Case Study: Creating and Using Interfaces 355

12.7.2 Declaring Interface IPayable
The declaration of interface IPayable begins in Fig. 12.11 at line 3. Interface IPayable
contains public abstract method GetPaymentAmount (line 5). The method cannot be ex-
plicitly declared public or abstract. Interfaces can have any number of members and in-
terface methods can have parameters.

12.7.3 Creating Class Invoice
We now create class Invoice (Fig. 12.12) to represent a simple invoice that contains bill-
ing information for one kind of part. The class contains properties PartNumber (line 7),
PartDescription (line 8), Quantity (lines 23–39) and PricePerItem (lines 42–58) that
indicate the part number, the description of the part, the quantity of the part ordered and
the price per item. Class Invoice also contains a constructor (lines 13–20) and a ToString
method (lines 61–63) that returns a string representation of an Invoice object. The set
accessors of properties Quantity and PricePerItem ensure that quantity and
pricePerItem are assigned only nonnegative values.

1 // Fig. 12.11: IPayable.cs
2 // IPayable interface declaration.
3
4 {
5 // calculate payment; no implementation
6 }

Fig. 12.11 | IPayable interface declaration.

1 // Fig. 12.12: Invoice.cs
2 // Invoice class implements IPayable.
3 using System;
4
5
6 {
7 public string PartNumber { get; }
8 public string PartDescription { get; }
9 private int quantity;

10 private decimal pricePerItem;
11
12 // four-parameter constructor
13 public Invoice(string partNumber, string partDescription, int quantity,
14 decimal pricePerItem)
15 {
16 PartNumber = partNumber;
17 PartDescription = partDescription;
18 Quantity = quantity; // validate quantity
19 PricePerItem = pricePerItem; // validate price per item
20 }
21

Fig. 12.12 | Invoice class implements IPayable. (Part 1 of 2.)

public interface IPayable

decimal GetPaymentAmount();

public class Invoice : IPayable

ptg18189312

356 Chapter 12 OOP: Polymorphism and Interfaces

Line 5 indicates that class Invoice implements interface IPayable. Like all classes,
class Invoice also implicitly inherits from class object. All objects of a class can imple-
ment multiple interfaces, in which case they have the is-a relationship with each imple-
mented interface type.

22 // property that gets and sets the quantity on the invoice
23 public int Quantity
24 {
25 get
26 {
27 return quantity;
28 }
29 set
30 {
31 if (value < 0) // validation
32 {
33 throw new ArgumentOutOfRangeException(nameof(value),
34 value, $"{nameof(Quantity)} must be >= 0");
35 }
36
37 quantity = value;
38 }
39 }
40
41 // property that gets and sets the price per item
42 public decimal PricePerItem
43 {
44 get
45 {
46 return pricePerItem;
47 }
48 set
49 {
50 if (value < 0) // validation
51 {
52 throw new ArgumentOutOfRangeException(nameof(value),
53 value, $"{nameof(PricePerItem)} must be >= 0");
54 }
55
56 pricePerItem = value;
57 }
58 }
59
60 // return string representation of Invoice object
61 public override string ToString() =>
62 $"invoice:\npart number: {PartNumber} ({PartDescription})\n" +
63 $"quantity: {Quantity}\nprice per item: {PricePerItem:C}";
64
65 // method required to carry out contract with interface IPayable
66 => Quantity * PricePerItem;
67 }

Fig. 12.12 | Invoice class implements IPayable. (Part 2 of 2.)

public decimal GetPaymentAmount()

ptg18189312

12.7 Case Study: Creating and Using Interfaces 357

To implement more than one interface, use a comma-separated list of interface names
after the colon (:) in the class declaration, as in

When a class inherits from a base class and implements one or more interfaces, the class
declaration must list the base-class name before any interface names.

Class Invoice implements the one method in interface IPayable—method Get-
PaymentAmount is declared in line 66. The method calculates the amount required to pay
the invoice. The method multiplies the values of quantity and pricePerItem (obtained
through the appropriate properties) and returns the result. This method satisfies the
implementation requirement for the method in interface IPayable—we’ve fulfilled the
interface contract with the compiler.

12.7.4 Modifying Class Employee to Implement Interface IPayable
We now modify class Employee to implement interface IPayable (Fig. 12.13). This class
declaration is identical to that of Fig. 12.4 with two exceptions:

• Line 3 of Fig. 12.13 indicates that class Employee now implements interface
IPayable.

• Line 27 implements interface IPayable’s GetPaymentAmount method.

Notice that GetPaymentAmount simply calls Employee’s abstract method Earnings. At
execution time, when GetPaymentAmount is called on an object of an Employee derived
class, GetPaymentAmount calls that class’s concrete Earnings method, which knows how
to calculate earnings for objects of that derived-class type.

public class ClassName : BaseClassName, FirstInterface, SecondInterface, …

Software Engineering Observation 12.6
C# does not allow derived classes to inherit from more than one base class, but it does allow
a class to inherit from a base class and implement any number of interfaces.

1 // Fig. 12.13: Employee.cs
2 // Employee abstract base class that implements interface IPayable.
3
4 {
5 public string FirstName { get; }
6 public string LastName { get; }
7 public string SocialSecurityNumber { get; }
8
9 // three-parameter constructor

10 public Employee(string firstName, string lastName,
11 string socialSecurityNumber)
12 {
13 FirstName = firstName;
14 LastName = lastName;
15 SocialSecurityNumber = socialSecurityNumber;
16 }
17

Fig. 12.13 | Employee abstract base class that implements interface IPayable. (Part 1 of 2.)

public abstract class Employee : IPayable

ptg18189312

358 Chapter 12 OOP: Polymorphism and Interfaces

Derived Classes of Employee and Interface IPayable
When a class implements an interface, the same is-a relationship as inheritance applies.
Class Employee implements IPayable, so we can say that an Employee is an IPayable, and
thus any object of an Employee derived class also is an IPayable. So, if we update the class
hierarchy in Section 12.5 with the new Employee class in Fig. 12.13, then SalariedEm-
ployees, HourlyEmployees, CommissionEmployees and BasePlusCommissionEmployees
are all IPayable objects. Just as we can assign the reference of a SalariedEmployee de-
rived-class object to a base-class Employee variable, we can assign the reference of a Sala-
riedEmployee object (or any other Employee derived-class object) to an IPayable variable.
Invoice implements IPayable, so an Invoice object also is an IPayable object, and we
can assign the reference of an Invoice object to an IPayable variable.

12.7.5 Using Interface IPayable to Process Invoices and Employees
Polymorphically
PayableInterfaceTest (Fig. 12.14) illustrates that interface IPayable can be used to pro-
cess a set of Invoices and Employees polymorphically in a single app. Lines 12–16 create
a List<IPayable> named payableObjects and initialize it with four new objects—two
Invoice objects (lines 13–14) and two SalariedEmployee objects (lines 15–16). These as-
signments are allowed because an Invoice is an IPayable, a SalariedEmployee is an Em-
ployee and an Employee is an IPayable. Lines 22–28 use a foreach statement to process
each IPayable object in payableObjects polymorphically, displaying the object as a
string, along with the payment due. Line 25 implicitly invokes method ToString using

18 // return string representation of Employee object, using properties
19 public override string ToString() => $"{FirstName} {LastName}\n" +
20 $"social security number: {SocialSecurityNumber}";
21
22 // abstract method overridden by derived classes
23 public abstract decimal Earnings(); // no implementation here
24
25 // implementing GetPaymentAmount here enables the entire Employee
26 // class hierarchy to be used in an app that processes IPayables
27
28 }

Software Engineering Observation 12.7
Inheritance and interfaces are similar in their implementation of the is-a relationship. An
object of a class that implements an interface may be thought of as an object of that
interface type. An object of any derived classes of a class that implements an interface also
can be thought of as an object of the interface type.

Software Engineering Observation 12.8
The is-a relationship that exists between base classes and derived classes, and between
interfaces and the classes that implement them, holds when passing an object to a method.
When a method parameter receives an argument of a base class or interface type, the
method polymorphically processes the object received as an argument.

Fig. 12.13 | Employee abstract base class that implements interface IPayable. (Part 2 of 2.)

public decimal GetPaymentAmount() => Earnings();

ptg18189312

12.7 Case Study: Creating and Using Interfaces 359

the IPayable interface reference payable, even though ToString is not declared in inter-
face IPayable—all references (including those of interface types) refer to objects of classes
that extend object and therefore have a ToString method. Line 27 invokes IPayable
method GetPaymentAmount to obtain the payment amount for each object in payableOb-
jects, regardless of the actual type of the object. The output reveals that the method calls
in lines 25 and 27 invoke the appropriate class’s implementation of methods ToString
and GetPaymentAmount.

Software Engineering Observation 12.9
All methods of class object can be called by using a reference of an interface type—the
reference refers to an object, and all objects inherit the methods of class object.

1 // Fig. 12.14: PayableInterfaceTest.cs
2 // Tests interface IPayable with disparate classes.
3 using System;
4 using System.Collections.Generic;
5
6 class PayableInterfaceTest
7 {
8 static void Main()
9 {

10 // create a List<IPayable> and initialize it with four
11 // objects of classes that implement interface IPayable
12
13
14
15
16
17
18 Console.WriteLine(
19 "Invoices and Employees processed polymorphically:\n");
20
21 // generically process each element in payableObjects
22 foreach (var payable in payableObjects)
23 {
24 // output payable and its appropriate payment amount
25 Console.WriteLine($"{ }");
26 Console.WriteLine(
27 $"payment due: { :C}\n");
28 }
29 }
30 }

Invoices and Employees processed polymorphically:

invoice:
part number: 01234 (seat)
quantity: 2
price per item: $375.00
payment due: $750.00

Fig. 12.14 | Tests interface IPayable with disparate classes. (Part 1 of 2.)

var payableObjects = new List<IPayable>() {
 new Invoice("01234", "seat", 2, 375.00M),
 new Invoice("56789", "tire", 4, 79.95M),
 new SalariedEmployee("John", "Smith", "111-11-1111", 800.00M),
 new SalariedEmployee("Lisa", "Barnes", "888-88-8888", 1200.00M)};

payable

payable.GetPaymentAmount()

ptg18189312

360 Chapter 12 OOP: Polymorphism and Interfaces

12.7.6 Common Interfaces of the .NET Framework Class Library
In this section, we overview several common interfaces defined in the .NET Framework
Class Library. These interfaces are implemented and used in the same manner as those you
create (e.g., interface IPayable in Section 12.7.2). Implementing these interfaces enables
you to incorporate objects of your own types into many important aspects of the Frame-
work Class Library. Figure 12.15 overviews several commonly used Framework Class Li-
brary interfaces and why you might implement them in your own types.

invoice:
part number: 56789 (tire)
quantity: 4
price per item: $79.95
payment due: $319.80

salaried employee: John Smith
social security number: 111-11-1111
weekly salary: $800.00
payment due: $800.00

salaried employee: Lisa Barnes
social security number: 888-88-8888
weekly salary: $1,200.00
payment due: $1,200.00

Interface Description

IComparable C# contains several comparison operators (e.g., <, <=, >, >=, ==, !=) that allow
you to compare simple-type values. Section 10.13 showed that you can overload
these operators for your own types. Interface IComparable can be used to allow
objects of a class that implements the interface to be compared to one another.
The interface contains one method, CompareTo, which compares the object that
calls the method to the object passed as an argument. Classes must implement
CompareTo to return a value indicating whether the object on which it’s invoked
is less than (negative integer return value), equal to (0 return value) or greater
than (positive integer return value) the object passed as an argument, using any
criteria you specify. For example, if class Employee implements IComparable, its
CompareTo method could compare Employee objects by their earnings amounts.
Interface IComparable is commonly used for ordering objects in a collection
such as an array. We use IComparable in Chapter 18, Generics, and Chapter 19,
Generic Collections; Functional Programming with LINQ/PLINQ.

IComponent Implemented by any class that represents a component, including Graphical
User Interface (GUI) controls (such as buttons or labels). Interface IComponent
defines the behaviors that components must implement. We discuss IComponent
and many GUI controls that implement this interface in Chapter 14, Graphical
User Interfaces with Windows Forms: Part 1, and Chapter 15, Graphical User
Interfaces with Windows Forms: Part 2.

Fig. 12.15 | Common interfaces of the .NET Framework Class Library. (Part 1 of 2.)

Fig. 12.14 | Tests interface IPayable with disparate classes. (Part 2 of 2.)

ptg18189312

12.8 Wrap-Up 361

12.8 Wrap-Up
This chapter introduced polymorphism—the ability to process objects that share the same
base class in a class hierarchy as if they were all objects of the base class. The chapter dis-
cussed how polymorphism makes systems extensible and maintainable, then demonstrated
how to use overridden methods to effect polymorphic behavior. We introduced the notion
of an abstract class, which allows you to provide an appropriate base class from which other
classes can inherit. You learned that an abstract class can declare abstract methods that each
derived class must implement to become a concrete class. We also discussed that an app
can use variables of an abstract class to invoke concrete derived-class implementations of
abstract methods polymorphically. You also learned how to determine an object’s type
at execution time. We showed how to create sealed methods and classes. Finally, the
chapter discussed declaring and implementing an interface as another way to achieve poly-
morphic behavior, often among objects of different, unrelated classes.

You should now be familiar with classes, objects, encapsulation, inheritance, inter-
faces and polymorphism—the most essential aspects of object-oriented programming.
Next, we take a deeper look at using exception handling to deal with runtime errors.

IDisposable Implemented by classes that must provide an explicit mechanism for releasing
resources. Some resources can be used by only one program at a time. In addi-
tion, some resources, such as files on disk, are unmanaged resources that, unlike
memory, cannot be released by the garbage collector. Classes that implement
interface IDisposable provide a Dispose method that can be called to explicitly
release resources that are explicitly associated with an object. We discuss IDis-
posable briefly in Chapter 13, Exception Handling: A Deeper Look. You can
learn more about this interface at http://msdn.microsoft.com/library/
system.idisposable. The MSDN article Implementing a Dispose Method at
http://msdn.microsoft.com/library/fs2xkftw discusses the proper imple-
mentation of this interface in your classes.

IEnumerator Used for iterating through the elements of a collection (such as an array or a
List) one element at a time—the foreach statement uses an IEnumerator object
to iterate through elements. Interface IEnumerator contains method MoveNext
to move to the next element in a collection, method Reset to move to the posi-
tion before the first element and property Current to return the object at the
current location. We use IEnumerator in Chapter 19. All IEnumberable objects
(Chapter 9) provide a GetEnumerator method that returns an IEnumerator
object.

Interface Description

Fig. 12.15 | Common interfaces of the .NET Framework Class Library. (Part 2 of 2.)

http://msdn.microsoft.com/library/system.idisposable
http://msdn.microsoft.com/library/system.idisposable
http://msdn.microsoft.com/library/fs2xkftw

ptg18189312

13
 Exception Handling:

A Deeper Look

O b j e c t i v e s
In this chapter you’ll:
■ Learn when to use exception handling.
■ Use try blocks to delimit code that may throw exceptions.
■ Use throw to indicate a problem at runtime.
■ Use catch blocks to specify exception handlers.
■ Understand what happens to uncaught exceptions.
■ Understand the mechanics of exception handling.
■ Use the finally block to release resources.
■ See how a using statement can auto-release resources.
■ Understand .NET exception class hierarchy.
■ Use Exception properties.
■ Create new exception types.
■ Use C# 6’s null-conditional operator (?.) to determine

whether a reference is null before using it to call a method
or access a property.

■ Use nullable value types to specify that a variable may
contain a value or null.

■ Use C# 6 exception filters to specify a condition for catching
an exception.

ptg18189312

13.1 Introduction 363

O
u

tl
in

e

13.1 Introduction
In this chapter, we take a deeper look at exception handling. As you know from
Section 8.5, an exception indicates that a problem occurred during a program’s execution.
The name “exception” comes from the fact that, although the problem can occur, it occurs
infrequently. As we showed in Section 8.5 and in Chapter 10, exception handling enables
you to create apps that can handle exceptions—in many cases allowing a program to con-
tinue executing as if no problems had been encountered. More severe problems may pre-
vent a program from continuing normal execution, instead requiring it to notify the user
of the problem, then terminate in a controlled manner. The features presented in this
chapter enable you to write clear, robust and more fault-tolerant programs (i.e., programs
that are able to deal with problems that may arise and continue executing). “Best practices”
for exception handling in Visual C# are specified in the Visual Studio documentation.1

After reviewing exception-handling concepts and basic exception-handling tech-
niques, we overview .NET’s exception-handling class hierarchy. Programs typically request
and release resources (such as files on disk) during program execution. Often, the supply
of these resources is limited, or the resources can be used by only one program at a time.
We demonstrate a part of the exception-handling mechanism that enables a program to
use a resource, then guarantee that it will be released for use by other programs, even if an
exception occurs. We show several properties of class System.Exception (the base class of
all exception classes) and discuss how you can create and use your own exception classes.

13.1 Introduction
13.2 Example: Divide by Zero without Excep-

tion Handling
13.2.1 Dividing By Zero
13.2.2 Enter a Non-Numeric Denominator
13.2.3 Unhandled Exceptions Terminate the App

13.3 Example: Handling DivideByZeroEx-
ceptions and FormatExceptions

13.3.1 Enclosing Code in a try Block
13.3.2 Catching Exceptions
13.3.3 Uncaught Exceptions
13.3.4 Termination Model of Exception Handling
13.3.5 Flow of Control When Exceptions Occur

13.4 .NET Exception Hierarchy
13.4.1 Class SystemException
13.4.2 Which Exceptions Might a Method Throw?

13.5 finally Block
13.5.1 Moving Resource-Release Code to a fi-

nally Block
13.5.2 Demonstrating the finally Block
13.5.3 Throwing Exceptions Using the throw

Statement
13.5.4 Rethrowing Exceptions

13.5.5 Returning After a finally
Block

13.6 The using Statement
13.7 Exception Properties

13.7.1 Property InnerException
13.7.2 Other Exception Properties
13.7.3 Demonstrating Exception

Properties and Stack Unwinding
13.7.4 Throwing an Exception with

an InnerException
13.7.5 Displaying Information About

the Exception
13.8 User-Defined Exception Classes
13.9 Checking for null References;

Introducing C# 6’s ?. Operator
13.9.1 Null-Conditional Operator (?.)
13.9.2 Revisiting Operators is and as
13.9.3 Nullable Types
13.9.4 Null Coalescing Operator (??)

13.10 Exception Filters and the C# 6
when Clause

13.11 Wrap-Up

1. “Best Practices for Handling Exceptions [C#],” .NET Framework Developer’s Guide, Visual Studio
.NET Online Help. Available at https://msdn.microsoft.com/library/seyhszts.

https://msdn.microsoft.com/library/seyhszts

ptg18189312

364 Chapter 13 Exception Handling: A Deeper Look

You’ll see various C# features for working with values that can be null, including:

• C# 6’s null-conditional operator (?.), which determines whether a reference is
null before using it to call a method or access a property.

• The null-coalescing operator (??), which returns its left operand’s value if it’s not
null and returns its right operand’s value, otherwise.

• Nullable types, which specify that a value-type variable may contain a value or
null.

Finally, we’ll present C# 6’s exception filters that specify a condition for catching an ex-
ception.

13.2 Example: Divide by Zero without Exception
Handling
Let’s revisit what happens when errors arise in a console app that does not use exception han-
dling. Figure 13.1 inputs two integers from the user, then divides the first integer by the sec-
ond, using integer division to obtain an int result. In this example, an exception is thrown
(i.e., an exception occurs) when a method detects a problem and is unable to handle it.

1 // Fig. 13.1: DivideByZeroNoExceptionHandling.cs
2 // Integer division without exception handling.
3 using System;
4
5 class DivideByZeroNoExceptionHandling
6 {
7 static void Main()
8 {
9 // get numerator

10 Console.Write("Please enter an integer numerator: ");
11
12
13 // get denominator
14 Console.Write("Please enter an integer denominator: ");
15
16
17 // divide the two integers, then display the result
18
19 Console.WriteLine(
20 $"\nResult: {numerator} / {denominator} = {result}");
21 }
22 }

Please enter an integer numerator: 100
Please enter an integer denominator: 7

Result: 100 / 7 = 14

Fig. 13.1 | Integer division without exception handling. (Part 1 of 2.)

var numerator = int.Parse(Console.ReadLine());

var denominator = int.Parse(Console.ReadLine());

var result = numerator / denominator;

ptg18189312

13.2 Example: Divide by Zero without Exception Handling 365

Running the App
In most of our examples, an app appears to run the same regardless of whether you run it
by choosing Start Debugging or Start Without Debugging from the Debug menu. As we’ll dis-
cuss shortly, the example in Fig. 13.1 might cause exceptions, depending on the user’s in-
put. For this example, we do not wish to debug the app; we simply want to see what
happens when errors arise. For this reason, we executed this app with Debug > Start Without

Debugging. If an exception occurs during execution, a dialog appears indicating that the
app “has stopped working.” You can simply click Cancel or Close Program to terminate the
app. An error message describing the exception that occurred is displayed in the program’s
output. We formatted the error messages in Fig. 13.1 for readability. In the first sample
execution, the program performs a successful division and runs to completion with no ex-
ceptions.

13.2.1 Dividing By Zero
In the second sample execution, the user enters 0 as the denominator. Several lines of in-
formation are displayed in response to the invalid input. This information—known as a
stack trace—includes the exception class’s name (System.DivideByZeroException) in a
message indicating the problem that occurred and the path of execution that led to the ex-
ception, method by method. Stack traces help you debug a program. The first line of the
error message specifies that a DivideByZeroException occurred. When a program divides
an integer by 0, the CLR throws a DivideByZeroException (namespace System). The text
after the exception name, “Attempted to divide by zero,” is an error message that indi-
cates why this exception occurred. Division by zero is not allowed in integer arithmetic.2

Please enter an integer numerator: 100
Please enter an integer denominator: 0

 at DivideByZeroNoExceptionHandling.Main()
 in C:\Users\PaulDeitel\Documents\examples\ch13\Fig13_01\
 DivideByZeroNoExceptionHandling\DivideByZeroNoExceptionHandling\
 DivideByZeroNoExceptionHandling.cs:

Please enter an integer numerator: 100
Please enter an integer denominator: hello

 at System.Number.StringToNumber(String str, NumberStyles options,
 NumberBuffer& number, NumberFormatInfo info, Boolean parseDecimal)

 at System.Number.ParseInt32(String s, NumberStyles style,
 NumberFormatInfo info)

 at System.Int32.Parse(String s)
 at DivideByZeroNoExceptionHandling.Main()

 in C:\Users\PaulDeitel\Documents\examples\ch13\Fig13_01\
 DivideByZeroNoExceptionHandling\DivideByZeroNoExceptionHandling\
 DivideByZeroNoExceptionHandling.cs:

Fig. 13.1 | Integer division without exception handling. (Part 2 of 2.)

Unhandled Exception: System.DivideByZeroException:
 Attempted to divide by zero.

line 18

Unhandled Exception: System.FormatException:
 Input string was not in a correct format.

line 15

ptg18189312

366 Chapter 13 Exception Handling: A Deeper Look

Each “at” line in a stack trace indicates a line of code in a particular method that was
executing when the exception occurred. The “at” line contains the namespace, class and
method in which the exception occurred

the location and name of the file containing the code

and the line number

where the exception occurred. (Class DivideByZeroNoExceptionHandling is not declared
in a namespace, so no namespace is displayed before the class name in the stack traces.)

In this case, the stack trace indicates that the DivideByZeroException occurred when
the program was executing line 18 of method Main. The first “at” line in the stack trace
indicates the exception’s throw point—the initial point at which the exception occurred
(i.e., line 18 in Main). This information makes it easy for you to see which method call
caused the exception. Subsequent “at” lines in the stack trace specify what method calls
were made to get to the throw point in the program.

13.2.2 Enter a Non-Numeric Denominator
In the third sample execution, the user enters "hello" as the denominator. This causes a
FormatException, and another stack trace is displayed. Our earlier examples that read nu-
meric values from the user assumed that the user would input an integer value, but a nonin-
teger value could be entered. A FormatException (namespace System) occurs, for example,
when int.Parse receives a string that does not represent a valid integer. Starting from the
last “at” line in the stack trace, we see that the exception was detected in line 15 of method
Main. The stack trace also shows the other methods that led to the exception being thrown:

• Main called Int32.Parse—recall that int is just an alias for Int32,

• Int32.Parse called method Number.ParseInt32, and

• Number.ParseInt32 called Number.StringToNumber.

The throw point occurred in Number.StringToNumber, as indicated by the first “at” line
in the stack trace. Note that the stack trace’s actual text depends on your locale.

13.2.3 Unhandled Exceptions Terminate the App
In the sample executions in Fig. 13.1, the program terminates when an unhandled excep-
tion occurs and a stack trace is displayed. This does not always happen—sometimes a pro-

2. Division by zero with floating-point values is allowed and results in the value infinity—represented
by either constant Double.PositiveInfinity or constant Double.NegativeInfinity, depending
on whether the numerator is positive or negative. These values are displayed as Infinity or -Infin-
ity. If both the numerator and denominator are zero, the result of the calculation is the constant
Double.NaN (“not a number”), which is returned when a calculation’s result is undefined.

DivideByZeroNoExceptionHandling.Main

C:\Users\PaulDeitel\Documents\examples\ch13\Fig13_01\
 DivideByZeroNoExceptionHandling\
 DivideByZeroNoExceptionHandling\
 DivideByZeroNoExceptionHandling.cs

:line 18

ptg18189312

13.3 Handling DivideByZeroExceptions and FormatExceptions 367

gram may continue executing even though an exception has occurred and a stack trace has
been displayed. In such cases, the app may produce incorrect results. The next section
demonstrates how to handle exceptions to enable the program to run to completion.

13.3 Example: Handling DivideByZeroExceptions
and FormatExceptions
Now, let’s consider a simple example of exception handling. The app in Fig. 13.2 uses ex-
ception handling to process any DivideByZeroExceptions and FormatExceptions that
might arise. The app reads two integers from the user (lines 18–21). Assuming that the
user provides integers as input and does not specify 0 as the denominator for the division,
line 25 performs the division and lines 28–29 display the result. However, if the user in-
puts a noninteger value or supplies 0 as the denominator, an exception occurs. This pro-
gram demonstrates how to catch and handle such exceptions—in this case, displaying an
error message and allowing the user to enter another set of values.

1 // Fig. 13.2: DivideByZeroExceptionHandling.cs
2 // FormatException and DivideByZeroException handlers.
3 using System;
4
5 class DivideByZeroExceptionHandling
6 {
7 static void Main(string[] args)
8 {
9 var continueLoop = true; // determines whether to keep looping

10
11 do
12 {
13 // retrieve user input and calculate quotient
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

Fig. 13.2 | FormatException and DivideByZeroException handlers. (Part 1 of 2.)

try
{
 // int.Parse generates FormatException
 // if argument cannot be converted to an integer
 Console.Write("Enter an integer numerator: ");
 var numerator = int.Parse(Console.ReadLine());
 Console.Write("Enter an integer denominator: ");
 var denominator = int.Parse(Console.ReadLine());

 // division generates DivideByZeroException
 // if denominator is 0
 var result = numerator / denominator;

 // display result
 Console.WriteLine(

 $"\nResult: {numerator} / {denominator} = {result}");
 continueLoop = false;
}
catch (FormatException formatException)
{
 Console.WriteLine($"\n{formatException.Message}");

ptg18189312

368 Chapter 13 Exception Handling: A Deeper Look

Sample Outputs
Before we discuss the details of the program, let’s consider the sample outputs in Fig. 13.2.
The first sample output shows a successful calculation in which the user enters the numer-
ator 100 and the denominator 7. The result (14) is an int, because integer division always
yields an int result. The second sample output demonstrates the result of an attempt to
divide by zero. In integer arithmetic, the CLR tests for division by zero and generates a
DivideByZeroException if the denominator is zero. The program detects the exception

35
36
37
38
39
40
41
42
43
44 } while (continueLoop);
45 }
46 }

Please enter an integer numerator: 100
Please enter an integer denominator: 7

Result: 100 / 7 = 14

Enter an integer numerator: 100
Enter an integer denominator: 0

Attempted to divide by zero.
Zero is an invalid denominator. Please try again.

Enter an integer numerator: 100
Enter an integer denominator: 7

Result: 100 / 7 = 14

Enter an integer numerator: 100
Enter an integer denominator: hello

Input string was not in a correct format.
You must enter two integers. Please try again.

Enter an integer numerator: 100
Enter an integer denominator: 7

Result: 100 / 7 = 14

Fig. 13.2 | FormatException and DivideByZeroException handlers. (Part 2 of 2.)

 Console.WriteLine(
 "You must enter two integers. Please try again.\n");

}
catch (DivideByZeroException divideByZeroException)
{
 Console.WriteLine($"\n{divideByZeroException.Message}");
 Console.WriteLine(

 "Zero is an invalid denominator. Please try again.\n");
}

ptg18189312

13.3 Handling DivideByZeroExceptions and FormatExceptions 369

and displays an error message indicating the attempt to divide by zero. The last sample
output depicts the result of inputting a non-int value—in this case, the user enters the
string "hello" as the denominator. The program attempts to convert the input strings
to ints using method int.Parse (lines 19 and 21). If an argument cannot be converted
to an int, the method throws a FormatException. The program catches the exception and
displays an error message indicating that the user must enter two ints.

Another Way to Convert Strings to Integers
Another way to validate the input is to use the int.TryParse method, which converts a
string to an int value if possible. Like int.Parse, each of the numeric simple types has a
TryParse method. TryParse requires two arguments—one is the string to parse and the
other is the variable in which the converted value is to be stored. The method returns a
bool value that’s true only if the string was converted successfully to an int. If not, Try-
Parse assigns the value 0 to the second argument—that argument is passed by reference
so TryParse can modify its value.

13.3.1 Enclosing Code in a try Block
Now we consider the user interactions and flow of control that yield the results shown in
the sample output windows. Lines 14–31 define a try block enclosing the code that might
throw exceptions, as well as some code that will be skipped when an exception occurs. For
example, the program should not display a new result (lines 28–29) unless the calculation
in line 25 completes successfully.

The user inputs values that represent the numerator and denominator. The two state-
ments that read the ints (lines 19 and 21) call method int.Parse to convert strings to
int values. This method throws a FormatException if it cannot convert its string argu-
ment to an int. If lines 19 and 21 convert the values properly (i.e., no exceptions occur),
then line 25 divides the numerator by the denominator and assigns the result to variable
result. If denominator is 0, line 25 causes the CLR to throw a DivideByZeroException.
If line 25 does not cause an exception to be thrown, then lines 28–29 display the result of
the division.

13.3.2 Catching Exceptions
Exception-handling code appears in a catch block. In general, when an exception occurs
in a try block, a corresponding catch block catches the exception and handles it. The try
block in this example is followed by two catch blocks—one that handles a Format-
Exception (lines 32–37) and one that handles a DivideByZeroException (lines 38–43).
A catch block specifies an exception parameter representing the exception that the catch
block can handle. The catch block can use the parameter’s identifier (which you choose)
to interact with a caught exception object. If there’s no need to use the exception object in
the catch block, the exception parameter’s identifier can be omitted. The type of the
catch’s parameter is the type of the exception that the catch block handles. Optionally,

Error-Prevention Tip 13.1
Method TryParse can be used to validate input in code rather than allowing the code to
throw an exception—this technique is generally preferred.

ptg18189312

370 Chapter 13 Exception Handling: A Deeper Look

you can include a catch block that does not specify an exception type—such a catch block
(known as a general catch clause) catches all exception types. At least one catch block
and/or a finally block (discussed in Section 13.5) must immediately follow a try block.

In Fig. 13.2, the first catch block catches FormatExceptions (thrown by method
int.Parse), and the second catch block catches DivideByZeroExceptions (thrown by
the CLR). If an exception occurs, the program executes only the first matching catch
block. Both exception handlers in this example display an error-message dialog. After
either catch block terminates, program control continues with the first statement after the
last catch block (the end of the method, in this example). We’ll soon take a deeper look
at how this flow of control works in exception handling.

13.3.3 Uncaught Exceptions
An uncaught exception (or unhandled exception) is one for which there’s no matching
catch block. You saw the results of uncaught exceptions in the second and third outputs
of Fig. 13.1. Recall that when exceptions occur in that example, the app terminates early
(after displaying the exception’s stack trace). The result of an uncaught exception depends
on how you execute the program—Fig. 13.1 demonstrated the results of an uncaught ex-
ception when an app is executed using Debug > Start Without Debugging. If you run the app
by using Debug > Start Debugging and the runtime environment detects an uncaught excep-
tion, the app pauses, and the Exception Assistant window (Fig. 13.3) appears.

Fig. 13.3 | Exception Assistant.

Throw point Exception Assistant

ptg18189312

13.3 Handling DivideByZeroExceptions and FormatExceptions 371

The Exception Assistant window contains

• a line pointing from the Exception Assistant to the line of code that caused the
exception,

• the type of the exception,

• Troubleshooting tips with links to helpful information on what might have caused
the exception and how to handle it, and

• links to view or copy the complete exception details

Figure 13.3 shows the Exception Assistant that’s displayed if the user attempts to divide
by zero in the app of Fig. 13.1.

13.3.4 Termination Model of Exception Handling
Recall that the point in the program at which an exception occurs is called the throw
point—this is an important location for debugging purposes (as we demonstrate in
Section 13.7). If an exception occurs in a try block (such as a FormatException being
thrown as a result of the code in lines 19 and 21 in Fig. 13.2), the try block terminates
immediately, and program control transfers to the first of the following catch blocks in
which the exception parameter’s type matches that of the thrown exception. After the ex-
ception is handled, program control does not return to the throw point because the try
block has exited (which also causes any of its local variables to go out of scope). Rather,
control resumes after the last catch block. This is known as the termination model of ex-
ception handling. [Note: Some languages use the resumption model of exception han-
dling, in which, after an exception is handled, control resumes just after the throw point.]

If no exceptions occur in the try block, the program successfully completes the try
block (setting continueLoop to false) and ignores the catch blocks in lines 32–37 and
38–43. Then the program executes the first statement following the try and catch blocks.
In this example, the program reaches the end of the do…while loop (line 44) in which the
condition is now false, so the program terminates because the end of Main is reached.

The try block and its corresponding catch and finally blocks together form a try
statement. It’s important not to confuse the terms “try block” and “try statement”—the
term “try block” refers to the block of code following the keyword try (but before any
catch or finally blocks), while the term “try statement” includes all the code from the
opening try keyword to the end of the last catch or finally block. This includes the try
block, as well as any associated catch blocks and finally block.

When a try block terminates, its local variables go out of scope. If a try block termi-
nates due to an exception, the CLR searches for the first catch block that can process the
type of exception that occurred—in an outer block in the same method or in a previous
method in the method-call stack. The CLR locates the matching catch by comparing the
type of the thrown exception to each catch’s parameter type. A match occurs if the types
are identical or if the thrown exception’s type is a derived class of the catch’s parameter
type. Once an exception is matched to a catch block, the code in that block executes and
the other catch blocks in the try statement are ignored.

13.3.5 Flow of Control When Exceptions Occur
In the third sample output of Fig. 13.2, the user inputs hello as the denominator. When
line 21 executes, int.Parse cannot convert this string to an int, so the method throws

ptg18189312

372 Chapter 13 Exception Handling: A Deeper Look

a FormatException object to indicate that the method was unable to convert the string
to an int. When the exception occurs, the try block exits (terminates). Next, the CLR
attempts to locate a matching catch block. A match occurs with the catch block in line
32, so the exception handler displays the exception’s Message property (to retrieve the er-
ror message associated with the exception) and the program ignores all other exception
handlers following the try block. Program control continues with line 44 once the catch
block completes execution.

In the second sample output of Fig. 13.2, the user inputs 0 as the denominator. When
the division in line 25 executes, a DivideByZeroException occurs. Once again, the try
block terminates, and the program attempts to locate a matching catch block. In this case,
the first catch block does not match—the exception type in the catch-handler declaration
is not the same as the type of the thrown exception, and FormatException is not a base
class of DivideByZeroException. Therefore the program continues to search for a
matching catch block, which it finds in line 38. Line 40 displays the exception’s Message
property. Again, program control continues with line 44 once the catch block completes
execution.

13.4 .NET Exception Hierarchy
In C#, the exception-handling mechanism allows only objects of class Exception (name-
space System) and its derived classes to be thrown and caught. Note, however, that C#
programs may interact with software components written in other .NET languages (such
as C++) that do not restrict exception types. The general catch clause can be used to catch
such exceptions.

This section overviews several of the .NET Framework’s exception classes and focuses
exclusively on exceptions that derive from class Exception. In addition, we discuss how to
determine whether a particular method throws exceptions.

13.4.1 Class SystemException
Class Exception (namespace System) is the base class of .NET’s exception class hierarchy.
An important derived class is SystemException. The CLR generates SystemExceptions.
Many of these can be avoided if apps are coded properly. For example, if a program at-
tempts to access an out-of-range array index, the CLR throws an exception of type Index-
OutOfRangeException (a derived class of SystemException). Similarly, an exception
occurs when a program uses a reference-type variable to call a method when the reference
has a value of null. This causes a NullReferenceException (another derived class of
SystemException). You saw earlier in this chapter that a DivideByZeroException occurs
in integer division when a program attempts to divide by zero.

Other exceptions thrown by the CLR include OutOfMemoryException, StackOver-
flowException and ExecutionEngineException, which are thrown when something goes
wrong that causes the CLR to become unstable. Sometimes such exceptions cannot even

Common Programming Error 13.1
Specifying a comma-separated list of parameters in a catch block is a syntax error. A
catch block can have at most one parameter. Section 13.10 shows how you can use ex-
ception filters to specify additional conditions for which an exception can be caught.

ptg18189312

13.4 .NET Exception Hierarchy 373

be caught. It’s best to simply log such exceptions (using a tool such as Apache’s log4net—
http://logging.apache.org/log4net/), then terminate your app.

A benefit of the exception class hierarchy is that a catch block can catch exceptions
of a particular type or—because of the is-a relationship of inheritance—can use a base-class
type to catch exceptions in a hierarchy of related exception types. For example,
Section 13.3.2 discussed the catch block with no parameter, which catches exceptions of
all types (including those that are not derived from Exception). A catch block that spec-
ifies a parameter of type Exception can catch all exceptions that derive from Exception,
because Exception is the base class of all exception classes in the .NET Framework. The
advantage of this approach is that the exception handler can access the caught exception’s
information via the parameter in the catch. We’ll say more about accessing exception
information in Section 13.7.

Using inheritance with exceptions enables a catch block to catch related exceptions
using a concise notation. A set of exception handlers could catch each derived-class excep-
tion type individually, but catching the base-class exception type is more concise. How-
ever, this technique makes sense only if the handling behavior is the same for a base class
and all derived classes. Otherwise, catch each derived-class exception individually.

13.4.2 Which Exceptions Might a Method Throw?
How do we determine that an exception might occur in a program? For methods con-
tained in the .NET Framework classes, read the detailed descriptions of the methods in
the online documentation. If a method may throw an exception, its description contains
a section called Exceptions that specifies the types of exceptions the method may throw and
briefly describes what causes them. For an example, search for “int.Parse method” in the
Visual Studio online documentation. The Exceptions section of this method’s web page in-
dicates that method int.Parse throws three exception types:

• ArgumentNullException,

• FormatException, and

• OverflowException

and describes the reasons for each. [Note: You also can find this information in the Object

Browser described in Section 10.11.]

It’s more difficult to determine when the CLR may throw exceptions. Such informa-
tion appears in the C# Language Specification, which specifies cases in which exceptions are

Common Programming Error 13.2
The compiler issues an error if a catch block that catches a base-class exception is placed
before a catch block for any of that class’s derived-class types. In this case, the base-class
catch block would catch all base-class and derived-class exceptions, so the derived-class ex-
ception handler would never execute.

Software Engineering Observation 13.1
If a method may throw exceptions, statements that invoke the method directly or indirectly
should be placed in try blocks, and those exceptions should be caught and handled.

http://logging.apache.org/log4net/

ptg18189312

374 Chapter 13 Exception Handling: A Deeper Look

thrown. At time of writing, the C# specification has not yet been officially released by Mic-
rosoft. You can view an unofficial copy at:

13.5 finally Block
Programs frequently request and release resources dynamically (i.e., at execution time).
For example, a program that reads a file from disk first makes a file-open request (as we’ll
see in Chapter 17, Files and Streams). If that request succeeds, the program reads the con-
tents of the file. Operating systems typically prevent more than one program from manip-
ulating a file at once. Therefore, when a program finishes processing a file, the program
should close the file (i.e., release the resource) so other programs can use it. If the file is not
closed, a resource leak occurs. In such a case, the file resource is not available to other pro-
grams.

In programming languages such as C and C++, in which the programmer is respon-
sible for dynamic memory management, the most common type of resource leak is a
memory leak. A memory leak occurs when a program allocates memory (as C# program-
mers do via keyword new), but does not deallocate the memory when it’s no longer needed.
Normally, this is not an issue in C#, because the CLR performs garbage collection of
memory that’s no longer needed by an executing program (Section 10.8). However, other
kinds of resource leaks (such as unclosed files) can occur.

13.5.1 Moving Resource-Release Code to a finally Block
Exceptions often occur when an app uses resources that require explicit release. For exam-
ple, a program that processes a file might receive IOExceptions during the processing. For
this reason, file-processing code normally appears in a try block. Regardless of whether a
program experiences exceptions while processing a file, the program should close the file
when it’s no longer needed. Suppose a program places all resource-request and resource-
release code in a try block. If no exceptions occur, the try block executes normally and
releases the resources after using them. However, if an exception occurs, the try block may
exit before the resource-release code can execute. We could duplicate all the resource-
release code in each of the catch blocks, but this would make the code more difficult to
modify and maintain. We could also place the resource-release code after the try state-
ment; however, if the try block terminated due to a return statement or an exception oc-
curred, code following the try statement would never execute.

To address these problems, C#’s exception-handling mechanism provides the
finally block, which is guaranteed to execute regardless of whether the try block executes
successfully or an exception occurs. This makes the finally block an ideal location in
which to place resource-release code for resources that are acquired and manipulated in the
corresponding try block:

https://github.com/ljw1004/csharpspec/blob/gh-pages/README.md

Error-Prevention Tip 13.2
The CLR does not completely eliminate memory leaks. It will not garbage-collect an object
until the program contains no more references to that object, and even then there may be
a delay until the memory is required. Thus, memory leaks can occur if you inadvertently
keep references to unwanted objects.

https://github.com/ljw1004/csharpspec/blob/gh-pages/README.md

ptg18189312

13.5 finally Block 375

• If the try block executes successfully, the finally block executes immediately af-
ter the try block terminates—either by reaching the block’s closing brace or if a
return statement executes in the block.

• If an exception occurs in the try block, the finally block executes immediately
after a catch block completes—either by reaching the block’s closing brace or if
a return statement executes in the block.

• If there is no catch block, if the exception is not caught by a catch block associ-
ated with the try block, or if a catch block associated with the try block throws
an exception itself, the finally block executes before the exception is processed
by the next enclosing try block, which could be in the calling method.

By placing the resource-release code in a finally block, we ensure that even if the
program terminates due to an uncaught exception, the resource will be deallocated. Local
variables in a try block cannot be accessed in the corresponding finally block. For this
reason, variables that must be accessed in both a try block and its corresponding finally
block should be declared before the try block.

If one or more catch blocks follow a try block, the finally block is optional. How-
ever, if no catch blocks follow a try block, a finally block must appear immediately after
the try block. If any catch blocks follow a try block, the finally block (if there is one)
appears after the last catch block. Only whitespace and comments can separate the blocks
in a try statement.

13.5.2 Demonstrating the finally Block
The app in Fig. 13.4 demonstrates that the finally block always executes, regardless of
whether an exception occurs in the corresponding try block. The app consists of method
Main (lines 8–47) and four other methods that Main invokes to demonstrate finally.
These methods are DoesNotThrowException (lines 50–67), ThrowExceptionWithCatch
(lines 70–89), ThrowExceptionWithoutCatch (lines 92–108) and ThrowException-
CatchRethrow (lines 111–136).

Error-Prevention Tip 13.3
A finally block typically contains code to release resources acquired in the corresponding
try block, which makes the finally block an effective mechanism for eliminating re-
source leaks.

Performance Tip 13.1
As a rule, resources should be released as soon as they’re no longer needed in a program.
This makes them available for reuse promptly.

1 // Fig. 13.4: UsingExceptions.cs
2 // finally blocks always execute, even when no exception occurs.
3
4 using System;
5

Fig. 13.4 | finally blocks always execute, even when no exception occurs. (Part 1 of 4.)

ptg18189312

376 Chapter 13 Exception Handling: A Deeper Look

6 class UsingExceptions
7 {
8 static void Main()
9 {

10 // Case 1: No exceptions occur in called method
11 Console.WriteLine("Calling DoesNotThrowException");
12
13
14 // Case 2: Exception occurs and is caught in called method
15 Console.WriteLine("\nCalling ThrowExceptionWithCatch");
16
17
18 // Case 3: Exception occurs, but is not caught in called method
19 // because there is no catch block.
20 Console.WriteLine("\nCalling ThrowExceptionWithoutCatch");
21
22 // call ThrowExceptionWithoutCatch
23 try
24 {
25
26 }
27 catch
28 {
29 Console.WriteLine(
30 "Caught exception from ThrowExceptionWithoutCatch in Main");
31 }
32
33 // Case 4: Exception occurs and is caught in called method,
34 // then rethrown to caller.
35 Console.WriteLine("\nCalling ThrowExceptionCatchRethrow");
36
37 // call ThrowExceptionCatchRethrow
38 try
39 {
40
41 }
42 catch
43 {
44 Console.WriteLine(
45 "Caught exception from ThrowExceptionCatchRethrow in Main");
46 }
47 }
48
49 // no exceptions thrown
50 static void DoesNotThrowException()
51 {
52 // try block does not throw any exceptions
53 try
54 {
55 Console.WriteLine("In DoesNotThrowException");
56 }
57 catch
58 {

Fig. 13.4 | finally blocks always execute, even when no exception occurs. (Part 2 of 4.)

DoesNotThrowException();

ThrowExceptionWithCatch();

ThrowExceptionWithoutCatch();

ThrowExceptionCatchRethrow();

ptg18189312

13.5 finally Block 377

59 Console.WriteLine("This catch never executes");
60 }
61
62 {
63 Console.WriteLine("finally executed in DoesNotThrowException");
64 }
65
66 Console.WriteLine("End of DoesNotThrowException");
67 }
68
69 // throws exception and catches it locally
70 static void ThrowExceptionWithCatch()
71 {
72 // try block throws exception
73 try
74 {
75 Console.WriteLine("In ThrowExceptionWithCatch");
76 throw new Exception("Exception in ThrowExceptionWithCatch");
77 }
78 catch (Exception exceptionParameter)
79 {
80 Console.WriteLine($"Message: {exceptionParameter.Message}");
81 }
82
83 {
84 Console.WriteLine(
85 "finally executed in ThrowExceptionWithCatch");
86 }
87
88 Console.WriteLine("End of ThrowExceptionWithCatch");
89 }
90
91 // throws exception and does not catch it locally
92 static void ThrowExceptionWithoutCatch()
93 {
94 // throw exception, but do not catch it
95 try
96 {
97 Console.WriteLine("In ThrowExceptionWithoutCatch");
98 throw new Exception("Exception in ThrowExceptionWithoutCatch");
99 }
100 finally
101 {
102 Console.WriteLine(
103 "finally executed in ThrowExceptionWithoutCatch");
104 }
105
106 // unreachable code; logic error
107 Console.WriteLine("End of ThrowExceptionWithoutCatch");
108 }
109

Fig. 13.4 | finally blocks always execute, even when no exception occurs. (Part 3 of 4.)

finally

finally

ptg18189312

378 Chapter 13 Exception Handling: A Deeper Look

Line 12 of Main invokes method DoesNotThrowException. This method’s try block
outputs a message (line 55). Because the try block does not throw any exceptions, program

110 // throws exception, catches it and rethrows it
111 static void ThrowExceptionCatchRethrow()
112 {
113 // try block throws exception
114 try
115 {
116 Console.WriteLine("In ThrowExceptionCatchRethrow");
117 throw new Exception("Exception in ThrowExceptionCatchRethrow");
118 }
119 catch (Exception exceptionParameter)
120 {
121 Console.WriteLine("Message: " + exceptionParameter.Message);
122
123 // rethrow exception for further processing
124
125
126 // unreachable code; logic error
127 }
128
129 {
130 Console.WriteLine(
131 "finally executed in ThrowExceptionCatchRethrow");
132 }
133
134 // any code placed here is never reached
135 Console.WriteLine("End of ThrowExceptionCatchRethrow");
136 }
137 }

Calling DoesNotThrowException
In DoesNotThrowException
finally executed in DoesNotThrowException
End of DoesNotThrowException

Calling ThrowExceptionWithCatch
In ThrowExceptionWithCatch
Message: Exception in ThrowExceptionWithCatch
finally executed in ThrowExceptionWithCatch
End of ThrowExceptionWithCatch

Calling ThrowExceptionWithoutCatch
In ThrowExceptionWithoutCatch
finally executed in ThrowExceptionWithoutCatch
Caught exception from ThrowExceptionWithoutCatch in Main

Calling ThrowExceptionCatchRethrow
In ThrowExceptionCatchRethrow
Message: Exception in ThrowExceptionCatchRethrow
finally executed in ThrowExceptionCatchRethrow
Caught exception from ThrowExceptionCatchRethrow in Main

Fig. 13.4 | finally blocks always execute, even when no exception occurs. (Part 4 of 4.)

throw;

finally

ptg18189312

13.5 finally Block 379

control ignores the catch block (lines 57–60) and executes the finally block (lines 61–
64), which outputs a message. At this point, program control continues with the first state-
ment after the close of the finally block (line 66), which outputs a message indicating
that the end of the method has been reached. Then program control returns to Main.

13.5.3 Throwing Exceptions Using the throw Statement
Line 16 of Main invokes method ThrowExceptionWithCatch (lines 70–89), which begins
in its try block (lines 73–77) by outputting a message. Next, the try block creates an Ex-
ception object and uses a throw statement to throw it (line 76). Executing the throw
statement indicates that a problem has occurred in the code. As you’ve seen in earlier chap-
ters, you can throw exceptions by using the throw statement. Just as with exceptions
thrown by the Framework Class Library’s methods and the CLR, this indicates to client
apps that an error has occurred. A throw statement specifies an object to be thrown. The
operand of a throw statement can be of type Exception or of any type derived from it.

The string passed to the constructor becomes the exception object’s error message.
When a throw statement in a try block executes, the try block exits immediately, and pro-
gram control continues with the first matching catch block (lines 78–81) following the
try block. In this example, the type thrown (Exception) matches the type specified in the
catch, so line 80 outputs a message indicating the exception that occurred. Then, the
finally block (lines 82–86) executes and outputs a message. At this point, program con-
trol continues with the first statement after the close of the finally block (line 88), which
outputs a message indicating that the end of the method has been reached. Program con-
trol then returns to Main. In line 80, we use the exception object’s Message property to
retrieve the error message associated with the exception (i.e., the message passed to the
Exception constructor). Section 13.7 discusses several properties of class Exception.

Lines 23–31 of Main define a try statement in which Main invokes method Throw-
ExceptionWithoutCatch (lines 92–108). The try block enables Main to catch any excep-
tions thrown by ThrowExceptionWithoutCatch. The try block in lines 95–99 of
ThrowExceptionWithoutCatch begins by outputting a message. Next, the try block
throws an Exception (line 98) and exits immediately.

Normally, program control would continue at the first catch following this try
block. However, this try block does not have any catch blocks. Therefore, the exception
is not caught in method ThrowExceptionWithoutCatch. Program control proceeds to the
finally block (lines 100–104), which outputs a message. At this point, program control
returns to Main in search of an appropriate catch block—any statements appearing after
the finally block (e.g., line 107) do not execute. (In fact, the compiler issues a warning
about this.) In this example, such statements could cause logic errors, because the excep-
tion thrown in line 98 is not caught. In Main, the catch block in lines 27–31 catches the
exception and displays a message indicating that the exception was caught in Main.

13.5.4 Rethrowing Exceptions
Lines 38–46 of Main define a try statement in which Main invokes method Throw-
ExceptionCatchRethrow (lines 111–136). The try statement enables Main to catch any
exceptions thrown by ThrowExceptionCatchRethrow. The try statement in lines 114–
132 of ThrowExceptionCatchRethrow begins by outputting a message. Next, the try
block throws an Exception (line 117). The try block exits immediately, and program con-

ptg18189312

380 Chapter 13 Exception Handling: A Deeper Look

trol continues at the first catch (lines 119–127) following the try block. In this example,
the type thrown (Exception) matches the type specified in the catch, so line 121 outputs
a message indicating where the exception occurred. Line 124 uses the throw statement to
rethrow the exception. This indicates that the catch block performed partial processing
of the exception and now is throwing the exception again (in this case, back to the method
Main) for further processing.

You also can rethrow an exception with a version of the throw statement which takes
an operand that’s the reference to the exception that was caught. It’s important to note,
however, that this form of throw statement resets the throw point, so the original throw
point’s stack-trace information is lost. Section 13.7 demonstrates using a throw statement
with an operand from a catch block. In that section, you’ll see that after an exception is
caught, you can create and throw a different type of exception object from the catch block
and you can include the original exception as part of the new exception object. Class
library designers often do this to customize the exception types thrown from methods in
their class libraries or to provide additional debugging information.

The exception handling in method ThrowExceptionCatchRethrow does not com-
plete, because the throw statement in line 124 immediately terminates the catch block—
if there were any code between line 124 and the end of the block, it would not execute.
When line 124 executes, method ThrowExceptionCatchRethrow terminates and returns
control to Main in search of an appropriate catch. Once again, the finally block (lines
128–132) executes and outputs a message before control returns to Main. When control
returns to Main, the catch block in lines 42–46 catches the exception and displays a mes-
sage indicating that the exception was caught. Then the program terminates.

13.5.5 Returning After a finally Block
The next statement to execute after a finally block terminates depends on the exception-
handling state. If the try block successfully completes, or if a catch block catches and han-
dles an exception, the program continues its execution with the next statement after the fi-
nally block. However, if an exception is not caught, or if a catch block rethrows an
exception, program control continues in the next enclosing try block. The enclosing try
could be in the calling method or in one of its callers. It also is possible to nest a try statement
in a try block; in such a case, the outer try statement’s catch blocks would process any ex-
ceptions that were not caught in the inner try statement. If a try block executes and has a
corresponding finally block, the finally block executes even if the try block terminates
due to a return statement. The return occurs after the execution of the finally block.

Software Engineering Observation 13.2
In general, it’s considered better practice to throw a new exception and pass the original
one to the new exception’s constructor, rather than rethrowing the original exception. This
maintains all of the stack-trace information from the original exception. We demonstrate
passing an existing exception to a new exception’s constructor in Section 13.7.3.

Common Programming Error 13.3
If an uncaught exception is awaiting processing when the finally block executes, and the
finally block throws a new exception that’s not caught in the finally block, the first
exception is lost, and the new exception is passed to the next enclosing try block.

ptg18189312

13.6 The using Statement 381

13.6 The using Statement
Typically resource-release code should be placed in a finally block to ensure that a re-
source is released, regardless of whether there were exceptions when the resource was used
in the corresponding try block. An alternative notation—the using statement (not to be
confused with the using directive for using namespaces)—simplifies writing code in
which you obtain a resource, use the resource in a try block and release the resource in a
corresponding finally block. For example, a file-processing app (Chapter 17) could pro-
cess a file with a using statement to ensure that the file is closed properly when it’s no lon-
ger needed. The resource must be an object that implements the IDisposable interface
and therefore has a Dispose method. The general form of a using statement is

where ExampleClass is a class that implements the IDisposable interface. This code cre-
ates an object of type ExampleClass and uses it in a statement, then calls its Dispose meth-
od to release any resources used by the object. The using statement implicitly places the
code in its body in a try block with a corresponding finally block that calls the object’s
Dispose method. For instance, the preceding brief code segment is equivalent to

Error-Prevention Tip 13.4
When placing code that can throw an exception in a finally block, always enclose the
code in a try statement that catches the appropriate exception types. This prevents the loss
of any uncaught and rethrown exceptions that occur before the finally block executes.

Software Engineering Observation 13.3
Do not place try blocks around every statement that might throw an exception—this can
make programs difficult to read. Instead, place one try block around a significant portion
of code, and follow this try block with catch blocks that handle each possible exception.
Then follow the catch blocks with a single finally block. Use separate try blocks to
distinguish between multiple statements that can throw the same exception type.

using (var exampleObject = new ExampleClass())
{

 exampleObject.SomeMethod(); // do something with exampleObject
}

{
 var exampleObject = new ExampleClass();

 try
 {

 exampleObject.SomeMethod();
 }
 finally
 {

 if (exampleObject != null)
 {

 exampleObject.Dispose();
 }

 }
}

ptg18189312

382 Chapter 13 Exception Handling: A Deeper Look

The if statement in the finally block ensures that exampleObject is not null—that is,
it references an object—otherwise, a NullReferenceException would occur when at-
tempting to call Dispose. Section 13.9 introduces C# 6’s new ?. operator, which can be
used to express the above if statement more elegantly as a single line of code.

13.7 Exception Properties
As we discussed in Section 13.4, exception types derive from class Exception, which has
several properties. These frequently are used to formulate error messages indicating a
caught exception. Two important properties are Message and StackTrace. Property Mes-
sage stores the string error message associated with an Exception object. This message
can be a default message defined in the exception type or a customized message passed to
an Exception object’s constructor when the Exception object is thrown. Property Stack-
Trace contains a string that represents the method-call stack. Recall that the runtime en-
vironment at all times keeps a list of open method calls that have been made but have not
yet returned. The StackTrace represents the series of methods that have not finished pro-
cessing at the time the exception occurs. If the debugging information that’s generated by
the compiler for the method is accessible to the IDE (e.g., the code is part of your project,
rather than some third party library), the stack trace also includes line numbers; the first
line number indicates the throw point, and subsequent line numbers indicate the locations
from which the methods in the stack trace were called.

13.7.1 Property InnerException
Another frequently used property is InnerException. When an exception occurs in a class
library, it’s common for the library to catch that exception, then throw a new one containing
information that helps the client code programmer determine the exception’s cause. Class
library programmers typically “wrap” the original exception object in the new exception ob-
ject—this gives the client code programmer complete details of what led to the exception.

For example, a programmer implementing libraries used in an accounting system
might have account-number processing code in which account numbers are input as
strings but represented as ints in the code. Recall that a program can convert strings to
int values with int.Parse, which throws a FormatException if it encounters an invalid
number format. When this happens, the library programmer might wish to employ a dif-
ferent error message than the default message supplied by FormatException or might wish
to indicate a new exception type, such as InvalidAccountNumberException.

In such cases, the library programmer would provide code to catch the FormatExcep-
tion, then create an InvalidAccountNumberException object in the catch block, passing
the original exception as a constructor argument. The original exception object becomes
the InvalidAccountNumberException object’s InnerException. Section 13.8 shows how
to create a custom exception class.

When an InvalidAccountNumberException occurs in code that uses the accounting-
system library, the catch handler can reference the original exception via property Inner-
Exception. So the InvalidAccountNumberException can indicate both that the user
specified an invalid account number and that the number format was invalid. If the
InnerException property is null, this indicates that the exception was not caused by
another exception.

ptg18189312

13.7 Exception Properties 383

13.7.2 Other Exception Properties
Class Exception provides other properties, including HelpLink, Source and TargetSite:

• Property HelpLink specifies a link to the help file that describes the problem that
occurred. This property is null if no such file exists.

• Property Source specifies the name of the assembly (i.e., app or library) that
caused the exception.

• Property TargetSite specifies the method where the exception originated.

13.7.3 Demonstrating Exception Properties and Stack Unwinding
Our next example (Fig. 13.5) demonstrates properties Message, StackTrace and Inner-
Exception of class Exception. In addition, the example formally introduces stack un-
winding—when an exception is thrown but not caught in a particular scope, the method-
call stack is “unwound,” and an attempt is made to catch the exception in the next outer
try block. We keep track of the methods on the call stack as we discuss property Stack-
Trace and the stack-unwinding mechanism. To see the proper stack trace, you should ex-
ecute this program using steps similar to those presented in Section 13.2.

1 // Fig. 13.5: Properties.cs
2 // Stack unwinding and Exception class properties.
3 // Demonstrates using properties Message, StackTrace and InnerException.
4 using System;
5
6 class Properties
7 {
8 static void Main()
9 {

10 // call Method1; any Exception generated is caught
11 // in the catch block that follows
12 try
13 {
14
15 }
16 catch (Exception exceptionParameter)
17 {
18 // output the string representation of the Exception, then output
19 // properties Message, StackTrace and InnerException
20 Console.WriteLine("exceptionParameter.ToString: \n" +
21);
22 Console.WriteLine("\nexceptionParameter.Message: \n" +
23);
24 Console.WriteLine("\nexceptionParameter.StackTrace: \n" +
25);
26 Console.WriteLine("\nexceptionParameter.InnerException: \n" +
27);
28 }
29 }
30

Fig. 13.5 | Stack unwinding and Exception class properties. (Part 1 of 3.)

Method1();

exceptionParameter

exceptionParameter.Message

exceptionParameter.StackTrace

exceptionParameter.InnerException

ptg18189312

384 Chapter 13 Exception Handling: A Deeper Look

31 // calls Method2
32 static void Method1()
33 {
34
35 }
36
37 // calls Method3
38 static void Method2()
39 {
40
41 }
42
43 // throws an Exception containing an InnerException
44 static void Method3()
45 {
46 // attempt to convert string to int
47 try
48 {
49
50 }
51 catch (FormatException formatExceptionParameter)
52 {
53 // wrap FormatException in new Exception
54
55
56 }
57 }
58 }

exceptionParameter.ToString:
System.Exception: Exception occurred in Method3 --->

 System.FormatException: Input string was not in a correct format.
 at System.Number.StringToNumber(String str, NumberStyles options,

 NumberBuffer& number, NumberFormatInfo info, Boolean parseDecimal)
 at System.Number.ParseInt32(String s, NumberStyles style,

 NumberFormatInfo info)
 at System.Int32.Parse(String s)
 at Properties.Method3() in C:\Users\PaulDeitel\Documents\examples\

 ch13\Fig13_05\Properties\Properties\Properties.cs:line 49
 --- End of inner exception stack trace ---
 at Properties.Method3() in C:\Users\PaulDeitel\Documents\examples\

 ch13\Fig13_05\Properties\Properties\Properties.cs:line 54
 at Properties.Method2() in C:\Users\PaulDeitel\Documents\examples\

 ch13\Fig13_05\Properties\Properties\Properties.cs:line 40
 at Properties.Method1() in C:\Users\PaulDeitel\Documents\examples\

 ch13\Fig13_05\Properties\Properties\Properties.cs:line 34
 at Properties.Main() in C:\Users\PaulDeitel\Documents\examples\

 ch13\Fig13_05\Properties\Properties\Properties.cs:line 14

exceptionParameter.Message:
Exception occurred in Method3

Fig. 13.5 | Stack unwinding and Exception class properties. (Part 2 of 3.)

Method2();

Method3();

int.Parse("Not an integer");

throw new Exception("Exception occurred in Method3",
 formatExceptionParameter);

ptg18189312

13.7 Exception Properties 385

Program execution begins with Main, which becomes the first method on the method-
call stack. Line 14 (Fig. 13.5) of the try block in Main invokes Method1 (declared in lines
32–35), which becomes the second method on the stack. If Method1 throws an exception,
the catch block in lines 16–28 handles the exception and outputs information about the
exception that occurred. Line 34 of Method1 invokes Method2 (lines 38–41), which
becomes the third method on the stack. Then line 40 of Method2 invokes Method3 (lines
44–57), which becomes the fourth method on the stack.

At this point, the method-call stack (from top to bottom) for the program is

The method called most recently (Method3) appears at the top of the stack; the first method
called (Main) appears at the bottom. The try statement (lines 47–56) in Method3 invokes
method int.Parse (line 49), which attempts to convert a string to an int. At this point,
int.Parse becomes the fifth and final method on the call stack.

13.7.4 Throwing an Exception with an InnerException
Because the argument to int.Parse is not in int format, line 49 throws a Format-
Exception that’s caught in line 51 of Method3. The exception terminates the call to
int.Parse, so the method is unwound (i.e., removed) from the method-call stack. The
catch block in Method3 then creates and throws an Exception object. The first argument
to the Exception constructor is the custom error message for our example, “Exception
occurred in Method3.” The second argument is the InnerException—the Format-
Exception that was caught. The StackTrace for this new exception object reflects the
point at which the exception was thrown (lines 54–55). Now Method3 terminates, because
the exception thrown in the catch block is not caught in the method body. Thus, control

exceptionParameter.StackTrace:
 at Properties.Method3() in C:\Users\PaulDeitel\Documents\examples\

 ch13\Fig13_05\Properties\Properties\Properties.cs:line 54
 at Properties.Method2() in C:\Users\PaulDeitel\Documents\examples\

 ch13\Fig13_05\Properties\Properties\Properties.cs:line 40
 at Properties.Method1() in C:\Users\PaulDeitel\Documents\examples\

 ch13\Fig13_05\Properties\Properties\Properties.cs:line 34
 at Properties.Main() in C:\Users\PaulDeitel\Documents\examples\

 ch13\Fig13_05\Properties\Properties\Properties.cs:line 14

exceptionParameter.InnerException:
System.FormatException: Input string was not in a correct format.

 at System.Number.StringToNumber(String str, NumberStyles options,
 NumberBuffer& number, NumberFormatInfo info, Boolean parseDecimal)

 at System.Number.ParseInt32(String s, NumberStyles style,
 NumberFormatInfo info)

 at System.Int32.Parse(String s)
 at Properties.Method3() in C:\Users\PaulDeitel\Documents\examples\

 ch13\Fig13_05\Properties\Properties\Properties.cs:line 49

Method3
Method2
Method1
Main

Fig. 13.5 | Stack unwinding and Exception class properties. (Part 3 of 3.)

ptg18189312

386 Chapter 13 Exception Handling: A Deeper Look

returns to the statement that invoked Method3 in the prior method in the call stack (Meth-
od2). This unwinds Method3 from the method-call stack.

When control returns to line 40 in Method2, the CLR determines that line 40 is not
in a try block. Therefore the exception cannot be caught in Method2, and Method2 termi-
nates. This unwinds Method2 from the call stack and returns control to line 34 in Method1.

Here again, line 34 is not in a try block, so Method1 cannot catch the exception. The
method terminates and is unwound from the call stack, returning control to line 14 in
Main, which is located in a try block. The try block in Main exits and the catch block
(lines 16–28) catches the exception. The catch block uses properties Message, Stack-
Trace and InnerException to create the output. Stack unwinding continues until a catch
block catches the exception or the program terminates.

13.7.5 Displaying Information About the Exception
The first block of output (which we reformatted for readability) in Fig. 13.5 contains the
exception’s string representation, which is returned from an implicit call to method To-
String. The string begins with the name of the exception class followed by the Message
property value. The next four items present the stack trace of the InnerException object.
The remainder of the block of output shows the StackTrace for the exception thrown in
lines 54–55 of Method3. The StackTrace represents the state of the method-call stack at
the throw point of the exception, rather than at the point where the exception eventually
is caught. Each StackTrace line that begins with “at” represents a method on the call
stack. These lines indicate the method in which the exception occurred, the file in which
the method resides and the line number of the throw point in the file. The inner-exception
information includes the inner-exception stack trace.

The next block of output (two lines) simply displays the Message property’s value
(Exception occurred in Method3) of the exception thrown in Method3.

The third block of output displays the StackTrace property of the exception thrown
in Method3. This StackTrace property contains the stack trace starting from line 54 in
Method3, because that’s the point at which the Exception object was created and thrown.
The stack trace always begins from the exception’s throw point.

Finally, the last block of output displays the string representation of the Inner-
Exception property, which includes the namespace and class name of the exception
object, as well as its Message and StackTrace properties.

13.8 User-Defined Exception Classes
In many cases, you can use existing exception classes from the .NET Framework Class Li-
brary to indicate exceptions that occur in your programs. In some cases, however, you
might wish to create new exception classes specific to the problems that occur in your pro-
grams. User-defined exception classes should derive directly or indirectly from class Ex-

Error-Prevention Tip 13.5
When catching and rethrowing an exception, provide additional debugging information
in the rethrown exception. To do so, create an object of an Exception subclass containing
more specific debugging information, then pass the original caught exception to the new
exception object’s constructor to initialize the InnerException property.

ptg18189312

13.8 User-Defined Exception Classes 387

ception of namespace System. When you create code that throws exceptions, they should
be well documented, so that other developers who use your code will know how to handle
them.

Class NegativeNumberException
Figures 13.6–13.7 demonstrate a user-defined exception class. NegativeNumber-

Exception (Fig. 13.6) represents exceptions that occur when a program performs an illegal
operation on a negative number, such as attempting to calculate its square root. According
to Microsoft’s “Best Practices for Handling Exceptions” (bit.ly/Exceptions-
BestPractices), user-defined exceptions should typically extend class Exception, have a
class name that ends with Exception and define three constructors:

• a parameterless constructor,

• a constructor that receives a string argument (the error message), and

• a constructor that receives a string argument and an Exception argument (the er-
ror message and the inner-exception object).

Defining these three constructors makes your exception class more flexible, allowing other
programmers to easily use and extend it.

Good Programming Practice 13.1
Associating each type of malfunction with an appropriately named exception class im-
proves program clarity.

Software Engineering Observation 13.4
Before creating a user-defined exception class, investigate the existing exceptions in the
.NET Framework Class Library to determine whether an appropriate exception type
already exists.

1 // Fig. 13.6: NegativeNumberException.cs
2 // NegativeNumberException represents exceptions caused by
3 // illegal operations performed on negative numbers.
4 using System;
5
6
7 {
8 // default constructor
9

10 : base("Illegal operation for a negative number")
11 {
12 // empty body
13 }
14
15 // constructor for customizing error message
16
17 : base(messageValue)
18 {

Fig. 13.6 | NegativeNumberException represents exceptions caused by illegal operations per-
formed on negative numbers. (Part 1 of 2.)

public class NegativeNumberException : Exception

public NegativeNumberException()

public NegativeNumberException(string messageValue)

ptg18189312

388 Chapter 13 Exception Handling: A Deeper Look

NegativeNumberExceptions most frequently occur during arithmetic operations, so it
seems logical to derive class NegativeNumberException from class ArithmeticException.
However, class ArithmeticException derives from class SystemException—the category
of exceptions thrown by the CLR. Per Microsoft’s best practices for exception handling,
user-defined exception classes should inherit from Exception rather than SystemException. In
this case, we could have used the built-in ArgumentOutOfRangeException class (introduced
in Chapter 10), which is recommended in the best practices for invalid argument values.
We create our own exception type here simply for demonstration purposes.

Using Class NegativeNumberException
Class SquareRootTest (Fig. 13.7) demonstrates our user-defined exception class. The app
enables the user to input a numeric value, then invokes method SquareRoot (lines 40–52)
to calculate the square root of that value. To perform this calculation, SquareRoot invokes
class Math’s Sqrt method, which receives a double value as its argument. Normally, if the
argument is negative, method Sqrt returns NaN. In this program, we’d like to prevent the
user from calculating the square root of a negative number. If the numeric value that the
user enters is negative, method SquareRoot throws a NegativeNumberException (lines
45–46). Otherwise, SquareRoot invokes class Math’s method Sqrt to compute the square
root (line 50).

19 // empty body
20 }
21
22 // constructor for customizing the exception's error
23 // message and specifying the InnerException object
24
25 : base(messageValue, inner)
26 {
27 // empty body
28 }
29 }

1 // Fig. 13.7: SquareRootTest.cs
2 // Demonstrating a user-defined exception class.
3 using System;
4
5 class SquareRootTest
6 {
7 static void Main(string[] args)
8 {
9 var continueLoop = true;

10
11 do
12 {

Fig. 13.7 | Demonstrating a user-defined exception class. (Part 1 of 3.)

Fig. 13.6 | NegativeNumberException represents exceptions caused by illegal operations per-
formed on negative numbers. (Part 2 of 2.)

public NegativeNumberException(string messageValue, Exception inner)

ptg18189312

13.8 User-Defined Exception Classes 389

13 // catch any NegativeNumberException thrown
14 try
15 {
16 Console.Write(
17 "Enter a value to calculate the square root of: ");
18 double inputValue = double.Parse(Console.ReadLine());
19 double result = SquareRoot(inputValue);
20
21 Console.WriteLine(
22 $"The square root of {inputValue} is {result:F6}\n");
23 continueLoop = false;
24 }
25 catch (FormatException formatException)
26 {
27 Console.WriteLine("\n" + formatException.Message);
28 Console.WriteLine("Please enter a double value.\n");
29 }
30 catch (NegativeNumberException negativeNumberException)
31 {
32 Console.WriteLine("\n" + negativeNumberException.Message);
33 Console.WriteLine("Please enter a non-negative value.\n");
34 }
35 } while (continueLoop);
36 }
37
38 // computes square root of parameter; throws
39 // NegativeNumberException if parameter is negative
40 public static double SquareRoot(double value)
41 {
42 // if negative operand, throw NegativeNumberException
43 if (value < 0)
44 {
45
46
47 }
48 else
49 {
50 return Math.Sqrt(value); // compute square root
51 }
52 }
53 }

Enter a value to calculate the square root of: 30
The square root of 30 is 5.477226

Enter a value to calculate the square root of: hello

Input string was not in a correct format.
Please enter a double value.

Enter a value to calculate the square root of: 25
The square root of 25 is 5.000000

Fig. 13.7 | Demonstrating a user-defined exception class. (Part 2 of 3.)

throw new NegativeNumberException(
 "Square root of negative number not permitted");

ptg18189312

390 Chapter 13 Exception Handling: A Deeper Look

When the user inputs a value, the try statement (lines 14–34) attempts to invoke
SquareRoot using the value input by the user. If the user input is not a number, a Format-
Exception occurs, and the catch block in lines 25–29 processes the exception. If the user
inputs a negative number, method SquareRoot throws a NegativeNumberException (lines
45–46); the catch block in lines 30–34 catches and handles this type of exception.

13.9 Checking for null References; Introducing C# 6’s
?. Operator
In Section 13.6, we showed the following code snippet:

The if statement in the preceding finally block ensures that if exampleObject is null,
the call to Dispose is skipped, thus preventing a NullReferenceException.

13.9.1 Null-Conditional Operator (?.)
C# 6’s new null-conditional operator (?.) provides a more elegant way to check for null.
The following statement replaces the four-line if statement above:

In this statement, Dispose is called only if exampleObject is not null—exactly as in the
preceding if statement.

Enter a value to calculate the square root of: -2

Square root of negative number not permitted
Please enter a non-negative value.

Enter a value to calculate the square root of: 2
The square root of 2 is 1.414214

{
 var exampleObject = new ExampleClass();

 try
 {

 exampleObject.SomeMethod();
 }
 finally
 {

 if (exampleObject != null)
 {

 exampleObject.Dispose();
 }

 }
}

Error-Prevention Tip 13.6
Always ensure that a reference is not null before using it to call a method or access a prop-
erty of an object.

exampleObject?.Dispose();

Fig. 13.7 | Demonstrating a user-defined exception class. (Part 3 of 3.)

ptg18189312

13.9 Checking for null References; Introducing C# 6’s ?. Operator 391

13.9.2 Revisiting Operators is and as
In Section 12.5.6, we introduced downcasting with the is operator and mentioned that
downcasting can cause InvalidCastExceptions. We then mentioned that you can avoid
the InvalidCastException by using the as operator as follows:

If currentEmployee is a BasePlusCommissionEmployee, employee is assigned the Base-
PlusCommissionEmployee; otherwise, it’s assigned null. Since employee could be null,
you must ensure that it’s not null before using it. For example, to give the BasePlusCom-
missionEmployee a 10% raise, we could use the statement

which accesses and modifies the BaseSalary property only if employee is not null.

13.9.3 Nullable Types
Suppose you’d like to capture the value of the expression employee?.BaseSalary, as in

This statement actually results in a compilation error indicating that you cannot implicitly
convert type decimal? to type decimal.

Normally a value-type variable cannot be assigned null. Because the employee refer-
ence might be null, the expression

returns a nullable type—a value type that also can be null. You specify a nullable type by
following a value type’s name with a question mark (?)—so decimal? represents a nullable
decimal. The statement

indicates that salary either will be null or the employee’s BaseSalary.
Nullable types have the following capabilities for accessing their underlying values:

• The GetValueOrDefault method checks whether a nullable-type variable con-
tains a value. If so, the method returns that value; otherwise, it returns the value
type’s default value. An overload of this method receives one argument that en-
ables you to specify a custom default value.

• The HasValue property returns true if a nullable-type variable contains a value;
otherwise, it returns false.

• The Value property returns the nullable-type variable’s underlying value or
throws an InvalidOperationException if the underlying value is null.

Variables of nullable types also may be used as the left operand of the null-conditional op-
erator (?.) or the null coalescing operator (??—discussed in the next section).

var employee = currentEmployee as BasePlusCommissionEmployee;

employee?.BaseSalary *= 1.10M;

decimal salary = employee?.BaseSalary;

employee?.BaseSalary

decimal? salary = employee?.BaseSalary;

Error-Prevention Tip 13.7
Before using a nullable-type variable’s Value property, use the HasValue property to check
whether the variable has a value. If the nullable-type variable is null, accessing Value
results in an InvalidOperationException.

ptg18189312

392 Chapter 13 Exception Handling: A Deeper Look

13.9.4 Null Coalescing Operator (??)
C# also offers the null coalescing operator (??) for working with values that can be null.
The operator has two operands. If the left operand is not null, the entire ?? expression
evaluates to the left operand’s value; otherwise, it evaluates to the right operand’s value.
For example, in the statement

if employee is not null, salary is assigned the employee’s BaseSalary; otherwise, salary
is assigned 0M. The preceding statement is equivalent to

As you can see, the preceding statements are more elegant and more compact than writing
the following equivalent code, which must explicitly test for null:

13.10 Exception Filters and the C# 6 when Clause
Prior to C# 6, you could catch an exception based only on its type. C# 6 introduces
exception filters that enable you to catch an exception based on a catch’s exception type
and a condition that’s specified with a when clause, as in

You also can specify an exception filter for a general catch clause that does not provide an
exception type. This allows you to catch an exception based only on a condition, as in

In each case, the exception is caught only if the when clause’s condition is true; otherwise,
the exception is not caught and the search for an appropriate catch continues.

A typical use of an exception filter is to determine whether a property of an exception
object has a specific value. Consider an app that connects to a web server to download
videos. Such an app would call methods that may throw HttpExceptions—for example,
the web server might not be found, you might not have permission to access the web
server, etc. Class HttpException has an ErrorCode property that contains a numeric code,
which apps can use to determine what went wrong and handle the exception accordingly.
The following catch handler catches an HttpException only if the exception object’s
ErrorCode property contains 401, indicating your app does not have permission to access
the web server:

You might provide several similar catch handlers with exception filters that test for various
other ErrorCodes.

decimal salary = employee?.BaseSalary ?? 0M;

decimal salary = (employee?.BaseSalary).GetValueOrDefault();

decimal salary = 0M;

if (employee != null)
{

 salary = employee.BaseSalary
}

catch(ExceptionType name) when(condition)

catch when(condition)

catch (HttpException ex) when (exception.ErrorCode == 401)

ptg18189312

13.11 Wrap-Up 393

13.11 Wrap-Up
In this chapter, you learned how to use exception handling to deal with errors in an app.
You saw exception handling in the context of a divide-by-zero example. You learned how
to use try blocks to enclose code that may throw an exception, and how to use catch
blocks to deal with exceptions that may arise. We explained the termination model of ex-
ception handling, in which, after an exception is handled, program control does not return
to the throw point.

We discussed several important classes of the .NET Exception hierarchy, including
Exception (from which user-defined exception classes are derived) and SystemException.
Next you learned how to use the finally block to release resources whether or not an
exception occurs, and how to throw and rethrow exceptions with the throw statement. We
showed how the using statement can be used to automate the process of releasing a
resource. You then saw how to obtain information about an exception using Exception
properties Message, StackTrace and InnerException, and method ToString. We
demonstrated how to create your own exception classes.

We introduced C# 6’s new ?. null-conditional operator for testing whether a refer-
ence is null before accessing the referenced object. We also introduced nullable value
types and the ?? null coalescing operator. Finally, we showed how to use C# 6’s new when
clause for adding exception filters to catch clauses.

In the next two chapters, we present an in-depth treatment of graphical user inter-
faces. In these chapters and throughout the rest of the book, we use exception handling to
make our examples more robust, while demonstrating new features of the language.

Common Programming Error 13.4
Following a try block with multiple catch clauses for the same type results in a compila-
tion error, unless they provide different when clauses. If there are multiple such catches
and one does not have a when clause, it must appear last; otherwise, a compilation error
occurs.

ptg18189312

14
Graphical User Interfaces with

Windows Forms: Part 1

O b j e c t i v e s
In this chapter you’ll:

■ Design principles of graphical user interfaces (GUIs).
■ Create graphical user interfaces.
■ Process events in response to user interactions with GUI

controls.
■ Understand the namespaces that contain the classes for

GUI controls and event handling.
■ Create and manipulate various controls.
■ Add descriptive ToolTips to GUI controls.
■ Process mouse and keyboard events.

ptg18189312

14.1 Introduction 395

O
u

tl
in

e

14.1 Introduction
A graphical user interface (GUI) allows a user to interact visually with a program. A GUI
gives a program a distinctive “look” and “feel.” As an example of a GUI, consider
Fig. 14.1, which shows a Visual Studio window containing various GUI controls.

14.1 Introduction
14.2 Windows Forms
14.3 Event Handling

14.3.1 A Simple Event-Driven GUI
14.3.2 Auto-Generated GUI Code
14.3.3 Delegates and the Event-Handling

Mechanism
14.3.4 Another Way to Create Event Han-

dlers
14.3.5 Locating Event Information

14.4 Control Properties and Layout
14.4.1 Anchoring and Docking
14.4.2 Using Visual Studio To Edit a GUI’s

Layout
14.5 Labels, TextBoxes and Buttons

14.6 GroupBoxes and Panels
14.7 CheckBoxes and RadioButtons

14.7.1 CheckBoxes
14.7.2 Combining Font Styles with Bitwise

Operators
14.7.3 RadioButtons

14.8 PictureBoxes
14.9 ToolTips

14.10 NumericUpDown Control
14.11 Mouse-Event Handling
14.12 Keyboard-Event Handling
14.13 Wrap-Up

Look-and-Feel Observation 14.1
Consistent user interfaces enable a user to learn new apps more quickly because the apps
have the same “look” and “feel.”

Fig. 14.1 | GUI controls in Visual Studio.

Menu Menu barTool bar button Tool barTitle barTab

ptg18189312

396 Chapter 14 Graphical User Interfaces with Windows Forms: Part 1

Near the top, there’s a menu bar containing the menus File, Edit, View, etc. Below that
is a tool bar of buttons, each with a defined task, such as creating a new project or opening
a file. Below that is a tab representing a currently open file—this tabbed view allows users
to switch between the open files. These controls form a user-friendly interface through
which you have been interacting with the IDE.

GUIs are built from GUI controls (which are sometimes called components or wid-
gets—short for window gadgets). GUI controls are objects that can display information
on the screen or enable users to interact with an app via the mouse, keyboard or some other
form of input (such as voice commands). Several common GUI controls are listed in
Fig. 14.2—in the sections that follow and in Chapter 15, we discuss each of these in detail.
Chapter 15 explores the features and properties of additional GUI controls.

14.2 Windows Forms
Windows Forms is one library that can be used to create GUIs. A Form is a graphical ele-
ment that appears on your computer’s desktop; it can be a dialog, a window or an MDI
window (multiple document interface window)—discussed in Chapter 15. A component
is an instance of a class that implements the IComponent interface, which defines the be-
haviors that components must implement. A control, such as a Button or Label, is a com-
ponent that has a graphical representation at runtime. Some components lack graphical
representations (e.g., class Timer of namespace System.Windows.Forms—see Chapter 15).
Such components are not visible at run time.

Figure 14.3 displays the Windows Forms controls and components from the C#
Toolbox. The controls and components are organized into categories by functionality.
Selecting the category All Windows Forms at the top of the Toolbox allows you to view all
the controls and components from the other tabs in one list (as shown in Fig. 14.3). In
this chapter and the next, we discuss many of these controls and components. To add a
control or component to a Form, select that control or component from the Toolbox and
drag it onto the Form. To deselect a control or component, select the Pointer item in the
Toolbox (the icon at the top of the list).

Control Description

Label Displays images or uneditable text.
TextBox Enables the user to enter data via the keyboard. It also can be used to display

editable or uneditable text.
Button Triggers an event when clicked with the mouse.
CheckBox Specifies an option that can be selected (checked) or unselected (not checked).
ComboBox Provides a drop-down list of items from which the user can make a selection

either by clicking an item in the list or by typing in a box.
ListBox Provides a list of items from which the user can make a selection by clicking

one or more items.
Panel A container in which controls can be placed and organized.
NumericUpDown Enables the user to select from a range of numeric input values.

Fig. 14.2 | Some basic GUI controls.

ptg18189312

14.2 Windows Forms 397

Active Window and Focus
When there are several windows on the screen, the active window is the frontmost and has
a highlighted title bar. A window becomes the active window when the user clicks some-
where inside it. The active window is said to “have the focus.” For example, in Visual Stu-
dio the active window is the Toolbox when you’re selecting an item from it, or the Properties

window when you’re editing a control’s properties.

Auto-Generated Code Stored in Separate File
A Form is a container for controls and components. When you drag an item from the Tool-

box onto the Form, Visual Studio generates code that creates the object and sets its basic
properties. This code is updated when the control or component’s properties are modified
in the IDE. Removing a control or component from the Form deletes the corresponding
generated code. The IDE maintains the generated code in a separate file using partial
classes—classes that are split among multiple files and assembled into a single class by the
compiler. You could write this code yourself, but it’s much easier to allow Visual Studio
to handle the details. We introduced visual programming concepts in Section 2.6. In this
chapter and the next, we use visual programming to build more substantial GUIs.

Common Form Properties, Methods and an Event
Each control or component we present in this chapter is located in namespace Sys-
tem.Windows.Forms. To create a Windows Forms app, you generally create a Windows
Form, set its properties, add controls to the Form, set their properties and implement event

Fig. 14.3 | Components and controls for Windows Forms.

Categories by
functionality

Display all
controls and
components

ptg18189312

398 Chapter 14 Graphical User Interfaces with Windows Forms: Part 1

handlers (methods) that respond to events generated when a user interacts with the con-
trols. Figure 14.4 lists common Form properties, common methods and a common event.

14.3 Event Handling
Normally, a user interacts with an app’s GUI to indicate the tasks that the app should per-
form. For example, when you write an e-mail in an e-mail app, clicking the Send button
tells the app to send the e-mail to the specified e-mail addresses. GUIs are event driven.
When the user interacts with a GUI component, the interaction—known as an event—
drives the program to perform a task. Before GUIs, the program told the user what to do
next. With GUIs, the user tells the program what to do. Common events (user interac-
tions) that might cause an app to perform a task include

• clicking a Button,

• typing in a TextBox,

• selecting an item from a menu,

• closing a window and

• moving the mouse.

All GUI controls have events associated with them. Objects of other types also can have as-
sociated events as well. A method that performs a task in response to an event is called an
event handler, and the overall process of responding to events is known as event handling.

Form properties,
methods and an event Description

Common Properties
AcceptButton Default Button that’s clicked when you press Enter.
AutoScroll bool value (false by default) that allows or disallows scrollbars when

needed.
CancelButton Button that’s clicked when the Escape key is pressed.
FormBorderStyle Border style for the Form (Sizable by default).
Font Font of text displayed on the Form, and the default font for controls added

to the Form.
Text Text in the Form’s title bar.

Common Methods
Close Closes a Form and releases all resources, such as the memory used for the

Form’s contents. A closed Form cannot be reopened.
Hide Hides a Form, but does not destroy the Form or release its resources.
Show Displays a hidden Form.

Common Event
Load Occurs before a Form is displayed to the user. You’ll learn about events

and event-handling in the next section.

Fig. 14.4 | Common Form properties, methods and an event.

ptg18189312

14.3 Event Handling 399

14.3.1 A Simple Event-Driven GUI
The Form in the app of Fig. 14.5 contains a Button that a user can click to display a Mes-
sageBox. In line 6, notice the namespace declaration, which is inserted for every class you
create—we’ve been removing these from earlier simple examples. Namespaces organize
groups of related classes. Recall from Section 7.4.3 that each class’s name is actually a com-
bination of its namespace name, a dot (.) and the class name—again, this is known as the
class’s fully qualified name. We’ll use namespaces like this in Chapter 15. If another name-
space also contains a class with the same name, the fully qualified class names must be used
to distinguish between the classes in the app and prevent a name conflict (also called a
name collision).

Renaming the Form1.cs File
Using the techniques presented in Section 2.6, create a Form containing a Button. First,
create a new Windows Forms app names SimpleEventExample. Then:

1. Rename the Form1.cs file to SimpleEventExampleForm.cs in the Solution Explorer.

1 // Fig. 14.5: SimpleEventExampleForm.cs
2 // Simple event handling example.
3 using System;
4 using System.Windows.Forms;
5
6 namespace SimpleEventExample
7 {
8 // Form that shows a simple event handler
9

10 {
11 // default constructor
12 public SimpleEventExampleForm()
13 {
14 InitializeComponent();
15 }
16
17 // handles click event of Button clickButton
18
19 {
20 MessageBox.Show("Button was clicked.");
21 }
22 }
23 }

Fig. 14.5 | Simple event-handling example.

public partial class SimpleEventExampleForm : Form

private void clickButton_Click(object sender, EventArgs e)

ptg18189312

400 Chapter 14 Graphical User Interfaces with Windows Forms: Part 1

2. Click the Form in the designer, then use the Properties window to set the Form’s
Text property to "Simple Event Example".

3. Set the Form’s Font property to Segoe UI, 9pt. To do so, select the Font property
in the Properties window, then click the ellipsis (…) button in the property’s value
field to display a font dialog.

Adding a Button to the Form
Drag a Button from the Toolbox onto the Form. In the Properties window, set the (Name)
property (which specifies the Button’s variable name) to clickButton and the Text prop-
erty to Click Me. By convention, a control’s variable name ends with the control’s type.
For example, in the variable name clickButton, “Button” is the control’s type.

Adding an Event Handler for the Button’s Click Event
When the user clicks the Button in this example, we want the app to respond by displaying
a MessageBox. To do this, you must create an event handler for the Button’s Click event,
which you can do by double clicking the Button on the Form. This opens the file containing
the following empty event handler in the program code:

By convention, the IDE names the event-handler method as objectName_eventName (e.g.,
clickButton_Click). The clickButton_Click event handler executes when the user clicks
the clickButton control.

Event Handler Parameters
Each event handler receives two parameters when it’s called. The first—an object refer-
ence named sender by default—is a reference to the object that the user interacted with to
generate the event. The second is a reference to an EventArgs object (or an object of an
EventArgs derived class), which is typically named e. This object contains additional in-
formation about the event that occurred. EventArgs is the base class of all classes that rep-
resent event information.

Displaying a MessageBox
To display a MessageBox in response to the event, insert the statement

in the event handler’s body. The resulting event handler appears in lines 18–21 of
Fig. 14.5. When you execute the app and click the Button, a MessageBox appears display-
ing the text "Button was clicked.".

14.3.2 Auto-Generated GUI Code
Visual Studio places the auto-generated GUI code in the Form class’s Designer.cs file—in
this example, the file SimpleEventExampleForm.Designer.cs. You can open this file by
expanding the Form class’s node in the Solution Explorer window and double clicking the
file name that ends with Designer.cs. Figs. 14.6 and 14.7 show this file’s contents. The
IDE collapses the code in lines 23–57 of Fig. 14.7 by default—you can click the

private void clickButton_Click(object sender, EventArgs e)
{
}

MessageBox.Show("Button was clicked.");

ptg18189312

14.3 Event Handling 401

icon next to line 23 to expand the code, then click the

icon next to that line to collapse it.

Now that you have studied classes and objects in detail, this code will be easier to
understand. Since this code is created and maintained by Visual Studio, you generally do
not need to look at it. In fact, you do not need to understand most of the code shown here
to build GUI apps. However, we now take a closer look to help you understand how GUI
apps work.

The auto-generated code that defines the GUI is actually part of the Form’s class—in
this case, SimpleEventExampleForm. Line 3 of Fig. 14.6 (and line 9 of Fig. 14.5) uses the
partial modifier, which allows this class to be split among multiple files, including the
files that contain auto-generated code and those in which you write your own code. Line
59 of Fig. 14.7 declares the clickButton that we created in Design mode. It’s declared as
an instance variable of class SimpleEventExampleForm. By default, all variable declarations
for controls created through C#’s design window have a private access modifier. The code
also includes the Dispose method for releasing resources (Fig. 14.6, lines 14–21) and
method InitializeComponent (Fig. 14.7, lines 29–55), which contains the code that cre-
ates the Button, then sets some of the Button’s and the Form’s properties. The property
values correspond to the values set in the Properties window for each control. Visual Studio
adds comments to the code that it generates, as in lines 33–35. Line 42 was generated
when we created the event handler for the Button’s Click event.

Fig. 14.6 | First half of the Visual Studio generated code file.

ptg18189312

402 Chapter 14 Graphical User Interfaces with Windows Forms: Part 1

Method InitializeComponent is called when the Form is created, and establishes
such properties as the Form title, the Form size, control sizes and text. Visual Studio also
uses the code in this method to create the GUI you see in design view. Changing the code
in InitializeComponent may prevent Visual Studio from displaying the GUI properly.

Fig. 14.7 | Second half of the Visual Studio generated code file.

Error-Prevention Tip 14.1
The code in the Designer.cs file that’s generated by building a GUI in Design mode
is not meant to be modified directly, which is why this code is placed in a separate file.
Modifying this code can prevent the GUI from being displayed correctly in Design mode
and might cause an app to function incorrectly. In Design mode, it’s recommended that
you modify control properties only in the Properties window, not in the Designer.cs
file.

ptg18189312

14.3 Event Handling 403

14.3.3 Delegates and the Event-Handling Mechanism
The control that generates an event is known as the event sender. An event-handling
method—known as the event handler—responds to a particular event that a control gen-
erates. When the event occurs, the event sender calls its event handler to perform a task
(i.e., to “handle the event”).

The .NET event-handling mechanism allows you to choose your own names for
event-handling methods. However, each event-handling method must declare the proper
parameters to receive information about the event that it handles. Since you can choose
your own method names, an event sender such as a Button cannot know in advance which
method will respond to its events. So, we need a mechanism to indicate which method is
the event handler for an event.

Delegates
Event handlers are connected to a control’s events via special objects called delegates. A
delegate type declaration specifies the return type and signature of a method—in event
handling, the delegate specifies the return type and arguments for an event handler. GUI
controls have predefined delegates that correspond to every event they can generate. For
example, the delegate for a Button’s Click event is of type EventHandler (namespace Sys-
tem). The online help documentation declares this type as follows:

This uses the delegate keyword to declare a delegate type named EventHandler, which can
hold references to methods that return void and receive two parameters—one of type ob-
ject (the event sender) and one of type EventArgs. If you compare the delegate declaration
with clickButton_Click’s first line (Fig. 14.5, line 18), you’ll see that this event handler re-
turns the same type and receives the same parameters specified by the EventHandler dele-
gate—the parameters’ names need not match. The preceding declaration actually creates an
entire class for you. The details of this special class’s declaration are handled by the compiler.

Indicating the Method that a Delegate Should Call
Since each event handler is declared as a delegate, the event sender can simply call the ap-
propriate delegate when an event occurs—a Button calls the EventHandler delegate that
corresponds to its Click event in response to a click. The delegate’s job is to invoke the
appropriate method. To enable the clickButton_Click method to be called, Visual Stu-
dio assigns clickButton_Click to the click Button’s Click EventHandler delegate, as
shown in line 42 of Fig. 14.7. This code is added by Visual Studio when you double click
the Button control in Design mode. The expression

creates an EventHandler delegate object and initializes it with the clickButton_Click
method. Line 42 uses the += operator to add the delegate to the Button’s Click Event-
Handler delegate. This enables clickButton_Click to respond when a user clicks the But-
ton. The += operator is overloaded by the delegate class that’s created by the compiler.

(Optional) Multicast Delegates
You can actually specify that several methods should be invoked in response to one event
by adding other delegates to the Button’s Click event with statements similar to line 42

public delegate void EventHandler(object sender, EventArgs e);

new System.EventHandler(this.clickButton_Click);

ptg18189312

404 Chapter 14 Graphical User Interfaces with Windows Forms: Part 1

of Fig. 14.7. Event delegates are multicast—they represent a set of delegate objects that all
have the same signature. When an event occurs, the event sender calls every method refer-
enced by the multicast delegate. This is known as event multicasting. Event delegates de-
rive from class MulticastDelegate, which derives from class Delegate (both from
namespace System). For most cases, you’ll specify only one event handler for a particular
event on a control.

14.3.4 Another Way to Create Event Handlers
For the GUI app in Fig. 14.5, you double clicked the Button control on the Form to create
its event handler. This technique creates an event handler for a control’s default event—
the event that’s most frequently used with that control. Controls can generate many dif-
ferent events, and each one can have its own event handler. For instance, your app also can
provide an event handler for a Button’s MouseHover event, which occurs when the mouse
pointer remains positioned over the Button for a short period of time. We now discuss
how to create an event handler for an event that’s not a control’s default event.

Using the Properties Window to Create Event Handlers
You can create event handlers through the Properties window. If you select a control on
the Form, then click the Events icon (the lightning bolt icon in Fig. 14.8) in the Properties

window, that control’s events are listed in the window. You can double click an event’s
name to display in the editor an existing event handler for that event, or to create the event
handler if it does not yet exist in your code. You also can select an event, then use the drop-
down list to its right to choose an existing method that should be used as the event handler
for that event. The methods that appear in this drop-down list are the Form class’s methods
that have the proper signature to be an event handler for the selected event. You can return
to viewing the properties of a control by selecting the Properties icon (Fig. 14.8).

A single method can handle events from multiple controls. For example, consider an
app that displays CheckBoxes that represent bold and italic fonts. The user could select
bold, italic or both. In this case, the font’s style depends on both CheckBoxes, so their
events could be handled by the same method, which would determine each CheckBox’s
state to determine the user’s selected font style.

Fig. 14.8 | Viewing events for a Button control in the Properties window.

Events icon

Selected event

Properties icon

ptg18189312

14.3 Event Handling 405

You can specify an event handler for multiple events by selecting multiple controls
(drag over them, hold Shift and click each or hold Ctrl and click each) and selecting a single
method in the Properties window’s Events tab. If you create a new event handler this way,
you should rename it appropriately so that it does not contain one control’s name. You
could also select each control individually and specify the same method for each one’s event.

14.3.5 Locating Event Information
Read the Visual Studio documentation to learn about the different events raised by each
control. To do this, select a control in the IDE (either in your Form’s design or in the Tool-

box and press the F1 key to display that control’s online help (Fig. 14.9).

The web page that’s displayed contains basic information about the control’s class. In
the left column of the page are several links to more information about the class—Button

Methods, Button Properties, Button Events and Button Constructor. Each link displays a subset
of the class’s members. Click the link to the list of events for that control (Button Events in
this case) to display the supported events for that control.

Next, click the name of an event to view its description and examples of its use. We
selected the Click event to display the information in Fig. 14.10. The Click event is a
member of class Control, an indirect base class of class Button. The Remarks section of the
page discusses the details of the selected event. Alternatively, you could use the Object

Browser to look up this information in the System.Windows.Forms namespace. The Object

Browser shows only the members originally defined in a given class. The Click event is
originally defined in class Control and inherited into Button. For this reason, you must
look at class Control in the Object Browser to see the documentation for the Click event.
See Section 10.11 for more information regarding the Object Browser.

Fig. 14.9 | Link to list of Button events.

Control’s class nameLink to supported events

ptg18189312

406 Chapter 14 Graphical User Interfaces with Windows Forms: Part 1

14.4 Control Properties and Layout
This section overviews properties that are common to many controls. Controls derive
from class Control (namespace System.Windows.Forms). Figure 14.11 lists some of class
Control’s properties and methods. The properties shown here can be set for many con-
trols. For example, the Text property specifies the text that appears on a control. The lo-
cation of this text varies depending on the control. In a Form, the text appears in the title
bar, but the text of a Button appears on its face.

Fig. 14.10 | Click event details.

Class Control
properties and methods Description

Common Properties
BackColor The control’s background color.
BackgroundImage The control’s background image.
Enabled Specifies whether the control is enabled (i.e., if the user can interact

with it). Typically, portions of a disabled control appear “grayed
out” as a visual indication to the user that the control is disabled.

Focused Indicates whether the control has the focus (only available at run-
time).

Fig. 14.11 | Class Control properties and methods. (Part 1 of 2.)

Event argument class Event name Event’s delegate type

ptg18189312

14.4 Control Properties and Layout 407

Method Select transfers the focus to a control and makes it the active control. When
you press the Tab key in an executing Windows Forms app, controls receive the focus in the
order specified by their TabIndex property. This property is set by Visual Studio based on
the order in which controls are added to a Form, but you can change the tabbing order using
View > Tab Order. TabIndex is helpful for users who enter information in many controls,
such as a set of TextBoxes that represent a user’s name, address and telephone number. The
user can enter information, then quickly select the next control by pressing the Tab key.

Property Enabled indicates whether the user can interact with a control to generate
an event. Often, if a control is disabled, it’s because an option is unavailable to the user at
that time. For example, text editor apps often disable the “paste” command until the user
cuts or copies some text. In most cases, a disabled control’s text appears in gray (rather than
in black). You also can hide a control from the user without disabling the control by set-
ting the Visible property to false or by calling method Hide. In each case, the control
still exists but is not visible on the Form.

14.4.1 Anchoring and Docking
You can use anchoring and docking to specify the layout of controls inside a container—
such as a Form or, within a Form, a control that groups other controls (such as a Panel,
discussed in Section 14.6). Anchoring places controls a fixed distance from the sides of the
container. Anchoring enhances the user experience. For example, if the user expects a con-
trol to appear in a particular corner of the app, anchoring ensures that the control will al-
ways be in that corner—even if the user resizes the Form. Docking attaches a control to a
container such that the control stretches across an entire side or fills an entire area. For ex-

Font The Font used to display the control’s text.
ForeColor The control’s foreground color. This usually determines the color

of the text in the Text property.
TabIndex The tab order of the control. When the Tab key is pressed, the

focus transfers between controls based on the tab order. You can set
this order.

TabStop If true, then a user can give focus to this control via the Tab key.
Text The text associated with the control. The location and appear-

ance of the text vary depending on the type of control.
Visible Indicates whether the control is visible.

Common Methods
Hide Hides the control (sets the Visible property to false).
Select Acquires the focus.
Show Shows the control (sets the Visible property to true).

Class Control
properties and methods Description

Fig. 14.11 | Class Control properties and methods. (Part 2 of 2.)

ptg18189312

408 Chapter 14 Graphical User Interfaces with Windows Forms: Part 1

ample, a control such as a status bar typically should remain at the bottom of the Form and
stretch across the entire bottom of that Form, regardless of the Form’s width. When the par-
ent control is resized, the docked control resizes as well.

Anchoring Demonstration
When a window (or other type of container like a Panel) is resized, anchored controls are
moved (and possibly resized) so that the distance from the sides to which they’re anchored
does not vary. By default, most controls are anchored to the top-left corner of the Form.
To see the effects of anchoring a control, create a simple Windows Forms app that contains
two Buttons. Anchor one control to the right and bottom sides by setting the Anchor prop-
erty as shown in Fig. 14.12. Leave the other control with its default anchoring (top, left).
Execute the app and enlarge the Form. The Button anchored to the bottom-right corner is
always the same distance from the bottom right (Fig. 14.13). The other control stays its
original distance from the top left.

In Fig. 14.14, a Button is docked at the top of the Form (spanning the top portion).
When the Form is resized, the Button is resized to the Form’s new width. Forms have a Pad-
ding property that specifies the distance between the docked controls and the Form edges.
This property specifies four values (one for each side), and each value is set to 0 by default.
Some common control layout properties are summarized in Fig. 14.15.

Fig. 14.12 | Manipulating the Anchor property of a control.

Fig. 14.13 | Anchoring demonstration.

Click the down-arrow in
the Anchor property to
display the anchoring
window

Darkened bars indicate the container’s
side(s) to which the control is anchored;
use mouse clicks to select or deselect a bar

Anchoring
window

Before resizing After resizing

Constant
distance to right
and bottom sides

ptg18189312

14.4 Control Properties and Layout 409

A Control’s Anchor and Dock properties are set with respect to the container in which
the Control resides—known as the parent container—which could be a Form or another
container (such as a Panel). The minimum and maximum Form (or other Control) sizes
can be set via properties MinimumSize and MaximumSize, respectively. Both are of type
Size, which has properties Width and Height. Properties MinimumSize and MaximumSize
allow you to design the GUI layout for a given size range. The user cannot make a Form
smaller than the size specified by property MinimumSize and cannot make a Form larger
than the size specified by property MaximumSize. To set a Form to a fixed size (where the
Form cannot be resized by the user), set its minimum and maximum size to the same value.

14.4.2 Using Visual Studio To Edit a GUI’s Layout
Visual Studio helps you with GUI layout. When you drag a control across a Form, blue
snap lines appear to help you position the control with respect to others (Fig. 14.16) and
the Form’s edges. This feature makes the control you’re dragging appear to “snap into
place” alongside other controls. Visual Studio also provides the Format menu, which con-
tains options for modifying your GUI’s layout. The Format menu does not appear in the
IDE unless you select one or more controls in design view. When you select multiple con-
trols, you can align them with the Format menu’s Align submenu. The Format menu also
enables you to modify the space between controls or to center a control on the Form.

Fig. 14.14 | Docking a Button to the top of a Form.

Control layout
properties Description

Anchor Causes a control to remain at a fixed distance from the side(s) of the con-
tainer even when the container is resized.

Dock Allows a control to span one side of its container or to fill the remaining
space in the container.

Padding Sets the space between a container’s edges and docked controls. The
default is 0, causing the control to appear flush with the container’s sides.

Location Specifies the location (as a set of coordinates) of the upper-left corner of
the control, in relation to its container’s upper-left corner.

Size Specifies the size of the control in pixels as a Size object, which has prop-
erties Width and Height.

MinimumSize,
MaximumSize

Indicates the minimum and maximum size of a Control, respectively.

Fig. 14.15 | Control layout properties.

Before resizing After resizing

Control extends
along Form’s

entire top

ptg18189312

410 Chapter 14 Graphical User Interfaces with Windows Forms: Part 1

14.5 Labels, TextBoxes and Buttons
Labels provide text information (as well as optional images) and are defined with class La-
bel (a derived class of Control). A Label displays text that the user cannot directly modify.
A Label’s text can be changed programmatically by modifying the Label’s Text property.
Figure 14.17 lists common Label properties.

A textbox (class TextBox) is an area in which either text can be displayed by a program
or the user can type text via the keyboard. A password TextBox is a TextBox that hides the
information entered by the user. As the user types characters, the password TextBox masks
the user input by displaying a password character. If you set the property UseSystemPass-
wordChar to true, the TextBox becomes a password TextBox. Users often encounter both
types of TextBoxes, when logging into a computer or website—the username TextBox
allows users to input their usernames; the password TextBox allows users to enter their
passwords. Figure 14.18 lists the common properties and a common event of TextBoxes.

A button is a control that the user clicks to trigger a specific action or to select an
option in a program. As you’ll see, a program can use several types of buttons, such as
checkboxes and radio buttons. All the button classes derive from class ButtonBase (name-
space System.Windows.Forms), which defines common button features. In this section, we
discuss class Button, which typically enables a user to issue a command to an app.
Figure 14.19 lists common properties and a common event of class Button.

Fig. 14.16 | Snap lines for aligning controls.

Common Label
properties Description

Font The font of the text on the Label.
Text The text on the Label.
TextAlign The alignment of the Label’s text on the control—horizon-

tally (left, center or right) and vertically (top, middle or bot-
tom). The default is top, left.

Fig. 14.17 | Common Label properties.

Snap line to help align
controls on their left sides

Snap line that indicates when a
control reaches the minimum
recommended distance from
another control

Snap line that indicates when a control reaches the
minimum recommended distance from the Form’s left edge

ptg18189312

14.5 Labels, TextBoxes and Buttons 411

Figure 14.20 uses a TextBox, a Button and a Label. The user enters text into a pass-
word box and clicks the Button, causing the text input to be displayed in the Label. Nor-
mally, we would not display this text—the purpose of password TextBoxes is to hide the
text being entered by the user. When the user clicks the Show Me Button, this app retrieves
the text that the user typed in the password TextBox and displays it in a Label.

TextBox properties
and an event Description

Common Properties
AcceptsReturn If true in a multiline TextBox, pressing Enter in the TextBox creates a

new line. If false (the default), pressing Enter is the same as pressing
the default Button on the Form. The default Button is the one assigned
to a Form’s AcceptButton property.

Multiline If true, the TextBox can span multiple lines. The default value is false.
ReadOnly If true, the TextBox has a gray background, and its text cannot be

edited. The default value is false.
ScrollBars For multiline textboxes, this property indicates which scrollbars appear

(None—the default, Horizontal, Vertical or Both).
Text The TextBox’s text content.
UseSystemPasswordChar When true, the TextBox becomes a password TextBox, and the system-

specified character masks each character the user types.

Common Event
TextChanged Generated when the text changes in a TextBox (i.e., when the user adds

or deletes characters). When you double click the TextBox control in
Design mode, an empty event handler for this event is generated.

Fig. 14.18 | TextBox properties and an event.

Button properties and
an event Description

Common Properties
Text Specifies the text displayed on the Button face.
FlatStyle Modifies a Button’s appearance—Flat (for the Button to display with-

out a three-dimensional appearance), Popup (for the Button to appear
flat until the user moves the mouse pointer over the Button), Standard
(three-dimensional) and System, where the Button’s appearance is con-
trolled by the operating system. The default value is Standard.

Common Event
Click Generated when the user clicks the Button. When you double click a

Button in design view, an empty event handler for this event is created.

Fig. 14.19 | Button properties and an event.

ptg18189312

412 Chapter 14 Graphical User Interfaces with Windows Forms: Part 1

First, create the GUI by dragging the controls (a TextBox, a Button and a Label) onto
the Form. Once the controls are positioned, change their names in the Properties window
from the default values—textBox1, button1 and label1—to the more descriptive dis-
playPasswordLabel, displayPasswordButton and inputPasswordTextBox. The (Name)
property in the Properties window enables us to change the variable name for a control.
Visual Studio creates the necessary code and places it in method InitializeComponent of
the partial class in the file LabelTextBoxButtonTestForm.Designer.cs.

We set displayPasswordButton’s Text property to “Show Me” and clear the Text of
displayPasswordLabel so that it’s blank when the program begins executing. The Bor-
derStyle property of displayPasswordLabel is set to Fixed3D, giving our Label a three-
dimensional appearance. We also changed its TextAlign property to MiddleLeft so that
the Label’s text is displayed centered between its top and bottom. The password character
for inputPasswordTextBox is determined by the user’s system settings when you set
UseSystemPasswordChar to true.

1 // Fig. 14.20: LabelTextBoxButtonTestForm.cs
2 // Using a TextBox, Label and Button to display
3 // the hidden text in a password TextBox.
4 using System;
5 using System.Windows.Forms;
6
7 namespace LabelTextBoxButtonTest
8 {
9 // Form that creates a password TextBox and

10 // a Label to display TextBox contents
11 public partial class LabelTextBoxButtonTestForm : Form
12 {
13 // default constructor
14 public LabelTextBoxButtonTestForm()
15 {
16 InitializeComponent();
17 }
18
19 // display user input in Label
20
21 {
22 // display the text that the user typed
23
24 }
25 }
26 }

Fig. 14.20 | Program to display hidden text in a password box.

private void displayPasswordButton_Click(object sender, EventArgs e)

displayPasswordLabel.Text = inputPasswordTextBox.Text;

ptg18189312

14.6 GroupBoxes and Panels 413

We create an event handler for displayPasswordButton by double clicking this con-
trol in Design mode. We added line 23 to the event handler’s body. When the user clicks
the Show Me Button in the executing app, line 23 obtains the text entered by the user in
inputPasswordTextBox and displays the text in displayPasswordLabel.

14.6 GroupBoxes and Panels
GroupBoxes and Panels arrange controls on a GUI. GroupBoxes and Panels are typically
used to group several controls of similar functionality or several controls that are related in
a GUI. All of the controls in a GroupBox or Panel move together when the GroupBox or
Panel is moved. Furthermore, a GroupBoxes and Panels also can be used to show or hide
a set of controls at once. When you modify a container’s Visible property, it toggles the
visibility of all the controls within it.

The primary difference between these two controls is that GroupBoxes can display a
caption (i.e., text) and do not include scrollbars, whereas Panels can include scrollbars and
do not include a caption. GroupBoxes have thin borders by default; Panels can be set so
that they also have borders by changing their BorderStyle property. Figures 14.21–14.22
list the common properties of GroupBoxes and Panels, respectively.

Look-and-Feel Observation 14.2
Panels and GroupBoxes can contain other Panels and GroupBoxes for more complex
layouts.

Look-and-Feel Observation 14.3
You can organize a GUI by anchoring and docking controls inside a GroupBox or Panel.
The GroupBox or Panel then can be anchored or docked inside a Form. This divides con-
trols into functional “groups” that can be arranged easily.

GroupBox properties Description

Controls The set of controls that the GroupBox contains.
Text Specifies the caption text displayed at the top of the GroupBox.

Fig. 14.21 | GroupBox properties.

Panel properties Description

AutoScroll Indicates whether scrollbars appear when the Panel is too small to
display all of its controls. The default value is false.

BorderStyle Sets the border of the Panel. The default value is None; other
options are Fixed3D and FixedSingle.

Controls The set of controls that the Panel contains.

Fig. 14.22 | Panel properties.

ptg18189312

414 Chapter 14 Graphical User Interfaces with Windows Forms: Part 1

To create a GroupBox, drag its icon from the Toolbox onto a Form. Then, drag new con-
trols from the Toolbox into the GroupBox. These controls are added to the GroupBox’s Con-
trols property and become part of the GroupBox. The GroupBox’s Text property specifies
the caption at the top of the GroupBox.

To create a Panel, drag its icon from the Toolbox onto the Form. You can then add
controls directly to the Panel by dragging them from the Toolbox onto the Panel. To
enable the scrollbars, set the Panel’s AutoScroll property to true. If the Panel is resized
and cannot display all of its controls, scrollbars appear (Fig. 14.23). The scrollbars can be
used to view all the controls in the Panel—at design time and at execution time. In
Fig. 14.23, we set the Panel’s BorderStyle property to FixedSingle so that you can see
the Panel in the Form.

The program in Fig. 14.24 uses a GroupBox and a Panel to arrange Buttons. When
these Buttons are clicked, their event handlers change the text on a Label.

Fig. 14.23 | Creating a Panel with scrollbars.

1 // Fig. 14.24: GroupBoxPanelExampleForm.cs
2 // Using GroupBoxes and Panels to arrange Buttons.
3 using System;
4 using System.Windows.Forms;
5
6 namespace GroupBoxPanelExample
7 {
8 // Form that displays a GroupBox and a Panel
9 public partial class GroupBoxPanelExampleForm : Form

10 {
11 // default constructor
12 public GroupBoxPanelExampleForm()
13 {
14 InitializeComponent();
15 }

Fig. 14.24 | Using GroupBoxes and Panels to arrange Buttons. (Part 1 of 2.)

Panel
Control inside

Panel

Panel
scrollbars

Panel
resized

ptg18189312

14.6 GroupBoxes and Panels 415

The mainGroupBox has two Buttons—hiButton (which displays the text Hi) and
byeButton (which displays the text Bye). The Panel (named mainPanel) also has two
Buttons, leftButton (which displays the text Far Left) and rightButton (which displays
the text Far Right). The mainPanel has its AutoScroll property set to true, allowing
scrollbars to appear when the contents of the Panel require more space than the Panel’s
visible area. The Label (named messageLabel) is initially blank. To add controls to
mainGroupBox or mainPanel, Visual Studio calls method Add of each container’s Con-
trols property. This code is placed in the partial class located in the file GroupBoxPanel-
ExampleForm.Designer.cs.

The event handlers for the four Buttons are located in lines 18–39. Lines 20, 26, 32
and 38 change the text of messageLabel to indicate which Button the user pressed.

16
17 // event handler for Hi Button
18 private void hiButton_Click(object sender, EventArgs e)
19 {
20 messageLabel.Text = "Hi pressed"; // change text in Label
21 }
22
23 // event handler for Bye Button
24 private void byeButton_Click(object sender, EventArgs e)
25 {
26 messageLabel.Text = "Bye pressed"; // change text in Label
27 }
28
29 // event handler for Far Left Button
30 private void leftButton_Click(object sender, EventArgs e)
31 {
32 messageLabel.Text = "Far Left pressed"; // change text in Label
33 }
34
35 // event handler for Far Right Button
36 private void rightButton_Click(object sender, EventArgs e)
37 {
38 messageLabel.Text = "Far Right pressed"; // change text in Label
39 }
40 }
41 }

Fig. 14.24 | Using GroupBoxes and Panels to arrange Buttons. (Part 2 of 2.)

ptg18189312

416 Chapter 14 Graphical User Interfaces with Windows Forms: Part 1

14.7 CheckBoxes and RadioButtons
C# has two types of state buttons that can be in the on/off or true/false states—CheckBox-

es and RadioButtons. Like class Button, classes CheckBox and RadioButton are derived
from class ButtonBase.

14.7.1 CheckBoxes
A CheckBox is a small square that either is blank or contains a check mark. When the user
clicks a CheckBox to select it, a check mark appears in the box. If the user clicks the Check-
Box again to deselect it, the check mark is removed. You also can configure a CheckBox to
toggle between three states (checked, unchecked and indeterminate) by setting its Three-
State property to true. Any number of CheckBoxes can be selected at a time. A list of
common CheckBox properties and a common event appears in Fig. 14.25.

The program in Fig. 14.26 allows the user to select CheckBoxes to change a Label’s
font style. The event handler for one CheckBox applies bold and the event handler for the
other applies italic. If both CheckBoxes are selected, the font style is set to bold and italic.
Initially, neither CheckBox is checked.

CheckBox properties
and an event Description

Common Properties
Appearance By default, this property is set to Normal, and the CheckBox displays as a

traditional checkbox. If it’s set to Button, the CheckBox displays as a But-
ton that looks pressed when the CheckBox is checked.

Checked Indicates whether the CheckBox is checked (contains a check mark) or
unchecked (blank). This property returns a bool value. The default is
false (unchecked).

CheckState Indicates whether the CheckBox is checked or unchecked with a value from
the CheckState enumeration (Checked, Unchecked or Indeterminate).
Indeterminate is used when it’s unclear whether the state should be
Checked or Unchecked. When CheckState is set to Indeterminate, the
CheckBox is usually shaded.

Text Specifies the text displayed to the right of the CheckBox.
ThreeState When this property is true, the CheckBox has three states—checked,

unchecked and indeterminate. By default, this property is false and the
CheckBox has only two states—checked and unchecked. When true,
Checked returns true for both the checked and indeterminate states.

Common Event
CheckedChanged Generated any time the Checked or CheckState property changes. This is

a CheckBox’s default event. When a user double clicks the CheckBox con-
trol in design view, an empty event handler for this event is generated.

Fig. 14.25 | CheckBox properties and an event.

ptg18189312

14.7 CheckBoxes and RadioButtons 417

The boldCheckBox has its Text property set to Bold. The italicCheckBox has its
Text property set to Italic. The Text property of outputLabel is set to Watch the font
style change. After creating the controls, we define their event handlers. Double clicking
the CheckBoxes at design time creates empty CheckedChanged event handlers.

1 // Fig. 14.26: CheckBoxTestForm.cs
2 // Using CheckBoxes to toggle italic and bold styles.
3 using System;
4 using System.Drawing;
5 using System.Windows.Forms;
6
7 namespace CheckBoxTest
8 {
9 // Form contains CheckBoxes to allow the user to modify sample text

10 public partial class CheckBoxTestForm : Form
11 {
12 // default constructor
13 public CheckBoxTestForm()
14 {
15 InitializeComponent();
16 }
17
18 // toggle the font style between bold and
19 // not bold based on the current setting
20 private void boldCheckBox_CheckedChanged(object sender, EventArgs e)
21 {
22 outputLabel.Font = new Font(outputLabel.Font,
23 outputLabel.Font.Style ^ FontStyle.Bold);
24 }
25
26 // toggle the font style between italic and
27 // not italic based on the current setting
28 private void italicCheckBox_CheckedChanged(
29 object sender, EventArgs e)
30 {
31 outputLabel.Font = new Font(outputLabel.Font,
32 outputLabel.Font.Style ^ FontStyle.Italic);
33 }
34 }
35 }

Fig. 14.26 | Using CheckBoxes to toggle italic and bold styles.

ptg18189312

418 Chapter 14 Graphical User Interfaces with Windows Forms: Part 1

To change a Label’s font style, set its Font property to a new Font object (lines 22–
23 and 31–32). Class Font is in the System.Drawing namespace. The Font constructor
used here takes a Font and new style as arguments. The argument outputLabel.Font uses
outputLabel’s original font name and size. The style is specified with a member of the
FontStyle enumeration, which contains Regular, Bold, Italic, Strikeout and Under-
line. (The Strikeout style displays text with a line through it.) A Font object’s Style
property is read-only, so it can be set only when the Font object is created.

14.7.2 Combining Font Styles with Bitwise Operators
Styles can be combined via bitwise operators—operators that perform manipulation on
bits of information. All data is represented in the computer as combinations of 0s and 1s.
Each 0 or 1 represents a bit. The FontStyle (namespace System.Drawing) is represented
as a set of bits that are selected in a way that allows us to combine different FontStyle el-
ements to create compound styles, using bitwise operators. These styles are not mutually
exclusive, so we can combine different styles and remove them without affecting the com-
bination of previous FontStyle elements.

We can combine the various font styles, using either the logical OR (|) operator or the
logical exclusive OR (^) operator (also called XOR). When the logical OR operator is applied
to two bits, if at least one bit of the two has the value 1, then the result is 1. Combining
styles using the logical OR operator works as follows. Assume that FontStyle.Bold is rep-
resented by bits 01 and that FontStyle.Italic is represented by bits 10. When we use the
logical OR (|) to combine the styles, we obtain the bits 11.

The logical OR operator helps create style combinations. However, what happens if we
want to undo a style combination, as we did in Fig. 14.26?

The logical exclusive OR operator enables us to combine styles and to undo existing style
settings. When logical exclusive OR is applied to two bits, if both bits have the same value,
then the result is 0. If both bits are different, then the result is 1.

Combining styles using logical exclusive OR works as follows. Assume, again, that
FontStyle.Bold is represented by bits 01 and that FontStyle.Italic is represented by
bits 10. When we use logical exclusive OR (^) on both styles, we obtain the bits 11.

Now, suppose that we’d like to remove the FontStyle.Bold style from the previous
combination of FontStyle.Bold and FontStyle.Italic. The easiest way to do so is to
reapply the logical exclusive OR (^) operator to the compound style and FontStyle.Bold.

01 = Bold
10 = Italic
--
11 = Bold and Italic

01 = Bold
10 = Italic
--
11 = Bold and Italic

11 = Bold and Italic
01 = Bold
--
10 = Italic

ptg18189312

14.7 CheckBoxes and RadioButtons 419

This is a simple example. The advantages of using bitwise operators to combine FontStyle
values become more evident when we consider that there are five FontStyle values (Bold,
Italic, Regular, Strikeout and Underline), resulting in 16 FontStyle combinations.
Using bitwise operators to combine font styles greatly reduces the amount of code required
to check all possible font combinations.

In Fig. 14.26, we need to set the FontStyle so that the text appears in bold if it was
not bold originally, and vice versa. Line 23 uses the bitwise logical exclusive OR operator to
do this. If outputLabel.Font.Style is bold, then the resulting style is not bold. If the text
is originally italic, the resulting style is bold and italic, rather than just bold. The same
applies for FontStyle.Italic in line 32.

If we didn’t use bitwise operators to compound FontStyle elements, we’d have to test
for the current style and change it accordingly. In boldCheckBox_CheckedChanged, we
could test for the regular style and make it bold, test for the bold style and make it regular,
test for the italic style and make it bold italic and test for the italic bold style and make it
italic. This is cumbersome because, for every new style we add, we double the number of
combinations. Adding a CheckBox for underline would require testing eight additional
styles. Adding a CheckBox for strikeout would require testing 16 additional styles.

14.7.3 RadioButtons
Radio buttons (defined with class RadioButton) are similar to CheckBoxes in that they also
have two states—selected and not selected (also called deselected). However, RadioBut-
tons normally appear as a group, in which only one RadioButton can be selected at a time.
Selecting one RadioButton in the group forces all the others to be deselected. Therefore,
RadioButtons are used to represent a set of mutually exclusive options (i.e., a set in which
multiple options cannot be selected at the same time).

All RadioButtons added in a container are in the same group. To divide RadioButtons
into several groups, they must be added to separate containers, such as GroupBoxes or
Panels. RadioButton’s common properties and a common event are listed in Fig. 14.27.

Look-and-Feel Observation 14.4
Use RadioButtons when the user should choose only one option in a group. Use Check-
Boxes when the user should be able to choose multiple options in a group.

RadioButton
properties and an event Description

Common Properties
Checked Indicates whether the RadioButton is checked.
Text Specifies the RadioButton’s text.

Common Event
CheckedChanged Generated every time the RadioButton is checked or unchecked.

When you double click a RadioButton control in design view, an
empty event handler for this event is generated.

Fig. 14.27 | RadioButton properties and an event.

ptg18189312

420 Chapter 14 Graphical User Interfaces with Windows Forms: Part 1

The program in Fig. 14.28 uses RadioButtons to enable users to select options for a
MessageBox. After selecting the desired attributes, the user presses the Display Button to
display the MessageBox. A Label in the lower-left corner shows the result of the Mes-
sageBox (i.e., which Button the user clicked—Yes, No, Cancel, etc.).

Software Engineering Observation 14.1
Forms, GroupBoxes, and Panels can act as logical groups for RadioButtons. The
RadioButtons within each group are mutually exclusive to each other, but not to
RadioButtons in different logical groups.

1 // Fig. 14.28: RadioButtonsTestForm.cs
2 // Using RadioButtons to set message window options.
3 using System;
4 using System.Windows.Forms;
5
6 namespace RadioButtonsTest
7 {
8 // Form contains several RadioButtons--user chooses one
9 // from each group to create a custom MessageBox

10 public partial class RadioButtonsTestForm : Form
11 {
12 // create variables that store the user's choice of options
13 private MessageBoxIcon IconType { get; set; }
14 private MessageBoxButtons ButtonType { get; set; }
15
16 // default constructor
17 public RadioButtonsTestForm()
18 {
19 InitializeComponent();
20 }
21
22 // change Buttons based on option chosen by sender
23 private void buttonType_CheckedChanged(object sender, EventArgs e)
24 {
25 if (sender == okRadioButton) // display OK Button
26 {
27 ButtonType = MessageBoxButtons.OK;
28 }
29 // display OK and Cancel Buttons
30 else if (sender == okCancelRadioButton)
31 {
32 ButtonType = MessageBoxButtons.OKCancel;
33 }
34 // display Abort, Retry and Ignore Buttons
35 else if (sender == abortRetryIgnoreRadioButton)
36 {
37 ButtonType = MessageBoxButtons.AbortRetryIgnore;
38 }

Fig. 14.28 | Using RadioButtons to set message-window options. (Part 1 of 4.)

ptg18189312

14.7 CheckBoxes and RadioButtons 421

39 // display Yes, No and Cancel Buttons
40 else if (sender == yesNoCancelRadioButton)
41 {
42 ButtonType = MessageBoxButtons.YesNoCancel;
43 }
44 // display Yes and No Buttons
45 else if (sender == yesNoRadioButton)
46 {
47 ButtonType = MessageBoxButtons.YesNo;
48 }
49 // only one option left--display Retry and Cancel Buttons
50 else
51 {
52 ButtonType = MessageBoxButtons.RetryCancel;
53 }
54 }
55
56 // change Icon based on option chosen by sender
57 private void iconType_CheckedChanged(object sender, EventArgs e)
58 {
59 if (sender == asteriskRadioButton) // display asterisk Icon
60 {
61 IconType = MessageBoxIcon.Asterisk;
62 }
63 // display error Icon
64 else if (sender == errorRadioButton)
65 {
66 IconType = MessageBoxIcon.Error;
67 }
68 // display exclamation point Icon
69 else if (sender == exclamationRadioButton)
70 {
71 IconType = MessageBoxIcon.Exclamation;
72 }
73 // display hand Icon
74 else if (sender == handRadioButton)
75 {
76 IconType = MessageBoxIcon.Hand;
77 }
78 // display information Icon
79 else if (sender == informationRadioButton)
80 {
81 IconType = MessageBoxIcon.Information;
82 }
83 // display question mark Icon
84 else if (sender == questionRadioButton)
85 {
86 IconType = MessageBoxIcon.Question;
87 }

Fig. 14.28 | Using RadioButtons to set message-window options. (Part 2 of 4.)

ptg18189312

422 Chapter 14 Graphical User Interfaces with Windows Forms: Part 1

88 // display stop Icon
89 else if (sender == stopRadioButton)
90 {
91 IconType = MessageBoxIcon.Stop;
92 }
93 // only one option left--display warning Icon
94 else
95 {
96 IconType = MessageBoxIcon.Warning;
97 }
98 }
99
100 // display MessageBox and Button user pressed
101 private void displayButton_Click(object sender, EventArgs e)
102 {
103 // display MessageBox and store
104 // the value of the Button that was pressed
105 DialogResult result = MessageBox.Show(
106 "This is your Custom MessageBox.", "Custon MessageBox",
107 ButtonType, IconType);
108
109 // check to see which Button was pressed in the MessageBox
110 // change text displayed accordingly
111 switch (result)
112 {
113 case DialogResult.OK:
114 displayLabel.Text = "OK was pressed.";
115 break;
116 case DialogResult.Cancel:
117 displayLabel.Text = "Cancel was pressed.";
118 break;
119 case DialogResult.Abort:
120 displayLabel.Text = "Abort was pressed.";
121 break;
122 case DialogResult.Retry:
123 displayLabel.Text = "Retry was pressed.";
124 break;
125 case DialogResult.Ignore:
126 displayLabel.Text = "Ignore was pressed.";
127 break;
128 case DialogResult.Yes:
129 displayLabel.Text = "Yes was pressed.";
130 break;
131 case DialogResult.No:
132 displayLabel.Text = "No was pressed.";
133 break;
134 }
135 }
136 }
137 }

Fig. 14.28 | Using RadioButtons to set message-window options. (Part 3 of 4.)

ptg18189312

14.7 CheckBoxes and RadioButtons 423

We store the user’s choices in properties IconType and ButtonType (declared in lines
13–14). IconType is of type MessageBoxIcon, and can have values Asterisk, Error,
Exclamation, Hand, Information, None, Question, Stop and Warning. The sample output
shows only Error, Exclamation, Information and Question icons.

ButtonType is of type MessageBoxButtons, and can have values AbortRetryIgnore,
OK, OKCancel, RetryCancel, YesNo and YesNoCancel. The name indicates the options that

Fig. 14.28 | Using RadioButtons to set message-window options. (Part 4 of 4.)

b) AbortRetryIgnore button typea) GUI for testing RadioButtons

e) AbortRetryIgnore button type f) YesNoCancel button type

h) RetryCancel button typeg) YesNo button type

d) OK button typec) OKCancel button type

ptg18189312

424 Chapter 14 Graphical User Interfaces with Windows Forms: Part 1

are presented to the user in the MessageBox. The sample output windows show Message-
Boxes for all of the MessageBoxButtons enumeration values.

We created separate GroupBoxes—Button Type and Icon—containing RadioButtons
for the corresponding enumeration options. Only one RadioButton can be selected from
each GroupBox. When a user clicks the Display Button, a customized MessageBox is dis-
played. A Label (displayLabel) shows which Button the user pressed in the MessageBox.

The RadioButtons’ event handler responds to each RadioButton’s CheckedChanged
event. When a RadioButton in the Button Type GroupBox is selected, the event handler
(lines 23–54)—which we set for all RadioButtons in that group—sets the ButtonType.
Similarly, a RadioButton in the Icon GroupBox is selected, the event handler (lines 57–
98)—which we set for all RadioButtons in that group—sets the IconType.

The Click event handler for displayButton (lines 101–135) creates a MessageBox
(lines 105–107). The MessageBox options are specified with the values stored in IconType
and ButtonType. When the user clicks one of the MessageBox’s buttons, the result of the
message box is returned to the app. This result is a value from the DialogResult enumer-
ation that contains Abort, Cancel, Ignore, No, None, OK, Retry or Yes. The switch state-
ment in lines 111–134 tests for the result and sets displayLabel.Text appropriately.

14.8 PictureBoxes
A PictureBox displays an image. The image can be one of several formats, such as bitmap,
PNG (Portable Network Graphics), GIF (Graphics Interchange Format) and JPEG (Joint
Photographic Experts Group). A PictureBox’s Image property specifies the image that’s
displayed, and the SizeMode property indicates how the image is displayed (Normal,
StretchImage, Autosize, CenterImage or Zoom). Figure 14.29 describes common Pic-
tureBox properties and a common event.

PictureBox properties
and an event Description

Common Properties
Image Sets the image to display in the PictureBox.
SizeMode Controls image sizing and positioning. Values are Normal (default),

StretchImage, AutoSize, CenterImage and Zoom. Normal places the
image in the PictureBox’s top-left corner, and CenterImage puts the
image in the middle. Both truncate the image if it’s too large. Stret-
chImage fits the image in the PictureBox. AutoSize resizes the Pic-
tureBox to fit the image. Zoom resizes the image to to fit the
PictureBox but maintains the original aspect ratio.

Common Event
Click Occurs when the user clicks a control. When you double click this

control in the designer, an event handler is generated for this event.

Fig. 14.29 | PictureBox properties and an event.

ptg18189312

14.8 PictureBoxes 425

Figure 14.30 uses a PictureBox named imagePictureBox to display one of three
bitmap images—image0.bmp, image1.bmp or image2.bmp. These images are provided in
the Images subdirectory of this chapter’s examples directory. Whenever a user clicks the
Next Image Button, the image changes to the next image in sequence. When the last image
is displayed and the user clicks the Next Image Button, the first image is displayed again.

1 // Fig. 14.30: PictureBoxTestForm.cs
2 // Using a PictureBox to display images.
3 using System;
4 using System.Drawing;
5 using System.Windows.Forms;
6
7 namespace PictureBoxTest
8 {
9 // Form to display different images when Button is clicked

10 public partial class PictureBoxTestForm : Form
11 {
12 private int ImageNumber { get; set; } = -1; // image to display
13
14 // default constructor
15 public PictureBoxTestForm()
16 {
17 InitializeComponent();
18 }
19
20 // change image whenever Next Button is clicked
21 private void nextButton_Click(object sender, EventArgs e)
22 {
23 ImageNumber = (ImageNumber + 1) % 3; // cycles from 0 to 2
24
25 // retrieve image from resources and load into PictureBox
26 imagePictureBox.Image =
27 (Image) (Properties.Resources.ResourceManager.GetObject(
28 $"image{ImageNumber}"));
29 }
30 }
31 }

Fig. 14.30 | Using a PictureBox to display images.

ptg18189312

426 Chapter 14 Graphical User Interfaces with Windows Forms: Part 1

Using Resources Programmatically
In this example, we added the images to the project as resources. This causes the IDE to
to copy the images into the app’s executable file and enables the app to access the images
through the project’s Properties namespace. When you do this, you don’t need to worry
about wrapping the images with the app when you move it to another location or com-
puter.

If you’re creating a new project, use the following steps to add images to the project
as resources:

1. After creating your project, right click the project’s Properties node in the Solution

Explorer and select Open to display the project’s properties.

2. From the tabs on the left, click the Resources tab.

3. At the top of the Resources tab, click the down arrow next to Add Resource and
select Add Existing File… to display the Add existing file to resources dialog.

4. Locate the image files you wish to add as resources and click the Open button. We
provided three sample images in the Images folder with this chapter’s examples.

5. Save your project.

The files now appear in a folder named Resources in the Solution Explorer. We’ll use
this technique in most examples that use images going forward.

A project’s resources are accessible to the app via its Resources class (of the project’s
Properties namespace). The Resources class contains a ResourceManager object for
interacting with the resources programmatically. To access an image, you can use the
method GetObject, which takes as an argument the resource name as it appears in the
Resources tab (e.g., "image0") and returns the resource as an Object. Lines 27–28 invoke
GetObject with the result of the string-interpolation expression

which builds the name of the resource by placing the index of the next picture (ImageNum-
ber, which was obtained earlier in line 23) at the end of the word "image". You must con-
vert this Object to type Image (namespace System.Drawing) to assign it to the
PictureBox’s Image property (lines 26–28).

The Resources class also provides direct access to the resources you define with
expressions of the form Resources.resourceName, where resourceName is the name you
provided to the resource when you created it. When using such an expression, the resource
returned already has the appropriate type. For example, Properties.Resources.image0
is an Image object representing the first image.

14.9 ToolTips
In Chapter 2, we demonstrated tool tips—the helpful text that appears when the mouse
hovers over an item in a GUI. Recall that the tool tips in Visual Studio (and most apps
with GUIs) help you become familiar with the IDE’s features and serve as useful reminders
for each toolbar icon’s functionality. This section demonstrates how to use the ToolTip
component to add tool tips to your apps. Figure 14.31 describes common properties and
a common event of class ToolTip.

$"image{ImageNumber}"

ptg18189312

14.9 ToolTips 427

When you add a ToolTip component from the Toolbox, it appears in the component
tray—at the bottom of the window when the Form is in Design mode. Once a ToolTip is
added to a Form, a new property appears in the Properties window for the Form’s other con-
trols. This property appears in the Properties window as ToolTip on, followed by the name
of the ToolTip component. For instance, if our Form’s ToolTip were named helpful-
ToolTip, you would set a control’s ToolTip on helpfulToolTip property value to specify the
control’s tool tip text. Figure 14.32 demonstrates the ToolTip component. For this
example, we create a GUI containing two Labels, so we can demonstrate different tool tip
text for each Label. Since there’s no event-handling code in this example, we do not show
you the code for the Form class.

In this example, the IDE named the ToolTip component toolTip1. Figure 14.33
shows the ToolTip in the component tray. We set the tool tip text for the first Label to
"First Label" and the tool tip text for the second Label to "Second Label". Figure 14.34
demonstrates setting the tool tip text for the first Label.

ToolTip properties
and an event Description

Common Properties
AutoPopDelay The amount of time (in milliseconds) that the tool tip

appears while the mouse is over a control.
InitialDelay The amount of time (in milliseconds) that a mouse must

hover over a control before a tool tip appears.
ReshowDelay The amount of time (in milliseconds) between which two

different tool tips appear (when the mouse is moved from
one control to another).

Common Event
Draw Raised when the tool tip is about to be displayed. This

event allows programmers to modify the appearance of the
tool tip.

Fig. 14.31 | ToolTip properties and an event.

Fig. 14.32 | Demonstrating the ToolTip component.

a) b)

ptg18189312

428 Chapter 14 Graphical User Interfaces with Windows Forms: Part 1

14.10 NumericUpDown Control
At times, you’ll want to restrict a user’s input choices to a specific range of numeric values.
This is the purpose of the NumericUpDown control. This control appears as a TextBox, with
two small Buttons on the right side—one with an up arrow and one with a down arrow.
By default, a user can type numeric values into this control as if it were a TextBox or click
the up and down arrows to increase or decrease the value in the control, respectively. The
largest and smallest values in the range are specified with the Maximum and Minimum prop-
erties, respectively (both of type decimal). The Increment property (also of type decimal)
specifies by how much the current value changes when the user clicks the arrows. Property
DecimalPlaces specifies the number of decimal places that the control should display.
Figure 14.35 describes common NumericUpDown properties and an event.

Fig. 14.33 | Demonstrating the component tray.

Fig. 14.34 | Setting a control’s tool tip text.

NumericUpDown
properties and an event Description

Common Properties
DecimalPlaces Specifies how many decimal places to display in the control.
Increment Specifies by how much the current number in the control

changes when the user clicks the control’s up and down arrows.

Fig. 14.35 | NumericUpDown properties and an event. (Part 1 of 2.)

ToolTip in
component tray

Property to set
tool tip text

Tool tip text

ptg18189312

14.10 NumericUpDown Control 429

Figure 14.36 demonstrates a NumericUpDown control in a GUI that calculates interest
rate. The calculations performed in this app are similar to those in Fig. 6.6. TextBoxes are
used to input the principal and interest rate amounts, and a NumericUpDown control is used
to input the number of years for which we want to calculate interest.

Maximum Largest value in the control’s range.
Minimum Smallest value in the control’s range.
UpDownAlign Modifies the alignment of the up and down Buttons on the

NumericUpDown control. This property can be used to display
these Buttons either to the left or to the right of the control.

Value The numeric value currently displayed in the control.

Common Event
ValueChanged This event is raised when the value in the control is changed.

This is the default event for the NumericUpDown control.

1 // Fig. 14.36: InterestCalculatorForm.cs
2 // Demonstrating the NumericUpDown control.
3 using System;
4 using System.Windows.Forms;
5
6 namespace NumericUpDownTest
7 {
8 public partial class InterestCalculatorForm : Form
9 {

10 // default constructor
11 public InterestCalculatorForm()
12 {
13 InitializeComponent();
14 }
15
16 private void calculateButton_Click(object sender, EventArgs e)
17 {
18 // retrieve user input
19 decimal principal = decimal.Parse(principalTextBox.Text);
20 double rate = double.Parse(interestTextBox.Text);
21 int year = (int) yearUpDown.Value;
22
23 // set output header
24 string output = "Year\tAmount on Deposit\r\n";
25

Fig. 14.36 | Demonstrating the NumericUpDown control. (Part 1 of 2.)

NumericUpDown
properties and an event Description

Fig. 14.35 | NumericUpDown properties and an event. (Part 2 of 2.)

ptg18189312

430 Chapter 14 Graphical User Interfaces with Windows Forms: Part 1

For the NumericUpDown control named yearUpDown, we set the Minimum property to 1
and the Maximum property to 10. We left the Increment property set to 1, its default value.
These settings specify that users can enter a number of years in the range 1 to 10 in incre-
ments of 1. If we had set the Increment to 0.5, we could also input values such as 1.5 or
2.5. If you don’t modify the DecimalPlaces property (0 by default), 1.5 and 2.5 display
as 2 and 3, respectively. We set the NumericUpDown’s ReadOnly property to true to indi-
cate that the user cannot type a number into the control to make a selection. Thus, the
user must click the up and down arrows to modify the value in the control. By default, the
ReadOnly property is set to false. The output for this app is displayed in a multiline read-
only TextBox with a vertical scrollbar, so the user can scroll through the entire output.
Notice that \r\n is required (lines 24 and 31) to move to the next line in the TextBox.

14.11 Mouse-Event Handling
This section explains how to handle mouse events, such as clicks and moves, which are
generated when the user interacts with a control via the mouse. Mouse events can be han-
dled for any control that derives from class System.Windows.Forms.Control. For most
mouse events, information about the event is passed to the event-handling method
through an object of class MouseEventArgs, and the delegate used to create the mouse-
event handlers is MouseEventHandler. Each mouse-event-handling method for these
events requires an object and a MouseEventArgs object as arguments.

26 // calculate amount after each year and append to output
27 for (int yearCounter = 1; yearCounter <= year; ++yearCounter)
28 {
29 decimal amount = principal *
30 ((decimal) Math.Pow((1 + rate / 100), yearCounter));
31 output += $"{yearCounter}\t{amount:C}\r\n";
32 }
33
34 displayTextBox.Text = output; // display result
35 }
36 }
37 }

Fig. 14.36 | Demonstrating the NumericUpDown control. (Part 2 of 2.)

NumericUpDown
control

Click to increase
number of years

Click to decrease
number of years

ptg18189312

14.11 Mouse-Event Handling 431

Class MouseEventArgs contains information related to the mouse event, such as the
mouse pointer’s x- and y-coordinates, the mouse button pressed (Right, Left or Middle)
and the number of times the mouse was clicked. The x- and y-coordinates of the Mouse-
EventArgs object are relative to the control that generated the event—i.e., point (0,0) rep-
resents the upper-left corner of the control where the mouse event occurred. Several
common mouse events and event arguments are described in Fig. 14.37.

Figure 14.38 uses mouse events to draw on a Form. Whenever the user drags the mouse
(i.e., moves the mouse while a mouse button is pressed), small circles appear on the Form
at the position where each mouse event occurs during the drag operation.

Mouse events and event arguments

Mouse Events with Event Argument of Type EventArgs
MouseEnter Mouse cursor enters the control’s boundaries.
MouseHover Mouse cursor hovers within the control’s boundaries.
MouseLeave Mouse cursor leaves the control’s boundaries.

Mouse Events with Event Argument of Type MouseEventArgs
MouseDown Mouse button is pressed while the mouse cursor is within a control’s boundaries.
MouseMove Mouse cursor is moved while in the control’s boundaries.
MouseUp Mouse button is released when the cursor is over the control’s boundaries.
MouseWheel Mouse wheel is moved while the control has the focus.

Class MouseEventArgs Properties
Button Specifies which mouse button was pressed (Left, Right, Middle or None).
Clicks The number of times that the mouse button was clicked.
X The x-coordinate within the control where the event occurred.
Y The y-coordinate within the control where the event occurred.

Fig. 14.37 | Mouse events and event arguments.

1 // Fig. 14.38: PainterForm.cs
2 // Using the mouse to draw on a Form.
3 using System;
4 using System.Drawing;
5 using System.Windows.Forms;
6
7 namespace Painter
8 {
9 // creates a Form that’s a drawing surface

10 public partial class PainterForm : Form
11 {
12 bool ShouldPaint { get; set; } = false; // whether to paint
13

Fig. 14.38 | Using the mouse to draw on a Form. (Part 1 of 2.)

ptg18189312

432 Chapter 14 Graphical User Interfaces with Windows Forms: Part 1

14 // default constructor
15 public PainterForm()
16 {
17 InitializeComponent();
18 }
19
20 // should paint when mouse button is pressed down
21 private void PainterForm_MouseDown(object sender, MouseEventArgs e)
22 {
23 // indicate that user is dragging the mouse
24 ShouldPaint = true;
25 }
26
27 // stop painting when mouse button is released
28 private void PainterForm_MouseUp(object sender, MouseEventArgs e)
29 {
30 // indicate that user released the mouse button
31 ShouldPaint = false;
32 }
33
34 // draw circle whenever mouse moves with its button held down
35 private void PainterForm_MouseMove(object sender, MouseEventArgs e)
36 {
37 if (ShouldPaint) // check if mouse button is being pressed
38 {
39 // draw a circle where the mouse pointer is present
40 using (Graphics graphics = CreateGraphics())
41 {
42 graphics.FillEllipse(
43 new SolidBrush(Color.BlueViolet), e.X, e.Y, 4, 4);
44 }
45 }
46 }
47 }
48 }

Fig. 14.38 | Using the mouse to draw on a Form. (Part 2 of 2.)

ptg18189312

14.12 Keyboard-Event Handling 433

In line 12, the program declares property ShouldPaint, which determines whether to
draw on the Form. We want the program to draw only while the mouse button is pressed
(i.e., held down). Thus, when the user clicks or holds down a mouse button, the system
generates a MouseDown event, and the event handler (lines 21–25) sets ShouldPaint to
true. When the user releases the mouse button, the system generates a MouseUp event,
ShouldPaint is set to false in the PainterForm_MouseUp event handler (lines 28–32) and
the program stops drawing. Unlike MouseMove events, which occur continuously as the
user moves the mouse, the system generates a MouseDown event only when a mouse button
is first pressed and generates a MouseUp event only when a mouse button is released.

Whenever the mouse moves over a control, the MouseMove event for that control
occurs. Inside the PainterForm_MouseMove event handler (lines 35–46), the program
draws only if ShouldPaint is true (i.e., a mouse button is pressed). In the using state-
ment, line 40 calls inherited Form method CreateGraphics to create a Graphics object
that allows the program to draw on the Form. Class Graphics provides methods that draw
various shapes. For example, lines 42–43 use method FillEllipse to draw a circle. The
first parameter to method FillEllipse in this case is an object of class SolidBrush, which
specifies the solid color that will fill the shape. The color is provided as an argument to
class SolidBrush’s constructor. Type Color contains numerous predefined color con-
stants—we selected Color.BlueViolet. FillEllipse draws an oval in a bounding rect-
angle that’s specified by the x- and y-coordinates of its upper-left corner, its width and its
height—the final four arguments to the method. The x- and y-coordinates represent the
location of the mouse event and can be taken from the mouse-event arguments (e.X and
e.Y). To draw a circle, we set the width and height of the bounding rectangle so that
they’re equal—in this example, both are 4 pixels. Graphics, SolidBrush and Color are all
part of the namespace System.Drawing. Recall from Chapter 13 that the using statement
automatically calls Dispose on the object that was created in the parentheses following
keyword using. This is important because Graphics objects are a limited resource. Calling
Dispose on a Graphics object ensures that its resources are returned to the system for
reuse.

14.12 Keyboard-Event Handling
Key events occur when keyboard keys are pressed and released. Such events can be handled
for any control that inherits from System.Windows.Forms.Control. There are three key
events—KeyPress, KeyUp and KeyDown. The KeyPress event occurs when the user presses
a character key or the space or backspace keys. The specific key can be determined with
property KeyChar of the event handler’s KeyPressEventArgs argument.

The KeyPress event does not indicate whether modifier keys (e.g., Shift, Alt and Ctrl)
were pressed when a key event occurred. If this information is important, the KeyUp or Key-
Down events can be used. The KeyEventArgs argument for each of these events contains
information about modifier keys. Figure 14.39 lists important key event information. Sev-
eral properties return values from the Keys enumeration, which provides constants that
specify the various keys on a keyboard. Like the FontStyle enumeration (Section 14.7), the
Keys enumeration is represented with a set of bits, so the enumeration’s constants can be
combined with the bitwise operators to indicate multiple keys pressed at the same time.

ptg18189312

434 Chapter 14 Graphical User Interfaces with Windows Forms: Part 1

Figure 14.40 demonstrates the use of the key-event handlers to display a key pressed
by a user. The program is a Form with two Labels that displays the pressed key on one
Label and modifier key information on the other.

Keyboard events and event arguments

Key Events with Event Arguments of Type KeyEventArgs
KeyDown Generated when a key is initially pressed.
KeyUp Generated when a key is released.

Key Event with Event Argument of Type KeyPressEventArgs
KeyPress Generated when a key is pressed. Raised after KeyDown and before KeyUp.

Class KeyPressEventArgs Property
KeyChar Returns the ASCII character for the key pressed.

Class KeyEventArgs Properties
Alt Indicates whether the Alt key was pressed.
Control Indicates whether the Ctrl key was pressed.
Shift Indicates whether the Shift key was pressed.
KeyCode Returns the key code for the key as a value from the Keys enumeration. This

does not include modifier-key information. It’s used to test for a specific key.
KeyData Returns the key code for a key combined with modifier information as a Keys

value. This property contains all information about the pressed key.
KeyValue Returns the key code as an int, rather than as a value from the Keys enumera-

tion. This property is used to obtain a numeric representation of the pressed
key. The int value is known as a Windows virtual key code.

Modifiers Returns a Keys value indicating any pressed modifier keys (Alt, Ctrl and Shift).
This property is used to determine modifier-key information only.

Fig. 14.39 | Keyboard events and event arguments.

1 // Fig. 14.40: KeyDemo.cs
2 // Displaying information about the key the user pressed.
3 using System;
4 using System.Windows.Forms;
5
6 namespace KeyDemo
7 {
8 // Form to display key information when key is pressed
9 public partial class KeyDemo : Form

10 {
11 // default constructor
12 public KeyDemo()
13 {
14 InitializeComponent();
15 }

Fig. 14.40 | Displaying information about the key the user pressed. (Part 1 of 2.)

ptg18189312

14.12 Keyboard-Event Handling 435

16
17 // display the character pressed using KeyChar
18 private void KeyDemo_KeyPress(object sender, KeyPressEventArgs e)
19 {
20 charLabel.Text = $"Key pressed: {e.KeyChar}";
21 }
22
23 // display modifier keys, key code, key data and key value
24 private void KeyDemo_KeyDown(object sender, KeyEventArgs e)
25 {
26 keyInfoLabel.Text =
27 $"Alt: {(e.Alt ? "Yes" : "No")}\n" +
28 $"Shift: {(e.Shift ? "Yes" : "No")}\n" +
29 $"Ctrl: {(e.Control ? "Yes" : "No")}\n" +
30 $"KeyCode: {e.KeyCode}\n" +
31 $"KeyData: {e.KeyData}\n" +
32 $"KeyValue: {e.KeyValue}";
33 }
34
35 // clear Labels when key released
36 private void KeyDemo_KeyUp(object sender, KeyEventArgs e)
37 {
38 charLabel.Text = "";
39 keyInfoLabel.Text = "";
40 }
41 }
42 }

Fig. 14.40 | Displaying information about the key the user pressed. (Part 2 of 2.)

a) H pressed b) F7 pressed

d) Tab pressedc) $ pressed

ptg18189312

436 Chapter 14 Graphical User Interfaces with Windows Forms: Part 1

Control charLabel displays the character value of the key pressed, whereas keyInfo-
Label displays information relating to the pressed key. Because the KeyDown and KeyPress
events convey different information, the Form (KeyDemo) handles both.

The KeyPress event handler (lines 18–21) accesses the KeyChar property of the Key-
PressEventArgs object. This returns the pressed key as a char, which we then display in
charLabel (line 20). If the pressed key is not an ASCII character, then the KeyPress event
will not occur, and charLabel will not display any text. ASCII is a common encoding
format for letters, numbers, punctuation marks and other characters. It does not support
keys such as the function keys (like F1) or the modifier keys (Alt, Ctrl and Shift).

The KeyDown event handler (lines 24–33) displays information from its KeyEventArgs
object. The handler tests for the Alt, Shift and Ctrl keys using the Alt, Shift and Control
properties that each return a bool—true if the corresponding key is pressed and false
otherwise. The handler then displays the KeyCode, KeyData and KeyValue properties.

The KeyCode property returns a Keys enumeration value (line 30). The KeyCode prop-
erty returns the pressed key, but does not provide any information about modifier keys.
Thus, both a capital and a lowercase “a” are represented as the A key.

The KeyData property (line 31) also returns a Keys enumeration value, but also
includes modifier-key data. Thus, if “A” is input, the KeyData shows that both A and Shift
were pressed. Lastly, KeyValue (line 32) returns an int representing a pressed key. This
int is the key code. The key code is useful when testing for non-ASCII keys like F12.

The KeyUp event handler (lines 36–40) clears both Labels when the key is released.
As we can see from the output, non-ASCII keys are not displayed in charLabel, because
the KeyPress event is not generated. For example, charLabel does not display any text
when you press the F7 key, as shown in Fig. 14.40(b). However, the KeyDown event still is
generated, and keyInfoLabel displays information about the key that’s pressed. The Keys
enumeration can be used to test for specific keys by comparing the KeyCode of the pressed
key to values in the Keys enumeration.

By default, a keyboard event is handled by the control that currently has the focus.
Sometimes it’s appropriate to have the Form handle these events. This can be accomplished
by setting the Form’s KeyPreview property to true, which makes the Form receive keyboard
events before they’re passed to another control—for example, a key press would raise the
Form’s KeyPress, even if a control within the Form has the focus instead of the Form itself.

14.13 Wrap-Up
This chapter introduced several common GUI controls. We discussed event handling in
detail, and showed how to create event handlers. We showed how delegates are used to
connect event handlers to the events of specific controls. You learned how to use a con-
trol’s properties and Visual Studio to specify the layout of your GUI. We then demonstrat-
ed several controls, beginning with Labels, Buttons and TextBoxes. You learned how to
use GroupBoxes and Panels to organize other controls. We then demonstrated CheckBoxes

Software Engineering Observation 14.2
To cause a control to react when a particular key is pressed (such as Enter), handle a key
event and test for the pressed key. To cause a Button to be clicked when the Enter key is
pressed on a Form, set the Form’s AcceptButton property.

ptg18189312

14.13 Wrap-Up 437

and RadioButtons, which are state buttons that allow users to select among several op-
tions. We displayed images in PictureBox controls, displayed helpful text on a GUI with
ToolTip components and specified a range of numeric input values for users with a Nu-
mericUpDown control. We then demonstrated how to handle mouse and keyboard events.
The next chapter introduces additional GUI controls. You’ll learn how to add menus to
your GUIs and create Windows Forms apps that display multiple Forms.

ptg18189312

15
Graphical User Interfaces with

Windows Forms: Part 2

v

O b j e c t i v e s
In this chapter you’ll:

■ Create menus, tabbed windows and multiple document
interface (MDI) programs.

■ Use the ListView and TreeView controls for displaying
information.

■ Create hyperlinks using the LinkLabel control.
■ Display lists of information in ListBox,
CheckedListBox and ComboBox controls.

■ Input dates with the MonthCalendar control.
■ Input date and time data with the DateTimePicker

control.
■ Create custom controls.
■ Use visual inheritance to build upon an existing GUI.

ptg18189312

15.1 Introduction 439

O
u

tl
in

e

15.1 Introduction
Here we continue our Windows Forms presentation. We start with menus, which present
users with logically organized commands (or options). We show how to create menus in the
Windows Forms designer. We discuss how to input and display dates and times using the
MonthCalendar and DateTimePicker controls. We also introduce LinkLabels that can hy-
perlink to a file on the current machine or a web page, simply by clicking the mouse.

We demonstrate how to manipulate lists of values via a ListBox and ListView and how
to combine several checkboxes in a CheckedListBox. We also create drop-down lists using
ComboBoxes and display data hierarchically with a TreeView control. You’ll learn two other
important GUI elements—tab controls and multiple document interface (MDI) windows.
These components enable you to create real-world programs with sophisticated GUIs. You’ll
use visual inheritance to build upon an existing GUI.

Visual Studio provides many GUI components, several of which are discussed in this
(and the previous) chapter. You also can design custom controls and add them to the
ToolBox, as we demonstrate in this chapter’s last example. The techniques presented here
form the groundwork for creating more substantial GUIs and custom controls.

15.2 Menus
Menus provide groups of related commands for Windows Forms apps. Although these
commands depend on the program, some—such as Open and Save—are common to many
apps. Menus are an integral part of GUIs, because they organize commands without “clut-
tering” the GUI.

In Fig. 15.1, an expanded menu from Visual Studio lists various commands (called
menu items), plus submenus (menus within a menu). The top-level menus appear in the
left portion of the figure, whereas any submenus or menu items are displayed to the right.
The menu that contains a menu item is called that menu item’s parent menu. A menu
item that contains a submenu is considered to be the parent of that submenu.

Menus can have Alt key shortcuts (also called access shortcuts, keyboard shortcuts or
hotkeys), which are accessed by pressing Alt and the underlined letter—for example,
Alt + F typically expands the File menu. Menu items can have shortcut keys as well (com-
binations of Ctrl, Shift, Alt, F1, F2, letter keys, and so on). Some menu items display
checkmarks, usually indicating that multiple options on the menu can be selected at once.

15.1 Introduction
15.2 Menus
15.3 MonthCalendar Control
15.4 DateTimePicker Control
15.5 LinkLabel Control
15.6 ListBox Control
15.7 CheckedListBox Control
15.8 ComboBox Control

15.9 TreeView Control
15.10 ListView Control
15.11 TabControl Control
15.12 Multiple Document Interface (MDI)

Windows
15.13 Visual Inheritance
15.14 User-Defined Controls
15.15 Wrap-Up

ptg18189312

440 Chapter 15 Graphical User Interfaces with Windows Forms: Part 2

To create a menu, open the Toolbox and drag a MenuStrip control onto the Form. This
creates a menu bar across the top of the Form (below the title bar) and places a MenuStrip
icon in the component tray. To select the MenuStrip, click this icon. You can now use
Design mode to create and edit menus for your app. Menus, like other controls, have prop-
erties and events, which can be accessed through the Properties window.

To add menu items to the menu, click the Type Here TextBox (Fig. 15.2) and type the
menu item’s name. This action adds an entry to the menu of type ToolStripMenuItem.
After you press the Enter key, the menu item name is added to the menu. Then more Type

Here TextBoxes appear, allowing you to add items underneath or to the side of the original
menu item (Fig. 15.3).

To create an access shortcut, type an ampersand (&) before the character to be under-
lined. For example, to create the File menu item with the letter F underlined, type &File. To
display an ampersand, type &&. To add other shortcut keys (e.g., Ctrl + F9) for menu items,
set the ShortcutKeys property of the appropriate ToolStripMenuItems. To do this, select
the down arrow to the right of this property in the Properties window. In the window that
appears (Fig. 15.4), use the CheckBoxes and drop-down list to select the shortcut keys. When
you’re finished, click elsewhere on the screen. You can hide the shortcut keys by setting prop-
erty ShowShortcutKeys to false, and you can modify how the shortcut keys are displayed
in the menu item by modifying property ShortcutKeyDisplayString.

Fig. 15.1 | Menus, submenus and menu items.

Checked menu item

Submenu

Separator bar

Shortcut key Disabled commandsMenu Menu items

Menu icons

ptg18189312

15.2 Menus 441

Fig. 15.2 | Editing menus in Visual Studio.

Fig. 15.3 | Adding ToolStripMenuItems to a MenuStrip.

Fig. 15.4 | Setting a menu item’s shortcut keys.

MenuStrip icon

Type menu name
in TextBox Main menu bar

Place & character
before a letter to

underline it in the
menu, so the

character can be
used as an access

shortcut

TextBoxes for
adding more menus
or for adding items
to the selected menu

Select key (modifier
and key combination

for the menu item)

Use these checkboxes to
specify modifier keys

ptg18189312

442 Chapter 15 Graphical User Interfaces with Windows Forms: Part 2

\You can remove a menu item by selecting it and pressing the Delete key. Menu items
can be grouped logically by separator bars, which are inserted by right clicking the menu
and selecting Insert > Separator or by typing “-” for the text of a menu item.

In addition to text, Visual Studio allows you to easily add TextBoxes and ComboBoxes
(drop-down lists) as menu items. When adding an item in Design mode, you may have
noticed that before you enter text for a new item, you’re provided with a drop-down list.
Clicking the down arrow (Fig. 15.5) allows you to select the type of item to add—Menu-

Item (of type ToolStripMenuItem, the default), ComboBox (of type ToolStripComboBox)
and TextBox (of type ToolStripTextBox). We focus on ToolStripMenuItems. [Note: If you
view this drop-down list for menu items that are not on the top level, a fourth option
appears, allowing you to insert a separator bar.]

ToolStripMenuItems generate a Click event when selected. To create an empty Click
event handler, double click the menu item in Design mode. Common actions in response
to these events include displaying dialogs and setting properties. Common menu proper-
ties and a common event are summarized in Fig. 15.6.

Look-and-Feel Observation 15.1
Buttons can have access shortcuts. Place the & symbol immediately before the desired char-
acter in the Button’s text. To press the button by using its access key in the running app,
the user presses Alt and the underlined character. If the underline is not visible when the
app runs, press the Alt key to display the underlines.

Fig. 15.5 | Menu-item options.

Look-and-Feel Observation 15.2
It’s a convention to place an ellipsis (…) after the name of a menu item (e.g., Save As…)
that requires the user to provide more information—typically through a dialog. A menu
item that produces an immediate action without prompting the user for more information
(e.g., Save) should not have an ellipsis following its name.

Menu item options

ptg18189312

15.2 Menus 443

Class MenuTestForm (Fig. 15.7) creates a simple menu on a Form. The Form has a top-
level File menu with menu items About (which displays a MessageBox) and Exit (which ter-
minates the program). The program also includes a Format menu, which contains menu
items that change the format of the text on a Label. The Format menu has submenus Color

and Font, which change the color and font of the text on a Label.

MenuStrip and
ToolStripMenuItem
properties and an event Description

MenuStrip Properties
RightToLeft Causes text to display from right to left. This is useful for languages that

are read from right to left.

ToolStripMenuItem Properties
Checked Indicates whether a menu item is checked. The default value is false,

meaning that the menu item is unchecked.
CheckOnClick Indicates that a menu item should appear checked or unchecked as it is

clicked.
ShortcutKey-
DisplayString

Specifies text that should appear beside a menu item for a shortcut key.
If left blank, the key names are displayed. Otherwise, the text in this
property is displayed for the shortcut key.

ShortcutKeys Specifies the shortcut key for the menu item (e.g., <Ctrl>-F9 is equiva-
lent to clicking a specific item).

ShowShortcutKeys Indicates whether a shortcut key is shown beside menu item text. The
default is true, which displays the shortcut key.

Text Specifies the menu item’s text. To create an Alt access shortcut, precede
a character with & (e.g., &File to specify a menu named File with the
letter F underlined).

Common ToolStripMenuItem Event
Click Generated when an item is clicked or a shortcut key is used. This is the

default event when the menu is double clicked in the designer.

Fig. 15.6 | MenuStrip and ToolStripMenuItem properties and an event.

1 // Fig. 15.7: MenuTestForm.cs
2 // Using Menus to change font colors and styles.
3 using System;
4 using System.Drawing;
5 using System.Windows.Forms;
6
7 namespace MenuTest
8 {
9 // our Form contains a Menu that changes the font color

10 // and style of the text displayed in Label

Fig. 15.7 | Using menus to change text font and color. (Part 1 of 5.)

ptg18189312

444 Chapter 15 Graphical User Interfaces with Windows Forms: Part 2

11 public partial class MenuTestForm : Form
12 {
13 // constructor
14 public MenuTestForm()
15 {
16 InitializeComponent();
17 }
18
19 // display MessageBox when About ToolStripMenuItem is selected
20 private void aboutToolStripMenuItem_Click(
21 object sender, EventArgs e)
22 {
23 MessageBox.Show("This is an example\nof using menus.", "About",
24 MessageBoxButtons.OK, MessageBoxIcon.Information);
25 }
26
27 // exit program when Exit ToolStripMenuItem is selected
28 private void exitToolStripMenuItem_Click(object sender, EventArgs e)
29 {
30 Application.Exit();
31 }
32
33 // reset checkmarks for Color ToolStripMenuItems
34 private void ClearColor()
35 {
36 // clear all checkmarks
37 blackToolStripMenuItem.Checked = false;
38 blueToolStripMenuItem.Checked = false;
39 redToolStripMenuItem.Checked = false;
40 greenToolStripMenuItem.Checked = false;
41 }
42
43 // update Menu state and color display black
44 private void blackToolStripMenuItem_Click(
45 object sender, EventArgs e)
46 {
47 // reset checkmarks for Color ToolStripMenuItems
48 ClearColor();
49
50 // set color to Black
51 displayLabel.ForeColor = Color.Black;
52 blackToolStripMenuItem.Checked = true;
53 }
54
55 // update Menu state and color display blue
56 private void blueToolStripMenuItem_Click(object sender, EventArgs e)
57 {
58 // reset checkmarks for Color ToolStripMenuItems
59 ClearColor();
60
61 // set color to Blue
62 displayLabel.ForeColor = Color.Blue;

Fig. 15.7 | Using menus to change text font and color. (Part 2 of 5.)

ptg18189312

15.2 Menus 445

63 blueToolStripMenuItem.Checked = true;
64 }
65
66 // update Menu state and color display red
67 private void redToolStripMenuItem_Click(
68 object sender, EventArgs e)
69 {
70 // reset checkmarks for Color ToolStripMenuItems
71 ClearColor();
72
73 // set color to Red
74 displayLabel.ForeColor = Color.Red;
75 redToolStripMenuItem.Checked = true;
76 }
77
78 // update Menu state and color display green
79 private void greenToolStripMenuItem_Click(
80 object sender, EventArgs e)
81 {
82 // reset checkmarks for Color ToolStripMenuItems
83 ClearColor();
84
85 // set color to Green
86 displayLabel.ForeColor = Color.Green;
87 greenToolStripMenuItem.Checked = true;
88 }
89
90 // reset checkmarks for Font ToolStripMenuItems
91 private void ClearFont()
92 {
93 // clear all checkmarks
94 timesToolStripMenuItem.Checked = false;
95 courierToolStripMenuItem.Checked = false;
96 comicToolStripMenuItem.Checked = false;
97 }
98
99 // update Menu state and set Font to Times New Roman
100 private void timesToolStripMenuItem_Click(
101 object sender, EventArgs e)
102 {
103 // reset checkmarks for Font ToolStripMenuItems
104 ClearFont();
105
106 // set Times New Roman font
107 timesToolStripMenuItem.Checked = true;
108 displayLabel.Font = new Font("Times New Roman", 14,
109 displayLabel.Font.Style);
110 }
111

Fig. 15.7 | Using menus to change text font and color. (Part 3 of 5.)

ptg18189312

446 Chapter 15 Graphical User Interfaces with Windows Forms: Part 2

112 // update Menu state and set Font to Courier
113 private void courierToolStripMenuItem_Click(
114 object sender, EventArgs e)
115 {
116 // reset checkmarks for Font ToolStripMenuItems
117 ClearFont();
118
119 // set Courier font
120 courierToolStripMenuItem.Checked = true;
121 displayLabel.Font = new Font("Courier", 14,
122 displayLabel.Font.Style);
123 }
124
125 // update Menu state and set Font to Comic Sans MS
126 private void comicToolStripMenuItem_Click(
127 object sender, EventArgs e)
128 {
129 // reset checkmarks for Font ToolStripMenuItems
130 ClearFont();
131
132 // set Comic Sans font
133 comicToolStripMenuItem.Checked = true;
134 displayLabel.Font = new Font("Comic Sans MS", 14,
135 displayLabel.Font.Style);
136 }
137
138 // toggle checkmark and toggle bold style
139 private void boldToolStripMenuItem_Click(object sender, EventArgs e)
140 {
141 // toggle checkmark
142 boldToolStripMenuItem.Checked = !boldToolStripMenuItem.Checked;
143
144 // use Xor to toggle bold, keep all other styles
145 displayLabel.Font = new Font(displayLabel.Font,
146 displayLabel.Font.Style ^ FontStyle.Bold);
147 }
148
149 // toggle checkmark and toggle italic style
150 private void italicToolStripMenuItem_Click(
151 object sender, EventArgs e)
152 {
153 // toggle checkmark
154 italicToolStripMenuItem.Checked =
155 !italicToolStripMenuItem.Checked;
156
157 // use Xor to toggle italic, keep all other styles
158 displayLabel.Font = new Font(displayLabel.Font,
159 displayLabel.Font.Style ^ FontStyle.Italic);
160 }
161 }
162 }

Fig. 15.7 | Using menus to change text font and color. (Part 4 of 5.)

ptg18189312

15.2 Menus 447

Create the GUI
To create this GUI, begin by dragging the MenuStrip from the ToolBox onto the Form.
Then use Design mode to create the menu structure shown in the sample outputs. The File

menu (fileToolStripMenuItem) has menu items

• About (aboutToolStripMenuItem) and

• Exit (exitToolStripMenuItem).

The Format menu (formatToolStripMenuItem) has two submenus. The first submenu,
Color (colorToolStripMenuItem), contains menu items

• Black (blackToolStripMenuItem),

• Blue (blueToolStripMenuItem),

• Red (redToolStripMenuItem) and

• Green (greenToolStripMenuItem).

The second submenu, Font (fontToolStripMenuItem), contains menu items

• Times New Roman (timesToolStripMenuItem),

Fig. 15.7 | Using menus to change text font and color. (Part 5 of 5.)

a) Initial GUI b) Selecting the Bold menu item

c) GUI after text set to bold d) Selecting the Red menu item

e) GUI after text set to Red f) Dialog displayed by selecting File > About

ptg18189312

448 Chapter 15 Graphical User Interfaces with Windows Forms: Part 2

• Courier (courierToolStripMenuItem),

• Comic Sans (comicToolStripMenuItem),

• a separator bar (dashToolStripMenuItem),

• Bold (boldToolStripMenuItem) and Italic (italicToolStripMenuItem).

Handling the Click Events for the About and Exit Menu Items
The About menu item in the File menu displays a MessageBox when clicked (lines 20–25).
The Exit menu item closes the app through static method Exit of class Application (line
30). Class Application’s static methods control program execution. Method Exit caus-
es our app to terminate.

Color Submenu Events
We made the items in the Color submenu (Black, Blue, Red and Green) mutually exclusive—
the user can select only one at a time (we explain how we did this shortly). To indicate that
a menu item is selected, we will set each Color menu item’s Checked property to true. This
causes a check to appear to the left of a menu item.

Each Color menu item has its own Click event handler. The method handler for color
Black is blackToolStripMenuItem_Click (lines 44–53). Similarly, the event handlers for
colors Blue, Red and Green are blueToolStripMenuItem_Click (lines 56–64), redTool-
StripMenuItem_Click (lines 67–76) and greenToolStripMenuItem_Click (lines 79–88),
respectively. Each Color menu item must be mutually exclusive, so each event handler calls
method ClearColor (lines 34–41) before setting its corresponding Checked property to
true. Method ClearColor sets the Checked property of each color ToolStripMenuItem to
false, effectively preventing more than one menu item from being selected at a time. In
the designer, we initially set the Black menu item’s Checked property to true, because at
the start of the program, the text on the Form is black.

Font Submenu Events
The Font menu contains three menu items for fonts (Courier, Times New Roman and Comic

Sans) and two menu items for font styles (Bold and Italic). We added a separator bar be-
tween the font and font-style menu items to indicate that these are separate options. A
Font object can specify only one font at a time but can set multiple styles at once (e.g., a font
can be both bold and italic). We set the font menu items to display checks. As with the
Color menu, we must enforce mutual exclusion of these items in our event handlers.

Event handlers for font menu items Times New Roman, Courier and Comic Sans are
timesToolStripMenuItem_Click (lines 100–110), courierToolStripMenuItem_Click
(lines 113–123) and comicToolStripMenuItem_Click (lines 126–136), respectively. These
event handlers are similar to those of the Color menu items. Each clears the Checked prop-
erties for all font menu items by calling method ClearFont (lines 91–97), then sets the
Checked property of the menu item that raised the event to true. This enforces the mutual
exclusion of the font menu items. In the designer, we initially set the Times New Roman

menu item’s Checked property to true, because this is the original font for the text on the

Software Engineering Observation 15.1
The mutual exclusion of menu items is not enforced by the MenuStrip, even when the
Checked property is true. You must program this behavior.

ptg18189312

15.3 MonthCalendar Control 449

Form. The event handlers for the Bold and Italic menu items (lines 139–160) use the bitwise
logical exclusive OR (^) operator to combine font styles, as we discussed in Chapter 14.

15.3 MonthCalendar Control
Many apps must perform date and time calculations. The .NET Framework provides two
controls that allow an app to retrieve date and time information—MonthCalendar and Da-
teTimePicker (Section 15.4).

The MonthCalendar (Fig. 15.8) control displays a monthly calendar on the Form. The
user can select a date from the currently displayed month or can use the provided arrows
to navigate to another month. When a date is selected, it is highlighted. Multiple dates can
be selected by clicking dates on the calendar while holding down the Shift key. The default
event for this control is the DateChanged event, which is generated when a new date is
selected. Properties are provided that allow you to modify the appearance of the calendar,
how many dates can be selected at once, and the minimum date and maximum date that
may be selected. MonthCalendar properties and a common MonthCalendar event are sum-
marized in Fig. 15.9.

Fig. 15.8 | MonthCalendar control.

MonthCalendar
properties and an event Description

MonthCalendar Properties
FirstDayOfWeek Sets which day of the week is the first displayed for each week in

the calendar.
MaxDate The last date that can be selected.
MaxSelectionCount The maximum number of dates that can be selected at once.
MinDate The first date that can be selected.
MonthlyBoldedDates An array of dates that will be displayed in bold in the calendar.
SelectionEnd The last of the dates selected by the user.
SelectionRange The dates selected by the user.
SelectionStart The first of the dates selected by the user.

Fig. 15.9 | MonthCalendar properties and an event. (Part 1 of 2.)

Current day is outlined

Selected day is highlighted

ptg18189312

450 Chapter 15 Graphical User Interfaces with Windows Forms: Part 2

15.4 DateTimePicker Control
The DateTimePicker control (see output of Fig. 15.11) is similar to the MonthCalendar
control but displays the calendar when a down arrow is selected. The DateTimePicker can
be used to retrieve date and time information from the user. A DateTimePicker’s Value
property stores a DateTime object, which always contains both date and time information.
You can retrieve the date information from the DateTime object by using property Date,
and you can retrieve only the time information by using the TimeOfDay property.

The DateTimePicker is also more customizable than a MonthCalendar control—
more properties are provided to edit the look and feel of the drop-down calendar. Property
Format specifies the user’s selection options using the DateTimePickerFormat enumera-
tion. The values in this enumeration are Long (displays the date in long format, as in
Thursday, July 10, 2013), Short (displays the date in short format, as in 7/10/2013), Time (dis-
plays a time value, as in 5:31:02 PM) and Custom (indicates that a custom format will be
used). If value Custom is used, the display in the DateTimePicker is specified using prop-
erty CustomFormat. The default event for this control is ValueChanged, which occurs when
the selected value (whether a date or a time) is changed. DateTimePicker properties and a
common event are summarized in Fig. 15.10.

Common MonthCalendar Event
DateChanged Generated when a date is selected in the calendar.

DateTimePicker
properties and an event Description

DateTimePicker Properties
CalendarForeColor Sets the text color for the calendar.
CalendarMonthBackground Sets the calendar’s background color.
CustomFormat Sets the custom format string for the date and/or time dis-

played in the control.
Format Sets the format of the date and/or time used for the date and/or

time displayed in the control.
MaxDate The maximum date and time that can be selected.
MinDate The minimum date and time that can be selected.
ShowCheckBox Indicates if a CheckBox should be displayed to the left of the

selected date and time.

Fig. 15.10 | DateTimePicker properties and an event. (Part 1 of 2.)

MonthCalendar
properties and an event Description

Fig. 15.9 | MonthCalendar properties and an event. (Part 2 of 2.)

ptg18189312

15.4 DateTimePicker Control 451

Figure 15.11 demonstrates using a DateTimePicker to select an item’s drop-off time.
Many companies use such functionality—online retailers typically specify the day a
package is sent out and the estimated time that it will arrive at your home. The user selects
a drop-off day, then an estimated arrival date is displayed. The date is always two days after
drop-off, three days if a Sunday is reached (mail is not delivered on Sunday).

ShowUpDown Indicates whether the control displays up and down Buttons.
Helpful when the DateTimePicker is used to select a time—the
Buttons can be used to increase or decrease hour, minute and
second.

Value The data selected by the user.

Common DateTimePicker Event
ValueChanged Generated when the Value property changes, including when

the user selects a new date or time.

1 // Fig. 15.11: DateTimePickerForm.cs
2 // Using a DateTimePicker to select a drop-off time.
3 using System;
4 using System.Windows.Forms;
5
6 namespace DateTimePickerTest
7 {
8 // Form lets user select a drop-off date using a DateTimePicker
9 // and displays an estimated delivery date

10 public partial class DateTimePickerForm : Form
11 {
12 // constructor
13 public DateTimePickerForm()
14 {
15 InitializeComponent();
16 }
17
18 private void dropOffDateTimePicker_ValueChanged(
19 object sender, EventArgs e)
20 {
21 DateTime dropOffDate = dropOffDateTimePicker.Value;
22
23 // add extra time when items are dropped off Sunday
24 if (dropOffDate.DayOfWeek == DayOfWeek.Friday ||
25 dropOffDate.DayOfWeek == DayOfWeek.Saturday ||
26 dropOffDate.DayOfWeek == DayOfWeek.Sunday)
27 {

Fig. 15.11 | Using a DateTimePicker to select a drop-off time. (Part 1 of 2.)

DateTimePicker
properties and an event Description

Fig. 15.10 | DateTimePicker properties and an event. (Part 2 of 2.)

ptg18189312

452 Chapter 15 Graphical User Interfaces with Windows Forms: Part 2

The DateTimePicker (dropOffDateTimePicker) has its Format property set to Long, so
the user can select just a date in this app. When the user selects a date, the ValueChanged
event occurs. The event handler for this event (lines 18–36) first retrieves the selected date
from the DateTimePicker’s Value property (line 21). Lines 24–26 use the DateTime struc-

28 //estimate three days for delivery
29 outputLabel.Text = dropOffDate.AddDays(3).ToLongDateString();
30 }
31 else
32 {
33 // otherwise estimate only two days for delivery
34 outputLabel.Text = dropOffDate.AddDays(2).ToLongDateString();
35 }
36 }
37
38 private void DateTimePickerForm_Load(object sender, EventArgs e)
39 {
40 // user cannot select days before today
41 dropOffDateTimePicker.MinDate = DateTime.Today;
42
43 // user can only select days up to one year in the future
44 dropOffDateTimePicker.MaxDate = DateTime.Today.AddYears(1);
45 }
46 }
47 }

Fig. 15.11 | Using a DateTimePicker to select a drop-off time. (Part 2 of 2.)

a) GUI when app first executes shows current date b) Selecting a drop-off date

c) GUI after selecting drop-off date d) GUI showing current and selected dates

ptg18189312

15.5 LinkLabel Control 453

ture’s DayOfWeek property to determine the day of the week on which the selected date falls.
The day values are represented using the DayOfWeek enumeration. Lines 29 and 34 use Date-
Time’s AddDays method to increase the date by three days or two days, respectively. The
resulting date is then displayed in Long format using method ToLongDateString.

In this app, we do not want the user to be able to select a drop-off day before the cur-
rent day, or one that’s more than a year into the future. To enforce this, we set the Date-
TimePicker’s MinDate and MaxDate properties when the Form is loaded (lines 41 and 44).
Property Today returns the current day, and method AddYears (with an argument of 1) is
used to specify a date one year in the future.

Let’s take a closer look at the output. This app begins by displaying the current date
(Fig. 15.11(a)). In Fig. 15.11(b), we selected the 23rd of June. In Fig. 15.11(c), the esti-
mated arrival date is displayed as the 25th of June. Figure 15.11(d) shows that the 23rd,
after it is selected, is highlighted in the calendar.

15.5 LinkLabel Control
The LinkLabel control displays links to other resources, such as files or web pages
(Fig. 15.12). A LinkLabel appears as underlined text (colored blue by default). When the
mouse moves over the link, the pointer changes to a hand; this is similar to the behavior
of a hyperlink in a web page. The link can change color to indicate whether it is not yet
visited, previously visited or active (the mouse is over the link and a button is pressed).
When clicked, the LinkLabel generates a LinkClicked event (see Fig. 15.13). Class Link-
Label is derived from class Label and therefore inherits all of class Label’s functionality.

Fig. 15.12 | LinkLabel control in running program.

Look-and-Feel Observation 15.3
A LinkLabel is the preferred control for indicating that the user can click a link to jump
to a resource such as a web page, though other controls can perform similar tasks.

LinkLabel
properties and an
event Description

Common Properties
ActiveLinkColor Specifies the color of the active link when the user is in the process of

clicking the link. The default color (typically red) is set by the system.
LinkArea Specifies which portion of text in the LinkLabel is part of the link.

Fig. 15.13 | LinkLabel properties and an event. (Part 1 of 2.)

LinkLabel on a Form Hand image displays when mouse
moves over LinkLabel

ptg18189312

454 Chapter 15 Graphical User Interfaces with Windows Forms: Part 2

Class LinkLabelTestForm (Fig. 15.14) uses three LinkLabels to link to the C: drive,
the Deitel website (www.deitel.com) and the Notepad app, respectively. The Text proper-
ties of the LinkLabels cDriveLinkLabel, deitelLinkLabel and notepadLinkLabel
describe each link’s purpose.

LinkBehavior Specifies the link’s behavior, such as how the link appears when the mouse
is placed over it.

LinkColor Specifies the original color of the link before it’s been visited. The default
color (typically blue) is set by the system.

LinkVisited If true, the link appears as though it has been visited (its color is changed to
that specified by property VisitedLinkColor). The default value is false.

Text Specifies the control’s text.
UseMnemonic If true, the & character in the Text property acts as a shortcut (similar to

the Alt shortcut in menus).
VisitedLinkColor Specifies the color of a visited link. The default color (typically purple) is

set by the system.

Common Event (Event arguments LinkLabelLinkClickedEventArgs)
LinkClicked Generated when the link is clicked. This is the default event when the

control is double clicked in Design mode.

1 // Fig. 15.14: LinkLabelTestForm.cs
2 // Using LinkLabels to create hyperlinks.
3 using System;
4 using System.Windows.Forms;
5
6 namespace LinkLabelTest
7 {
8 // Form using LinkLabels to browse the C:\ drive,
9 // load a web page and run Notepad

10 public partial class LinkLabelTestForm : Form
11 {
12 // constructor
13 public LinkLabelTestForm()
14 {
15 InitializeComponent();
16 }
17
18 // browse C:\ drive
19 private void cDriveLinkLabel_LinkClicked(object sender,
20 LinkLabelLinkClickedEventArgs e)
21 {

Fig. 15.14 | Using LinkLabels to create hyperlinks. (Part 1 of 3.)

LinkLabel
properties and an
event Description

Fig. 15.13 | LinkLabel properties and an event. (Part 2 of 2.)

http://www.deitel.com

ptg18189312

15.5 LinkLabel Control 455

22 // change LinkColor after it has been clicked
23 cDriveLinkLabel.LinkVisited = true;
24
25 System.Diagnostics.Process.Start(@"C:\");
26 }
27
28 // load www.deitel.com in web browser
29 private void deitelLinkLabel_LinkClicked(object sender,
30 LinkLabelLinkClickedEventArgs e)
31 {
32 // change LinkColor after it has been clicked
33 deitelLinkLabel.LinkVisited = true;
34
35 System.Diagnostics.Process.Start("http://www.deitel.com");
36 }
37
38 // run app Notepad
39 private void notepadLinkLabel_LinkClicked(object sender,
40 LinkLabelLinkClickedEventArgs e)
41 {
42 // change LinkColor after it has been clicked
43 notepadLinkLabel.LinkVisited = true;
44
45 // program called as if in run
46 // menu and full path not needed
47 System.Diagnostics.Process.Start("notepad");
48 }
49 }
50 }

Fig. 15.14 | Using LinkLabels to create hyperlinks. (Part 2 of 3.)

Click first LinkLabel to
look at contents of C: drive

Click second LinkLabel
to go to Deitel website

http://www.deitel.com
http://www.deitel.com"

ptg18189312

456 Chapter 15 Graphical User Interfaces with Windows Forms: Part 2

The event handlers for the LinkLabels call method Start of class Process (name-
space System.Diagnostics), which allows you to execute other programs, or load docu-
ments or web sites from an app. Method Start can take one argument, the file to open,
or two arguments, the app to run and its command-line arguments. Method Start’s argu-
ments can be in the same form as if they were provided for input to the Windows Run com-
mand (Start > Run...). For apps that are known to Windows, full path names are not
needed, and the file extension often can be omitted. To open a file of a type that Windows
recognizes (and knows how to handle), simply use the file’s full path name. For example,
if you a pass the method a .docx file, Windows will open it in Microsoft Word (or what-
ever program is registered to open .docx files, if any). The Windows operating system
must be able to use the app associated with the given file’s extension to open the file.

The event handler for cDriveLinkLabel’s LinkClicked event browses the C: drive
(lines 19–26). Line 23 sets the LinkVisited property to true, which changes the link’s
color from blue to purple (the LinkVisited colors can be configured through the Proper-

ties window in Visual Studio). The event handler then passes @"C:\" to method Start
(line 25), which opens a Windows Explorer window. The @ symbol that we placed before
"C:\" indicates that all characters in the string should be interpreted literally—this is
known as a verbatim string. Thus, the backslash within the string is not considered to
be the first character of an escape sequence. This simplifies strings that represent direc-
tory paths, since you do not need to use \\ for each \ character in the path.

The event handler for deitelLinkLabel’s LinkClicked event (lines 29–36) opens the
web page www.deitel.com in the user’s default web browser. We achieve this by passing
the web-page address as a string (line 35), which opens the web page in a new web
browser window or tab. Line 33 sets the LinkVisited property to true.

The event handler for notepadLinkLabel’s LinkClicked event (lines 39–48) opens
the Notepad app. Line 43 sets the LinkVisited property to true so that the link appears
as a visited link. Line 47 passes the argument "notepad" to method Start, which runs
notepad.exe. In line 47, neither the full path nor the .exe extension is required—Win-
dows automatically recognizes the argument given to method Start as an executable file.

15.6 ListBox Control
The ListBox control allows the user to view and select from multiple items in a list. List-
Boxes are static GUI entities, which means that users cannot directly edit the list of items.

Fig. 15.14 | Using LinkLabels to create hyperlinks. (Part 3 of 3.)

Click on third LinkLabel
to open Notepad

http://www.deitel.com

ptg18189312

15.6 ListBox Control 457

The user can be provided with TextBoxes and Buttons with which to specify items to be
added to the list, but the actual additions must be performed in code. The CheckedList-
Box control (Section 15.7) extends a ListBox by including CheckBoxes next to each item
in the list. This allows users to place checks on multiple items at once, as is possible with
CheckBox controls. (Users also can select multiple items from a ListBox by setting the
ListBox’s SelectionMode property, which is discussed shortly.) Figure 15.15 displays a
ListBox and a CheckedListBox. In both controls, scrollbars appear if the number of items
exceeds the ListBox’s viewable area.

Figure 15.16 lists common ListBox properties and methods and a common event.
The SelectionMode property determines the number of items that can be selected. This
property has the possible values None, One, MultiSimple and MultiExtended (from the
SelectionMode enumeration)—the differences among these settings are explained in
Fig. 15.16. The SelectedIndexChanged event occurs when the user selects a new item.

Fig. 15.15 | ListBox and CheckedListBox on a Form.

ListBox properties,
methods and an event Description

Common Properties
Items The collection of items in the ListBox.
MultiColumn Indicates whether the ListBox can display multiple columns. Mul-

tiple columns eliminate vertical scrollbars from the display.
SelectedIndex Returns the index of the selected item. If no items have been

selected, the property returns -1. If the user selects multiple items,
this property returns only one of the selected indices. If multiple
items are selected, use property SelectedIndices.

SelectedIndices Returns a collection containing the indices for all selected items.
SelectedItem Returns a reference to the selected item. If multiple items are

selected, it can return any of the selected items.
SelectedItems Returns a collection of the selected item(s).

Fig. 15.16 | ListBox properties, methods and an event. (Part 1 of 2.)

CheckedListBox

ListBox

Scrollbars appear
if necessary

Selected items

Checked item

ptg18189312

458 Chapter 15 Graphical User Interfaces with Windows Forms: Part 2

Both the ListBox and CheckedListBox have properties Items, SelectedItem and
SelectedIndex. Property Items returns a collection of the list items. Collections are a
common way to manage lists of objects in the .NET framework. Many .NET GUI com-
ponents (e.g., ListBoxes) use collections to expose lists of internal objects (e.g., items in a
ListBox). We discuss collections further in Chapter 19. The collection returned by prop-
erty Items is represented as an object of type ListBox.ObjectCollection. Property
SelectedItem returns the ListBox’s currently selected item. If the user can select multiple
items, use collection SelectedItems to return all the selected items as a ListBox.Select-
edObjectColection. Property SelectedIndex returns the index of the selected item—if
there could be more than one, use property SelectedIndices, which returns a
ListBox.SelectedIndexCollection. If no items are selected, property SelectedIndex
returns -1. Method GetSelected takes an index and returns true if the corresponding
item is selected.

Adding Items to ListBoxes and CheckedListBoxes
To add items to a ListBox or to a CheckedListBox, we must add objects to its Items col-
lection. This can be accomplished by calling method Add to add a string to the ListBox’s
or CheckedListBox’s Items collection. For example, we could write

to add string myListItem to ListBox myListBox. To add multiple objects, you can either
call method Add multiple times or call method AddRange to add an array of objects. Classes
ListBox and CheckedListBox each call the submitted object’s ToString method to deter-
mine the Label for the corresponding object’s entry in the list. This allows you to add dif-
ferent objects to a ListBox or a CheckedListBox that later can be returned through
properties SelectedItem and SelectedItems.

SelectionMode Determines the number of items that can be selected and the
means through which multiple items can be selected. Values are
None, One (the default), MultiSimple (multiple selection allowed)
or MultiExtended (multiple selection allowed using a combination
of arrow keys or mouse clicks and Shift and Ctrl keys).

Sorted Indicates whether items are sorted alphabetically. Setting this prop-
erty’s value to true sorts the items. The default value is false.

Common Methods
ClearSelected Deselects every item.
GetSelected Returns true if the item at the specified index is selected.

Common Event
SelectedIndexChanged Generated when the selected index changes. This is the default

event when the control is double clicked in the designer.

myListBox.Items.Add(myListItem);

ListBox properties,
methods and an event Description

Fig. 15.16 | ListBox properties, methods and an event. (Part 2 of 2.)

ptg18189312

15.6 ListBox Control 459

Alternatively, you can add items to ListBoxes and CheckedListBoxes visually by
examining the Items property in the Properties window. Clicking the ellipsis button opens
the String Collection Editor, which contains a text area for adding items; each item appears
on a separate line (Fig. 15.17). Visual Studio then writes code to add these strings to the
Items collection inside method InitializeComponent.

Figure 15.18 uses class ListBoxTestForm to add, remove and clear items from
ListBox displayListBox. Class ListBoxTestForm uses TextBox inputTextBox to allow
the user to type in a new item. When the user clicks the Add Button, the new item appears
in displayListBox. Similarly, if the user selects an item and clicks Remove, the item is
deleted. When clicked, Clear deletes all entries in displayListBox. The user terminates
the app by clicking Exit.

The addButton_Click event handler (lines 20–24) calls method Add of the Items col-
lection in the ListBox. This method takes a string as the item to add to displayListBox.
In this case, the string used is the user input from the inputTextBox (line 22). After the
item is added, inputTextBox.Text is cleared (line 23).

The removeButton_Click event handler (lines 27–34) uses method RemoveAt to
remove an item from the ListBox. Event handler removeButton_Click first uses property
SelectedIndex to determine which index is selected. If SelectedIndex is not –1 (i.e., an
item is selected), line 32 removes the item that corresponds to the selected index.

Fig. 15.17 | String Collection Editor.

1 // Fig. 15.18: ListBoxTestForm.cs
2 // Program to add, remove and clear ListBox items
3 using System;
4 using System.Windows.Forms;
5
6 namespace ListBoxTest
7 {
8 // Form uses a TextBox and Buttons to add,
9 // remove, and clear ListBox items

10 public partial class ListBoxTestForm : Form
11 {
12 // constructor
13 public ListBoxTestForm()
14 {

Fig. 15.18 | Program to add, remove and clear ListBox items. (Part 1 of 3.)

ptg18189312

460 Chapter 15 Graphical User Interfaces with Windows Forms: Part 2

15 InitializeComponent();
16 }
17
18 // add new item to ListBox (text from input TextBox)
19 // and clear input TextBox
20 private void addButton_Click(object sender, EventArgs e)
21 {
22 displayListBox.Items.Add(inputTextBox.Text);
23 inputTextBox.Clear();
24 }
25
26 // remove item if one is selected
27 private void removeButton_Click(object sender, EventArgs e)
28 {
29 // check whether item is selected; if so, remove
30 if (displayListBox.SelectedIndex != -1)
31 {
32 displayListBox.Items.RemoveAt(displayListBox.SelectedIndex);
33 }
34 }
35
36 // clear all items in ListBox
37 private void clearButton_Click(object sender, EventArgs e)
38 {
39 displayListBox.Items.Clear();
40 }
41
42 // exit app
43 private void exitButton_Click(object sender, EventArgs e)
44 {
45 Application.Exit();
46 }
47 }
48 }

Fig. 15.18 | Program to add, remove and clear ListBox items. (Part 2 of 3.)

a) GUI after adding Dog, Cat and Chicken and
before adding Cow

b) GUI after adding Cow and before
deleting Chicken

ptg18189312

15.7 CheckedListBox Control 461

The clearButton_Click event handler (lines 37–40) calls method Clear of the Items
collection (line 39). This removes all the entries in displayListBox. Finally, event handler
exitButton_Click (lines 43–46) terminates the app by calling method Applica-
tion.Exit (line 45).

15.7 CheckedListBox Control
The CheckedListBox control derives from ListBox and displays a CheckBox with each
item. Items can be added via methods Add and AddRange or through the String Collection

Editor. CheckedListBoxes allow multiple items to be checked, but item selection is more
restrictive. The only values for the SelectionMode property are None and One. One allows
a single selection, whereas None allows no selections. Because an item must be selected to
be checked, you must set the SelectionMode to be One if you wish to allow users to check
items. Thus, toggling property SelectionMode between One and None effectively switches
between enabling and disabling the user’s ability to check list items. Common properties,
a method and an event of CheckedListBoxes appear in Fig. 15.19.

Event ItemCheck occurs whenever a user checks or unchecks a CheckedListBox item.
Event-argument properties CurrentValue and NewValue return CheckState values for the
current and new state of the item, respectively. A comparison of these values allows you to
determine whether the CheckedListBox item was checked or unchecked. The Checked-
ListBox control retains the SelectedItems and SelectedIndices properties (it inherits
them from class ListBox). However, it also includes properties CheckedItems and
CheckedIndices, which return information about the checked items and indices.

Common Programming Error 15.1
The IDE displays an error message if you attempt to set the SelectionMode property to
MultiSimple or MultiExtended in the Properties window of a CheckedListBox. If
this value is set programmatically, a runtime error occurs.

Fig. 15.18 | Program to add, remove and clear ListBox items. (Part 3 of 3.)

c) GUI after deleting Chicken d) GUI after clearing the ListBox

ptg18189312

462 Chapter 15 Graphical User Interfaces with Windows Forms: Part 2

In Fig. 15.20, class CheckedListBoxTestForm uses a CheckedListBox and a ListBox
to display a user’s selection of books. The CheckedListBox allows the user to select mul-
tiple titles. In the String Collection Editor, items were added for some Deitel books: C, C++,
Java, Internet & WWW, Visual Basic, Visual C++ and Visual C# (the abbreviation HTP
stands for “How to Program”). The ListBox (named displayListBox) displays the user’s
selection. In the screenshots accompanying this example, the CheckedListBox appears to
the left, the ListBox on the right.

CheckedListBox
properties, a method
and an event Description

Common Properties (All the ListBox properties, methods and events are inherited by Check-
edListBox.)

CheckedItems Accessible only at runtime. Returns the collection of items that are
checked as a CheckedListBox.CheckedItemCollection. This is distinct
from the selected item, which is highlighted (but not necessarily checked).
There can be at most one selected item at any given time.

CheckedIndices Accessible only at runtime. Returns indices for all checked items as a
CheckedListBox.CheckedIndexCollection.

CheckOnClick When true and the user clicks an item, the item is both selected and
checked or unchecked. By default, this property is false, which means
that the user must select an item, then click it again to check or uncheck
it.

SelectionMode Determines whether items can be selected and checked. The possible val-
ues are One (the default; allows multiple checks to be placed) or None (does
not allow any checks to be placed).

Common Method
GetItemChecked Takes an index and returns true if the corresponding item is checked.

Common Event (Event arguments ItemCheckEventArgs)
ItemCheck Generated when an item is checked or unchecked.

ItemCheckEventArgs Properties
CurrentValue Indicates whether the current item is checked or unchecked. Possible val-

ues are Checked, Unchecked and Indeterminate.
Index Returns the zero-based index of the item that changed.
NewValue Specifies the new state of the item.

Fig. 15.19 | CheckedListBox properties, a method and an event.

1 // Fig. 15.20: CheckedListBoxTestForm.cs
2 // Using a CheckedListBox to add items to a display ListBox
3
4 using System.Windows.Forms;

Fig. 15.20 | Using a CheckedListBox to add items to a display ListBox. (Part 1 of 2.)

ptg18189312

15.7 CheckedListBox Control 463

When the user checks or unchecks an item in itemCheckedListBox, an ItemCheck
event occurs and event handler itemCheckedListBox_ItemCheck (lines 19–35) executes.
An if…else statement (lines 27–34) determines whether the user checked or unchecked

5
6 namespace CheckedListBoxTest
7 {
8 // Form uses a checked ListBox to add items to a display ListBox
9 public partial class CheckedListBoxTestForm : Form

10 {
11 // constructor
12 public CheckedListBoxTestForm()
13 {
14 InitializeComponent();
15 }
16
17 // item checked or unchecked
18 // add or remove from display ListBox
19 private void itemCheckedListBox_ItemCheck(
20 object sender, ItemCheckEventArgs e)
21 {
22 // obtain reference of selected item
23 string item = itemCheckedListBox.SelectedItem.ToString();
24
25 // if item checked, add to ListBox
26 // otherwise remove from ListBox
27 if (e.NewValue == CheckState.Checked)
28 {
29 displayListBox.Items.Add(item);
30 }
31 else
32 {
33 displayListBox.Items.Remove(item);
34 }
35 }
36 }
37 }

Fig. 15.20 | Using a CheckedListBox to add items to a display ListBox. (Part 2 of 2.)

a) Initial GUI
displayed when

the app executes

b) GUI after
selecting the

first three items

c) GUI after
deselecting
C++HTP

d) GUI after
selecting

Visual C# HTP

ptg18189312

464 Chapter 15 Graphical User Interfaces with Windows Forms: Part 2

an item in the CheckedListBox. Line 27 uses the NewValue property to determine whether
the item is being checked (CheckState.Checked). If the user checks an item, line 29 adds
the checked entry to the ListBox displayListBox. If the user unchecks an item, line 33
removes the corresponding item from displayListBox. This event handler was created by
selecting the CheckedListBox in Design mode, viewing the control’s events in the Proper-

ties window and double clicking the ItemCheck event. The default event for a Checked-
ListBox is a SelectedIndexChanged event.

15.8 ComboBox Control
The ComboBox control combines TextBox features with a drop-down list—a GUI compo-
nent that contains a list from which a value can be selected. A ComboBox usually appears as
a TextBox with a down arrow to its right. By default, the user can enter text into the Text-
Box or click the down arrow to display a list of predefined items. If a user chooses an ele-
ment from this list, that element is displayed in the TextBox. If the list contains more
elements than can be displayed in the drop-down list, a scrollbar appears. The maximum
number of items that a drop-down list can display at one time is set by property MaxDrop-
DownItems. Figure 15.21 shows a sample ComboBox in three different states.

As with the ListBox control, you can add objects to collection Items programmati-
cally, using methods Add and AddRange, or visually, with the String Collection Editor.
Figure 15.22 lists common properties and a common event of class ComboBox.

Property DropDownStyle determines the type of ComboBox and is represented as a
value of the ComboBoxStyle enumeration, which contains values Simple, DropDown and
DropDownList. Option Simple does not display a drop-down arrow. Instead, if the Com-
boBox is tall enough to display a list of items, they’re shown vertically—possibly with a
scrollbar to allow the user to view items that cannot fit in the display area. The user also
can type in a selection. Style DropDown (the default) displays a drop-down list when the
down arrow is clicked (or the down arrow key is pressed). The user can type a new item in
the ComboBox. The last style is DropDownList, which displays a drop-down list but does
not allow the user to type in the TextBox.

Fig. 15.21 | ComboBox demonstration.

Look-and-Feel Observation 15.4
Use a ComboBox to save space on a GUI. A disadvantage is that, unlike with a ListBox,
the user cannot see available items without expanding the drop-down list.

Click the down arrow to display
items in the drop-down list

Selecting an item from the drop-down
list changes text in the TextBox portion

ptg18189312

15.8 ComboBox Control 465

The ComboBox control has properties Items (a collection), SelectedItem and
SelectedIndex, which are similar to the corresponding properties in ListBox. There can
be at most one selected item in a ComboBox. If no items are selected, then SelectedIndex
is -1. When the selected item changes, a SelectedIndexChanged event occurs.

Class ComboBoxTestForm (Fig. 15.23) allows users to select a shape to draw—circle,
ellipse, square or pie (in both filled and unfilled versions)—by using a ComboBox. The
ComboBox in this example is uneditable, so the user cannot type in the TextBox.

ComboBox properties
and an event Description

Common Properties
DropDownStyle Determines the type of ComboBox. Value Simple means that the text

portion is editable and the list portion is always visible. Value
DropDown (the default) means that the text portion is editable but
the user must click an arrow button to see the list portion. Value
DropDownList means that the text portion is not editable and the
user must click the arrow button to see the list portion.

Items The collection of items in the ComboBox control.
MaxDropDownItems Specifies the maximum number of items (between 1 and 100) that

the drop-down list can display. If the number of items exceeds the
maximum number of items to display, a scrollbar appears.

SelectedIndex Returns the index of the selected item, or -1 if none are selected.
SelectedItem Returns a reference to the selected item.
Sorted Indicates whether items are sorted alphabetically. Setting this prop-

erty’s value to true sorts the items. The default is false.

Common Event
SelectedIndexChanged Generated when the selected index changes (such as when a differ-

ent item is selected). This is the default event when control is dou-
ble clicked in the designer.

Fig. 15.22 | ComboBox properties and an event.

Look-and-Feel Observation 15.5
Make lists (such as ComboBoxes) editable only if the app is designed to accept user-submit-
ted elements. Otherwise, the user might try to enter a custom item that’s improper for the
purposes of your app.

1 // Fig. 15.23: ComboBoxTestForm.cs
2 // Using ComboBox to select a shape to draw.
3 using System;
4 using System.Drawing;
5 using System.Windows.Forms;

Fig. 15.23 | Using ComboBox to select a shape to draw. (Part 1 of 3.)

ptg18189312

466 Chapter 15 Graphical User Interfaces with Windows Forms: Part 2

6
7 namespace ComboBoxTest
8 {
9 // Form uses a ComboBox to select different shapes to draw

10 public partial class ComboBoxTestForm : Form
11 {
12 // constructor
13 public ComboBoxTestForm()
14 {
15 InitializeComponent();
16 }
17
18 // get index of selected shape, draw shape
19 private void imageComboBox_SelectedIndexChanged(
20 object sender, EventArgs e)
21 {
22 // create graphics object, Pen and SolidBrush
23 using (Graphics myGraphics = base.CreateGraphics())
24
25 // create Pen using color DarkRed
26 using (Pen myPen = new Pen(Color.DarkRed))
27
28 // create SolidBrush using color DarkRed
29 using (SolidBrush mySolidBrush = new SolidBrush(Color.DarkRed))
30 {
31 // clear drawing area, setting it to color white
32 myGraphics.Clear(Color.White);
33
34 // find index, draw proper shape
35 switch (imageComboBox.SelectedIndex)
36 {
37 case 0: // case Circle is selected
38 myGraphics.DrawEllipse(myPen, 50, 50, 150, 150);
39 break;
40 case 1: // case Rectangle is selected
41 myGraphics.DrawRectangle(myPen, 50, 50, 150, 150);
42 break;
43 case 2: // case Ellipse is selected
44 myGraphics.DrawEllipse(myPen, 50, 85, 150, 115);
45 break;
46 case 3: // case Pie is selected
47 myGraphics.DrawPie(myPen, 50, 50, 150, 150, 0, 45);
48 break;
49 case 4: // case Filled Circle is selected
50 myGraphics.FillEllipse(mySolidBrush, 50, 50, 150, 150);
51 break;
52 case 5: // case Filled Rectangle is selected
53 myGraphics.FillRectangle(
54 mySolidBrush, 50, 50, 150, 150);
55 break;
56 case 6: // case Filled Ellipse is selected
57 myGraphics.FillEllipse(mySolidBrush, 50, 85, 150, 115);
58 break;

Fig. 15.23 | Using ComboBox to select a shape to draw. (Part 2 of 3.)

ptg18189312

15.8 ComboBox Control 467

After creating ComboBox imageComboBox, make it uneditable by setting its DropDown-
Style to DropDownList in the Properties window. Next, add items Circle, Square,
Ellipse, Pie, Filled Circle, Filled Square, Filled Ellipse and Filled Pie to the
Items collection using the String Collection Editor. Whenever the user selects an item from
imageComboBox, a SelectedIndexChanged event occurs and event handler imageCombo-
Box_SelectedIndexChanged (lines 19–65) executes. Lines 23–29 create a Graphics
object, a Pen and a SolidBrush, which are used to draw on the Form—each is an IDispos-
able object, so a chained using statement (multiple using clauses before the opening brace
at line 30) ensures their Dispose methods are called at the end of the event handler. The
Graphics object (line 23) allows a pen or brush to draw on a component, using one of
several Graphics methods. The Pen object (line 26) is used by methods DrawEllipse,
DrawRectangle and DrawPie (lines 38, 41, 44 and 47) to draw the outlines of their corre-
sponding shapes. The SolidBrush object (line 29) is used by methods FillEllipse,
FillRectangle and FillPie (lines 50, 53–54, 57 and 60–61) to fill their corresponding
solid shapes. Line 32 colors the entire Form White, using Graphics method Clear.

59 case 7: // case Filled Pie is selected
60 myGraphics.FillPie(
61 mySolidBrush, 50, 50, 150, 150, 0, 45);
62 break;
63 }
64 }
65 }
66 }
67 }

Fig. 15.23 | Using ComboBox to select a shape to draw. (Part 3 of 3.)

a) Initial GUI
displayed when

the app executes

b) GUI after
selecting Circle

from the
ComboBox

c) GUI after
selecting Filled

Square from the
ComboBox

d) GUI after
selecting Filled

Pie from the
ComboBox

ptg18189312

468 Chapter 15 Graphical User Interfaces with Windows Forms: Part 2

The app draws a shape based on the selected item’s index (lines 35–61). Graphics
method DrawEllipse (line 38) takes a Pen, and the x- and y-coordinates of the upper-left
corner, the width and height of the bounding box (i.e., rectangular area) in which the
ellipse will be displayed. The origin of the coordinate system is in the upper-left corner of
the Form; the x-coordinate increases to the right, and the y-coordinate increases downward.
A circle is a special case of an ellipse (with the width and height equal). Line 38 draws a
circle. Line 44 draws an ellipse that has different values for width and height.

Class Graphics method DrawRectangle (line 41) takes a Pen, the x- and y-coordinates
of the upper-left corner and the width and height of the rectangle to draw. Method
DrawPie (line 47) draws a pie as a portion of an ellipse. The ellipse is bounded by a rect-
angle. Method DrawPie takes a Pen, the x- and y-coordinates of the upper-left corner of
the rectangle, its width and height, the start angle (in degrees) and the sweep angle (in
degrees) of the pie. Angles increase clockwise. The FillEllipse (lines 50 and 56), Fill-
Rectangle (line 53–54) and FillPie (line 60–61) methods are similar to their unfilled
counterparts, except that they take a Brush (e.g., SolidBrush) instead of a Pen. Some of
the drawn shapes are illustrated in the screenshots of Fig. 15.23.

15.9 TreeView Control
The TreeView control displays nodes hierarchically in a tree. Traditionally, nodes are ob-
jects that contain values and can refer to other nodes. A parent node contains child nodes,
and the child nodes can be parents to other nodes. Two child nodes that have the same
parent node are considered sibling nodes. A tree is a collection of nodes, usually organized
in a hierarchical manner. The first parent node of a tree is the root node (a TreeView can
have multiple roots). For example, the file system of a computer can be represented as a
tree. The top-level directory (perhaps C:) would be the root, each subfolder of C: would
be a child node and each child folder could have its own children. TreeView controls are
useful for displaying hierarchical information, such as the file structure that we just men-
tioned. Figure 15.24 displays a sample TreeView control on a Form.

Fig. 15.24 | TreeView displaying a sample tree.

Click – to collapse
node and hide
child nodes

Click + to expand
node and display

child nodes

Root node

Child nodes (of
Manager1)

ptg18189312

15.9 TreeView Control 469

A parent node can be expanded or collapsed by clicking the plus box or minus box to
its left. Nodes without children do not have these boxes.

The nodes in a TreeView are instances of class TreeNode. Each TreeNode has a Nodes
collection (type TreeNodeCollection), which contains a list of other TreeNodes—known
as its children. The Parent property returns a reference to the parent node (or null if the
node is a root node). Figures 15.25 and 15.26 list the common properties of TreeViews
and TreeNodes, common TreeNode methods and a common TreeView event.

TreeView properties
and an event Description

Common Properties
CheckBoxes Indicates whether CheckBoxes appear next to nodes. A value of true dis-

plays CheckBoxes. The default value is false.
ImageList Specifies an ImageList object containing the node icons. An ImageList

object is a collection that contains Image objects.
Nodes Returns the collection of TreeNodes in the control as a TreeNodeCollec-

tion. It contains methods Add (adds a TreeNode object), Clear (deletes the
entire collection) and Remove (deletes a specific node). Removing a parent
node deletes all of its children.

SelectedNode The selected node.

Common Event (Event arguments TreeViewEventArgs)
AfterSelect Generated after selected node changes. This is the default event when the

control is double clicked in the designer.

Fig. 15.25 | TreeView properties and an event.

TreeNode properties
and methods Description

Common Properties
Checked Indicates whether the TreeNode is checked (CheckBoxes property must be

set to true in the parent TreeView).
FirstNode Specifies the first node in the Nodes collection (i.e., the first child in the tree).
FullPath Indicates the path of the node, starting at the root of the tree.
ImageIndex Specifies the index in the TreeView’s ImageList of the image shown when

the node is deselected.
LastNode Specifies the last node in the Nodes collection (i.e., the last child in the tree).
NextNode Next sibling node.
Nodes Collection of TreeNodes contained in the current node (i.e., all the children

of the current node). It contains methods Add (adds a TreeNode object),
Clear (deletes the entire collection) and Remove (deletes a specific node).
Removing a parent node deletes all of its children.

Fig. 15.26 | TreeNode properties and methods. (Part 1 of 2.)

ptg18189312

470 Chapter 15 Graphical User Interfaces with Windows Forms: Part 2

To add nodes to the TreeView visually, click the ellipsis next to the Nodes property in
the Properties window. This opens the TreeNode Editor (Fig. 15.27), which displays an
empty tree representing the TreeView. There are Buttons to create a root and to add or
delete a node. To the right are the properties of the current node. Here you can rename
the node.

To add nodes programmatically, first create a root node. Create a new TreeNode
object and pass it a string to display. Then call method Add to add this new TreeNode to
the TreeView’s Nodes collection. Thus, to add a root node to TreeView myTreeView, write

PrevNode Previous sibling node.
SelectedImageIndex Specifies the index in the TreeView’s ImageList of the image to use when

the node is selected.
Text Specifies the TreeNode’s text.

Common Methods
Collapse Collapses a node.

Expand Expands a node.
ExpandAll Expands all the children of a node.
GetNodeCount Returns the number of child nodes.

Fig. 15.27 | TreeNode Editor.

myTreeView.Nodes.Add(new TreeNode(rootLabel));

TreeNode properties
and methods Description

Fig. 15.26 | TreeNode properties and methods. (Part 2 of 2.)

Delete currently
selected node

ptg18189312

15.9 TreeView Control 471

where myTreeView is the TreeView to which we are adding nodes, and rootLabel is the text
to display in myTreeView. To add children to a root node, add new TreeNodes to its Nodes
collection. We select the appropriate root node from the TreeView by writing

where myIndex is the root node’s index in myTreeView’s Nodes collection. We add nodes
to child nodes through the same process by which we added root nodes to myTreeView. To
add a child to the root node at index myIndex, write

Class TreeViewDirectoryStructureForm (Fig. 15.28) uses a TreeView to display the
contents of a directory chosen by the user. A TextBox and a Button are used to specify the
directory. First, enter the full path of the directory you want to display. Then click the
Button to set the specified directory as the root node in the TreeView. Each subdirectory
of this directory becomes a child node. This layout is similar to that used in Windows

Explorer. Folders can be expanded or collapsed by clicking the plus or minus boxes that
appear to their left.

myTreeView.Nodes[myIndex]

myTreeView.Nodes[myIndex].Nodes.Add(new TreeNode(ChildLabel));

1 // Fig. 15.28: TreeViewDirectoryStructureForm.cs
2 // Using TreeView to display directory structure.
3 using System;
4 using System.Windows.Forms;
5 using System.IO;
6
7 namespace TreeViewDirectoryStructure
8 {
9 // Form uses TreeView to display directory structure

10 public partial class TreeViewDirectoryStructureForm : Form
11 {
12 string substringDirectory; // store last part of full path name
13
14 // constructor
15 public TreeViewDirectoryStructureForm()
16 {
17 InitializeComponent();
18 }
19
20 // populate current node with subdirectories
21 public void PopulateTreeView(
22 string directoryValue, TreeNode parentNode)
23 {
24 // array stores all subdirectories in the directory
25 string[] directoryArray =
26 Directory.GetDirectories(directoryValue);
27
28 // populate current node with subdirectories
29 try
30 {

Fig. 15.28 | Using TreeView to display directory structure. (Part 1 of 3.)

ptg18189312

472 Chapter 15 Graphical User Interfaces with Windows Forms: Part 2

31 // check to see if any subdirectories are present
32 if (directoryArray.Length != 0)
33 {
34 // for every subdirectory, create new TreeNode,
35 // add as a child of current node and recursively
36 // populate child nodes with subdirectories
37 foreach (string directory in directoryArray)
38 {
39 // obtain last part of path name from the full path
40 // name by calling the GetFileNameWithoutExtension
41 // method of class Path
42 substringDirectory =
43 Path.GetFileNameWithoutExtension(directory);
44
45 // create TreeNode for current directory
46 TreeNode myNode = new TreeNode(substringDirectory);
47
48 // add current directory node to parent node
49 parentNode.Nodes.Add(myNode);
50
51 // recursively populate every subdirectory
52 PopulateTreeView(directory, myNode);
53 }
54 }
55 }
56 catch (UnauthorizedAccessException)
57 {
58 parentNode.Nodes.Add("Access denied");
59 }
60 }
61
62 // handles enterButton click event
63 private void enterButton_Click(object sender, EventArgs e)
64 {
65 // clear all nodes
66 directoryTreeView.Nodes.Clear();
67
68 // check if the directory entered by user exists
69 // if it does, then fill in the TreeView,
70 // if not, display error MessageBox
71 if (Directory.Exists(inputTextBox.Text))
72 {
73 // add full path name to directoryTreeView
74 directoryTreeView.Nodes.Add(inputTextBox.Text);
75
76 // insert subfolders
77 PopulateTreeView(
78 inputTextBox.Text, directoryTreeView.Nodes[0]);
79 }
80 // display error MessageBox if directory not found
81 else
82 {

Fig. 15.28 | Using TreeView to display directory structure. (Part 2 of 3.)

ptg18189312

15.9 TreeView Control 473

When the user clicks the enterButton, all the nodes in directoryTreeView are
cleared (line 66). Then, if the directory exists (line 71), the path entered in inputTextBox
is used to create the root node. Line 74 adds the directory to directoryTreeView as the
root node, and lines 77–78 call method PopulateTreeView (lines 21–60), which takes a
directory (a string) and a parent node. Method PopulateTreeView then creates child
nodes corresponding to the subdirectories of the directory it receives as an argument.

Method PopulateTreeView (lines 21–60) obtains a list of subdirectories, using
method GetDirectories of class Directory (namespace System.IO) in lines 25–26.
Method GetDirectories takes a string (the current directory) and returns an array of
strings (the subdirectories). If a directory is not accessible for security reasons, an Unau-
thorizedAccessException is thrown. Lines 56–59 catch this exception and add a node
containing “Access denied” instead of displaying the subdirectories.

If there are accessible subdirectories, lines 42–43 use method GetFileNameWithout-
Extension of class Path to increase readability by shortening the full path name to just the
directory name. The Path class provides functionality for working with strings that are
file or directory paths. Next, each string in the directoryArray is used to create a new
child node (line 46). We use method Add (line 49) to add each child node to the parent.
Then method PopulateTreeView is called recursively on every subdirectory (line 52),
which eventually populates the TreeView with the entire directory structure. Our recursive
algorithm may cause a delay when the program loads large directories. However, once the
folder names are added to the appropriate Nodes collection, they can be expanded and col-
lapsed without delay. In the next section, we present an alternate algorithm to solve this
problem.

83 MessageBox.Show(inputTextBox.Text + " could not be found.",
84 "Directory Not Found", MessageBoxButtons.OK,
85 MessageBoxIcon.Error);
86 }
87 }
88 }
89 }

Fig. 15.28 | Using TreeView to display directory structure. (Part 3 of 3.)

a) GUI after
user enters a

directory path

b) GUI after
the user

presses Enter
to display the

directory’s
contents

ptg18189312

474 Chapter 15 Graphical User Interfaces with Windows Forms: Part 2

15.10 ListView Control
The ListView control is similar to a ListBox in that both display lists from which the user
can select one or more items (an example of a ListView can be found in Fig. 15.31). List-
View is more versatile and can display items in different formats. For example, a ListView
can display icons next to the list items (controlled by its SmallImageList, LargeImage-
List or StateImageList properties) and show the details of items in columns. Property
MultiSelect (a bool) determines whether multiple items can be selected. CheckBoxes can
be included by setting property CheckBoxes (a bool) to true, making the ListView’s ap-
pearance similar to that of a CheckedListBox. The View property specifies the layout of
the ListBox. Property Activation determines the method by which the user selects a list
item. The details of these properties and the Click and ItemActivate events are explained
in Fig. 15.29.

ListView properties
and events Description

Common Properties
Activation Determines how the user activates an item. This property takes a value in

the ItemActivation enumeration. Possible values are OneClick (single-
click activation), TwoClick (double-click activation, item changes color
when the mouse moves over the item) and Standard (the default; double-
click activation, item does not change color).

CheckBoxes Indicates whether items appear with CheckBoxes. true displays Check-
Boxes. The default is false.

LargeImageList Specifies the ImageList containing large icons for display.
Items Returns the collection of ListViewItems in the control.
MultiSelect Determines whether multiple selection is allowed. The default is true,

which enables multiple selection.
SelectedItems Returns the collection of selected items as a

ListView.SelectedListViewItemCollection.
SmallImageList Specifies the ImageList containing small icons for display.
View Determines appearance of ListViewItems. Possible values are LargeIcon

(the default; large icon displayed, items can be in multiple columns),
SmallIcon (small icon displayed, items can be in multiple columns), List
(small icons displayed, items appear in a single column), Details (like
List, but multiple columns of information can be displayed per item)
and Tile (large icons displayed, information provided to right of icon).

Common Events
Click Generated when an item is clicked. This is the default event.
ItemActivate Generated when an item in the ListView is activated (clicked or double

clicked). Does not contain the specifics of which item is activated—you
can use SelectedItems or SelectedIndices to determine this.

Fig. 15.29 | ListView properties and events.

ptg18189312

15.10 ListView Control 475

ListView allows you to define the images used as icons for ListView items. To display
images, an ImageList component is required. Create one by dragging it to a Form from
the ToolBox. Then, select the Images property in the Properties window to display the
Images Collection Editor (Fig. 15.30). Here you can browse for images that you wish to add
to the ImageList, which contains an array of Images. Adding images this way embeds
them into the app (like resources), so they do not need to be included separately with the
published app. They’re not, however, part of the project. In this example, we added images
to the ImageList programmatically rather than using the Images Collection Editor so that
we could use image resources. After creating an empty ImageList, add the file and folder
icon images (provided with this chapter’s examples) to the project as resources. Next, set
property SmallImageList of the ListView to the new ImageList object. Property Small-
ImageList specifies the image list for the small icons. Property LargeImageList sets the
ImageList for large icons. The items in a ListView are each of type ListViewItem. Icons
for the ListView items are selected by setting the item’s ImageIndex property to the appro-
priate index.

Class ListViewTestForm (Fig. 15.31) displays files and folders in a ListView, along
with small icons representing each file or folder. If a file or folder is inaccessible because of
permission settings, a MessageBox appears. The program scans the contents of the direc-
tory as it browses, rather than indexing the entire drive at once.

Fig. 15.30 | Images Collection Editor window for an ImageList component.

1 // Fig. 15.31: ListViewTestForm.cs
2 // Displaying directories and their contents in ListView.
3 using System;
4 using System.Windows.Forms;
5 using System.IO;
6
7 namespace ListViewTest
8 {

Fig. 15.31 | Displaying directories and their contents in ListView. (Part 1 of 4.)

ptg18189312

476 Chapter 15 Graphical User Interfaces with Windows Forms: Part 2

9 // Form contains a ListView which displays
10 // folders and files in a directory
11 public partial class ListViewTestForm : Form
12 {
13 // store current directory
14 string currentDirectory = Directory.GetCurrentDirectory();
15
16 // constructor
17 public ListViewTestForm()
18 {
19 InitializeComponent();
20 }
21
22 // browse directory user clicked or go up one level
23 private void browserListView_Click(object sender, EventArgs e)
24 {
25 // ensure an item is selected
26 if (browserListView.SelectedItems.Count != 0)
27 {
28 // if first item selected, go up one level
29 if (browserListView.Items[0].Selected)
30 {
31 // create DirectoryInfo object for directory
32 DirectoryInfo directoryObject =
33 new DirectoryInfo(currentDirectory);
34
35 // if directory has parent, load it
36 if (directoryObject.Parent != null)
37 {
38 LoadFilesInDirectory(directoryObject.Parent.FullName);
39 }
40 }
41
42 // selected directory or file
43 else
44 {
45 // directory or file chosen
46 string chosen = browserListView.SelectedItems[0].Text;
47
48 // if item selected is directory, load selected directory
49 if (Directory.Exists(
50 Path.Combine(currentDirectory, chosen)))
51 {
52 LoadFilesInDirectory(
53 Path.Combine(currentDirectory, chosen));
54 }
55 }
56
57 // update displayLabel
58 displayLabel.Text = currentDirectory;
59 }
60 }
61

Fig. 15.31 | Displaying directories and their contents in ListView. (Part 2 of 4.)

ptg18189312

15.10 ListView Control 477

62 // display files/subdirectories of current directory
63 public void LoadFilesInDirectory(string currentDirectoryValue)
64 {
65 // load directory information and display
66 try
67 {
68 // clear ListView and set first item
69 browserListView.Items.Clear();
70 browserListView.Items.Add("Go Up One Level");
71
72 // update current directory
73 currentDirectory = currentDirectoryValue;
74 DirectoryInfo newCurrentDirectory =
75 new DirectoryInfo(currentDirectory);
76
77 // put files and directories into arrays
78 DirectoryInfo[] directoryArray =
79 newCurrentDirectory.GetDirectories();
80 FileInfo[] fileArray = newCurrentDirectory.GetFiles();
81
82 // add directory names to ListView
83 foreach (DirectoryInfo dir in directoryArray)
84 {
85 // add directory to ListView
86 ListViewItem newDirectoryItem =
87 browserListView.Items.Add(dir.Name);
88
89 newDirectoryItem.ImageIndex = 0; // set directory image
90 }
91
92 // add file names to ListView
93 foreach (FileInfo file in fileArray)
94 {
95 // add file to ListView
96 ListViewItem newFileItem =
97 browserListView.Items.Add(file.Name);
98
99 newFileItem.ImageIndex = 1; // set file image
100 }
101 }
102
103 // access denied
104 catch (UnauthorizedAccessException)
105 {
106 MessageBox.Show("Warning: Some files may not be " +
107 "visible due to permission settings",
108 "Attention", 0, MessageBoxIcon.Warning);
109 }
110 }
111
112 // handle load event when Form displayed for first time
113 private void ListViewTestForm_Load(object sender, EventArgs e)
114 {

Fig. 15.31 | Displaying directories and their contents in ListView. (Part 3 of 4.)

ptg18189312

478 Chapter 15 Graphical User Interfaces with Windows Forms: Part 2

Method ListViewTestForm_Load
Method ListViewTestForm_Load (lines 113–122) handles the Form’s Load event. When
the app loads, the folder and file icon images are added to the Images collection of file-
FolderImageList (lines 116–117). Since the ListView’s SmallImageList property is set
to this ImageList, the ListView can display these images as icons for each item. Because
the folder icon was added first, it has array index 0, and the file icon has array index 1. The
app also loads its home directory (obtained at line 14) into the ListView when it first loads
(line 120) and displays the directory path (line 121).

115 // add icon images to ImageList
116 fileFolderImageList.Images.Add(Properties.Resources.folder);
117 fileFolderImageList.Images.Add(Properties.Resources.file);
118
119 // load current directory into browserListView
120 LoadFilesInDirectory(currentDirectory);
121 displayLabel.Text = currentDirectory;
122 }
123 }
124 }

Fig. 15.31 | Displaying directories and their contents in ListView. (Part 4 of 4.)

a) GUI showing app’s
default folder

b) GUI showing the
contents of the

c:\Users
directoy

c) Dialog that
appears if you try

to access a
directory for which

you do not have
permission

ptg18189312

15.10 ListView Control 479

Method LoadFilesInDirectory
The LoadFilesInDirectory method (lines 63–110) populates browserListView with the
directory passed to it (currentDirectoryValue). It clears browserListView and adds the
element "Go Up One Level". When the user clicks this element, the program attempts to
move up one level (we see how shortly). The method then creates a DirectoryInfo object
initialized with the string currentDirectory (lines 74–75). If permission is not given to
browse the directory, an exception is thrown (and caught in line 104). Method Load-
FilesInDirectory works differently from method PopulateTreeView in the previous
program (Fig. 15.28). Instead of loading all the folders on the hard drive, method Load-
FilesInDirectory loads only the folders and files in the current directory.

Class DirectoryInfo (namespace System.IO) enables us to browse or manipulate the
directory structure easily. Method GetDirectories (line 79) returns an array of Direc-
toryInfo objects containing the subdirectories of the current directory. Similarly, method
GetFiles (line 80) returns an array of class FileInfo objects containing the files in the
current directory. Property Name (of both class DirectoryInfo and class FileInfo) con-
tains only the directory or file name, such as temp instead of C:\myfolder\temp. To access
the full name, use property FullName.

Lines 83–90 and lines 93–100 iterate through the subdirectories and files of the cur-
rent directory and add them to browserListView. Lines 89 and 99 set the ImageIndex
properties of the newly created items. If an item is a directory, we set its icon to a directory
icon (index 0); if an item is a file, we set its icon to a file icon (index 1).

Method browserListView_Click
Method browserListView_Click (lines 23–60) responds when the user clicks control
browserListView. Line 26 checks whether anything is selected. If a selection has been
made, line 29 determines whether the user chose the first item in browserListView. The
first item in browserListView is always Go Up One Level; if it’s selected, the program at-
tempts to go up a level. Lines 32–33 create a DirectoryInfo object for the current direc-
tory. Line 36 tests property Parent to ensure that the user is not at the root of the directory
tree. Property Parent indicates the parent directory as a DirectoryInfo object; if no par-
ent directory exists, Parent returns the value null. If a parent directory does exist, line 38
pass the parent directory’s full name to LoadFilesInDirectory.

If the user did not select the first item in browserListView, lines 43–55 allow the user
to continue navigating through the directory structure. Line 46 creates string chosen and
assigns it the text of the selected item (the first item in collection SelectedItems). Lines
49–50 determine whether the user selected a valid directory (rather than a file). Using the
Combine method of class Path, the program combines strings currentDirectory and
chosen to form the new directory path. The Combine method automatically adds a back-
slash (\), if necessary, between the two pieces. This value is passed to the Exists method
of class Directory. Method Exists returns true if its string parameter is a valid direc-
tory. If so, the program passes the string to method LoadFilesInDirectory (lines 52–
53). Finally, displayLabel is updated with the new directory (line 58).

This program loads quickly, because it indexes only the files in the current directory.
A small delay may occur when a new directory is loaded. In addition, changes in the direc-
tory structure can be shown by reloading a directory. The previous program (Fig. 15.28)
may have a large initial delay, as it loads an entire directory structure.

ptg18189312

480 Chapter 15 Graphical User Interfaces with Windows Forms: Part 2

15.11 TabControl Control
The TabControl creates tabbed windows, such as those in Visual Studio (Fig. 15.32). This
enables you to specify more information in the same space on a Form and group displayed
data logically. TabControls contain TabPage objects, which are similar to Panels and
GroupBoxes in that TabPages also can contain controls. You first add controls to the Tab-
Page objects, then add the TabPages to the TabControl. Only one TabPage is displayed at
a time. To add objects to the TabPage and the TabControl, write

The preceding statements call method Add of the Controls collection and method Add
of the TabPages collection. The example adds TabControl myControl to TabPage myTab-
Page, then adds myTabPage to myTabControl. Alternatively, we can use method AddRange
to add an array of TabPages or controls to a TabControl or TabPage, respectively.
Figure 15.33 depicts a sample TabControl.

You can add TabControls visually by dragging and dropping them onto a Form in Design

mode. To add TabPages in Design mode, click the top of the TabControl, open its smart tasks
menu and select Add Tab (Fig. 15.34). Alternatively, click the TabPages property in the Prop-

erties window and add tabs in the dialog that appears. To change a tab label, set the Text
property of the TabPage. Clicking the tabs selects the TabControl—to select the TabPage,
click the control area underneath the tabs. You can add controls to the TabPage by dragging
and dropping items from the ToolBox. To view different TabPages, click the appropriate tab
(in either design or run mode).

Software Engineering Observation 15.2
When designing apps that run for long periods of time, you might choose a large initial
delay to improve performance throughout the rest of the program. However, in apps that
run for only short periods, fast initial loading times and small delays after each action are
preferable.

myTabPage.Controls.Add(myControl);
myTabControl.TabPages.Add(myTabPage);

Fig. 15.32 | Tabbed windows in Visual Studio.

Tabs

ptg18189312

15.11 TabControl Control 481

Common properties and a common event of TabControls are described in Fig. 15.35.
Each TabPage generates a Click event when its tab is clicked. Event handlers for this event
can be created by double clicking the body of the TabPage.

Fig. 15.33 | TabControl with TabPages example.

Fig. 15.34 | TabPages added to a TabControl.

TabControl
properties and an
event Description

Common Properties
ImageList Specifies images to be displayed on tabs.
ItemSize Specifies the tab size.
Multiline Indicates whether multiple rows of tabs can be displayed.
SelectedIndex Index of the selected TabPage.
SelectedTab The selected TabPage.
TabCount Returns the number of tab pages.
TabPages Returns the collection of TabPages within the TabControl as a Tab-

Control.TabPageCollection.

Common Event
SelectedIndexChanged Generated when SelectedIndex changes (i.e., another TabPage is

selected).

Fig. 15.35 | TabControl properties and an event.

TabPage

Controls in TabPage
TabControl

Smart tasks menu

ptg18189312

482 Chapter 15 Graphical User Interfaces with Windows Forms: Part 2

Class UsingTabsForm (Fig. 15.36) uses a TabControl to display various options
relating to the text on a label (Color, Size and Message). The last TabPage displays an About

message, which describes the use of TabControls.

1 // Fig. 15.36: UsingTabsForm.cs
2 // Using TabControl to display various font settings.
3 using System;
4 using System.Drawing;
5 using System.Windows.Forms;
6
7 namespace UsingTabs
8 {
9 // Form uses Tabs and RadioButtons to display various font settings

10 public partial class UsingTabsForm : Form
11 {
12 // constructor
13 public UsingTabsForm()
14 {
15 InitializeComponent();
16 }
17
18 // event handler for Black RadioButton
19 private void blackRadioButton_CheckedChanged(
20 object sender, EventArgs e)
21 {
22 displayLabel.ForeColor = Color.Black; // change color to black
23 }
24
25 // event handler for Red RadioButton
26 private void redRadioButton_CheckedChanged(
27 object sender, EventArgs e)
28 {
29 displayLabel.ForeColor = Color.Red; // change color to red
30 }
31
32 // event handler for Green RadioButton
33 private void greenRadioButton_CheckedChanged(
34 object sender, EventArgs e)
35 {
36 displayLabel.ForeColor = Color.Green; // change color to green
37 }
38
39 // event handler for 12 point RadioButton
40 private void size12RadioButton_CheckedChanged(
41 object sender, EventArgs e)
42 {
43 // change font size to 12
44 displayLabel.Font = new Font(displayLabel.Font.Name, 12);
45 }
46

Fig. 15.36 | Using TabControl to display various font settings. (Part 1 of 2.)

ptg18189312

15.11 TabControl Control 483

47 // event handler for 16 point RadioButton
48 private void size16RadioButton_CheckedChanged(
49 object sender, EventArgs e)
50 {
51 // change font size to 16
52 displayLabel.Font = new Font(displayLabel.Font.Name, 16);
53 }
54
55 // event handler for 20 point RadioButton
56 private void size20RadioButton_CheckedChanged(
57 object sender, EventArgs e)
58 {
59 // change font size to 20
60 displayLabel.Font = new Font(displayLabel.Font.Name, 20);
61 }
62
63 // event handler for Hello! RadioButton
64 private void helloRadioButton_CheckedChanged(
65 object sender, EventArgs e)
66 {
67 displayLabel.Text = "Hello!"; // change text to Hello!
68 }
69
70 // event handler for Goodbye! RadioButton
71 private void goodbyeRadioButton_CheckedChanged(
72 object sender, EventArgs e)
73 {
74 displayLabel.Text = "Goodbye!"; // change text to Goodbye!
75 }
76 }
77 }

Fig. 15.36 | Using TabControl to display various font settings. (Part 2 of 2.)

a) Selecting the Red
RadioButton from

the Color tab

b) Selecting the
20 Point

RadioButton
from the Size tab

c) Selecting the
Goodbye!

RadioButton from
the Message tab

d) Selecting the
About tab

ptg18189312

484 Chapter 15 Graphical User Interfaces with Windows Forms: Part 2

The textOptionsTabControl and the colorTabPage, sizeTabPage, messageTabPage
and aboutTabPage are created in the designer (as described previously):

• The colorTabPage contains three RadioButtons for the colors black (black-
RadioButton), red (redRadioButton) and green (greenRadioButton). This
TabPage is displayed in Fig. 15.36(a). The CheckedChanged event handler for
each RadioButton updates the color of the text in displayLabel (lines 22, 29
and 36).

• The sizeTabPage (Fig. 15.36(b)) has three RadioButtons, corresponding to font
sizes 12 (size12RadioButton), 16 (size16RadioButton) and 20 (size20-
RadioButton), which change the font size of displayLabel—lines 44, 52 and
60, respectively.

• The messageTabPage (Fig. 15.36(c)) contains two RadioButtons for the
messages Hello! (helloRadioButton) and Goodbye! (goodbyeRadioButton). The
two RadioButtons determine the text on displayLabel (lines 67 and 74, respec-
tively).

• The aboutTabPage (Fig. 15.36(d)) contains a Label (messageLabel) describing
the purpose of TabControls.

15.12 Multiple Document Interface (MDI) Windows
In previous chapters, we have built only single document interface (SDI) apps. Such pro-
grams (including Microsoft’s Notepad and Paint) typically have one window that displays
a single document at a time. To edit multiple documents, you must execute separate in-
stances of the app.

Many complex apps are multiple document interface (MDI) programs, which allow
users to edit multiple documents at once (e.g., Microsoft Office products). MDI programs
also tend to be more complex—Paint Shop Pro and Photoshop have a greater number of
image-editing features than does Paint.

An MDI program’s main window is called the parent window, and each window
inside the app is referred to as a child window. Although an MDI app can have many child
windows, each child has only one parent window. Furthermore, a maximum of one child
window can be active at once. Child windows cannot be parents themselves and cannot
be moved outside their parent. Otherwise, a child window behaves like any other window
(with regard to closing, minimizing, resizing, and so on). A child window’s functionality
can differ from that of other child windows of the parent. For example, one child window
might allow the user to edit images, another might allow the user to edit text and a third
might display network traffic graphically, but all could belong to the same MDI parent.
Figure 15.37 depicts a sample MDI app with two child windows.

Software Engineering Observation 15.3
A TabPage can act as a container for a single logical group of RadioButtons, enforcing
their mutual exclusivity. To place multiple RadioButton groups inside a single TabPage,
you should group RadioButtons within Panels or GroupBoxes contained within the
TabPage.

ptg18189312

15.12 Multiple Document Interface (MDI) Windows 485

To create an MDI Form, set a Form’s IsMdiContainer property to true. The Form
changes appearance, as in Fig. 15.38. Next, create a child Form class to be added to the Form.
To do this, right click the project in the Solution Explorer, select Project > Add Windows

Form… and name the file. Edit the Form as you like. To add the child Form to the parent, we
must create a new child Form object, set its MdiParent property to the parent Form and call
the child Form’s Show method. In general, to add a child Form to a parent, write

In most cases, the parent Form creates the child, so the parentForm reference is this.
The code to create a child usually lies inside an event handler, which creates a new window
in response to a user action. Menu selections (such as File, followed by a submenu option
of New, followed by a submenu option of Window) are common techniques for creating
new child windows.

Class Form property MdiChildren returns an array of child Form references. This is
useful if the parent window wants to check the status of all its children (for example,
ensuring that all are saved before the parent closes). Property ActiveMdiChild returns a
reference to the active child window; it returns null if there are no active child windows.
Other features of MDI windows are described in Fig. 15.39.

Fig. 15.37 | MDI parent window and MDI child windows.

ChildFormClass childForm = New ChildFormClass();
childForm.MdiParent = parentForm;
childForm.Show();

Fig. 15.38 | SDI and MDI forms.

MDI parent

MDI child

MDI child

Single Document Interface (SDI) Multiple Document Interface (MDI)

ptg18189312

486 Chapter 15 Graphical User Interfaces with Windows Forms: Part 2

Child windows can be minimized, maximized and closed independently of the parent
window. Figure 15.40 shows two images: one containing two minimized child windows
and a second containing a maximized child window. When the parent is minimized or
closed, the child windows are minimized or closed as well.

MDI parent and MDI
child properties, a
method and an event Description

Common MDI Child Properties
IsMdiChild Indicates whether the Form is an MDI child. If true, Form is an

MDI child (read-only property).
MdiParent Specifies the MDI parent Form of the child.

Common MDI Parent Properties
ActiveMdiChild Returns the Form that’s the currently active MDI child (returns

null if no children are active).
IsMdiContainer Indicates whether a Form can be an MDI parent. If true, the Form

can be an MDI parent. The default value is false.
MdiChildren Returns the MDI children as an array of Forms.

Common Method
LayoutMdi Determines the display of child forms on an MDI parent. The

method takes as a parameter an MdiLayout enumeration with
possible values ArrangeIcons, Cascade, TileHorizontal and
TileVertical. Figure 15.42 depicts the effects of these values.

Common Event
MdiChildActivate Generated when an MDI child is closed or activated.

Fig. 15.39 | MDI parent and MDI child properties, a method and an event.

Fig. 15.40 | Minimized and maximized child windows.

Parent window icons:
minimize, maximize and close

Maximized child window icons:
minimize, restore and close

Minimized child window icons:
restore, maximize and close

Parent title bar indicates
maximized child

a) b)

ptg18189312

15.12 Multiple Document Interface (MDI) Windows 487

Note the title bar in Fig. 15.40(b) is Form1 - [Child1]. When a child window is maxi-
mized, its title-bar text is inserted into the parent window’s title bar. When a child window
is minimized or maximized, its title bar displays a restore icon, which can be used to return
the child window to its previous size (its size before it was minimized or maximized).

C# provides a property that helps track which child windows are open in an MDI
container. Property MdiWindowListItem of class MenuStrip specifies which menu, if any,
displays a list of open child windows that the user can select to bring the corresponding
window to the foreground. When a new child window is opened, an entry is added to the
end of the list (Fig. 15.41). If ten or more child windows are open, the list includes the
option More Windows..., which allows the user to select a window from a list in a dialog.

MDI containers allow you to organize the placement of its child windows. The child
windows in an MDI app can be arranged by calling method LayoutMdi of the parent Form.
Method LayoutMdi takes an MdiLayout enumeration, which can have values ArrangeIcons,
Cascade, TileHorizontal and TileVertical. Tiled windows completely fill the parent and
do not overlap; such windows can be arranged horizontally (value TileHorizontal) or ver-
tically (value TileVertical). Cascaded windows (value Cascade) overlap—each is the same
size and displays a visible title bar, if possible. Value ArrangeIcons arranges the icons for any
minimized child windows. If minimized windows are scattered around the parent window,
value ArrangeIcons orders them neatly at the bottom-left corner of the parent window.
Figure 15.42 illustrates the values of the MdiLayout enumeration.

Class UsingMDIForm (Fig. 15.43) demonstrates MDI windows. Class UsingMDIForm
uses three instances of child Form ChildForm (Fig. 15.44), each containing a PictureBox
that displays an image. The parent MDI Form contains a menu enabling users to create
and arrange child Forms.

Good Programming Practice 15.1
In an MDI app, include a menu that displays a list of the open child windows. This helps
the user select a child window quickly.

Fig. 15.41 | MenuStrip property MdiWindowListItem example.

Ten or more child windows enables
the More Windows… option

Child windows list

ptg18189312

488 Chapter 15 Graphical User Interfaces with Windows Forms: Part 2

MDI Parent Form
Figure 15.43 presents class UsingMDIForm—the app’s MDI parent Form. This Form, which
is created first, contains two top-level menus. The first of these menus, File (fileTool-
StripMenuItem), contains both an Exit item (exitToolStripMenuItem) and a New sub-
menu (newToolStripMenuItem) consisting of items for each type of child window. The
second menu, Window (windowToolStripMenuItem), provides options for laying out the
MDI children, plus a list of the active MDI children.

Fig. 15.42 | MdiLayout enumeration values.

1 // Fig. 15.43: UsingMDIForm.cs
2 // Demonstrating use of MDI parent and child windows.
3 using System;
4 using System.Windows.Forms;
5
6 namespace UsingMDI
7 {
8 // Form demonstrates the use of MDI parent and child windows
9 public partial class UsingMDIForm : Form

10 {
11 // constructor
12 public UsingMDIForm()
13 {
14 InitializeComponent();
15 }
16

Fig. 15.43 | Demonstrating use of MDI parent and child windows. (Part 1 of 3.)

a) ArrangeIcons b) Cascade

c) TileHorizontal d) TileVertical

ptg18189312

15.12 Multiple Document Interface (MDI) Windows 489

17 // create Lavender Flowers image window
18 private void lavenderToolStripMenuItem_Click(
19 object sender, EventArgs e)
20 {
21 // create new child
22 var child = new ChildForm(
23 "Lavender Flowers", "lavenderflowers");
24 child.MdiParent = this; // set parent
25 child.Show(); // display child
26 }
27
28 // create Purple Flowers image window
29 private void purpleToolStripMenuItem_Click(
30 object sender, EventArgs e)
31 {
32 // create new child
33 var child = new ChildForm(
34 "Purple Flowers", "purpleflowers");
35 child.MdiParent = this; // set parent
36 child.Show(); // display child
37 }
38
39 // create Yellow Flowers image window
40 private void yellowToolStripMenuItem_Click(
41 object sender, EventArgs e)
42 {
43 // create new child
44 var child = new ChildForm(
45 "Yellow Flowers", "yellowflowers");
46 child.MdiParent = this; // set parent
47 child.Show(); // display child
48 }
49
50 // exit app
51 private void exitToolStripMenuItem_Click(
52 object sender, EventArgs e)
53 {
54 Application.Exit();
55 }
56
57 // set Cascade layout
58 private void cascadeToolStripMenuItem_Click(
59 object sender, EventArgs e)
60 {
61 this.LayoutMdi(MdiLayout.Cascade);
62 }
63
64 // set TileHorizontal layout
65 private void tileHorizontalToolStripMenuItem_Click(
66 object sender, EventArgs e)
67 {
68 this.LayoutMdi(MdiLayout.TileHorizontal);
69 }

Fig. 15.43 | Demonstrating use of MDI parent and child windows. (Part 2 of 3.)

ptg18189312

490 Chapter 15 Graphical User Interfaces with Windows Forms: Part 2

In the Properties window, we set the Form’s IsMdiContainer property to true, making
the Form an MDI parent. In addition, we set the MenuStrip’s MdiWindowListItem prop-
erty to windowToolStripMenuItem. This enables the Window menu to contain the list of
child MDI windows.

The Cascade menu item (cascadeToolStripMenuItem) has an event handler (casca-
deToolStripMenuItem_Click, lines 58–62) that arranges the child windows in a cascading
manner. The event handler calls method LayoutMdi with the argument Cascade from the
MdiLayout enumeration (line 61).

70
71 // set TileVertical layout
72 private void tileVerticalToolStripMenuItem_Click(
73 object sender, EventArgs e)
74 {
75 this.LayoutMdi(MdiLayout.TileVertical);
76 }
77 }
78 }

Fig. 15.43 | Demonstrating use of MDI parent and child windows. (Part 3 of 3.)

a) Selecting the Lavender Flowers menu item b) Lavender Flowers ChildForm window displayed

c) Selecting the Cascade menu item d) Cascaded child windows in an MDI window

ptg18189312

15.12 Multiple Document Interface (MDI) Windows 491

The Tile Horizontal menu item (tileHorizontalToolStripMenuItem) has an event
handler (tileHorizontalToolStripMenuItem_Click, lines 65–69) that arranges the child
windows in a horizontal manner. The event handler calls method LayoutMdi with the
argument TileHorizontal from the MdiLayout enumeration (line 68).

Finally, the Tile Vertical menu item (tileVerticalToolStripMenuItem) has an event
handler (tileVerticalToolStripMenuItem_Click, lines 72–76) that arranges the child
windows in a vertical manner. The event handler calls method LayoutMdi with the argu-
ment TileVertical from the MdiLayout enumeration (line 75).

MDI Child Form
At this point, the app is still incomplete—we must define the MDI child class. To do this,
right click the project in the Solution Explorer and select Add > Windows Form…. Then name
the new class in the dialog as ChildForm (Fig. 15.44). Next, we add a PictureBox (dis-
playPictureBox) to ChildForm. In ChildForm’s constructor, line 16 sets the title-bar text.
Lines 19–21 retrieve the appropriate image resource, cast it to an Image and set display-
PictureBox’s Image property. The images that are used can be found in the Images sub-
folder of this chapter’s examples directory.

After the MDI child class is defined, the parent MDI Form (Fig. 15.43) can create new
child windows. The event handlers in lines 18–48 create a new child Form corresponding
to the menu item clicked. Lines 22–23, 33–34 and 44–45 create new instances of Child-
Form. Lines 24, 35 and 46 set each Child’s MdiParent property to the parent Form. Lines
25, 36 and 47 call method Show to display each child Form.

1 // Fig. 15.44: ChildForm.cs
2 // Child window of MDI parent.
3
4 using System.Drawing;
5 using System.Windows.Forms;
6
7 namespace UsingMDI
8 {
9 public partial class ChildForm : Form

10 {
11 public ChildForm(string title, string resourceName)
12 {
13 // Required for Windows Form Designer support
14 InitializeComponent();
15
16 Text = title; // set title text
17
18 // set image to display in PictureBox
19 displayPictureBox.Image =
20 (Image) (Properties.Resources.ResourceManager.GetObject(
21 resourceName));
22 }
23 }
24 }

Fig. 15.44 | Child window of MDI parent.

ptg18189312

492 Chapter 15 Graphical User Interfaces with Windows Forms: Part 2

15.13 Visual Inheritance
Chapter 11 discussed how to create classes via inheritance. We’ve also used inheritance to
create Forms that display a GUI, by deriving our new Form classes from class System.Win-
dows.Forms.Form. This is an example of visual inheritance. The derived Form class con-
tains the functionality of its Form base class, including any base-class properties, methods,
variables and controls. The derived class also inherits all visual aspects—such as sizing,
component layout, spacing between GUI components, colors and fonts.

Visual inheritance enables you to achieve visual consistency. For example, you could
define a base Form that contains a product’s logo, a specific background color, a predefined
menu bar and other elements. You then could use the base Form throughout an app for
uniformity and branding. You also can create controls that inherit from other controls. For
example, you might create a custom UserControl (discussed in Section 15.14) that’s
derived from an existing control.

Creating a Base Form
Class VisualInheritanceBaseForm (Fig. 15.45) derives from Form. The output depicts
how the Form works. The GUI contains two Labels with text Bugs, Bugs, Bugs and Copy-

right 2017, by Deitel & Associates, Inc., as well as one Button displaying the text Learn More.
When a user presses the Learn More Button, method learnMoreButton_Click (lines 18–
24) is invoked. This method displays a MessageBox that provides some informative text.

1 // Fig. 15.45: VisualInheritanceBaseForm.cs
2 // Base Form for use with visual inheritance.
3 using System;
4 using System.Windows.Forms;
5
6 namespace VisualInheritanceBase
7 {
8 // base Form used to demonstrate visual inheritance
9 public partial class VisualInheritanceBaseForm : Form

10 {
11 // constructor
12 public VisualInheritanceBaseForm()
13 {
14 InitializeComponent();
15 }
16
17 // display MessageBox when Button is clicked
18 private void learnMoreButton_Click(object sender, EventArgs e)
19 {
20 MessageBox.Show(
21 "Bugs, Bugs, Bugs is a product of deitel.com",
22 "Learn More", MessageBoxButtons.OK,
23 MessageBoxIcon.Information);
24 }
25 }
26 }

Fig. 15.45 | Base Form for use with visual inheritance. (Part 1 of 2.)

ptg18189312

15.13 Visual Inheritance 493

Steps for Declaring and Using a Reusable Class
Before a Form (or any class) can be used in multiple apps, it must be placed in a class library
to make it reusable. The steps for creating a reusable class are:

1. Declare a public class. If the class is not public, it can be used only by other
classes in the same assembly—that is, compiled into the same DLL or EXE file.

2. Choose a namespace name and add a namespace declaration to the source-code
file for the reusable class declaration.

3. Compile the class into a class library.

4. Add a reference to the class library in an app.

5. Use the class.

Let’s take a look at these steps in the context of this example:

Step 1: Creating a public Class
For Step 1 in this discussion, we use the public class VisualInheritanceBaseForm declared
in Fig. 15.45. By default, every new Form class you create is declared as a public class.

Step 2: Adding the namespace Declaration
For Step 2, we use the namespace declaration that was created for us by the IDE. By de-
fault, every new class you define is placed in a namespace with the same name as the proj-
ect. In almost every example in the text, we’ve seen that classes from preexisting libraries,
such as the .NET Framework Class Library, can be imported into a C# app. Each class
belongs to a namespace that contains a group of related classes. As apps become more com-
plex, namespaces help you manage the complexity of app components. Class libraries and
namespaces also facilitate software reuse by enabling apps to add classes from other name-
spaces (as we’ve done in many examples). We removed the namespace declarations in ear-
lier chapters because they were not necessary.

Placing a class inside a namespace declaration indicates that the class is part of the
specified namespace. The namespace name is part of the fully qualified class name, so the
name of class VisualInheritanceTestForm is actually VisualInheritanceBase.Visual-
InheritanceBaseForm. You can use this fully qualified name in your apps, or you can
write a using directive and use the class’s simple name (the unqualified class name—Visu-

alInheritanceBaseForm) in the app. If another namespace also contains a class with the

Fig. 15.45 | Base Form for use with visual inheritance. (Part 2 of 2.)

ptg18189312

494 Chapter 15 Graphical User Interfaces with Windows Forms: Part 2

same name, the fully qualified class names can be used to distinguish between the classes
in the app and prevent a name conflict (also called a name collision).

Step 3: Compiling the Class Library
To allow other Forms to inherit from VisualInheritanceForm, we must package Visual-
InheritanceForm as a class library and compile it into a .dll file. Such as file is known
as a dynamically linked library—a way to package classes that you can reference from oth-
er apps. Right click the project name in the Solution Explorer and select Properties, then
choose the Application tab. In the Output type drop-down list, change Windows Application

to Class Library. Building the project produces the .dll. You can configure a project to be
a class library when you first create it by selecting the Class Library template in the New Proj-

ect dialog. [Note: A class library cannot execute as a stand-alone app. The screen captures
in Fig. 15.45 were taken before changing the project to a class library.]

Step 4: Adding a Reference to the Class Library
Once the class is compiled and stored in the class library file, the library can be referenced
from any app by indicating to Visual Studio where to find the class library file. To visually
inherit from VisualInheritanceBaseForm, first create a new Windows app. Right click
the References node in the Solution Explorer window and select Add Reference... from the
pop-up menu that appears. The dialog box that appears will contain a list of class libraries
from the .NET Framework. Some class libraries, like the one containing the System name-
space, are so common that they’re added to your app by the IDE. The ones in this list are
not.

In the Reference Manager dialog box, click Browse then click the Browse… button.
When you build a class library, Visual C# places the .dll file in the project’s bin\Debug
or bin\Release folder, depending on whether the Solution Configurations drop-down list
in the IDE’s toolbar is set to Debug or Release. In the Browse tab, you can navigate to the
directory containing the class library file you created in Step 3, as shown in Fig. 15.46.
Select the .dll file and click Add.

f

Fig. 15.46 | Using the Reference Manager dialog to browse for a DLL. (Part 1 of 2.)

ptg18189312

15.13 Visual Inheritance 495

Step 5: Using the Class—Deriving from a Base Form
Open the file that defines the new app’s GUI and modify the line that defines the class to
indicate that the app’s Form should inherit from class VisualInheritanceBaseForm. The
class-declaration line should now appear as follows:

Unless you specify namespace VisualInheritanceBase in a using directive, you must use
the fully qualified name VisualInheritanceBase.VisualInheritanceBaseForm. In De-

sign view, the new app’s Form should now display the controls inherited from the base Form
(Fig. 15.47). We can now add more components to the Form.

Class VisualInheritanceTestForm
Class VisualInheritanceTestForm (Fig. 15.48) is a derived class of VisualInheritance-
BaseForm. The output illustrates the functionality of the program. The components, their
layouts and the functionality of base class VisualInheritanceBaseForm (Fig. 15.45) are
inherited by VisualInheritanceTestForm. We added an additional Button with text
About this Program. When a user presses this Button, method aboutButton_Click
(Fig. 15.48, lines 19–25) is invoked. This method displays another MessageBox providing
different informative text (lines 21–24).

f

public partial class VisualInheritanceTestForm :
 VisualInheritanceBase.VisualInheritanceBaseForm

Fig. 15.47 | Form demonstrating visual inheritance.

Fig. 15.46 | Using the Reference Manager dialog to browse for a DLL. (Part 2 of 2.)

ptg18189312

496 Chapter 15 Graphical User Interfaces with Windows Forms: Part 2

If a user clicks the Learn More button, the event is handled by the base-class event han-
dler learnMoreButton_Click. Because VisualInheritanceBaseForm uses a private
access modifier to declare its controls, VisualInheritanceTestForm cannot modify the

1 // Fig. 15.48: VisualInheritanceTestForm.cs
2 // Derived Form using visual inheritance.
3 using System;
4 using System.Windows.Forms;
5
6 namespace VisualInheritanceTest
7 {
8 // derived form using visual inheritance
9 public partial class VisualInheritanceTestForm :

10 VisualInheritanceBase.VisualInheritanceBaseForm
11 {
12 // constructor
13 public VisualInheritanceTestForm()
14 {
15 InitializeComponent();
16 }
17
18 // display MessageBox when Button is clicked
19 private void aboutButton_Click(object sender, EventArgs e)
20 {
21 MessageBox.Show(
22 "This program was created by Deitel & Associates.",
23 "About This Program", MessageBoxButtons.OK,
24 MessageBoxIcon.Information);
25 }
26 }
27 }

Fig. 15.48 | Derived Form using visual inheritance.

Derived class
cannot modify
these controls

Derived class can
modify this control

ptg18189312

15.14 User-Defined Controls 497

controls inherited from class VisualInheritanceBaseForm visually or programmatically.
The IDE displays a small icon at the top left of the visually inherited controls to indicate
that they’re inherited and cannot be altered.

15.14 User-Defined Controls
The .NET Framework allows you to create custom controls. These custom controls ap-
pear in the user’s Toolbox and can be added to Forms, Panels or GroupBoxes in the same
way that we add Buttons, Labels and other predefined controls. The simplest way to create
a custom control is to derive a class from an existing control, such as a Label. This is useful
if you want to add functionality to an existing control, rather than replacing it with one
that provides the desired functionality. For example, you can create a new type of Label
that behaves like a normal Label but has a different appearance. You accomplish this by
inheriting from class Label and overriding method OnPaint.

Method OnPaint
All controls have an OnPaint method, which the system calls when a component must be
redrawn (such as when the component is resized). The method receives a PaintEventArgs
object, which contains graphics information—property Graphics is the graphics object
used to draw, and property ClipRectangle defines the rectangular boundary of the con-
trol. Whenever the system raises a Paint event to draw the control on the screen, the con-
trol catches the event and calls its OnPaint method. The base class’s OnPaint should be
called explicitly from an overridden OnPaint implementation before executing custom-
paint code. In most cases, you want to do this to ensure that the original painting code
executes in addition to the code you define in the custom control’s class.

Creating New Controls
To create a new control composed of existing controls, use class UserControl. Controls
added to a custom control are called constituent controls. For example, a programmer
could create a UserControl composed of a Button, a Label and a TextBox, each associated
with some functionality (for example, the Button setting the Label’s text to that contained
in the TextBox). The UserControl acts as a container for the controls added to it. The Us-
erControl contains constituent controls, but it does not determine how these constituent
controls are displayed. To control the appearance of each constituent control, you can
handle each control’s Paint event or override OnPaint. Both the Paint event handler and
OnPaint are passed a PaintEventArgs object, which can be used to draw graphics (lines,
rectangles, and so on) on the constituent controls.

Using another technique, a programmer can create a brand-new control by inheriting
from class Control. This class does not define any specific behavior; that’s left to you.
Instead, class Control handles the items associated with all controls, such as events and
sizing handles. Method OnPaint should contain a call to the base class’s OnPaint method,
which calls the Paint event handlers. You add code that draws custom graphics inside the
overridden OnPaint method. This technique allows for the greatest flexibility but also
requires the most planning. All three approaches are summarized in Fig. 15.49.

ptg18189312

498 Chapter 15 Graphical User Interfaces with Windows Forms: Part 2

Clock Control
We create a “clock” control in Fig. 15.50. This is a UserControl composed of a Label and
a Timer—whenever the Timer raises an event (once per second in this example), the Label
is updated to reflect the current time.

Custom-control techniques
and PaintEventArgs
properties Description

Custom-Control Techniques
Inherit from a Windows
Forms control

You can do this to add functionality to a preexisting control.
If you override method OnPaint, call the base class’s OnPaint
method. You only can add to the original control’s appear-
ance, not redesign it.

Create a UserControl You can create a UserControl composed of multiple preexist-
ing controls (e.g., to combine their functionality). You place
drawing code in a Paint event handler or overridden OnPaint
method.

Inherit from class Control Define a brand new control. Override method OnPaint, then
call base-class method OnPaint and add the code to draw the
control. With this method you can customize both control
appearance and functionality.

PaintEventArgs Properties
Graphics The control’s graphics object, which is used to draw on the

control.
ClipRectangle Specifies the rectangle indicating the boundary of the con-

trol.

Fig. 15.49 | Custom-control creation.

1 // Fig. 15.50: ClockUserControl.cs
2 // User-defined control with a Timer and a Label.
3 using System;
4 using System.Windows.Forms;
5
6 namespace ClockExample
7 {
8 // UserControl that displays the time on a Label
9 public partial class ClockUserControl : UserControl

10 {
11 // constructor
12 public ClockUserControl()
13 {
14 InitializeComponent();
15 }

Fig. 15.50 | User-defined control with a Timer and a Label. (Part 1 of 2.)

ptg18189312

15.14 User-Defined Controls 499

Timers
Timers (System.Windows.Forms namespace) are non-visual components that generate
Tick events at a set interval. This interval is set by the Timer’s Interval property, which
defines the number of milliseconds (thousandths of a second) between events. By default,
timers are disabled and do not generate events.

Adding a User Control
This app contains a user control (ClockUserControl) and a Form that displays the user
control. Create a Windows app, then create a UserControl class by selecting Project > Add

User Control…. This displays a dialog from which we can select the type of item to add—
user controls are already selected. We then name the file (and the class) ClockUserCon-
trol. Our empty ClockUserControl is displayed as a grey rectangle.

Designing the User Control
You can treat this control like a Windows Form, meaning that you can add controls using
the ToolBox and set properties using the Properties window. However, instead of creating
an app, you’re simply creating a new control composed of other controls. Add a Label
(displayLabel) and a Timer (clockTimer) to the UserControl. Set the Timer interval to
1000 milliseconds and set displayLabel’s text with each Tick event (lines 18–22; the de-
fault event). To generate events, clockTimer must be enabled by setting property Enabled
to true in the Properties window.

Structure DateTime (namespace System) contains property Now, which returns the
current time. Method ToLongTimeString converts Now to a string containing the current
hour, minute and second (along with AM or PM, depending on your locale). We use this
to set the time in displayLabel in line 21.

Once created, our clock control appears as an item in the ToolBox in the section titled
ProjectName Components, where ProjectName is your project’s name. You may need to
switch to the app’s Form before the item appears in the ToolBox. To use the control, simply
drag it to the Form and run the Windows app. We gave the ClockUserControl object a

16
17 // update Label at every tick
18 private void clockTimer_Tick(object sender, EventArgs e)
19 {
20 // get current time (Now), convert to string
21 displayLabel.Text = DateTime.Now.ToLongTimeString();
22 }
23 }
24 }

Fig. 15.50 | User-defined control with a Timer and a Label. (Part 2 of 2.)

ptg18189312

500 Chapter 15 Graphical User Interfaces with Windows Forms: Part 2

white background to make it stand out in the Form. Figure 15.50 shows the output of
Clock, which contains our ClockUserControl. There are no event handlers in Clock, so
we show only the code for ClockUserControl.

Sharing Custom Controls with Other Developers
Visual Studio allows you to share custom controls with other developers. To create a Us-
erControl that can be exported to other solutions, do the following:

1. Create a new Class Library project.

2. Delete Class1.cs, initially provided with the app.

3. Right click the project in the Solution Explorer and select Add > User Control…. In
the dialog that appears, name the user-control file and click Add.

4. Inside the project, add controls and functionality to the UserControl

(Fig. 15.51).

5. Build the project. Visual Studio creates a .dll file for the UserControl in the
output directory (bin/Debug or bin/Release). The file is not executable; class li-
braries are used to define classes that are reused in other executable apps. You can
give the .dll file to other developers and they can follow Steps 6 and 7.

6. Create a new Windows app.

7. In the new Windows app, right click the ToolBox and select Choose Items…. In the
Choose Toolbox Items dialog that appears, click Browse…. Browse for the .dll file
from the class library created in Steps 1–5. The item will then appear in the .NET

Framework Components tab of the Choose Toolbox Items dialog. If it’s not already
checked, check this item. Click OK to add the item to the Toolbox. This control
can now be added to the Form as if it were any other control.

15.15 Wrap-Up
Many of today’s commercial apps provide GUIs that are easy to use and manipulate. Be-
cause of this demand for user-friendly GUIs, the ability to design sophisticated GUIs is an
essential programming skill. Visual Studio’s IDE makes GUI development quick and easy.
In Chapters 14 and 15, we presented basic Windows Forms GUI development tech-
niques. In Chapter 15, we demonstrated how to create menus, which provide users easy
access to an app’s functionality. You learned the DateTimePicker and MonthCalendar
controls, which allow users to input date and time values. We demonstrated LinkLabels,
which are used to link the user to an app or a web page. You used several controls that
provide lists of data to the user—ListBoxes, CheckedListBoxes and ListViews. We used

Fig. 15.51 | Custom-control creation.

ptg18189312

15.15 Wrap-Up 501

the ComboBox control to create drop-down lists, and the TreeView control to display data
in hierarchical form. We then introduced complex GUIs that use tabbed windows and
multiple document interfaces. The chapter concluded with demonstrations of visual in-
heritance and creating custom controls. In Chapter 16, we introduce string and character
processing.

ptg18189312

16
Strings and Characters:

A Deeper Look

O b j e c t i v e s
In this chapter you’ll:

■ Create and manipulate immutable character-string objects
of class string and mutable character-string objects of
class StringBuilder.

■ Use various methods of classes string and
StringBuilder.

■ Manipulate character objects of struct Char.
■ Use regular-expression classes Regex and Match.

ptg18189312

16.1 Introduction 503

O
u

tl
in

e

16.1 Introduction
This chapter introduces the .NET Framework Class Library’s string- and character-pro-
cessing capabilities and demonstrates how to use regular expressions to search for patterns
in text. The techniques it presents can be employed in most kinds of applications, and par-
ticularly in text editors, word processors, page-layout software, computerized typesetting
systems and other kinds of text-processing software. Previous chapters presented some
basic string-processing capabilities. Now we discuss in detail the text-processing capabili-
ties of class string and type char from the System namespace and class StringBuilder
from the System.Text namespace.

We begin with an overview of the fundamentals of characters and strings in which we
discuss character constants and string literals. We then provide examples of class string’s
many constructors and methods. The examples demonstrate how to determine the length
of strings, copy strings, access individual characters in strings, search strings, obtain substrings
from larger strings, compare strings, concatenate strings, replace characters in strings and
convert strings to uppercase or lowercase letters.

Next, we introduce class StringBuilder, which is used to assemble strings dynami-
cally. We demonstrate StringBuilder capabilities for determining and specifying the size
of a StringBuilder, as well as appending, inserting, removing and replacing characters in a
StringBuilder object. We then introduce the character-testing methods of struct Char
that enable a program to determine whether a character is a digit, a letter, a lowercase
letter, an uppercase letter, a punctuation mark or a symbol other than a punctuation mark.
Such methods are useful for validating individual characters in user input. In addition,
type Char provides methods for converting a character to uppercase or lowercase.

We provide an online section at http://www.deitel.com/books/CSharp6FP that dis-
cusses regular expressions. We present classes Regex and Match from the System.Text.Reg-
ularExpressions namespace as well as the symbols that are used to form regular
expressions. We then demonstrate how to find patterns in a string, match entire strings to
patterns, replace characters in a string that match a pattern and split strings at delimiters spec-
ified as a pattern in a regular expression.

16.1 Introduction
16.2 Fundamentals of Characters and

Strings
16.3 string Constructors
16.4 string Indexer, Length Property

and CopyTo Method
16.5 Comparing strings
16.6 Locating Characters and Substrings

in strings
16.7 Extracting Substrings from strings
16.8 Concatenating strings
16.9 Miscellaneous string Methods

16.10 Class StringBuilder
16.11 Length and Capacity Properties,

EnsureCapacity Method and In-
dexer of Class StringBuilder

16.12 Append and AppendFormat Meth-
ods of Class StringBuilder

16.13 Insert, Remove and Replace
Methods of Class StringBuilder

16.14 Char Methods
16.15 Introduction to Regular Expressions

(Online)
16.16 Wrap-Up

http://www.deitel.com/books/CSharp6FP

ptg18189312

504 Chapter 16 Strings and Characters: A Deeper Look

16.2 Fundamentals of Characters and Strings
Characters are the fundamental building blocks of C# source code. Every program is com-
posed of characters that, when grouped together meaningfully, create a sequence that the
compiler interprets as instructions describing how to accomplish a task. A program also can
contain character constants. A character constant is a character that’s represented as an in-
teger value, called a character code. For example, the integer value 122 corresponds to the
character constant 'z'. The integer value 10 corresponds to the newline character '\n'.
Character constants are established according to the Unicode character set, an international
character set that contains many more symbols and letters than does the ASCII character
set (listed in Appendix). To learn more about Unicode, see unicode.org.

A string is a series of characters treated as a unit. These characters can be uppercase let-
ters, lowercase letters, digits and various special characters: +, -, *, /, $ and others. A string
is an object of type string. Just as the C# keyword object is an alias for class Object, string
is an alias for class String (namespace System). We write string literals, also called string
constants, as sequences of characters in double quotation marks, as follows:

A declaration can assign a string literal to a string reference. The declaration

initializes the string color to refer to the string literal object "blue".

Verbatim strings
Recall that backslash characters in strings introduce escape sequences and that placing a
literal backslash in a string requires \\. On occasion, a string will contain multiple lit-
eral backslash characters (this often occurs in the name of a file). To avoid excessive back-
slashes, it’s possible to exclude escape sequences and interpret all the characters in a string
literally, using the @ character to create what’s known as a verbatim string. Backslashes
within the double quotation marks following the @ character are not considered to be part
of escape sequences. Often this simplifies programming and makes the code easier to read.

For example, consider the string in the following assignment:

Using the verbatim string syntax, the assignment can be altered to

Verbatim strings may also span multiple lines, in which case they preserve all newlines,
spaces and tabs between the opening @" and closing " delimiters.

"John Q. Doe"
"9999 Main Street"
"Waltham, Massachusetts"
"(201) 555-1212"

string color = "blue";

Performance Tip 16.1
If there are multiple occurrences of the same string literal object in an app, a single copy
of it will be referenced from each location in the program that uses that string literal. It’s
possible to share the object in this manner, because string literal objects are implicitly
constant. Such sharing conserves memory.

string file = "C:\\MyFolder\\MySubFolder\\MyFile.txt";

string file = @"C:\MyFolder\MySubFolder\MyFile.txt";

ptg18189312

16.3 string Constructors 505

16.3 string Constructors
Figure 16.1 demonstrates three of class string’s constructors.

Lines 10–11 create the char array characterArray, which contains nine characters.
Lines 12–16 declare the strings originalString, string1, string2, string3 and
string4. Line 12 assigns string literal "Welcome to C# programming!" to string refer-
ence originalString. Line 13 sets string1 to reference the same string literal.

Line 14 assigns to string2 a new string, using the string constructor with a char-
acter array argument. The new string contains a copy of the array’s characters.

Line 15 assigns to string3 a new string, using the string constructor that takes a
char array and two int arguments. The second argument specifies the starting index posi-
tion (the offset) from which characters in the array are to be copied. The third argument
specifies the number of characters (the count) to be copied from the specified starting posi-
tion in the array. The new string contains a copy of the specified characters in the array.
If the specified offset or count indicates that the program should access an element outside
the bounds of the character array, an ArgumentOutOfRangeException is thrown.

Line 16 assigns to string4 a new string, using the string constructor that takes as
arguments a character and an int specifying the number of times to repeat that character
in the string.

1 // Fig. 16.1: StringConstructor.cs
2 // Demonstrating string class constructors.
3 using System;
4
5 class StringConstructor
6 {
7 static void Main()
8 {
9 // string initialization

10 char[] characterArray =
11 {'b', 'i', 'r', 't', 'h', ' ', 'd', 'a', 'y'};
12 var originalString = "Welcome to C# programming!";
13 var string1 = originalString;
14
15
16
17
18 Console.WriteLine($"string1 = \"{string1}\"\n" +
19 $"string2 = \"{string2}\"\n" +
20 $"string3 = \"{string3}\"\n" +
21 $"string4 = \"{string4}\"\n");
22 }
23 }

string1 = "Welcome to C# programming!"
string2 = "birth day"
string3 = "day"
string4 = "CCCCC"

Fig. 16.1 | Demonstrating string class constructors.

var string2 = new string(characterArray);
var string3 = new string(characterArray, 6, 3);
var string4 = new string('C', 5);

ptg18189312

506 Chapter 16 Strings and Characters: A Deeper Look

16.4 string Indexer, Length Property and CopyTo
Method
Figure 16.2 presents

• the string indexer ([]) for retrieving any character in a string,

• the string property Length, which returns a string’s length and

• the string method CopyTo, which copies a specified number of characters from
a string into a char array.

Software Engineering Observation 16.1
In most cases, it’s not necessary to make a copy of an existing string. All strings are
immutable—their character contents cannot be changed after they’re created. Also, if
there are one or more references to a string (or any reference-type object for that matter),
the object cannot be reclaimed by the garbage collector.

1 // Fig. 16.2: StringMethods.cs
2 // Using the indexer, property Length and method CopyTo
3 // of class string.
4 using System;
5
6 class StringMethods
7 {
8 static void Main()
9 {

10 var string1 = "hello there";
11 var characterArray = new char[5];
12
13 Console.WriteLine($"string1: \"{string1}\""); // output string1
14
15 // test Length property
16 Console.WriteLine($"Length of string1: { }");
17
18 // loop through characters in string1 and display reversed
19 Console.Write("The string reversed is: ");
20
21 for (int i = - 1; i >= 0; --i)
22 {
23 Console.Write();
24 }
25
26 // copy characters from string1 into characterArray
27
28 Console.Write("\nThe character array is: ");
29
30 foreach (var element in characterArray)
31 {
32 Console.Write(element);
33 }

Fig. 16.2 | string indexer, Length property and CopyTo method. (Part 1 of 2.)

string1.Length

string1.Length

string1[i]

string1.CopyTo(0, characterArray, 0, characterArray.Length);

ptg18189312

16.5 Comparing strings 507

Line 16 uses string property Length to determine the number of characters in
string1. Like arrays, strings always know their own size.

Lines 21–24 display the characters of string1 in reverse order using the string
indexer ([]), which treats a string as an array of chars and returns the character at a spe-
cific index in the string. As with arrays, the first element of a string has index 0.

Line 27 uses string method CopyTo to copy the characters of string1 into a character
array (characterArray). The first argument given to method CopyTo is the index from
which the method begins copying characters in the string. The second argument is the
character array into which the characters are copied. The third argument is the index spec-
ifying the starting location at which the method begins placing the copied characters into
the character array. The last argument is the number of characters that the method will
copy from the string. Lines 30–33 output the char array contents one character at a time.

We used a for statement in lines 21–24 to demonstrate a string’s Length property
and the string indexer, using them to display the string in reverse. That loop could have
been implemented with foreach and the Reverse extension method as in

Method Reverse is one of many LINQ extension methods and requires a using directive
for the namespace System.Linq.

16.5 Comparing strings
The next two examples demonstrate various methods for comparing strings. To under-
stand how one string can be “greater than” or “less than” another, consider the process
of alphabetizing a series of last names. The reader would, no doubt, place "Jones" before
"Smith", because the first letter of "Jones" comes before the first letter of "Smith" in the
alphabet. The alphabet is more than just a set of 26 letters—it’s an ordered list of charac-
ters in which each letter occurs in a specific position. For example, Z is more than just a

34
35 Console.WriteLine("\n");
36 }
37 }

string1: "hello there"
Length of string1: 11
The string reversed is: ereht olleh
The character array is: hello

Common Programming Error 16.1
Attempting to access a character that’s outside a string’s bounds results in an IndexOut-
OfRangeException.

foreach (var element in string1.Reverse())
{

 Console.Write(element);
}

Fig. 16.2 | string indexer, Length property and CopyTo method. (Part 2 of 2.)

ptg18189312

508 Chapter 16 Strings and Characters: A Deeper Look

letter of the alphabet; it’s specifically the twenty-sixth letter of the alphabet. Computers
can order characters alphabetically because they’re represented internally as numeric codes
and those codes are ordered according to the alphabet so, for example, 'a' is less than
'b'—see Appendix .

Comparing strings with Equals, CompareTo and the Equality Operator (==)
Class string provides several ways to compare strings. Figure 16.3 demonstrates methods
Equals and CompareTo and the equality operator (==).

1 // Fig. 16.3: StringCompare.cs
2 // Comparing strings
3 using System;
4
5 class StringCompare
6 {
7 static void Main()
8 {
9 var string1 = "hello";

10 var string2 = "good bye";
11 var string3 = "Happy Birthday";
12 var string4 = "happy birthday";
13
14 // output values of four strings
15 Console.WriteLine($"string1 = \"{string1}\"" +
16 $"\nstring2 = \"{string2}\"" +
17 $"\nstring3 = \"{string3}\"" +
18 $"\nstring4 = \"{string4}\"\n");
19
20 // test for equality using Equals method
21 if ()
22 {
23 Console.WriteLine("string1 equals \"hello\"");
24 }
25 else
26 {
27 Console.WriteLine("string1 does not equal \"hello\"");
28 }
29
30 // test for equality with ==
31 if ()
32 {
33 Console.WriteLine("string1 equals \"hello\"");
34 }
35 else
36 {
37 Console.WriteLine("string1 does not equal \"hello\"");
38 }
39
40 // test for equality comparing case
41 if () // static method
42 {

Fig. 16.3 | Comparing strings. (Part 1 of 2.)

string1.Equals("hello")

string1 == "hello"

string.Equals(string3, string4)

ptg18189312

16.5 Comparing strings 509

The condition in line 21 uses string method Equals to compare string1 and literal
string "hello" (the argument) to determine whether they’re equal. Method Equals
(inherited from object and overridden in string) tests two strings for equality (i.e.,
checks whether the strings have identical contents). The method returns true if the
objects are equal and false otherwise. In this case, the condition returns true, because
string1 references string literal object "hello". Method Equals uses word sorting rules
that do not depend on your system’s currently selected culture. Comparing "hello" with
"HELLO" would return false, because the lowercase letters are different from the corre-
sponding uppercase letters.

The condition in line 31 uses class string’s overloaded equality operator (==) to com-
pare string string1 with the literal string "hello" for equality. In C#, the equality
operator also compares the contents of two strings. Thus, the condition in the if state-
ment evaluates to true, because the values of string1 and "hello" are equal.

43 Console.WriteLine("string3 equals string4");
44 }
45 else
46 {
47 Console.WriteLine("string3 does not equal string4");
48 }
49
50 // test CompareTo
51 Console.WriteLine(
52 $"\nstring1.CompareTo(string2) is { }");
53 Console.WriteLine(
54 $"string2.CompareTo(string1) is { }");
55 Console.WriteLine(
56 $"string1.CompareTo(string1) is { }");
57 Console.WriteLine(
58 $"string3.CompareTo(string4) is { }");
59 Console.WriteLine(
60 $"string4.CompareTo(string3) is { }");
61 }
62 }

string1 = "hello"
string2 = "good bye"
string3 = "Happy Birthday"
string4 = "happy birthday"

string1 equals "hello"
string1 equals "hello"
string3 does not equal string4

string1.CompareTo(string2) is 1
string2.CompareTo(string1) is -1
string1.CompareTo(string1) is 0
string3.CompareTo(string4) is 1
string4.CompareTo(string3) is -1

Fig. 16.3 | Comparing strings. (Part 2 of 2.)

string1.CompareTo(string2)

string2.CompareTo(string1)

string1.CompareTo(string1)

string3.CompareTo(string4)

string4.CompareTo(string3)

ptg18189312

510 Chapter 16 Strings and Characters: A Deeper Look

Line 41 tests whether string3 and string4 are equal to illustrate that comparisons
are indeed case sensitive. Here, static method Equals is used to compare the values of
two strings. "Happy Birthday" does not equal "happy birthday", so the condition fails,
and the message "string3 does not equal string4" is output (line 47).

Lines 51–60 use string method CompareTo to compare strings. The method returns
0 if the strings are equal, a negative value if the string that invokes CompareTo is less than
the string that’s passed as an argument and a positive value if the string that invokes
CompareTo is greater than the string that’s passed as an argument.

Notice that CompareTo considers string3 to be greater than string4. The only dif-
ference between these two strings is that string3 contains two uppercase letters in posi-
tions where string4 contains lowercase letters. The method uses sorting rules that are case
and culture sensitive.

Determining Whether a String Begins or Ends with a Specified String
Figure 16.4 tests whether a string begins or ends with a given string. Method
StartsWith determines whether a string starts with the string passed to the method as
an argument. Method EndsWith determines whether a string ends with the string
passed to the method as an argument.

1 // Fig. 16.4: StringStartEnd.cs
2 // Demonstrating StartsWith and EndsWith methods.
3 using System;
4
5 class StringStartEnd
6 {
7 static void Main()
8 {
9 string[] strings = {"started", "starting", "ended", "ending"};

10
11 // test every string to see if it starts with "st"
12 foreach (var element in strings)
13 {
14 if ()
15 {
16 Console.WriteLine($"\"{element}\" starts with \"st\"");
17 }
18 }
19
20 Console.WriteLine();
21
22 // test every string to see if it ends with "ed"
23 foreach (var element in strings)
24 {
25 if ()
26 {
27 Console.WriteLine($"\"{element}\" ends with \"ed\"");
28 }
29 }
30

Fig. 16.4 | Demonstrating StartsWith and EndsWith methods. (Part 1 of 2.)

element.StartsWith("st")

element.EndsWith("ed")

ptg18189312

16.6 Locating Characters and Substrings in strings 511

Line 9 defines an array of strings, which contains "started", "starting", "ended"
and "ending". Line 14 uses method StartsWith, which takes a string argument. The con-
dition in the if statement determines whether the current element starts with the characters
"st". If so, the method returns true, and the element is displayed along with a message.

Line 25 uses method EndsWith to determine whether the current element ends with
the characters "ed". If so, the method returns true, and the element is displayed along
with a message.

16.6 Locating Characters and Substrings in strings
In many apps, it’s necessary to search for a character or set of characters in a string. For
example, a programmer creating a word processor would want to provide capabilities for
searching through documents. Figure 16.5 demonstrates some versions of string meth-
ods IndexOf, IndexOfAny, LastIndexOf and LastIndexOfAny, which search for a specified
character or substring in a string. We perform all searches in this example on the string
letters (line 9).

31 Console.WriteLine();
32 }
33 }

"started" starts with "st"
"starting" starts with "st"

"started" ends with "ed"
"ended" ends with "ed"

1 // Fig. 16.5: StringIndexMethods.cs
2 // Using string-searching methods.
3 using System;
4
5 class StringIndexMethods
6 {
7 static void Main()
8 {
9 var letters = "abcdefghijklmabcdefghijklm";

10 char[] searchLetters = {'c', 'a', '$'};
11
12 // test IndexOf to locate a character in a string
13 Console.WriteLine($"First 'c' is located at index " +
14);
15 Console.WriteLine("First 'a' starting at 1 is located at index " +
16);
17 Console.WriteLine("First '$' in the 5 positions starting at 3 " +
18 $"is located at index " +);
19

Fig. 16.5 | Using string-searching methods. (Part 1 of 3.)

Fig. 16.4 | Demonstrating StartsWith and EndsWith methods. (Part 2 of 2.)

letters.IndexOf('c')

letters.IndexOf('a', 1)

letters.IndexOf('$', 3, 5)

ptg18189312

512 Chapter 16 Strings and Characters: A Deeper Look

20 // test LastIndexOf to find a character in a string
21 Console.WriteLine($"\nLast 'c' is located at index " +
22);
23 Console.WriteLine("Last 'a' up to position 25 is located at " +
24 "index " +);
25 Console.WriteLine("Last '$' in the 5 positions ending at 15 " +
26 "is located at index " +);
27
28 // test IndexOf to locate a substring in a string
29 Console.WriteLine("\nFirst \"def\" is located at index " +
30);
31 Console.WriteLine("First \"def\" starting at 7 is located at " +
32 "index " +);
33 Console.WriteLine("First \"hello\" in the 15 positions " +
34 "starting at 5 is located at index " +
35);
36
37 // test LastIndexOf to find a substring in a string
38 Console.WriteLine("\nLast \"def\" is located at index " +
39);
40 Console.WriteLine("Last \"def\" up to position 25 is located " +
41 "at index " +);
42 Console.WriteLine("Last \"hello\" in the 15 positions " +
43 "ending at 20 is located at index " +
44);
45
46 // test IndexOfAny to find first occurrence of character in array
47 Console.WriteLine("\nFirst 'c', 'a' or '$' is " +
48 "located at index " +);
49 Console.WriteLine("First 'c', 'a' or '$' starting at 7 is " +
50 "located at index " +);
51 Console.WriteLine("First 'c', 'a' or '$' in the 5 positions " +
52 "starting at 7 is located at index " +
53);
54
55 // test LastIndexOfAny to find last occurrence of character
56 // in array
57 Console.WriteLine("\nLast 'c', 'a' or '$' is " +
58 "located at index " +);
59 Console.WriteLine("Last 'c', 'a' or '$' up to position 1 is " +
60 "located at index " +
61);
62 Console.WriteLine("Last 'c', 'a' or '$' in the 5 positions " +
63 "ending at 25 is located at index " +
64);
65 }
66 }

First 'c' is located at index 2
First 'a' starting at 1 is located at index 13
First '$' in the 5 positions starting at 3 is located at index -1

Fig. 16.5 | Using string-searching methods. (Part 2 of 3.)

letters.LastIndexOf('c')

letters.LastIndexOf('a', 25)

letters.LastIndexOf('$', 15, 5)

letters.IndexOf("def")

letters.IndexOf("def", 7)

letters.IndexOf("hello", 5, 15)

letters.LastIndexOf("def")

letters.LastIndexOf("def", 25)

letters.LastIndexOf("hello", 20, 15)

letters.IndexOfAny(searchLetters)

letters.IndexOfAny(searchLetters, 7)

letters.IndexOfAny(searchLetters, 7, 5)

letters.LastIndexOfAny(searchLetters)

letters.LastIndexOfAny(searchLetters, 1)

letters.LastIndexOfAny(searchLetters, 25, 5)

ptg18189312

16.6 Locating Characters and Substrings in strings 513

Lines 14, 16 and 18 use method IndexOf to locate the first occurrence of a character
or substring in a string. If it finds a character, IndexOf returns the index of the specified
character in the string; otherwise, IndexOf returns –1. The expression in line 16 uses a
method IndexOf with two arguments—the character to search for and the starting index
at which the search should begin. The method does not examine any characters that occur
prior to the starting index (in this case, 1). The expression in line 18 uses method IndexOf
with three arguments—the character to search for, the index at which to start searching
and the number of characters to search.

Lines 22, 24 and 26 use method LastIndexOf to locate the last occurrence of a char-
acter in a string. Method LastIndexOf performs the search from the end to the begin-
ning of the string. If it finds the character, LastIndexOf returns the index of the specified
character in the string; otherwise, LastIndexOf returns –1. There are three versions of
method LastIndexOf. The expression in line 22 uses the version that takes as an argument
the character for which to search. The expression in line 24 uses the version that takes two
arguments—the character for which to search and the highest index from which to begin
searching backward for the character. The expression in line 26 uses a third version of
method LastIndexOf that takes three arguments—the character for which to search, the
starting index from which to start searching backward and the number of characters (the
portion of the string) to search.

Lines 29–44 use versions of IndexOf and LastIndexOf that take a string instead of
a character as the first argument. These versions of the methods perform identically to
those described above except that they search for sequences of characters (or substrings)
that are specified by their string arguments.

Lines 47–64 use methods IndexOfAny and LastIndexOfAny, which take an array of
characters as the first argument. These versions of the methods also perform identically to
those described above, except that they return the index of the first or last occurrence of
any of the characters in the character-array argument, respectively.

Last 'c' is located at index 15
Last 'a' up to position 25 is located at index 13
Last '$' in the 5 positions ending at 15 is located at index -1

First "def" is located at index 3
First "def" starting at 7 is located at index 16
First "hello" in the 15 positions starting at 5 is located at index -1

Last "def" is located at index 16
Last "def" up to position 25 is located at index 16
Last "hello" in the 15 positions ending at 20 is located at index -1

First 'c', 'a' or '$' is located at index 0
First 'c', 'a' or '$' starting at 7 is located at index 13
First 'c', 'a' or '$' in the 5 positions starting at 7 is located at index -1

Last 'c', 'a' or '$' is located at index 15
Last 'c', 'a' or '$' up to position 1 is located at index 0
Last 'c', 'a' or '$' in the 5 positions ending at 25 is located at index -1

Fig. 16.5 | Using string-searching methods. (Part 3 of 3.)

ptg18189312

514 Chapter 16 Strings and Characters: A Deeper Look

16.7 Extracting Substrings from strings
Class string provides two Substring methods, which create a new string by copying
part of an existing string. Each method returns a new string. Figure 16.6 demonstrates
both methods.

The statement in line 13 uses the Substring method that takes one int argument.
The argument specifies the starting index from which the method copies characters in the
original string. The substring returned contains a copy of the characters from the starting
index to the end of the string. If the index specified in the argument is outside the bounds
of the string, the program throws an ArgumentOutOfRangeException.

The second version of method Substring (line 17) takes two int arguments. The first
argument specifies the starting index from which the method copies characters from the
original string. The second argument specifies the length of the substring to copy. The
substring returned contains a copy of the specified characters from the original string. If
the supplied length of the substring is too large (i.e., the substring tries to retrieve charac-
ters past the end of the original string), an ArgumentOutOfRangeException is thrown.

Common Programming Error 16.2
In the overloaded methods LastIndexOf and LastIndexOfAny that take three parame-
ters, the second argument must be greater than or equal to the third. This might seem
counterintuitive, but remember that the search moves from the end of the string toward
the start of the string.

1 // Fig. 16.6: SubString.cs
2 // Demonstrating the string Substring method.
3 using System;
4
5 class SubString
6 {
7 static void Main()
8 {
9 var letters = "abcdefghijklmabcdefghijklm";

10
11 // invoke Substring method and pass it one parameter
12 Console.WriteLine("Substring from index 20 to end is " +
13 $"\"{ }\"");
14
15 // invoke Substring method and pass it two parameters
16 Console.WriteLine("Substring from index 0 of length 6 is " +
17 $"\"{ }\"");
18 }
19 }

Substring from index 20 to end is "hijklm"
Substring from index 0 of length 6 is "abcdef"

Fig. 16.6 | Demonstrating the string Substring method.

letters.Substring(20)

letters.Substring(0, 6)

ptg18189312

16.8 Concatenating strings 515

16.8 Concatenating strings
The + operator is not the only way to perform string concatenation. The static method
Concat of class string (Fig. 16.7) concatenates two strings and returns a new string
containing the combined characters from both original strings. Line 15 appends the
characters from string2 to the end of a copy of string1, using method Concat. The
method call in line 15 does not modify the original strings.

16.9 Miscellaneous string Methods
Class string provides several methods that return modified copies of strings. Figure 16.8
demonstrates string methods Replace, ToLower, ToUpper and Trim.

1 // Fig. 16.7: SubConcatenation.cs
2 // Demonstrating string class Concat method.
3 using System;
4
5 class StringConcatenation
6 {
7 static void Main()
8 {
9 var string1 = "Happy ";

10 var string2 = "Birthday";
11
12 Console.WriteLine($"string1 = \"{string1}\"");
13 Console.WriteLine($"string2 = \"{string2}\"");
14 Console.WriteLine("\nResult of string.Concat(string1, string2) = " +
15);
16 Console.WriteLine($"string1 after concatenation = {string1}");
17 }
18 }

string1 = "Happy "
string2 = "Birthday"

Result of string.Concat(string1, string2) = Happy Birthday
string1 after concatenation = Happy

Fig. 16.7 | Demonstrating string class Concat method.

1 // Fig. 16.8: StringMethods2.cs
2 // Demonstrating string methods Replace, ToLower, ToUpper and Trim
3
4 using System;
5
6 class StringMethods2
7 {
8 static void Main()
9 {

Fig. 16.8 | Demonstrating string methods Replace, ToLower, ToUpper and Trim. (Part 1 of 2.)

string.Concat(string1, string2)

ptg18189312

516 Chapter 16 Strings and Characters: A Deeper Look

Line 20 uses string method Replace to return a new string, replacing every occur-
rence in string1 of character 'e' with 'E'. Method Replace takes two arguments—a
char for which to search and another char with which to replace all matching occurrences
of the first argument. The original string remains unchanged. If there are no occurrences
of the first argument in the string, the method returns the original string. An over-
loaded version of this method allows you to provide two strings as arguments.

The string method ToUpper generates a new string (line 24) that replaces any lower-
case letters in string1 with their uppercase equivalents (using the current culture’s rules).
The method returns a new string containing the converted string; the original string
remains unchanged. If there are no characters to convert, the original string is returned.
Line 25 uses string method ToLower to return a new string in which any uppercase letters
in string2 are replaced by their lowercase equivalents (using the current culture’s rules).
The original string is unchanged. As with ToUpper, if there are no characters to convert to
lowercase, method ToLower returns the original string.

10 var string1 = "cheers!";
11 var string2 = "GOOD BYE ";
12 var string3 = " spaces ";
13
14 Console.WriteLine($"string1 = \"{string1}\"\n" +
15 $"string2 = \"{string2}\"\n" +
16 $"string3 = \"{string3}\"");
17
18 // call method Replace
19 Console.WriteLine("\nReplacing \"e\" with \"E\" in string1: " +
20 $"\"{ }\"");
21
22 // call ToLower and ToUpper
23 Console.WriteLine(
24 $"\nstring1.ToUpper() = \"{ }\"" +
25 $"\nstring2.ToLower() = \"{ }\"");
26
27 // call Trim method
28 Console.WriteLine(
29 $"\nstring3 after trim = \"{ }\"");
30
31 Console.WriteLine($"\nstring1 = \"{string1}\"");
32 }
33 }

string1 = "cheers!"
string2 = "GOOD BYE "
string3 = " spaces "

Replacing "e" with "E" in string1: "chEErs!"

string1.ToUpper() = "CHEERS!"
string2.ToLower() = "good bye "

string3 after trim = "spaces"

string1 = "cheers!"

Fig. 16.8 | Demonstrating string methods Replace, ToLower, ToUpper and Trim. (Part 2 of 2.)

string1.Replace('e', 'E')

string1.ToUpper()
string2.ToLower()

string3.Trim()

ptg18189312

16.10 Class StringBuilder 517

Line 29 uses string method Trim to remove all whitespace characters that appear at
the beginning and end of a string. Without otherwise altering the original string, the
method returns a new string that contains the string, but omits leading and trailing
whitespace characters. This method is particularly useful for retrieving user input (i.e., via
a TextBox). Another version of method Trim takes a character array and returns a copy of
the string that does not begin or end with any of the characters in the array argument.

16.10 Class StringBuilder
The string class provides many capabilities for processing strings. However a string’s
contents can never change. Operations that seem to concatenate strings are in fact creat-
ing new strings—the += operator creates a new string and assigns its reference to the
variable on the left of the += operator.

The next several sections discuss the features of class StringBuilder (namespace
System.Text), used to create and manipulate dynamic string information—i.e., mutable
strings. Every StringBuilder can store a certain number of characters that’s specified by
its capacity. Exceeding the capacity of a StringBuilder causes the capacity to expand to
accommodate the additional characters. As we’ll see, members of class StringBuilder,
such as methods Append and AppendFormat, can be used for concatenation like the opera-
tors + and += for class string—without creating any new string objects. StringBuilder
is particularly useful for manipulating in place a large number of strings, as it’s much
more efficient than creating individual immutable strings.

StringBuilder Constructors
Class StringBuilder provides six overloaded constructors. Class StringBuilderCon-
structor (Fig. 16.9) demonstrates three of these overloaded constructors. Line 10 em-
ploys the no-parameter StringBuilder constructor to create a StringBuilder that
contains no characters and has an implementation-specific default initial capacity. Line 11
uses the StringBuilder constructor that takes an int argument to create a StringBuilder
that contains no characters and has the initial capacity specified in the int argument (i.e.,
10). Line 12 uses the StringBuilder constructor that takes a string argument to create a
StringBuilder containing the characters of the string argument—the initial capacity
might differ from the string’s size. Lines 14–16 implicitly use StringBuilder method
ToString to obtain string representations of the StringBuilders’ contents.

Performance Tip 16.2
Objects of class string are immutable (i.e., constant strings), whereas objects of class
StringBuilder are mutable. C# can perform certain optimizations involving strings
(such as the sharing of one string among multiple references), because it knows these ob-
jects will not change.

1 // Fig. 16.9: StringBuilderConstructor.cs
2 // Demonstrating StringBuilder class constructors.
3 using System;
4 using System.Text;

Fig. 16.9 | Demonstrating StringBuilder class constructors. (Part 1 of 2.)

ptg18189312

518 Chapter 16 Strings and Characters: A Deeper Look

16.11 Length and Capacity Properties,
EnsureCapacity Method and Indexer of Class
StringBuilder
Class StringBuilder provides the Length and Capacity properties to return the number
of characters currently in a StringBuilder and the number of characters that a String-
Builder can store without allocating more memory, respectively. These properties also
can be used to increase or decrease the length or the capacity of the StringBuilder. Meth-
od EnsureCapacity allows you to reduce the number of times that a StringBuilder’s ca-
pacity must be increased. The method ensures that the StringBuilder’s capacity is at least
the specified value. Figure 16.10 demonstrates these methods and properties.

5
6 class StringBuilderConstructor
7 {
8 static void Main()
9 {

10
11
12
13
14 Console.WriteLine($"buffer1 = \"{buffer1}\"");
15 Console.WriteLine($"buffer2 = \"{buffer2}\"");
16 Console.WriteLine($"buffer3 = \"{buffer3}\"");
17 }
18 }

buffer1 = ""
buffer2 = ""
buffer3 = "hello"

1 // Fig. 16.10: StringBuilderFeatures.cs
2 // StringBuilder size manipulation.
3 using System;
4 using System.Text;
5
6 class StringBuilderFeatures
7 {
8 static void Main()
9 {

10 var buffer = new StringBuilder("Hello, how are you?");
11
12 // use Length and Capacity properties
13 Console.WriteLine($"buffer = {buffer}" +
14 $"\nLength = { }" +
15 $"\nCapacity = { }");

Fig. 16.10 | StringBuilder size manipulation. (Part 1 of 2.)

Fig. 16.9 | Demonstrating StringBuilder class constructors. (Part 2 of 2.)

var buffer1 = new StringBuilder();
var buffer2 = new StringBuilder(10);
var buffer3 = new StringBuilder("hello");

buffer.Length
buffer.Capacity

ptg18189312

16.11 Class StringBuilder 519

The program contains one StringBuilder, called buffer. Line 10 uses the String-
Builder constructor that takes a string argument to create a StringBuilder and ini-
tialize it to "Hello, how are you?". Lines 13–15 output the StringBuilder’s content,
length and capacity.

Line 17 expands the StringBuilder’s capacity to a minimum of 75 characters. If new
characters are added to a StringBuilder so that its length exceeds its capacity, the capacity
grows to accommodate the additional characters in the same manner as if method Ensure-
Capacity had been called.

Line 21 uses property Length to set the StringBuilder’s length to 10—this does not
change the Capacity. If the specified length is less than the StringBuilder’s current
number of characters, the contents are truncated to the specified length. If the specified
length is greater than the current number of characters, null characters (that is, '\0' char-
acters) are appended to the StringBuilder until the total number of characters is equal to
the specified length. Lines 25–28 use StringBuilder’s indexer to display each character.
This for statement could be replaced with the following foreach:

16
17 // ensure a capacity of at least 75
18 Console.WriteLine($"\nNew capacity = { }");
19
20 // truncate StringBuilder by setting Length property
21
22 Console.Write($"New length = { }\n\nbuffer = ");
23
24 // use StringBuilder indexer
25 for (int i = 0; i < ; ++i)
26 {
27 Console.Write();
28 }
29
30 Console.WriteLine();
31 }
32 }

buffer = Hello, how are you?
Length = 19
Capacity = 19

New capacity = 75
New length = 10

buffer = Hello, how

foreach (var element in buffer)
{

 Console.Write(element);
}

Fig. 16.10 | StringBuilder size manipulation. (Part 2 of 2.)

buffer.EnsureCapacity(75);
buffer.Capacity

buffer.Length = 10;
buffer.Length

buffer.Length

buffer[i]

ptg18189312

520 Chapter 16 Strings and Characters: A Deeper Look

16.12 Append and AppendFormat Methods of Class
StringBuilder
Class StringBuilder provides overloaded Append methods that allow various types of val-
ues to be added to the end of a StringBuilder. The Framework Class Library provides
versions for each simple type and for character arrays, strings and objects. (Remember
that method ToString produces a string representation of any object.) Each method
takes an argument, converts it to a string and appends it to the StringBuilder.
Figure 16.11 uses several Append methods (lines 22–40) to attach the variables’ string
representations in lines 10–18 to the end of the StringBuilder.

1 // Fig. 16.11: StringBuilderAppend.cs
2 // Demonstrating StringBuilder Append methods.
3 using System;
4 using System.Text;
5
6 class StringBuilderAppend
7 {
8 static void Main()
9 {

10 object objectValue = "hello";
11 var stringValue = "good bye";
12 char[] characterArray = {'a', 'b', 'c', 'd', 'e', 'f'};
13 var booleanValue = true;
14 var characterValue = 'Z';
15 var integerValue = 7;
16 var longValue = 1000000L; // L suffix indicates a long literal
17 var floatValue = 2.5F; // F suffix indicates a float literal
18 var doubleValue = 33.333;
19 var buffer = new StringBuilder();
20
21 // use method Append to append values to buffer
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

Fig. 16.11 | Demonstrating StringBuilder Append methods. (Part 1 of 2.)

buffer.Append(objectValue);
buffer.Append(" ");
buffer.Append(stringValue);
buffer.Append(" ");
buffer.Append(characterArray);
buffer.Append(" ");
buffer.Append(characterArray, 0, 3);
buffer.Append(" ");
buffer.Append(booleanValue);
buffer.Append(" ");
buffer.Append(characterValue);
buffer.Append(" ");
buffer.Append(integerValue);
buffer.Append(" ");
buffer.Append(longValue);
buffer.Append(" ");
buffer.Append(floatValue);
buffer.Append(" ");
buffer.Append(doubleValue);

ptg18189312

16.12 Class StringBuilder 521

Class StringBuilder also provides method AppendFormat, which converts a string
to a specified format, then appends it to the StringBuilder. The example in Fig. 16.12
demonstrates AppendFormat.

41
42 Console.WriteLine($"buffer = {buffer.ToString()}");
43 }
44 }

buffer = hello good bye abcdef abc True Z 7 1000000 2.5 33.333

1 // Fig. 16.12: StringBuilderAppendFormat.cs
2 // Demonstrating method AppendFormat.
3 using System;
4 using System.Text;
5
6 class StringBuilderAppendFormat
7 {
8 static void Main()
9 {

10 var buffer = new StringBuilder();
11
12 // formatted string
13
14
15 // string1 argument array
16 var objectArray = new object[2] {"car", 1234.56};
17
18 // append to buffer formatted string with argument
19
20
21 // formatted string
22
23
24
25
26 // append to buffer formatted string with argument
27
28
29 // display formatted strings
30 Console.WriteLine(buffer.ToString());
31 }
32 }

This car costs: $1,234.56.

Number:
005.

Fig. 16.12 | Demonstrating method AppendFormat. (Part 1 of 2.)

Fig. 16.11 | Demonstrating StringBuilder Append methods. (Part 2 of 2.)

var string1 = "This {0} costs: {1:C}.\n\n";

buffer.AppendFormat(string1, objectArray);

string string2 = "Number:\n{0:d3}.\n\n" +
 "Number right aligned with spaces:\n{0,4}.\n\n" +
 "Number left aligned with spaces:\n{0,-4}.";

buffer.AppendFormat(string2, 5);

ptg18189312

522 Chapter 16 Strings and Characters: A Deeper Look

Line 13 declares a format string that consists of text and format items. Each format
item in braces ({}) is a placeholder for a value. Format items also may include the same
optional formatting you’ve seen throughout this book in interpolated strings. Line 16
declares and initializes an array of objects that will be formatted. Line 19 shows a version
of AppendFormat that takes two parameters—a format string and an array of objects to
serve as the arguments to the format string. The object at index 0 of the array is for-
matted by the format item "{0}", which simply produces the object’s string represen-
tation. The object at index 1 of the array is formatted by the format item "{1:C}", which
formats the object as currency.

Lines 22–24 declare another format string with three format specifiers:

• The first—{0:d3}—formats a three-digit integer value. Any number having few-
er than three digits will have leading zeros.

• The second—{0,4}—formats a string in a right-aligned field of four characters.

• The third—{0,-4}—formats a string in a left-aligned field of four characters.

Line 27 uses a version of AppendFormat that takes two parameters—a format string and
an object to format. In this case, the object is the number 5, which is formatted by all three
format specifiers. The output displays the result of applying these two versions of Append-
Format with their respective arguments.

16.13 Insert, Remove and Replace Methods of Class
StringBuilder
Class StringBuilder provides overloaded Insert methods to allow various types of data
to be inserted at any position in a StringBuilder. The class provides versions for each sim-
ple type and for character arrays, strings and objects. Each method takes its second ar-
gument, converts it to a string and inserts the string into the StringBuilder in front
of the character in the position specified by the first argument. The index specified by the
first argument must be greater than or equal to 0 and less than the StringBuilder’s length;
otherwise, the program throws an ArgumentOutOfRangeException.

Class StringBuilder also provides method Remove for deleting any portion of a
StringBuilder. Method Remove takes two arguments—the index at which to begin dele-
tion and the number of characters to delete. The sum of the starting index and the number
of characters to be deleted must always be less than the StringBuilder’s length; otherwise,
the program throws an ArgumentOutOfRangeException. The Insert and Remove methods
are demonstrated in Fig. 16.13.

Number right aligned with spaces:
 5.

Number left aligned with spaces:
5 .

Fig. 16.12 | Demonstrating method AppendFormat. (Part 2 of 2.)

ptg18189312

16.13 Class StringBuilder 523

1 // Fig. 16.13: StringBuilderInsertRemove.cs
2 // Demonstrating methods Insert and Remove of the
3 // StringBuilder class.
4 using System;
5 using System.Text;
6
7 class StringBuilderInsertRemove
8 {
9 static void Main()

10 {
11 object objectValue = "hello";
12 var stringValue = "good bye";
13 char[] characterArray = {'a', 'b', 'c', 'd', 'e', 'f'};
14 var booleanValue = true;
15 var characterValue = 'K';
16 var integerValue = 7;
17 var longValue = 1000000L; // L suffix indicates a long literal
18 var floatValue = 2.5F; // F suffix indicates a float literal
19 var doubleValue = 33.333;
20 var buffer = new StringBuilder();
21
22 // insert values into buffer
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42 Console.WriteLine($"buffer after Inserts: \n{buffer}\n");
43
44
45
46
47 Console.WriteLine($"buffer after Removes:\n{buffer}");
48 }
49 }

buffer after Inserts:
 33.333 2.5 10000000 7 K True abcdef good bye hello

Fig. 16.13 | Demonstrating methods Insert and Remove of the StringBuilder class. (Part 1 of 2.)

buffer.Insert(0, objectValue);
buffer.Insert(0, " ");
buffer.Insert(0, stringValue);
buffer.Insert(0, " ");
buffer.Insert(0, characterArray);
buffer.Insert(0, " ");
buffer.Insert(0, booleanValue);
buffer.Insert(0, " ");
buffer.Insert(0, characterValue);
buffer.Insert(0, " ");
buffer.Insert(0, integerValue);
buffer.Insert(0, " ");
buffer.Insert(0, longValue);
buffer.Insert(0, " ");
buffer.Insert(0, floatValue);
buffer.Insert(0, " ");
buffer.Insert(0, doubleValue);
buffer.Insert(0, " ");

buffer.Remove(10, 1); // delete 2 in 2.5
buffer.Remove(4, 4); // delete .333 in 33.333

ptg18189312

524 Chapter 16 Strings and Characters: A Deeper Look

Another useful method included with StringBuilder is Replace, which searches for
a specified string or character and substitutes another string or character all occurrences.
Figure 16.14 demonstrates this method.

Line 15 uses method Replace to replace all instances of "Jane" with the "Greg" in
builder1. Another overload of this method takes two characters as parameters and replaces
each occurrence of the first character with the second. Line 16 uses an overload of Replace
that takes four parameters, of which the first two are both characters or both strings and
the second two are ints. The method replaces all instances of the first character with the
second character (or the first string with the second), beginning at the index specified by
the first int and continuing for a count specified by the second int. Thus, in this case,
Replace looks through only five characters, starting with the character at index 0. As the
output illustrates, this version of Replace replaces g with G in the word "goodbye", but
not in "greg". This is because the gs in "greg" are not in the range indicated by the int
arguments (i.e., between indexes 0 and 4).

buffer after Removes:
 33 .5 10000000 7 K True abcdef good bye hello

1 // Fig. 16.14: StringBuilderReplace.cs
2 // Demonstrating method Replace.
3 using System;
4 using System.Text;
5
6 class StringBuilderReplace
7 {
8 static void Main()
9 {

10 var builder1 = new StringBuilder("Happy Birthday Jane");
11 var builder2 = new StringBuilder("goodbye greg");
12
13 Console.WriteLine($"Before replacements:\n{builder1}\n{builder2}");
14
15
16
17
18 Console.WriteLine($"\nAfter replacements:\n{builder1}\n{builder2}");
19 }
20 }

Before Replacements:
Happy Birthday Jane
good bye greg

After replacements:
Happy Birthday Greg
Goodbye greg

Fig. 16.14 | Demonstrating method Replace.

Fig. 16.13 | Demonstrating methods Insert and Remove of the StringBuilder class. (Part 2 of 2.)

builder1.Replace("Jane", "Greg");
builder2.Replace('g', 'G', 0, 5);

ptg18189312

16.14 Char Methods 525

16.14 Char Methods
Section 10.13 introduced structs for representing value types. The simple types are actu-
ally aliases for struct types. For instance, an int is defined by struct System.Int32, a
long by System.Int64 and so on. All struct types derive from class ValueType, which
derives from object. Also, all struct types are implicitly sealed.

In the struct System.Char—which is the struct for characters and represented by
C# keyword char—most methods are static, take at least one character argument and
perform either a test or a manipulation on the character. We present several of these in the
next example. Figure 16.15 demonstrates static methods that test characters to deter-
mine whether they’re of a specific character type and static methods that perform case
conversions on characters.

1 // Fig. 16.15: StaticCharMethods.cs
2 // Demonstrates static character-testing and case-conversion methods
3 // from Char struct
4 using System;
5
6 class StaticCharMethods
7 {
8 static void Main(string[] args)
9 {

10 Console.Write("Enter a character: ");
11 var character = ;
12
13 Console.WriteLine($"is digit: { }");
14 Console.WriteLine($"is letter: { }");
15 Console.WriteLine(
16 $"is letter or digit: { }");
17 Console.WriteLine($"is lower case: { }");
18 Console.WriteLine($"is upper case: { }");
19 Console.WriteLine($"to upper case: { }");
20 Console.WriteLine($"to lower case: { }");
21 Console.WriteLine(
22 $"is punctuation: { }");
23 Console.WriteLine($"is symbol: { }");
24 }
25 }

Enter a character: A
is digit: False
is letter: True
is letter or digit: True
is lower case: False
is upper case: True
to upper case: A
to lower case: a
is punctuation: False
is symbol: False

Fig. 16.15 | Demonstrates static character-testing and case-conversion methods from Char
struct. (Part 1 of 2.)

char.Parse(Console.ReadLine())

char.IsDigit(character)
char.IsLetter(character)

char.IsLetterOrDigit(character)
char.IsLower(character)
char.IsUpper(character)
char.ToUpper(character)
char.ToLower(character)

char.IsPunctuation(character)
char.IsSymbol(character)

ptg18189312

526 Chapter 16 Strings and Characters: A Deeper Look

After the user enters a character, lines 13–23 analyze it. Line 13 uses Char method
IsDigit to determine whether character is defined as a digit. If so, the method returns
true; otherwise, it returns false (note that bool values are capitalized for output). Line

Enter a character: 8
is digit: True
is letter: False
is letter or digit: True
is lower case: False
is upper case: False
to upper case: 8
to lower case: 8
is punctuation: False
is symbol: False

Enter a character: @
is digit: False
is letter: False
is letter or digit: False
is lower case: False
is upper case: False
to upper case: @
to lower case: @
is punctuation: True
is symbol: False

Enter a character: m
is digit: False
is letter: True
is letter or digit: True
is lower case: True
is upper case: False
to upper case: M
to lower case: m
is punctuation: False
is symbol: False

Enter a character: +
is digit: False
is letter: False
is letter or digit: False
is lower case: False
is upper case: False
to upper case: +
to lower case: +
is punctuation: False
is symbol: True

Fig. 16.15 | Demonstrates static character-testing and case-conversion methods from Char
struct. (Part 2 of 2.)

ptg18189312

16.15 Introduction to Regular Expressions (Online) 527

14 uses Char method IsLetter to determine whether character is a letter. Line 16 uses
Char method IsLetterOrDigit to determine whether character character is a letter or a
digit.

The methods in lines 17–20 are culture sensitive. Line 17 uses Char method IsLower
to determine whether character is a lowercase letter. Line 18 uses Char method IsUpper
to determine whether character is an uppercase letter.

Line 19 uses Char method ToUpper to convert character to its uppercase equivalent.
The method returns the converted character if the it has an uppercase equivalent; other-
wise, the method returns its original argument.

Line 20 uses Char method ToLower to convert character to its lowercase equivalent.
The method returns the converted character if the character has a lowercase equivalent;
otherwise, the method returns its original argument.

Line 22 uses Char method IsPunctuation to determine whether character is a punc-
tuation mark, such as "!", ":" or ")". Line 23 uses Char method IsSymbol to determine
whether character character is a symbol, such as "+", "=" or "^".

Structure type Char also contains other methods not shown in this example. Many of
the static methods are similar—for instance, IsWhiteSpace is used to determine whether
a certain character is a whitespace character (e.g., newline, tab or space). The struct also
contains several public instance methods; many of these, such as methods ToString and
Equals, are methods that we have seen before in other classes. This group includes method
CompareTo, which is used to compare one character value with another.

16.15 Introduction to Regular Expressions (Online)
This online section is available via the book’s webpage at

In this section, we introduce regular expressions—specially formatted strings used to find
patterns in text. They can be used to ensure that data is in a particular format. For example,
a U.S. zip code must consist of five digits, or five digits followed by a dash followed by four
more digits. Compilers use regular expressions to validate program syntax. If the program
code does not match the regular expression, the compiler indicates that there’s a syntax er-
ror. We discuss classes Regex and Match from the System.Text.RegularExpressions
namespace as well as the symbols used to form regular expressions. We then demonstrate
how to find patterns in a string, match entire strings to patterns, replace characters in a
string that match a pattern and split strings at delimiters specified as a pattern in a regular
expression.

16.16 Wrap-Up
This chapter presented the Framework Class Library’s string- and character-processing
capabilities. We overviewed the fundamentals of characters and strings. You saw how to
determine the length of strings, copy strings, access the individual characters in strings,
search strings, obtain substrings from larger strings, compare strings, concatenate strings,
replace characters in strings and convert strings to uppercase or lowercase letters.

We showed how to use class StringBuilder to build strings dynamically. You learned
how to determine and specify the size of a StringBuilder object, and how to append,

http://www.deitel.com/books/CSharp6FP

http://www.deitel.com/books/CSharp6FP

ptg18189312

528 Chapter 16 Strings and Characters: A Deeper Look

insert, remove and replace characters in a StringBuilder object. We then introduced the
character-testing methods of type Char that enable a program to determine whether a char-
acter is a digit, a letter, a lowercase letter, an uppercase letter, a punctuation mark or a
symbol other than a punctuation mark, and the methods for converting a character to
uppercase or lowercase.

In the next chapter, you’ll learn how to read data from and write data to text files.
We’ll also demonstrate C#’s object-serialization mechanism that can convert objects into
bytes so you can output and input objects.

ptg18189312

17
Files and Streams

O b j e c t i v e s
In this chapter you’ll:

■ Create, read, write and update files.
■ Use classes File and Directory to obtain information

about files and directories on your computer.
■ Use LINQ to search through directories.
■ Become familiar with sequential-access file processing.
■ Use classes FileStream, StreamReader and
StreamWriter to read text from and write text to files.

■ Use classes FileStream and BinaryFormatter to read
objects from and write objects to files.

ptg18189312

530 Chapter 17 Files and Streams

O
u

tl
in

e

17.1 Introduction
Variables and arrays offer only temporary storage of data—the data is lost when a local vari-
able “goes out of scope” or when the program terminates. By contrast, files (and databases,
which we cover in Chapter 20) are used for long-term retention of large amounts of data,
even after the program that created the data terminates. Data maintained in files often is
called persistent data. Computers store files on secondary storage devices, such as hard
drives, solid-state drives, flash drives, DVDs and tapes. In this chapter, we explain how to
create, update and process data files in C# programs.

We overview some of the Framework Class Library’s file-processing classes. We then
create Windows Forms apps that write to and read from text files that are human readable and
binary files that store entire objects in binary format. Finally, we present examples that show
how you can determine information about the files and directories on your computer.

17.2 Files and Streams
C# views each file as a sequential stream of bytes (Fig. 17.1). Each file ends either with an
end-of-file marker or at a specific byte number that’s recorded in a system-maintained ad-
ministrative data structure, because file organization is operating-system dependent. A C#
program processing a stream of bytes simply receives an indication from the operating sys-
tem when it reaches the end of the stream—the program does not need to know how the
underlying platform represents files or streams.

Standard Streams in Console Apps
When a file is opened, an object is created and a stream is associated with the object. When
a console app executes, the runtime environment creates three stream objects that are ac-
cessible via properties Console.Out, Console.In and Console.Error, respectively. These

17.1 Introduction
17.2 Files and Streams
17.3 Creating a Sequential-Access Text

File
17.4 Reading Data from a Sequential-Ac-

cess Text File
17.5 Case Study: Credit-Inquiry Program
17.6 Serialization

17.7 Creating a Sequential-Access File Us-
ing Object Serialization

17.8 Reading and Deserializing Data from
a Binary File

17.9 Classes File and Directory
17.9.1 Demonstrating Classes File and Di-

rectory
17.9.2 Searching Directories with LINQ

17.10 Wrap-Up

Fig. 17.1 | C#’s view of an n-byte file.

0 1 2 3 4 5 6 7 8 9 ...

...

n-1

end-of-file marker

ptg18189312

17.3 Creating a Sequential-Access Text File 531

objects use streams to facilitate communication between a program and a particular file or
device. Console.In refers to the standard input stream object, which enables a program
to input data from the keyboard. Console.Out refers to the standard output stream ob-
ject, which enables a program to output data to the screen. Console.Error refers to the
standard error stream object, which enables a program to output error messages to the
screen. These can be redirected to other files or devices. We’ve been using Console.Out
and Console.In in our console apps:

• Console methods Write and WriteLine use Console.Out to perform output, and

• Console methods Read and ReadLine use Console.In to perform input.

File-Processing Classes
There are many file-processing classes in the Framework Class Library. The System.IO
namespace includes stream classes such as StreamReader (for text input from a stream),
StreamWriter (for text output to a stream) and FileStream (for both input from and out-
put to a stream). These stream classes inherit from abstract classes TextReader, Text-
Writer and Stream, respectively. Console.In and Console.Error are of type TextWriter.
Console.In is of type TextReader. The system creates objects of TextReader and Text-
Writer derived classes to initialize Console properties Console.In and Console.Out.

Abstract class Stream provides functionality for representing streams as bytes. Classes
FileStream, MemoryStream and BufferedStream (all from namespace System.IO) inherit
from class Stream. Class FileStream can be used to write data to and read data from files.
Class MemoryStream enables the transfer of data directly to and from memory—this is
much faster than reading from and writing to external devices.

Class BufferedStream uses buffering to transfer data to or from a stream. Buffering
is an I/O performance-enhancement technique, in which each output operation is
directed to a region in memory, called a buffer, that’s large enough to hold the data from
many output operations. Then actual transfer to the output device is performed in one
large physical output operation each time the buffer fills. The output operations directed
to the output buffer in memory often are called logical output operations. Buffering also
can be used to speed input operations by initially reading more data than is required into
a buffer, so subsequent reads get data from high-speed memory rather than a slower
external device.

In this chapter, we use key stream classes to implement file-processing programs that
create and manipulate sequential-access files.

17.3 Creating a Sequential-Access Text File
C# imposes no structure on files. Thus, the concept of a “record” does not exist in C# files.
This means that you must structure files to meet the requirements of your apps. The next
few examples use text and special characters to organize our own concept of a “record.”

Class BankUIForm
The following examples demonstrate file processing in a bank-account maintenance app.
These programs have similar user interfaces, so we created reusable class BankUIForm
(Fig. 17.2) to encapsulate the common GUI (see the screen capture in Fig. 17.2). Class

ptg18189312

532 Chapter 17 Files and Streams

BankUIForm (part of the BankLibrary project with this chapter’s examples) contains four
Labels and four TextBoxes. Methods ClearTextBoxes (lines 22–30), SetTextBoxValues
(lines 33–51) and GetTextBoxValues (lines 54–59) clear, set the text in and get the text
from the TextBoxes, respectively. Using visual inheritance—presented in Section 15.13—
you can extend this class to create the GUIs for several examples in this chapter. Recall that
to reuse class BankUIForm, you must compile the GUI into a class library, then add a ref-
erence to the new class library’s DLL in each project that will reuse it (see Section 15.13).

1 // Fig. 17.2: BankUIForm.cs
2 // A reusable Windows Form for the examples in this chapter.
3 using System;
4 using System.Windows.Forms;
5
6 namespace BankLibrary
7 {
8 public partial class BankUIForm : Form
9 {

10 protected int TextBoxCount { get; set; } = 4; // number of TextBoxes
11
12 // enumeration constants specify TextBox indices
13 public enum TextBoxIndices {Account, First, Last, Balance}
14
15 // parameterless constructor
16 public BankUIForm()
17 {
18 InitializeComponent();
19 }
20
21 // clear all TextBoxes
22 public void ClearTextBoxes()
23 {
24 // iterate through every Control on form
25 foreach (Control guiControl in Controls)
26 {
27 // if Control is TextBox, clear it
28 (guiControl as TextBox)?.Clear();
29 }
30 }
31
32 // set text box values to string-array values
33 public void SetTextBoxValues(string[] values)
34 {
35 // determine whether string array has correct length
36 if (values.Length != TextBoxCount)
37 {
38 // throw exception if not correct length
39 throw (new ArgumentException(
40 $"There must be {TextBoxCount} strings in the array",
41 nameof(values)));
42 }

Fig. 17.2 | A reusable Windows Form for the examples in this chapter’s apps. (Part 1 of 2.)

ptg18189312

17.3 Creating a Sequential-Access Text File 533

Class Record
Figure 17.3 contains class Record that Figs. 17.4, 17.6 and 17.7 use for maintaining the
information in each record that’s written to or read from a file. This class also belongs to
the BankLibrary, so it’s located in the same project as class BankUIForm.

43 else // set array values if array has correct length
44 {
45 // set array values to TextBox values
46 accountTextBox.Text = values[(int) TextBoxIndices.Account];
47 firstNameTextBox.Text = values[(int) TextBoxIndices.First];
48 lastNameTextBox.Text = values[(int) TextBoxIndices.Last];
49 balanceTextBox.Text = values[(int) TextBoxIndices.Balance];
50 }
51 }
52
53 // return TextBox values as string array
54 public string[] GetTextBoxValues()
55 {
56 return new string[] {
57 accountTextBox.Text, firstNameTextBox.Text,
58 lastNameTextBox.Text, balanceTextBox.Text};
59 }
60 }
61 }

1 // Fig. 17.3: Record.cs
2 // Class that represents a data record.
3 namespace BankLibrary
4 {
5 public class Record
6 {
7 public int Account { get; set; }
8 public string FirstName { get; set; }
9 public string LastName { get; set; }

10 public decimal Balance { get; set; }

Fig. 17.3 | Class that represents a data record. (Part 1 of 2.)

Fig. 17.2 | A reusable Windows Form for the examples in this chapter’s apps. (Part 2 of 2.)

ptg18189312

534 Chapter 17 Files and Streams

Class Record contains auto-implemented properties Account, FirstName, LastName
and Balance (lines 7–10), which collectively represent all the information for a record.
The parameterless constructor (line 13) sets these members by calling the four-argument
constructor with 0 for the account number, string.Empty for the first and last name and
0.0M for the balance. The four-argument constructor (lines 16–23) sets these members to
the specified parameter values.

Using a Character Stream to Create an Output File
Class CreateFileForm (Fig. 17.4) uses instances of class Record to create a sequential-access
file that might be used in an accounts-receivable system—i.e., a program that organizes
data regarding money owed by a company’s credit clients. For each client, the program
obtains an account number and the client’s first name, last name and balance (i.e., the
amount of money that the client owes to the company for previously received goods and
services). The data obtained for each client constitutes a record for that client. In this app,
the account number is used as the record key—files are created and maintained in account-
number order. This program assumes that the user enters records in account-number or-
der. However, a comprehensive accounts-receivable system would provide a sorting capa-
bility, so the user could enter the records in any order. When you create a Windows Forms

Application project for this app, be sure to add a reference to BankLibrary.dll and to
change the base class from Form to BankUIForm. See Section 15.13 for information on add-
ing a reference to a class library.

11
12 // parameterless constructor sets members to default values
13 public Record() : this(0, string.Empty, string.Empty, 0M) { }
14
15 // overloaded constructor sets members to parameter values
16 public Record(int account, string firstName,
17 string lastName, decimal balance)
18 {
19 Account = account;
20 FirstName = firstName;
21 LastName = lastName;
22 Balance = balance;
23 }
24 }
25 }

1 // Fig. 17.4: CreateFileForm.cs
2 // Creating a sequential-access file.
3 using System;
4 using System.Windows.Forms;
5
6
7

Fig. 17.4 | Creating a sequential-access file. (Part 1 of 5.)

Fig. 17.3 | Class that represents a data record. (Part 2 of 2.)

using System.IO;
using BankLibrary;

ptg18189312

17.3 Creating a Sequential-Access Text File 535

8 namespace CreateFile
9 {

10
11 {
12
13
14 // parameterless constructor
15 public CreateFileForm()
16 {
17 InitializeComponent();
18 }
19
20 // event handler for Save Button
21 private void saveButton_Click(object sender, EventArgs e)
22 {
23 // create and show dialog box enabling user to save file
24 DialogResult result; // result of SaveFileDialog
25 string fileName; // name of file containing data
26
27
28
29
30
31
32
33
34 // ensure that user clicked "OK"
35 if (result == DialogResult.OK)
36 {
37 // show error if user specified invalid file
38 if (string.IsNullOrEmpty(fileName))
39 {
40 MessageBox.Show("Invalid File Name", "Error",
41 MessageBoxButtons.OK, MessageBoxIcon.Error);
42 }
43 else
44 {
45 // save file via FileStream
46 try
47 {
48 // open file with write access
49
50
51
52 // sets file to where data is written
53
54
55 // disable Save button and enable Enter button
56 saveButton.Enabled = false;
57 enterButton.Enabled = true;
58 }
59 catch (IOException)
60 {

Fig. 17.4 | Creating a sequential-access file. (Part 2 of 5.)

public partial class CreateFileForm : BankUIForm

private StreamWriter fileWriter; // writes data to text file

using (var fileChooser = new SaveFileDialog())
{
 fileChooser.CheckFileExists = false; // let user create file
 result = fileChooser.ShowDialog();
 fileName = fileChooser.FileName; // name of file to save data
}

var output = new FileStream(fileName,
 FileMode.OpenOrCreate, FileAccess.Write);

fileWriter = new StreamWriter(output);

ptg18189312

536 Chapter 17 Files and Streams

61 // notify user if file does not exist
62 MessageBox.Show("Error opening file", "Error",
63 MessageBoxButtons.OK, MessageBoxIcon.Error);
64 }
65 }
66 }
67 }
68
69 // handler for enterButton Click
70 private void enterButton_Click(object sender, EventArgs e)
71 {
72 // store TextBox values string array
73 string[] values = GetTextBoxValues();
74
75 // determine whether TextBox account field is empty
76 if (!string.IsNullOrEmpty(values[(int) TextBoxIndices.Account]))
77 {
78 // store TextBox values in Record and output it
79 try
80 {
81 // get account-number value from TextBox
82 int accountNumber =
83 int.Parse(values[(int) TextBoxIndices.Account]);
84
85 // determine whether accountNumber is valid
86 if (accountNumber > 0)
87 {
88 // Record containing TextBox values to output
89 var record = new Record(accountNumber,
90 values[(int) TextBoxIndices.First],
91 values[(int) TextBoxIndices.Last],
92 decimal.Parse(values[(int) TextBoxIndices.Balance]);
93
94 // write Record to file, fields separated by commas
95
96
97
98 }
99 else
100 {
101 // notify user if invalid account number
102 MessageBox.Show("Invalid Account Number", "Error",
103 MessageBoxButtons.OK, MessageBoxIcon.Error);
104 }
105 }
106 catch (IOException)
107 {
108 MessageBox.Show("Error Writing to File", "Error",
109 MessageBoxButtons.OK, MessageBoxIcon.Error);
110 }
111 catch (FormatException)
112 {

Fig. 17.4 | Creating a sequential-access file. (Part 3 of 5.)

fileWriter.WriteLine(
 $"{record.Account},{record.FirstName}," +
 $"{record.LastName},{record.Balance}");

ptg18189312

17.3 Creating a Sequential-Access Text File 537

113 MessageBox.Show("Invalid Format", "Error",
114 MessageBoxButtons.OK, MessageBoxIcon.Error);
115 }
116 }
117
118 ClearTextBoxes(); // clear TextBox values
119 }
120
121 // handler for exitButton Click
122 private void exitButton_Click(object sender, EventArgs e)
123 {
124 try
125 {
126
127 }
128 catch (IOException)
129 {
130 MessageBox.Show("Cannot close file", "Error",
131 MessageBoxButtons.OK, MessageBoxIcon.Error);
132 }
133
134 Application.Exit();
135 }
136 }
137 }

Fig. 17.4 | Creating a sequential-access file. (Part 4 of 5.)

fileWriter?.Close(); // close StreamWriter and underlying file

a) BankUI graphical user
interface with three
additional controls

Files and directories

b) Save File dialog

ptg18189312

538 Chapter 17 Files and Streams

Class CreateFileForm either creates or opens a file (depending on whether one
exists), then allows the user to write records to it. The using directive in line 6 enables us
to use the classes of the BankLibrary namespace; this namespace contains class BankUI-
Form, from which class CreateFileForm inherits (line 10). Class CreateFileForm’s GUI
enhances that of class BankUIForm with buttons Save As, Enter and Exit.

Method saveButton_Click
When the user clicks the Save As button, the program invokes the event handler saveBut-
ton_Click (lines 21–67). Line 27 instantiates an object of class SaveFileDialog (name-
space System.Windows.Forms). By placing this object in a using statement (lines 27–32),
we ensure that the dialog’s Dispose method is called to release its resources as soon as the
program has retrieved the user’s input. SaveFileDialog objects are used for selecting files
(see the second screen in Fig. 17.4). Line 29 indicates that the dialog should not check if
the filename specified by the user already exists (this is actually the default). Line 30 calls
SaveFileDialog method ShowDialog to display the dialog.

When displayed, a SaveFileDialog prevents the user from interacting with any other
window in the program until the user closes the SaveFileDialog by clicking either Save

or Cancel. Dialogs that behave in this manner are called modal dialogs. The user selects
the appropriate drive, directory and filename, then clicks Save. Method ShowDialog
returns a DialogResult specifying which button (Save or Cancel) the user clicked to close
the dialog. This is assigned to DialogResult variable result (line 30). Line 31 gets the
filename from the dialog. Line 35 tests whether the user clicked OK by comparing this
value to DialogResult.OK. If the values are equal, method saveButton_Click continues.

You can open files to perform text manipulation by creating objects of class
FileStream. In this example, we want the file to be opened for output, so lines 49–50
create a FileStream object. The FileStream constructor that we use receives three argu-
ments—a string containing the path and name of the file to open, a constant describing
how to open the file and a constant describing the file read-write permissions. The con-
stant FileMode.OpenOrCreate (line 50) indicates that the FileStream object should open
the file if it exists or create the file if it does not exist.

Fig. 17.4 | Creating a sequential-access file. (Part 5 of 5.)

c) Account 100,
"Nancy Brown",

saved with a
balance of -25.54

ptg18189312

17.3 Creating a Sequential-Access Text File 539

Note that the contents of an existing file are overwritten by the FileStream. To pre-
serve the original contents of a file, use FileMode.Append. There are other FileMode con-
stants describing how to open files; we introduce these constants as we use them in
examples. The constant FileAccess.Write indicates that the program can perform only
write operations with the FileStream object. There are two other constants for the third
constructor parameter—FileAccess.Read for read-only access and FileAccess.Read-
Write for both read and write access.

Line 59 catches an IOException if there’s a problem opening the file or creating the
StreamWriter. If so, the program displays an error message (lines 62–63). If no exception
occurs, the file is open for writing.

Method enterButton_Click
After typing information into each TextBox, the user clicks Enter, which calls enter-
Button_Click (lines 70–119) to save the data from the TextBoxes into the user-specified
file. If the user entered a valid account number (i.e., an integer greater than zero), lines 89–
92 create a Record containing the TextBox values. If the user entered invalid data in one
of the TextBoxes (such as nonnumeric characters in the Balance field), the program throws
a FormatException. The catch block in lines 111–115 handles such exceptions by noti-
fying the user (via a MessageBox) of the improper format.1

If the user entered valid data, lines 95–97 write the record to the file by invoking
method WriteLine of the StreamWriter object that was created at line 53. Method
WriteLine writes a sequence of characters to a file. The StreamWriter object is con-
structed with a FileStream argument that specifies the file to which the StreamWriter
will output text. Class StreamWriter (like most of the classes we discuss in this chapter)
belongs to the System.IO namespace. Finally, the TextBoxes are cleared so the user can
begin typing the next record’s data.

Method exitButton_Click
When the user clicks Exit, exitButton_Click (lines 122–135) executes. Line 126 closes
the StreamWriter (if it is not null), which automatically closes the underlying
FileStream. Then, line 134 terminates the program. Note that method Close is called in
a try block. Method Close throws an IOException if the file or stream cannot be closed
properly. In this case, it’s important to notify the user that the information in the file or
stream might be corrupted.

Common Programming Error 17.1
Failure to open a file before attempting to use it in a program is a logic error.

1. We could prevent these exceptions by using int.TryParse in line 83 and decimal.TryParse—we
chose not to in this chapter’s apps, because doing so adds many lines of logic to the apps (which are
already long). However, it’s considered better practice to prevent such exceptions.

Performance Tip 17.1
Releasing resources explicitly when they’re no longer needed makes them immediately
available for reuse by other programs, thus improving resource utilization.

ptg18189312

540 Chapter 17 Files and Streams

Sample Data
To test the program, we entered information for the accounts shown in Fig. 17.5. The
program does not depict how the data records are stored in the file. To verify that the file
has been created successfully, we create a program in the next section to read and display
the file. Since this is a text file, you can actually open it in any text editor to see its contents.

17.4 Reading Data from a Sequential-Access Text File
The previous section demonstrated how to create a file for use in sequential-access apps.
In this section, we discuss how to read (or retrieve) data sequentially from a file. Class
ReadSequentialAccessFileForm (Fig. 17.6) reads records from the file created by the
program in Fig. 17.4, then displays the contents of each record. Much of the code in this
example is similar to that of Fig. 17.4, so we discuss only the unique aspects of the app.

Account number First name Last name Balance

100 Nancy Brown -25.54

200 Stacey Dunn 314.33

300 Doug Barker 0.00

400 Dave Smith 258.34

500 Sam Stone 34.98

Fig. 17.5 | Sample data for the program of Fig. 17.4.

1 // Fig. 17.6: ReadSequentialAccessFileForm.cs
2 // Reading a sequential-access file.
3 using System;
4 using System.Windows.Forms;
5 using System.IO;
6 using BankLibrary;
7
8 namespace ReadSequentialAccessFile
9 {

10 public partial class ReadSequentialAccessFileForm : BankUIForm
11 {
12
13
14 // parameterless constructor
15 public ReadSequentialAccessFileForm()
16 {
17 InitializeComponent();
18 }
19

Fig. 17.6 | Reading a sequential-access file. (Part 1 of 4.)

private StreamReader fileReader; // reads data from a text file

ptg18189312

17.4 Reading Data from a Sequential-Access Text File 541

20 // invoked when user clicks the Open button
21 private void openButton_Click(object sender, EventArgs e)
22 {
23 // create and show dialog box enabling user to open file
24 DialogResult result; // result of OpenFileDialog
25 string fileName; // name of file containing data
26
27 using ()
28 {
29 result = fileChooser.ShowDialog();
30 fileName = fileChooser.FileName; // get specified name
31 }
32
33 // ensure that user clicked "OK"
34 if (result == DialogResult.OK)
35 {
36 ClearTextBoxes();
37
38 // show error if user specified invalid file
39 if (string.IsNullOrEmpty(fileName))
40 {
41 MessageBox.Show("Invalid File Name", "Error",
42 MessageBoxButtons.OK, MessageBoxIcon.Error);
43 }
44 else
45 {
46 try
47 {
48 // create FileStream to obtain read access to file
49
50
51
52 // set file from where data is read
53
54
55 openButton.Enabled = false; // disable Open File button
56 nextButton.Enabled = true; // enable Next Record button
57 }
58 catch (IOException)
59 {
60 MessageBox.Show("Error reading from file",
61 "File Error", MessageBoxButtons.OK,
62 MessageBoxIcon.Error);
63 }
64 }
65 }
66 }
67
68 // invoked when user clicks Next button
69 private void nextButton_Click(object sender, EventArgs e)
70 {
71 try
72 {

Fig. 17.6 | Reading a sequential-access file. (Part 2 of 4.)

OpenFileDialog fileChooser = new OpenFileDialog()

FileStream input = new FileStream(
 fileName, FileMode.Open, FileAccess.Read);

fileReader = new StreamReader(input);

ptg18189312

542 Chapter 17 Files and Streams

73 // get next record available in file
74
75
76 if (inputRecord != null)
77 {
78 string[] inputFields = inputRecord.Split(',');
79
80 // copy string-array values to TextBox values
81 SetTextBoxValues(inputFields);
82 }
83 else
84 {
85 // close StreamReader and underlying file
86
87 openButton.Enabled = true; // enable Open File button
88 nextButton.Enabled = false; // disable Next Record button
89 ClearTextBoxes();
90
91 // notify user if no records in file
92 MessageBox.Show("No more records in file", string.Empty,
93 MessageBoxButtons.OK, MessageBoxIcon.Information);
94 }
95 }
96 catch (IOException)
97 {
98 MessageBox.Show("Error Reading from File", "Error",
99 MessageBoxButtons.OK, MessageBoxIcon.Error);
100 }
101 }
102 }
103 }

Fig. 17.6 | Reading a sequential-access file. (Part 3 of 4.)

var inputRecord = fileReader.ReadLine();

fileReader.Close();

a) BankUI graphical user interface with an Open File button

ptg18189312

17.4 Reading Data from a Sequential-Access Text File 543

Method openButton_Click
When the user clicks Open File, the program calls event handler openButton_Click (lines
21–66). Line 27 creates an OpenFileDialog, and line 29 calls its ShowDialog method to
display the Open dialog (see the second screenshot in Fig. 17.6). The behavior and GUI
for the Save and Open dialog types are identical, except that Save is replaced by Open. If
the user selects a valid filename, lines 49–50 create a FileStream object and assign it to
reference input. We pass constant FileMode.Open as the second argument to the
FileStream constructor to indicate that the FileStream should open the file if it exists or
throw a FileNotFoundException if it does not. (In this example, the FileStream con-
structor will not throw a FileNotFoundException, because the OpenFileDialog is config-
ured to check that the file exists.) In the last example (Fig. 17.4), we wrote text to the file
using a FileStream object with write-only access. In this example (Fig. 17.6), we specify
read-only access to the file by passing constant FileAccess.Read as the third argument to
the FileStream constructor. This FileStream object is used to create a StreamReader ob-
ject in line 53. The FileStream object specifies the file from which the StreamReader ob-
ject will read text.

Fig. 17.6 | Reading a sequential-access file. (Part 4 of 4.)

b) OpenFileDialog window

c) Reading account 100

d) User is shown a messagebox
when all records have been read

ptg18189312

544 Chapter 17 Files and Streams

Method nextButton_Click
When the user clicks the Next Record button, the program calls event handler nextBut-
ton_Click (lines 69–101), which reads the next record from the user-specified file. (The
user must click Next Record after opening the file to view the first record.) Line 74 calls
StreamReader method ReadLine to read the next record. If an error occurs while reading
the file, an IOException is thrown (caught at line 96), and the user is notified (lines 98–
99). Otherwise, line 76 determines whether StreamReader method ReadLine returned
null (i.e., there’s no more text in the file). If not, line 78 uses string method Split to
separate the stream of characters that was read from the file into tokens (strings) that rep-
resent the Record’s properties—the second argument indicates that the tokens are delim-
ited by commas in this file. Line 81 displays the Record values in the TextBoxes. If
ReadLine returns null, the program closes the StreamReader object (line 86), automati-
cally closing the FileStream object, then notifies the user that there are no more records
(lines 92–93).

17.5 Case Study: Credit-Inquiry Program
To retrieve data sequentially from a file, programs normally start from the beginning of the
file, reading consecutively until the desired data is found. It sometimes is necessary to pro-
cess a file sequentially several times (from the beginning of the file) during the execution of
a program. A FileStream object can reposition its file-position pointer (which contains
the byte number of the next byte to be read from or written to the file) to any position in
the file. When a FileStream object is opened, its file-position pointer is set to byte position
0 (i.e., the beginning of the file).

We now present a program that builds on the concepts employed in Fig. 17.6. Class
CreditInquiryForm (Fig. 17.7) is a credit-inquiry program that enables a credit manager
to search for and display account information for those customers with credit balances
(i.e., customers to whom the company owes money), zero balances (i.e., customers who
do not owe the company money) and debit balances (i.e., customers who owe the com-
pany money for previously received goods and services). We use a RichTextBox in the pro-
gram to display the account information. RichTextBoxes provide more functionality than
regular TextBoxes—for example, RichTextBoxes offer method Find for searching indi-
vidual strings and method LoadFile for displaying file contents. Classes RichTextBox and
TextBox both inherit from abstract class System.Windows.Forms.TextBoxBase. In this
example, we chose a RichTextBox, because it displays multiple lines of text by default,
whereas a regular TextBox displays only one. Alternatively, we could have specified that a
TextBox object display multiple lines of text by setting its Multiline property to true.

The program displays buttons that enable a credit manager to obtain credit informa-
tion. The Open File button opens a file for gathering data. The Credit Balances button dis-
plays a list of accounts that have credit balances, the Debit Balances button displays a list
of accounts that have debit balances and the Zero Balances button displays a list of accounts
that have zero balances. The Done button exits the app.

Error-Prevention Tip 17.1
Open a file with the FileAccess.Read file-open mode if its contents should not be mod-
ified. This prevents unintentional modification of the contents.

ptg18189312

17.5 Case Study: Credit-Inquiry Program 545

1 // Fig. 17.7: CreditInquiryForm.cs
2 // Read a file sequentially and display contents based on
3 // account type specified by user (credit, debit or zero balances).
4 using System;
5 using System.Windows.Forms;
6 using System.IO;
7 using BankLibrary;
8
9 namespace CreditInquiry

10 {
11 public partial class CreditInquiryForm : Form
12 {
13
14
15
16 // parameterless constructor
17 public CreditInquiryForm()
18 {
19 InitializeComponent();
20 }
21
22 // invoked when user clicks Open File button
23 private void openButton_Click(object sender, EventArgs e)
24 {
25 // create dialog box enabling user to open file
26 DialogResult result;
27 string fileName;
28
29 using (OpenFileDialog fileChooser = new OpenFileDialog())
30 {
31 result = fileChooser.ShowDialog();
32 fileName = fileChooser.FileName;
33 }
34
35 // exit event handler if user clicked Cancel
36 if (result == DialogResult.OK)
37 {
38 // show error if user specified invalid file
39 if (string.IsNullOrEmpty(fileName))
40 {
41 MessageBox.Show("Invalid File Name", "Error",
42 MessageBoxButtons.OK, MessageBoxIcon.Error);
43 }
44 else
45 {
46 // create FileStream to obtain read access to file
47
48
49
50 // set file from where data is read
51
52

Fig. 17.7 | Credit-inquiry program. (Part 1 of 5.)

private FileStream input; // maintains the connection to the file
private StreamReader fileReader; // reads data from text file

input = new FileStream(fileName,
 FileMode.Open, FileAccess.Read);

fileReader = new StreamReader(input);

ptg18189312

546 Chapter 17 Files and Streams

53 // enable all GUI buttons, except for Open File button
54 openButton.Enabled = false;
55 creditButton.Enabled = true;
56 debitButton.Enabled = true;
57 zeroButton.Enabled = true;
58 }
59 }
60 }
61
62 // invoked when user clicks credit balances,
63 // debit balances or zero balances button
64 private void getBalances_Click(object sender, System.EventArgs e)
65 {
66 // convert sender explicitly to object of type button
67 Button senderButton = (Button) sender;
68
69 // get text from clicked Button, which stores account type
70 string accountType = senderButton.Text;
71
72 // read and display file information
73 try
74 {
75 // go back to the beginning of the file
76
77
78 displayTextBox.Text =
79 $"Accounts with {accountType}{Environment.NewLine}";
80
81 // traverse file until end of file
82 while (true)
83 {
84 // get next Record available in file
85
86
87 // when at the end of file, exit method
88 if (inputRecord == null)
89 {
90 return;
91 }
92
93 // parse input
94 string[] inputFields = inputRecord.Split(',');
95
96 // create Record from input
97 var record =
98 new Record(int.Parse(inputFields[0]), inputFields[1],
99 inputFields[2], decimal.Parse(inputFields[3]));
100
101 // determine whether to display balance
102 if (ShouldDisplay(record.Balance, accountType))
103 {

Fig. 17.7 | Credit-inquiry program. (Part 2 of 5.)

input.Seek(0, SeekOrigin.Begin);

string inputRecord = fileReader.ReadLine();

ptg18189312

17.5 Case Study: Credit-Inquiry Program 547

104 // display record
105 displayTextBox.AppendText($"{record.Account}\t" +
106 $"{record.FirstName}\t{record.LastName}\t" +
107 $"{record.Balance:C}{Environment.NewLine}");
108 }
109 }
110 }
111 catch (IOException)
112 {
113 MessageBox.Show("Cannot Read File", "Error",
114 MessageBoxButtons.OK, MessageBoxIcon.Error);
115 }
116 }
117
118 // determine whether to display given record
119 private bool ShouldDisplay(decimal balance, string accountType)
120 {
121 if (balance > 0M && accountType == "Credit Balances")
122 {
123 return true; // should display credit balances
124 }
125 else if (balance < 0M && accountType == "Debit Balances")
126 {
127 return true; // should display debit balances
128 }
129 else if (balance == 0 && accountType == "Zero Balances")
130 {
131 return true; // should display zero balances
132 }
133
134 return false;
135 }
136
137 // invoked when user clicks Done button
138 private void doneButton_Click(object sender, EventArgs e)
139 {
140 // close file and StreamReader
141 try
142 {
143
144 }
145 catch (IOException)
146 {
147 // notify user of error closing file
148 MessageBox.Show("Cannot close file", "Error",
149 MessageBoxButtons.OK, MessageBoxIcon.Error);
150 }
151
152 Application.Exit();
153 }
154 }
155 }

Fig. 17.7 | Credit-inquiry program. (Part 3 of 5.)

fileReader?.Close(); // close StreamReader and underlying file

ptg18189312

548 Chapter 17 Files and Streams

Fig. 17.7 | Credit-inquiry program. (Part 4 of 5.)

a) GUI when the app
first executes

b) Opening the
clients.txt file

c) Displaying accounts with
credit balances

d) Displaying accounts with
debit balances

ptg18189312

17.6 Serialization 549

When the user clicks the Open File button, the program calls the event handler open-
Button_Click (lines 23–60). Line 29 creates an OpenFileDialog, and line 31 calls its
ShowDialog method to display the Open dialog, in which the user selects the file to open.
Lines 47–48 create a FileStream object with read-only file access and assign it to reference
input. Line 51 creates a StreamReader object that we use to read text from the
FileStream.

When the user clicks Credit Balances, Debit Balances or Zero Balances, the program
invokes method getBalances_Click (lines 64–116). Line 67 casts the sender parameter,
which is an object reference to the control that generated the event, to a Button object.
Line 70 extracts the Button object’s text, which the program uses to determine which type
of accounts to display. Line 76 uses FileStream method Seek to reset the file-position
pointer back to the beginning of the file. FileStream method Seek allows you to reset the
file-position pointer by specifying the number of bytes it should be offset from the file’s
beginning, end or current position. The part of the file you want to be offset from is chosen
using constants from the SeekOrigin enumeration. In this case, our stream is offset by 0
bytes from the file’s beginning (SeekOrigin.Begin). Line 102 use private method
ShouldDisplay (lines 119–135) to determine whether to display each record in the file.
The while loop obtains each record by repeatedly calling StreamReader method ReadLine
(line 85) and splitting the text into tokens (line 94) that are used to initialize object record
(lines 97–99). Line 88 determines whether the file-position pointer has reached the end of
the file, in which case ReadLine returns null. If so, the program returns from method get-
Balances_Click (line 90).

17.6 Serialization
Section 17.3 demonstrated how to write the individual fields of a Record object to a text
file, and Section 17.4 demonstrated how to read those fields from a file and place their val-
ues in a Record object in memory. In the examples, Record was used to aggregate the in-
formation for one record. When the instance variables for a Record were output to a disk
file as text, certain information was lost, such as the type of each value. For instance, if the
value "3" is read from a text file, there’s no way to tell if the value came from an int, a
string or a decimal. We have only data, not type information, on disk. If the program

Fig. 17.7 | Credit-inquiry program. (Part 5 of 5.)

e) Displaying accounts with
zero balances

ptg18189312

550 Chapter 17 Files and Streams

that’s going to read this data “knows” what object type the data corresponds to, then the
data can be read directly into objects of that type.

In Fig. 17.6, we know that we’re inputting an int account number, followed by first
name and last name strings and a decimal balance. We also know that these values are
separated by commas, with only one record on each line. So, we are able to parse the
strings and convert the account number to an int and the balance to a decimal. Some-
times it would be easier to read or write entire objects. C# provides such a mechanism,
called object serialization. A serialized object is an object represented as a sequence of
bytes that includes the object’s data, as well as information about the object’s type and the
types of data stored in the object. After a serialized object has been written to a file, it can be
read from the file and deserialized—that is, the type information and bytes that represent
the object and its data can be used to recreate the object in memory.

Class BinaryFormatter (namespace System.Runtime.Serialization.Formatters.
Binary) enables entire objects to be written to or read from a stream in binary format.
BinaryFormatter method Serialize writes an object’s representation to a file. Binary-
Formatter method Deserialize reads this representation from a file and reconstructs the
original object. Both methods throw a SerializationException if an error occurs during
serialization or deserialization. Both methods require a Stream object (e.g., the
FileStream) as a parameter so that the BinaryFormatter can access the correct stream.

In Sections 17.7–17.8, we create and manipulate sequential-access files using object seri-
alization. Object serialization is performed with byte-based streams, so the sequential files
created and manipulated will be binary files. Binary files are not human-readable. For this
reason, we write a separate app that reads and displays serialized objects. Other serialization
formats are available that are both human- and machine-readable. For example,

• the XmlSerializer class (namespace System.Xml.Serialization) can read and
write objects in XML (Extensible Markup Language) format and

• the DataContractJsonSerializer class (namespace System.Runtime.Serial-
ization.Json) can read and write objects in JSON (JavaScript Object Notation)
format.

XML and JSON are popular formats for transferring data over the Internet.

17.7 Creating a Sequential-Access File Using Object
Serialization
We begin by creating and writing serialized objects to a sequential-access file. In this section,
we reuse much of the code from Section 17.3, so we focus only on the new features.

Defining the RecordSerializable Class
Let’s modify class Record (Fig. 17.3) so that objects of this class can be serialized. Class
RecordSerializable (Fig. 17.8; part of the BankLibrary project) is marked with what is-
known as an attribute—[Serializable] (line 7)—this attribute indicates to the CLR that
RecordSerializable objects can be serialized. Classes that represent serializable types
must include this attribute in their declarations or must implement interface ISerializ-
able.

ptg18189312

17.7 Creating a Sequential-Access File Using Object Serialization 551

In a class that’s marked with the [Serializable] attribute or that implements inter-
face ISerializable, you must ensure that every instance variable of the class is also seri-
alizable. All simple-type variables and strings are serializable. For variables of reference
types, you must check the class declaration (and possibly its base classes) to ensure that the
type is serializable. By default, array objects are serializable. However, if the array contains
references to other objects, those objects may or may not be serializable.

Using a Serialization Stream to Create an Output File
Next, we’ll create a sequential-access file with serialization (Fig. 17.9). To test this pro-
gram, we used the sample data from Fig. 17.5 to create a file named clients.ser—we
chose the extension .ser to indicate that the file stores serialized objects. Since the sample
screen captures are the same as Fig. 17.4, they are not shown here. Line 15 creates a Bi-
naryFormatter for writing serialized objects. Lines 55–56 open the FileStream to which
this program writes the serialized objects. The string argument that’s passed to the
FileStream’s constructor represents the name and path of the file to be opened. This spec-
ifies the file to which the serialized objects will be written.

1 // Fig. 17.8: RecordSerializable.cs
2 // Serializable class that represents a data record.
3 using System;
4
5 namespace BankLibrary
6 {
7
8 public class RecordSerializable
9 {

10 public int Account { get; set; }
11 public string FirstName { get; set; }
12 public string LastName { get; set; }
13 public decimal Balance { get; set; }
14
15 // default constructor sets members to default values
16 public RecordSerializable()
17 : this(0, string.Empty, string.Empty, 0M) {}
18
19 // overloaded constructor sets members to parameter values
20 public RecordSerializable(int account, string firstName,
21 string lastName, decimal balance)
22 {
23 Account = account;
24 FirstName = firstName;
25 LastName = lastName;
26 Balance = balance;
27 }
28 }
29 }

Fig. 17.8 | Serializable class that represents a data record.

[Serializable]

ptg18189312

552 Chapter 17 Files and Streams

1 // Fig. 17.9: CreateFileForm.cs
2 // Creating a sequential-access file using serialization.
3 using System;
4 using System.Windows.Forms;
5 using System.IO;
6
7
8 using BankLibrary;
9

10 namespace CreateFile
11 {
12 public partial class CreateFileForm : BankUIForm
13 {
14 // object for serializing RecordSerializables in binary format
15
16 private FileStream output; // stream for writing to a file
17
18 // parameterless constructor
19 public CreateFileForm()
20 {
21 InitializeComponent();
22 }
23
24 // handler for saveButton_Click
25 private void saveButton_Click(object sender, EventArgs e)
26 {
27 // create and show dialog box enabling user to save file
28 DialogResult result;
29 string fileName; // name of file to save data
30
31 using (SaveFileDialog fileChooser = new SaveFileDialog())
32 {
33 fileChooser.CheckFileExists = false; // let user create file
34
35 // retrieve the result of the dialog box
36 result = fileChooser.ShowDialog();
37 fileName = fileChooser.FileName; // get specified file name
38 }
39
40 // ensure that user clicked "OK"
41 if (result == DialogResult.OK)
42 {
43 // show error if user specified invalid file
44 if (string.IsNullOrEmpty(fileName))
45 {
46 MessageBox.Show("Invalid File Name", "Error",
47 MessageBoxButtons.OK, MessageBoxIcon.Error);
48 }
49 else
50 {
51 // save file via FileStream if user specified valid file
52 try
53 {

Fig. 17.9 | Creating a sequential-access file using serialization. (Part 1 of 3.)

using System.Runtime.Serialization.Formatters.Binary;
using System.Runtime.Serialization;

private BinaryFormatter formatter = new BinaryFormatter();

ptg18189312

17.7 Creating a Sequential-Access File Using Object Serialization 553

54 // open file with write access
55 output = new FileStream(fileName,
56 FileMode.OpenOrCreate, FileAccess.Write);
57
58 // disable Save button and enable Enter button
59 saveButton.Enabled = false;
60 enterButton.Enabled = true;
61 }
62 catch (IOException)
63 {
64 // notify user if file could not be opened
65 MessageBox.Show("Error opening file", "Error",
66 MessageBoxButtons.OK, MessageBoxIcon.Error);
67 }
68 }
69 }
70 }
71
72 // handler for enterButton Click
73 private void enterButton_Click(object sender, EventArgs e)
74 {
75 // store TextBox values string array
76 string[] values = GetTextBoxValues();
77
78 // determine whether TextBox account field is empty
79 if (!string.IsNullOrEmpty(values[(int) TextBoxIndices.Account]))
80 {
81 // store TextBox values in RecordSerializable and serialize it
82 try
83 {
84 // get account-number value from TextBox
85 int accountNumber = int.Parse(
86 values[(int) TextBoxIndices.Account]);
87
88 // determine whether accountNumber is valid
89 if (accountNumber > 0)
90 {
91 // RecordSerializable to serialize
92 var record = new RecordSerializable(accountNumber,
93 values[(int) TextBoxIndices.First],
94 values[(int) TextBoxIndices.Last],
95 decimal.Parse(values[(int) TextBoxIndices.Balance]));
96
97 // write Record to FileStream (serialize object)
98
99 }
100 else
101 {
102 // notify user if invalid account number
103 MessageBox.Show("Invalid Account Number", "Error",
104 MessageBoxButtons.OK, MessageBoxIcon.Error);
105 }
106 }

Fig. 17.9 | Creating a sequential-access file using serialization. (Part 2 of 3.)

formatter.Serialize(output, record);

ptg18189312

554 Chapter 17 Files and Streams

This program assumes that data is input correctly and in record-number order. Method
enterButton_Click (lines 73–120) performs the write operation. Lines 92–95 create and
initialize a RecordSerializable object. Line 98 calls Serialize to write the RecordSeri-
alizable object to the output file. Method Serialize takes the FileStream object as the
first argument so that the BinaryFormatter can write its second argument to the correct file.
The app does not specify how to format the objectfor output—Serialize handles these
details. If a problem occurs during serialization, a SerializationException occurs.

In the sample execution (Fig. 17.9), we entered five accounts—the same as in Fig. 17.5.
The program does not show how the data records actually appear in the file. Remember that
we are now using binary files, which are not human readable. To verify that the file was cre-
ated successfully, the next section presents a program to read the file’s contents.

17.8 Reading and Deserializing Data from a Binary File
The preceding section showed how to create a sequential-access file using object serializa-
tion. In this section, we discuss how to read serialized objects sequentially from a file.

107 catch ()
108 {
109 MessageBox.Show("Error Writing to File", "Error",
110 MessageBoxButtons.OK, MessageBoxIcon.Error);
111 }
112 catch (FormatException)
113 {
114 MessageBox.Show("Invalid Format", "Error",
115 MessageBoxButtons.OK, MessageBoxIcon.Error);
116 }
117 }
118
119 ClearTextBoxes(); // clear TextBox values
120 }
121
122 // handler for exitButton Click
123 private void exitButton_Click(object sender, EventArgs e)
124 {
125 // close file
126 try
127 {
128 output?.Close(); // close FileStream
129 }
130 catch (IOException)
131 {
132 MessageBox.Show("Cannot close file", "Error",
133 MessageBoxButtons.OK, MessageBoxIcon.Error);
134 }
135
136 Application.Exit();
137 }
138 }
139 }

Fig. 17.9 | Creating a sequential-access file using serialization. (Part 3 of 3.)

SerializationException

ptg18189312

17.8 Reading and Deserializing Data from a Binary File 555

Figure 17.10 reads and displays the contents of the clients.ser file created by the pro-
gram in Fig. 17.9. The sample screen captures are identical to those of Fig. 17.6, so they
are not shown here. Line 15 creates the BinaryFormatter that will be used to read objects.
The program opens the file for input by creating a FileStream object (lines 51–52). The
name of the file to open is specified as the first argument to the FileStream constructor.

The program reads objects from a file in event handler nextButton_Click (lines 61–
93). We use method Deserialize (of the BinaryFormatter created in line 15) to read the
data (lines 67–68). Note that we cast the result of Deserialize to type RecordSerializ-
able (line 67)—Deserialize returns a reference of type object, so we must perform this
cast to access properties that belong to class RecordSerializable. If an error occurs
during deserialization or the end of the file is reached, a SerializationException is
thrown, and the FileStream object is closed (line 83).

1 // Fig. 17.10: ReadSequentialAccessFileForm.cs
2 // Reading a sequential-access file using deserialization.
3 using System;
4 using System.Windows.Forms;
5 using System.IO;
6 using System.Runtime.Serialization.Formatters.Binary;
7 using System.Runtime.Serialization;
8 using BankLibrary;
9

10 namespace ReadSequentialAccessFile
11 {
12 public partial class ReadSequentialAccessFileForm : BankUIForm
13 {
14 // object for deserializing RecordSerializable in binary format
15
16 private FileStream input; // stream for reading from a file
17
18 // parameterless constructor
19 public ReadSequentialAccessFileForm()
20 {
21 InitializeComponent();
22 }
23
24 // invoked when user clicks the Open button
25 private void openButton_Click(object sender, EventArgs e)
26 {
27 // create and show dialog box enabling user to open file
28 DialogResult result; // result of OpenFileDialog
29 string fileName; // name of file containing data
30
31 using (OpenFileDialog fileChooser = new OpenFileDialog())
32 {
33 result = fileChooser.ShowDialog();
34 fileName = fileChooser.FileName; // get specified name
35 }
36

Fig. 17.10 | Reading a sequential-access file using deserialization. (Part 1 of 3.)

private BinaryFormatter reader = new BinaryFormatter();

ptg18189312

556 Chapter 17 Files and Streams

37 // ensure that user clicked "OK"
38 if (result == DialogResult.OK)
39 {
40 ClearTextBoxes();
41
42 // show error if user specified invalid file
43 if (string.IsNullOrEmpty(fileName))
44 {
45 MessageBox.Show("Invalid File Name", "Error",
46 MessageBoxButtons.OK, MessageBoxIcon.Error);
47 }
48 else
49 {
50 // create FileStream to obtain read access to file
51 input = new FileStream(
52 fileName, FileMode.Open, FileAccess.Read);
53
54 openButton.Enabled = false; // disable Open File button
55 nextButton.Enabled = true; // enable Next Record button
56 }
57 }
58 }
59
60 // invoked when user clicks Next button
61 private void nextButton_Click(object sender, EventArgs e)
62 {
63 // deserialize RecordSerializable and store data in TextBoxes
64 try
65 {
66 // get next RecordSerializable available in file
67
68
69
70 // store RecordSerializable values in temporary string array
71 var values = new string[] {
72 record.Account.ToString(),
73 record.FirstName.ToString(),
74 record.LastName.ToString(),
75 record.Balance.ToString()
76 };
77
78 // copy string-array values to TextBox values
79 SetTextBoxValues(values);
80 }
81 catch (SerializationException)
82 {
83 input?.Close(); // close FileStream
84 openButton.Enabled = true; // enable Open File button
85 nextButton.Enabled = false; // disable Next Record button
86
87 ClearTextBoxes();
88

Fig. 17.10 | Reading a sequential-access file using deserialization. (Part 2 of 3.)

RecordSerializable record =
 (RecordSerializable) reader.Deserialize(input);

ptg18189312

17.9 Classes File and Directory 557

17.9 Classes File and Directory
Files are organized in directories (also called folders). Classes File and Directory enable
programs to manipulate files and directories on disk. Class File can determine informa-
tion about files and can be used to open files for reading or writing. We discussed tech-
niques for writing to and reading from files in previous sections.

Figure 17.11 lists several of class File’s static methods for manipulating and deter-
mining information about files. We demonstrate several of these methods in Fig. 17.13.

Class Directory provides capabilities for manipulating directories. Figure 17.12 lists
some of class Directory’s static methods for directory manipulation. Figure 17.13
demonstrates several of these methods, as well. The DirectoryInfo object returned by
method CreateDirectory contains information about a directory. Much of the informa-

89 // notify user if no RecordSerializables in file
90 MessageBox.Show("No more records in file", string.Empty,
91 MessageBoxButtons.OK, MessageBoxIcon.Information);
92 }
93 }
94 }
95 }

static Method Description

AppendText Returns a StreamWriter that appends text to an existing file or creates a file if
one does not exist.

Copy Copies a file to a new file.
Create Creates a file and returns its associated FileStream.
CreateText Creates a text file and returns its associated StreamWriter.
Delete Deletes the specified file.
Exists Returns true if the specified file exists and false otherwise.
GetCreationTime Returns a DateTime object representing when the file/directory was created.
GetLastAccessTime Returns a DateTime object representing when the file/directory was last

accessed.
GetLastWriteTime Returns a DateTime object representing when the file/directory was last

modified.
Move Moves the specified file to a specified location.
Open Returns a FileStream associated with the specified file and equipped with

the specified read/write permissions.
OpenRead Returns a read-only FileStream associated with the specified file.
OpenText Returns a StreamReader associated with the specified file.
OpenWrite Returns a write FileStream associated with the specified file.

Fig. 17.11 | File class static methods (partial list).

Fig. 17.10 | Reading a sequential-access file using deserialization. (Part 3 of 3.)

ptg18189312

558 Chapter 17 Files and Streams

tion contained in class DirectoryInfo also can be accessed via the methods of class Direc-
tory.

17.9.1 Demonstrating Classes File and Directory
.Class FileTestForm (Fig. 17.13) uses File and Directory methods to access file and di-
rectory information. The Form contains the inputTextBox, in which the user enters a file
or directory name. For each key that the user presses while typing in the TextBox, the pro-
gram calls inputTextBox_KeyDown (lines 19–76). If the user presses the Enter key (line 22),
this method displays either the file’s or directory’s contents, depending on the text the user
input. (If the user does not press the Enter key, this method returns without displaying any
content.)

static Method Description

CreateDirectory Creates a directory and returns its associated DirectoryInfo object.
Delete Deletes the specified directory.
Exists Returns true if the specified directory exists and false otherwise.
GetDirectories Returns a string array containing the names of the subdirectories in

the specified directory.
GetFiles Returns a string array containing the names of the files in the speci-

fied directory.
GetCreationTime Returns a DateTime object representing when the directory was created.
GetLastAccessTime Returns a DateTime object representing when the directory was last

accessed.
GetLastWriteTime Returns a DateTime object representing when items were last written

to the directory.
Move Moves the specified directory to a specified location.

Fig. 17.12 | Directory class static methods.

1 // Fig. 17.13: FileTestForm.cs
2 // Using classes File and Directory.
3 using System;
4 using System.Windows.Forms;
5 using System.IO;
6
7 namespace FileTest
8 {
9 // displays contents of files and directories

10 public partial class FileTestForm : Form
11 {
12 // parameterless constructor
13 public FileTestForm()
14 {

Fig. 17.13 | Using classes File and Directory. (Part 1 of 4.)

ptg18189312

17.9 Classes File and Directory 559

15 InitializeComponent();
16 }
17
18 // invoked when user presses key
19 private void inputTextBox_KeyDown(object sender, KeyEventArgs e)
20 {
21 // determine whether user pressed Enter key
22 if (e.KeyCode == Keys.Enter)
23 {
24 // get user-specified file or directory
25 string fileName = inputTextBox.Text;
26
27 // determine whether fileName is a file
28 if ()
29 {
30 // get file's creation date, modification date, etc.
31 GetInformation(fileName);
32
33 // display file contents through StreamReader
34 try
35 {
36 // obtain reader and file contents
37 using (var stream = new StreamReader(fileName))
38 {
39 outputTextBox.AppendText();
40 }
41 }
42 catch (IOException)
43 {
44 MessageBox.Show("Error reading from file",
45 "File Error", MessageBoxButtons.OK,
46 MessageBoxIcon.Error);
47 }
48 }
49 // determine whether fileName is a directory
50 else if ()
51 {
52 // get directory's creation date,
53 // modification date, etc.
54 GetInformation(fileName);
55
56 // obtain directory list of specified directory
57
58
59
60 outputTextBox.AppendText("Directory contents:\n");
61
62 // output directoryList contents
63 foreach (var directory in directoryList)
64 {
65 outputTextBox.AppendText($"{directory}\n");
66 }
67 }

Fig. 17.13 | Using classes File and Directory. (Part 2 of 4.)

File.Exists(fileName)

stream.ReadToEnd()

Directory.Exists(fileName)

string[] directoryList =
 Directory.GetDirectories(fileName);

ptg18189312

560 Chapter 17 Files and Streams

68 else
69 {
70 // notify user that neither file nor directory exists
71 MessageBox.Show(
72 $"{inputTextBox.Text} does not exist", "File Error",
73 MessageBoxButtons.OK, MessageBoxIcon.Error);
74 }
75 }
76 }
77
78 // get information on file or directory,
79 // and output it to outputTextBox
80 private void GetInformation(string fileName)
81 {
82 outputTextBox.Clear();
83
84 // output that file or directory exists
85 outputTextBox.AppendText($"{fileName} exists\n");
86
87 // output when file or directory was created
88 outputTextBox.AppendText(
89 $"Created: { }\n" +
90 Environment.NewLine);
91
92 // output when file or directory was last modified
93 outputTextBox.AppendText(
94 $"Last modified: { }\n" +
95 Environment.NewLine);
96
97 // output when file or directory was last accessed
98 outputTextBox.AppendText(
99 $"Last accessed: { }\n" +
100 Environment.NewLine);
101 }
102 }
103 }

Fig. 17.13 | Using classes File and Directory. (Part 3 of 4.)

File.GetCreationTime(fileName)

File.GetLastWriteTime(fileName)

File.GetLastAccessTime(fileName)

b) Viewing all directories in C:\Program Files\a) Viewing the contents of file "quotes.txt"

ptg18189312

17.9 Classes File and Directory 561

Line 28 uses File method Exists to determine whether the user-specified text is the
name of an existing file. If so, line 31 invokes private method GetInformation (lines 80–
101), which calls File methods GetCreationTime (line 89), GetLastWriteTime (line 94)
and GetLastAccessTime (line 99) to access file information. When method GetInforma-
tion returns, line 37 instantiates a StreamReader for reading text from the file. The
StreamReader constructor takes as an argument a string containing the name and path
of the file to open. Line 39 calls StreamReader method ReadToEnd to read the entire con-
tents of the file as a string, then appends the string to outputTextBox. Once the file has
been read, the using block disposes of the corresponding object, which closes the file.

If line 28 determines that the user-specified text is not a file, line 50 determines
whether it’s a directory using Directory method Exists. If the user specified an existing
directory, line 54 invokes method GetInformation to access the directory information.
Lines 57–58 call Directory method GetDirectories to obtain a string array containing
the names of the subdirectories in the specified directory. Lines 63–66 display each ele-
ment in the string array. Note that, if line 50 determines that the user-specified text is
not a directory name, lines 71–73 notify the user that the name the user entered does not
exist as a file or directory.

17.9.2 Searching Directories with LINQ
We now consider another example that uses file- and directory-manipulation capabilities.
Class LINQToFileDirectoryForm (Fig. 17.14) uses LINQ with classes File, Path and
Directory to report the number of files of each file type that exist in the specified directory
path. The program also serves as a “clean-up” utility—when it finds a file that has the .bak
filename extension (i.e., a backup file), the program displays a MessageBox asking the user
whether that file should be removed, then responds appropriately to the user’s input. This
example also uses LINQ to Objects to help delete the backup files.

When the user clicks Search Directory, the program invokes searchButton_Click
(lines 23–62), which searches recursively through the directory path specified by the
user. If the user inputs text in the TextBox, line 27 calls Directory method Exists to
determine whether that text is a valid directory. If it’s not, lines 30–31 notify the user
of the error.

Fig. 17.13 | Using classes File and Directory. (Part 4 of 4.)

c) User gives invalid input d) Error message is displayed

ptg18189312

562 Chapter 17 Files and Streams

1 // Fig. 17.14: LINQToFileDirectoryForm.cs
2 // Using LINQ to search directories and determine file types.
3 using System;
4 using System.Collections.Generic;
5 using System.Linq;
6 using System.Windows.Forms;
7 using System.IO;
8
9 namespace LINQToFileDirectory

10 {
11 public partial class LINQToFileDirectoryForm : Form
12 {
13 // store extensions found, and number of each extension found
14
15
16 // parameterless constructor
17 public LINQToFileDirectoryForm()
18 {
19 InitializeComponent();
20 }
21
22 // handles the Search Directory Button's Click event
23 private void searchButton_Click(object sender, EventArgs e)
24 {
25 // check whether user specified path exists
26 if (!string.IsNullOrEmpty(pathTextBox.Text) &&
27 !)
28 {
29 // show error if user does not specify valid directory
30 MessageBox.Show("Invalid Directory", "Error",
31 MessageBoxButtons.OK, MessageBoxIcon.Error);
32 }
33 else
34 {
35 // directory to search; if not specified use current directory
36 string currentDirectory =
37 (!string.IsNullOrEmpty(pathTextBox.Text)) ?
38 pathTextBox.Text : ;
39
40 directoryTextBox.Text = currentDirectory; // show directory
41
42 // clear TextBoxes
43 pathTextBox.Clear();
44 resultsTextBox.Clear();
45
46 SearchDirectory(currentDirectory); // search the directory
47
48 // allow user to delete .bak files
49 CleanDirectory(currentDirectory);
50
51 // summarize and display the results
52 foreach (var current in)
53 {

Fig. 17.14 | Using LINQ to search directories and determine file types. (Part 1 of 3.)

Dictionary<string, int> found = new Dictionary<string, int>();

Directory.Exists(pathTextBox.Text)

Directory.GetCurrentDirectory()

found.Keys

ptg18189312

17.9 Classes File and Directory 563

54 // display the number of files with current extension
55 resultsTextBox.AppendText(
56 $"* Found { } {current} files." +
57 Environment.NewLine);
58 }
59
60
61 }
62 }
63
64 // search directory using LINQ
65 private void SearchDirectory(string folder)
66 {
67 // files contained in the directory
68
69
70 // subdirectories in the directory
71
72
73 // find all file extensions in this directory
74 var extensions =
75 from file in files
76 ;
77
78 foreach (var extension in extensions)
79 {
80 if ()
81 {
82
83 }
84 else
85 {
86
87 }
88 }
89
90 // recursive call to search subdirectories
91 foreach (var subdirectory in directories)
92 {
93 SearchDirectory(subdirectory);
94 }
95 }
96
97 // allow user to delete backup files (.bak)
98 private void CleanDirectory(string folder)
99 {
100 // files contained in the directory
101
102
103 // subdirectories in the directory
104
105

Fig. 17.14 | Using LINQ to search directories and determine file types. (Part 2 of 3.)

found[current]

found.Clear(); // clear results for new search

string[] files = Directory.GetFiles(folder);

string[] directories = Directory.GetDirectories(folder);

group file by Path.GetExtension(file)

found.ContainsKey(extension.Key)

found[extension.Key] += extension.Count(); // update count

found[extension.Key] = extension.Count(); // add count

string[] files = Directory.GetFiles(folder);

string[] directories = Directory.GetDirectories(folder);

ptg18189312

564 Chapter 17 Files and Streams

106 // select all the backup files in this directory
107 var backupFiles =
108 from file in files
109 where == ".bak"
110 select file;
111
112 // iterate over all backup files (.bak)
113 foreach (var backup in backupFiles)
114 {
115 DialogResult result = MessageBox.Show(
116 $"Found backup file { }. Delete?",
117 "Delete Backup", MessageBoxButtons.YesNo,
118 MessageBoxIcon.Question);
119
120 // delete file if user clicked 'yes'
121 if (result == DialogResult.Yes)
122 {
123
124 // decrement count in Dictionary
125
126 // if there are no .bak files, delete key from Dictionary
127 if ()
128 {
129
130 }
131 }
132 }
133
134 // recursive call to clean subdirectories
135 foreach (var subdirectory in directories)
136 {
137 CleanDirectory(subdirectory);
138 }
139 }
140 }
141 }

Fig. 17.14 | Using LINQ to search directories and determine file types. (Part 3 of 3.)

Path.GetExtension(file)

Path.GetFileName(backup)

File.Delete(backup); // delete backup file
--found[".bak"];

found[".bak"] == 0

found.Remove(".bak");

b) Dialog that appears to confirm deletion
of a .bak file

a) GUI after entering
a directory to search

and pressing Search
Directory

ptg18189312

17.10 Wrap-Up 565

Method SearchDirectory
Lines 36–38 get the current directory (if the user did not specify a path) or the specified
directory. Line 46 passes the directory name to recursive method SearchDirectory (lines
65–95). Line 68 calls Directory method GetFiles to get a string array containing file-
names in the specified directory. Line 71 calls Directory method GetDirectories to get
a string array containing the subdirectory names in the specified directory.

Lines 74–76 use LINQ to get the filename extensions in the files array. Path
method GetExtension obtains the extension for the specified filename. We use the LINQ
group by clause to group the results by filename extension. For each filename-extension
group returned by the LINQ query, lines 78–88 use LINQ method Count to determine
the number of occurrences of that extension in the files array.

Class LINQToFileDirectoryForm uses a Dictionary (declared in line 14) to store each
filename extension and the corresponding number of filenames with that extension. A
Dictionary (namespace System.Collections.Generic) is a collection of key–value pairs,
in which each key has a corresponding value. Class Dictionary is a generic class like class
List (presented in Section 9.4). Line 14 indicates that the Dictionary found contains
pairs of strings and ints, which represent the filename extensions and the number of files
with those extensions, respectively. Line 80 uses Dictionary method ContainsKey to
determine whether the specified filename extension has been placed in the Dictionary
previously. If this method returns true, line 82 adds the count of the number of files with
a given extention to the current total for that extension that’s stored in the Dictionary.
Otherwise, line 86 inserts a new key–value pair into the Dictionary for the new filename
extension and its extension count. Lines 91–94 recursively call SearchDirectory for each
subdirectory in the current directory—depending on the number of files and folders, this
operation could take substantial time to complete.

Method CleanDirectory
When method SearchDirectory returns, line 49 calls CleanDirectory (lines 98–139) to
search for all files with extension .bak. Lines 101 and 104 obtain the list of filenames and
list of directory names in the current directory, respectively. The LINQ query in lines
107–110 locates all filenames in the current directory that have the .bak extension. Lines
113–132 iterate through the results and ask the user whether each file should be deleted.
If the user clicks Yes in the dialog, line 123 uses File method Delete to remove the file
from disk, and line 124 subtracts 1 from the total number of .bak files. If the number of
.bak files remaining is 0, line 129 uses Dictionary method Remove to delete the key–value
pair for .bak files from the Dictionary. Lines 135–138 recursively call CleanDirectory
for each subdirectory in the current directory. After each subdirectory has been checked
for .bak files, method CleanDirectory returns, and lines 52–58 display the summary of
filename extensions and the number of files with each extension. Line 52 uses Dictionary
property Keys to get all the keys. Line 56 uses the Dictionary’s indexer to get the value
for the current key. Finally, line 60 uses Dictionary method Clear to delete the contents
of the Dictionary.

17.10 Wrap-Up
In this chapter, you used file processing to manipulate persistent data. We overviewed sev-
eral file-processing classes from the System.IO namespace. We showed how to use sequen-

ptg18189312

566 Chapter 17 Files and Streams

tial-access file processing to manipulate records in text files. We then discussed the
differences between text-file processing and object serialization, and used serialization to
store entire objects in and retrieve entire objects from files. Finally, you used class File to
manipulate files, and classes Directory and DirectoryInfo to manipulate directories.

In the next chapter, we introduce generics, which allow you to declare a family of
classes and methods that implement the same functionality on any type.

ptg18189312

18
Generics

O b j e c t i v e s
In this chapter you’ll:

■ Create generic methods that perform identical tasks on
arguments of different types.

■ Create a generic Stack class that can be used to store
objects of a specific type.

■ Understand how to overload generic methods with
nongeneric methods or with other generic methods.

■ Understand the kinds of constraints that can be applied to
a type parameter.

■ Apply multiple constraints to a type parameter.

ptg18189312

568 Chapter 18 Generics

O
u

tl
in

e

18.1 Introduction
In this chapter, we introduce C# generics and demonstrate how to create generic methods
and a generic class.

object-Based Data Structure Disadvantages
You can store any object in our data structures. One inconvenient aspect of storing ob-
ject references occurs when retrieving them from a collection. An app normally needs to
process specific types of objects. As a result, the object references obtained from a collec-
tion typically need to be downcast to an appropriate type to allow the app to process the
objects correctly. In addition, data of value types (e.g., int and double) must be boxed to
be manipulated with object references, which increases the overhead of processing such
data. Most importantly, processing all data as type object limits the C# compiler’s ability
to perform type checking.

Compile-Time Type Safety
Though we can easily create data structures that manipulate any type of data as objects,
it would be nice if we could detect type mismatches at compile time—this is known as
compile-time type safety. For example, if a Stack should store only int values, attempting
to push a string onto that Stack should cause a compile-time error. Similarly, a Sort
method should be able to compare elements that are all guaranteed to have the same type.
If we create type-specific versions of class Stack and method Sort, the C# compiler would
certainly be able to ensure compile-time type safety. However, this would require that we
create many copies of the same basic code.

Generics
This chapter discusses generics, which provide the means to create the general models
mentioned above. Generic methods enable you to specify, with a single method declaration,
a set of related methods. Generic classes enable you to specify, with a single class declaration,
a set of related classes. Similarly, generic interfaces enable you to specify, with a single inter-
face declaration, a set of related interfaces. Generics provide compile-time type safety. [Note:
You also can implement generic structs and delegates.] So far in this book, we’ve used
the generic types List (Chapter 9) and Dictionary (Chapter 17).

We can write a generic method for sorting an array, then invoke the generic method
separately with an int array, a double array, a string array and so on, to sort each dif-
ferent type of array. The compiler performs type checking to ensure that the array passed
to the sorting method contains only elements of the correct type. We can write a single

18.1 Introduction
18.2 Motivation for Generic Methods
18.3 Generic-Method Implementation
18.4 Type Constraints

18.4.1 IComparable<T> Interface
18.4.2 Specifying Type Constraints

18.5 Overloading Generic Methods
18.6 Generic Classes
18.7 Wrap-Up

ptg18189312

18.2 Motivation for Generic Methods 569

generic Stack class, then instantiate Stack objects for a stack of ints, a stack of doubles,
a stack of strings and so on. The compiler performs type checking to ensure that the Stack
stores only elements of the correct type.

This chapter presents examples of generic methods and generic classes. Chapter 19,
Generic Collections; Functional Programming with LINQ/PLINQ, discusses the .NET
Framework’s generic collections classes. A collection is a data structure that maintains a
group of related objects or values. The .NET Framework collection classes use generics to
allow you to specify the exact types of object that a particular collection will store.

18.2 Motivation for Generic Methods
Overloaded methods are often used to perform similar operations on different types of
data. To understand the motivation for generic methods, let’s begin with an example
(Fig. 18.1) that contains three overloaded DisplayArray methods (lines 23–31, lines 34–
42 and lines 45–53). These methods display the elements of an int array, a double array
and a char array, respectively. Soon, we’ll reimplement this program more concisely and
elegantly using a single generic method.

1 // Fig. 18.1: OverloadedMethods.cs
2 // Using overloaded methods to display arrays of different types.
3 using System;
4
5 class OverloadedMethods
6 {
7 static void Main(string[] args)
8 {
9 // create arrays of int, double and char

10 int[] intArray = {1, 2, 3, 4, 5, 6};
11 double[] doubleArray = {1.1, 2.2, 3.3, 4.4, 5.5, 6.6, 7.7};
12 char[] charArray = {'H', 'E', 'L', 'L', 'O'};
13
14 Console.Write("Array intArray contains: ");
15 DisplayArray(intArray); // pass an int array argument
16 Console.Write("Array doubleArray contains: ");
17 DisplayArray(doubleArray); // pass a double array argument
18 Console.Write("Array charArray contains: ");
19 DisplayArray(charArray); // pass a char array argument
20 }
21
22 // output int array
23
24 {
25
26 {
27
28 }
29
30 Console.WriteLine();
31 }

Fig. 18.1 | Using overloaded methods to display arrays of different types. (Part 1 of 2.)

private static void DisplayArray(int[] inputArray)

foreach (var element in inputArray)

Console.Write($"{element} ");

ptg18189312

570 Chapter 18 Generics

The program begins by declaring and initializing three arrays—six-element int array
intArray (line 10), seven-element double array doubleArray (line 11) and five-element
char array charArray (line 12). Then, lines 14–19 output the arrays.

When the compiler encounters a method call, it attempts to locate a method declara-
tion that has the same method name and parameters that match the argument types in the
method call. In this example, each DisplayArray call exactly matches one of the Display-
Array method declarations. For example, line 15 calls DisplayArray with intArray as its
argument. At compile time, the compiler determines argument intArray’s type (i.e.,
int[]), attempts to locate a method named DisplayArray that specifies a single int[]
parameter (which it finds at lines 23–31) and sets up a call to that method. Similarly, when
the compiler encounters the DisplayArray call at line 17, it determines argument double-
Array’s type (i.e., double[]), then attempts to locate a method named DisplayArray that
specifies a single double[] parameter (which it finds at lines 34–42) and sets up a call to
that method. Finally, when the compiler encounters the DisplayArray call at line 19, it
determines argument charArray’s type (i.e., char[]), then attempts to locate a method
named DisplayArray that specifies a single char[] parameter (which it finds at lines 45–
53) and sets up a call to that method.

Study each DisplayArray method. Note that the array element type (int, double or
char) appears in one location in each method—the method header (lines 23, 34 and 45).
Each foreach statement header (lines 25, 36 and 47) uses var to infer the element type

32
33 // output double array
34
35 {
36
37 {
38
39 }
40
41 Console.WriteLine();
42 }
43
44 // output char array
45
46 {
47
48 {
49
50 }
51
52 Console.WriteLine();
53 }
54 }

Array intArray contains: 1 2 3 4 5 6
Array doubleArray contains: 1.1 2.2 3.3 4.4 5.5 6.6 7.7
Array charArray contains: H E L L O

Fig. 18.1 | Using overloaded methods to display arrays of different types. (Part 2 of 2.)

private static void DisplayArray(double[] inputArray)

foreach (var element in inputArray)

Console.Write($"{element} ");

private static void DisplayArray(char[] inputArray)

foreach (var element in inputArray)

Console.Write($"{element} ");

ptg18189312

18.3 Generic-Method Implementation 571

from the method’s parameter. If we were to replace the element types in each method’s
header with a generic name (such as T for “type”), then all three methods would look like
the one in Fig. 18.2. It appears that if we can replace the array element type in each of the
three methods with a single “generic type parameter,” then we should be able to declare one
DisplayArray method that can display the elements of any array. The method in Fig. 18.2
will not compile, because its syntax is not correct. We declare a generic DisplayArray
method with the proper syntax in Fig. 18.3.

18.3 Generic-Method Implementation
If the operations performed by several overloaded methods are identical for each argument
type, the overloaded methods can be more compactly and conveniently coded using a ge-
neric method. You can write a single generic-method declaration that can be called at dif-
ferent times with arguments of different types. Based on the types of the arguments passed
to the generic method, the compiler handles each method call appropriately.

Figure 18.3 reimplements the app of Fig. 18.1 using a generic DisplayArray method
(lines 24–32). Note that the DisplayArray method calls in lines 15, 17 and 19 are iden-
tical to those of Fig. 18.1, the outputs of the two apps are identical and the code in
Fig. 18.3 is 22 lines shorter than that in Fig. 18.1. As illustrated in Fig. 18.3, generics
enable us to create and test our code once, then reuse it for many different types of data.
This effectively demonstrates the expressive power of generics.

1 private static void DisplayArray(T[] inputArray)
2 {
3 foreach (var element in inputArray)
4 {
5 Console.Write($"{element} ");
6 }
7
8 Console.WriteLine();
9 }

Fig. 18.2 | DisplayArray method in which actual type names have been replaced by conven-
tion with the generic name T. Again, this code will not compile.

1 // Fig. 18.3: GenericMethod.cs
2 // Using a generic method to display arrays of different types.
3 using System;
4
5 class GenericMethod
6 {
7 static void Main()
8 {
9 // create arrays of int, double and char

10 int[] intArray = {1, 2, 3, 4, 5, 6};
11 double[] doubleArray = {1.1, 2.2, 3.3, 4.4, 5.5, 6.6, 7.7};
12 char[] charArray = {'H', 'E', 'L', 'L', 'O'};

Fig. 18.3 | Using a generic method to display arrays of different types. (Part 1 of 2.)

ptg18189312

572 Chapter 18 Generics

Line 23 begins method DisplayArray’s declaration, which is static so that Main can
call DisplayArray. All generic method declarations have a type-parameter list delimited by
angle brackets (<T> in this example) that follows the method’s name. Each type-parameter
list contains one or more type parameters, separated by commas (e.g., Dictionary<K, V>).
A type parameter is an identifier that’s used in place of actual type names. The type param-
eters can be used to declare the return type, the parameter types and local variable types in
a generic method declaration; the type parameters act as placeholders for type arguments
that represent the types of data that will be passed to the generic method.

The type-parameter names throughout the method declaration (if any) must match
those declared in the type-parameter list. Also, a type parameter can be declared only once
in the type-parameter list but can appear more than once in the method’s parameter list.
Type-parameter names need not be unique among separate generic methods.

Method DisplayArray’s type-parameter list (line 23) declares type parameter T as the
placeholder for the array-element type that DisplayArray will output. Note that T appears
in the parameter list as the array-element type (line 23). This is the same location where
the overloaded DisplayArray methods of Fig. 18.1 specified int, double or char as the
element type. The remainder of DisplayArray is identical to the version presented in

13
14 Console.Write("Array intArray contains: ");
15 DisplayArray(intArray); // pass an int array argument
16 Console.Write("Array doubleArray contains: ");
17 DisplayArray(doubleArray); // pass a double array argument
18 Console.Write("Array charArray contains: ");
19 DisplayArray(charArray); // pass a char array argument
20 }
21
22 // output array of all types
23
24 {
25 foreach (var element in inputArray)
26 {
27 Console.Write($"{element} ");
28 }
29
30 Console.WriteLine();
31 }
32 }

Array intArray contains: 1 2 3 4 5 6
Array doubleArray contains: 1.1 2.2 3.3 4.4 5.5 6.6 7.7
Array charArray contains: H E L L O

Common Programming Error 18.1
If you forget to include the type-parameter list when declaring a generic method, the com-
piler will not recognize the type-parameter names when they’re encountered in the meth-
od. This results in compilation errors.

Fig. 18.3 | Using a generic method to display arrays of different types. (Part 2 of 2.)

private static void DisplayArray<T>(T[] inputArray)

ptg18189312

18.3 Generic-Method Implementation 573

Fig. 18.1. In this example though, the foreach statement infers element’s type from the
array type passed to the method.

As in Fig. 18.1, the program of Fig. 18.3 begins by declaring and initializing six-ele-
ment int array intArray (line 10), seven-element double array doubleArray (line 11) and
five-element char array charArray (line 12). Then each array is output by calling
DisplayArray (lines 15, 17 and 19)—once with argument intArray, once with argument
doubleArray and once with argument charArray.

When the compiler encounters a method call such as line 15, it analyzes the set of
methods (both nongeneric and generic) that might match the method call, looking for a
method that best matches the call. If there’s no matching method, or if there’s more than
one best match, the compiler generates an error.

In the case of line 15, the compiler determines that the best match occurs if the type
parameter T in line 23 of method DisplayArray’s declaration is replaced with the type of
the elements in the method call’s argument intArray (i.e., int). Then the compiler sets
up a call to DisplayArray with int as the type argument for the type parameter T. This is
known as the type-inferencing process. The same process is repeated for the calls to
method DisplayArray in lines 17 and 19.

For each variable declared with a type parameter, the compiler checks whether the
operations performed on the variable are allowed for all types that the type parameter can
assume. By default, a type parameter can assume any type, but we’ll show in Section 18.4
that you can restrict this to specific types. The only operation performed on each array ele-
ment in this example is to output its string representation. Line 27 performs an implicit
ToString call on the current array element. Since all objects have a ToString method, the
compiler is satisfied that line 27 performs a valid operation for any array element.

By declaring DisplayArray as a generic method in Fig. 18.3, we eliminated the need
for the overloaded methods of Fig. 18.1, saving 22 lines of code and creating a reusable
method that can output the string representations of the elements in any one-dimensional
array, not just arrays of int, double or char elements.

Value Types vs. Reference Types in Generics
The compiler handles value and reference types differently in generic method calls. When
a value-type argument is used for a given type parameter, the compiler generates a version
of the method that’s specific to the value type—if one has been generated previously, the
compiler reuses that one. So in Fig. 18.3, the compiler generates three versions of method
DisplayArray—one each for types int, double and char. If DisplayArray were called
with a reference type, the compiler would also generate a single version of the method that’s
used by all reference types.

Explicit Type Arguments
You also can use explicit type arguments to indicate the exact type that should be used to
call a generic function. For example, line 15 could be written as

Common Programming Error 18.2
If the compiler cannot find a single nongeneric or generic method declaration that’s a best
match for a method call, or if there are multiple best matches, a compilation error occurs.

DisplayArray<int>(intArray); // pass an int array argument

ptg18189312

574 Chapter 18 Generics

The preceding method call explicitly provides the type argument (int) that should be used
to replace type parameter T in line 23. Though not required here, an explicit type argu-
ment would be required if the compiler cannot infer the type from the method’s argu-
ment(s).

18.4 Type Constraints
In this section, we present a generic Maximum method that determines and returns the larg-
est of its three arguments (all of the same type). The generic method in this example uses
the type parameter to declare both the method’s return type and its parameters. Normally,
when comparing values to determine which one is greater, you would use the > operator.
However, this operator is not overloaded for use with every type that’s built into the
Framework Class Library or that might be defined by extending those types. By default,
generic code is restricted to performing operations that are guaranteed to work for every
possible type. Thus, an expression like value1 < value2 is not allowed unless the compiler
can ensure that the operator < is provided for every type that will ever be used in the ge-
neric code. Similarly, you cannot call a method or access a property on a generic-type vari-
able unless the compiler can ensure that all types that will ever be used in the generic code
support that method. For this reason, generic code supports only the methods of class
object by default.

18.4.1 IComparable<T> Interface
It’s possible to compare two objects of the same type if that type implements the generic
interface IComparable<T> (of namespace System). A benefit of implementing this inter-
face is that such objects can be used with the sorting and searching methods of classes in the
System.Collections.Generic namespace—we discuss those methods in Chapter 19.

C#’s simple types all implement IComparable<T> via their .NET Framework Class
Library types. For example, the Double value type (for simple type double) implements
IComparable<Double>, and the Int32 value type (for simple type int) implements ICom-
parable<Int32>. Types that implement IComparable<T> must declare a CompareTo
method for comparing objects. For example, if we have two ints, int1 and int2, they can
be compared with the expression:

Method CompareTo must return

• 0 if the objects are equal,

• a negative integer if int1 is less than int2 or

• a positive integer if int1 is greater than int2.

18.4.2 Specifying Type Constraints
Even though IComparable<T> objects can be compared, by default they cannot be used
with generic code, because not all types implement interface IComparable<T>. However, we
can restrict the types that can be used with a generic method or class to ensure that the types
meet the method’s or class’s requirements. This is accomplished with type constraints.

int1.CompareTo(int2)

ptg18189312

18.4 Type Constraints 575

Figure 18.4 declares method Maximum (lines 18–35) with a type constraint that requires
each of the method’s arguments to be of type IComparable<T>. This restriction is
important, because not all objects can be compared via a CompareTo method. However, all
IComparable<T> objects are guaranteed to have a CompareTo method, which we use in
method Maximum to determine the largest of its three arguments. In addition, because
there’s only one type parameter, all three arguments must be of the same type.

Specifying the Type Constraint with a where Clause
Generic method Maximum uses type parameter T as the return type of the method (line 18),
as the type of method parameters x, y and z (line 18), and as the inferred type of local vari-

1 // Fig. 18.4: MaximumTest.cs
2 // Generic method Maximum returns the largest of three objects.
3 using System;
4
5 class MaximumTest
6 {
7 static void Main()
8 {
9 Console.WriteLine($"Maximum of 3, 4 and 5 is {Maximum(3, 4, 5)}\n");

10 Console.WriteLine(
11 $"Maximum of 6.6, 8.8 and 7.7 is {Maximum(6.6, 8.8, 7.7)}\n");
12 Console.WriteLine("Maximum of pear, apple and orange is " +
13 $"{Maximum("pear", "apple", "orange")}\n");
14 }
15
16 // generic function determines the
17 // largest of the IComparable<T> objects
18 private static T Maximum<T>(T x, T y, T z)
19 {
20 var max = x; // assume x is initially the largest
21
22 // compare y with max
23 if (> 0)
24 {
25 max = y; // y is the largest so far
26 }
27
28 // compare z with max
29 if (> 0)
30 {
31 max = z; // z is the largest
32 }
33
34 return max; // return largest object
35 }
36 }

Maximum of 3, 4 and 5 is 5
Maximum of 6.6, 8.8 and 7.7 is 8.8
Maximum of pear, apple and orange is pear

Fig. 18.4 | Generic method Maximum returns the largest of three objects.

where T : IComparable<T>

y.CompareTo(max)

z.CompareTo(max)

ptg18189312

576 Chapter 18 Generics

able max (line 20). The where clause (after the parameter list in line 18) specifies the type
constraint for type parameter T. In this case, the type constraint

indicates that this method requires the type argument to implement interface ICompara-
ble<T>. If no type constraint is specified, the default type constraint is object. If you pass
to Maximum a value of a type that does not match the type constraint, the compiler gener-
ates an error. Note once again, that we declared Maximum static so Main can call it—ge-
neric methods are not required to be static in every case.

Kinds of Type Constraints
C# provides several kinds of type constraints:

• A class constraint indicates that the type argument must be an object of a specific
base class or one of its subclasses.

• An interface constraint indicates that the type argument’s class must implement
a specific interface. The type constraint in line 18 is an interface constraint, be-
cause IComparable<T> is an interface.

• You can specify that the type argument must be a reference type or a value type
by using the reference-type constraint (class) or the value-type constraint
(struct), respectively.

• Finally, you can specify a constructor constraint—new()—to indicate that the
generic code can use operator new to create new objects of the type represented
by the type parameter. If a type parameter is specified with a constructor con-
straint, the type argument’s class must provide a public parameterless or default
constructor to ensure that objects of the class can be created without passing con-
structor arguments; otherwise, a compilation error occurs.

Applying Multiple Type Constraints
It’s possible to apply multiple constraints to a type parameter. To do so, simply provide a
comma-separated list of constraints in the where clause. If you have a class constraint, ref-
erence-type constraint or value-type constraint, it must be listed first—only one of these
types of constraints can be used for each type parameter. Interface constraints (if any) are
listed next. The constructor constraint is listed last (if there is one).

Analyzing the Code
Method Maximum assumes that its first argument (x) is the largest and assigns it to local
variable max (line 20). Next, the if statement at lines 23–26 determines whether y is great-
er than max. The condition invokes y.CompareTo(max). If y is greater than max—that is,
CompareTo returns a value greater than 0—then y is assigned to variable max (line 25). Sim-
ilarly, the statement at lines 29–32 determines whether z is greater than max. If so, line 31
assigns z to max. Then, line 34 returns max to the caller.

In Main (lines 7–14), line 9 calls Maximum with the integers 3, 4 and 5. Generic method
Maximum is a match for this call, but its arguments must implement interface ICompa-
rable<T> to ensure that they can be compared. Type int is a synonym for Int32, which
implements interface IComparable<int>. Thus, ints (and other simple types) are valid
arguments to method Maximum.

where T : IComparable<T>

ptg18189312

18.5 Overloading Generic Methods 577

Line 11 passes three double arguments to Maximum. Again, this is allowed because
double is a synonym for Double, which implements IComparable<double>. Line 13
passes Maximum three strings, which are also IComparable<string> objects. We inten-
tionally placed the largest value in a different position in each method call (lines 9, 11 and
13) to show that the generic method always finds the maximum value, regardless of its
position in the argument list and regardless of the inferred type argument.

Value Types vs. Reference Types in Generics
In this example, the compiler generates three versions of method Maximum, based on the
calls in Main. Customized Maximum methods are generated for types int and double and,
because string is a class, a third version of Maximum is generated for all reference types—
the runtime then determines the reference type argument from the method call. For more
details on how the runtime handles generics for value and reference types, see

18.5 Overloading Generic Methods
A generic method may be overloaded. Each overloaded method must have a unique sig-
nature (as discussed in Chapter 7). A class can provide two or more generic methods with
the same name but different method parameters. For example, we could provide a second
version of generic method DisplayArray (Fig. 18.3) with the additional parameters
lowIndex and highIndex that specify the portion of the array to output.

A generic method can be overloaded by nongeneric methods with the same method
name. When the compiler encounters a method call, it searches for the method declaration
that best matches the method name and the argument types specified in the call. For
example, generic method DisplayArray of Fig. 18.3 could be overloaded with a version
specific to strings that outputs the strings in tabular format—the non-generic version
of a method takes precedence over a generic version. If the compiler cannot match a
method call to either a nongeneric method or a generic method, or if there’s ambiguity
due to multiple possible matches, the compiler generates an error.

18.6 Generic Classes
The concept of a data structure (e.g., a stack) that contains data elements can be under-
stood independently of the element type it manipulates. A generic class provides a means
for describing a class in a type-independent manner. We can then instantiate type-specific
versions of the generic class. This capability is an opportunity for software reusability.

With a generic class, you can use a simple, concise notation to indicate the actual
type(s) that should be used in place of the class’s type parameter(s). At compilation time,
the compiler ensures your code’s type safety, and the runtime system replaces type param-
eters with type arguments to enable your client code to interact with the generic class.

One generic Stack class, for example, could be the basis for creating many Stack
classes (e.g., “Stack of double,” “Stack of int,” “Stack of char,” “Stack of Employee”).
Figure 18.5 presents a generic Stack class declaration. This class should not be confused
with the class Stack from namespace System.Collections.Generics. A generic class dec-
laration is similar to a nongeneric class declaration, except that the class name is followed

https://msdn.microsoft.com/library/f4a6ta2h

https://msdn.microsoft.com/library/f4a6ta2h

ptg18189312

578 Chapter 18 Generics

by a type-parameter list (line 5) and, optionally, one or more constraints on its type param-
eter. Type parameter T represents the element type the Stack will manipulate. As with
generic methods, the type-parameter list of a generic class can have one or more type
parameters separated by commas. Type parameter T is used throughout the Stack class
declaration (Fig. 18.5) to represent the element type. Class Stack declares variable ele-
ments as an array of type T (line 8). This array (created at line 25) will store the Stack’s
elements. [Note: This example implements a Stack as an array, but they also can be imple-
mented as linked lists.]

1 // Fig. 18.5: Stack.cs
2 // Generic class Stack.
3 using System;
4
5
6 {
7 private int top; // location of the top element
8
9

10 // parameterless constructor creates a stack of the default size
11 public Stack()
12 : this(10) // default stack size
13 {
14 // empty constructor; calls constructor at line 18 to perform init
15 }
16
17 // constructor creates a stack of the specified number of elements
18 public Stack(int stackSize)
19 {
20 if (stackSize <= 0) // validate stackSize
21 {
22 throw new ArgumentException("Stack size must be positive.");
23 }
24
25
26 top = -1; // stack initially empty
27 }
28
29 // push element onto the stack; if unsuccessful,
30 // throw FullStackException
31
32 {
33 if (top == elements.Length - 1) // stack is full
34 {
35 throw new FullStackException(
36 $"Stack is full, cannot push {pushValue}");
37 }
38
39 ++top; // increment top
40 elements[top] = pushValue; // place pushValue on stack
41 }

Fig. 18.5 | Generic class Stack. (Part 1 of 2.)

public class Stack<T>

private T[] elements; // array that stores stack elements

elements = new T[stackSize]; // create stackSize elements

public void Push(T pushValue)

ptg18189312

18.6 Generic Classes 579

As with generic methods, when a generic class is compiled, the compiler performs type
checking on the class’s type parameters to ensure that they can be used with the code in
the generic class. For value-types, the compiler generates a custom version of the class for
each unique value type used to create a new Stack object, and for reference types, the com-
piler generates a single additional custom Stack. The constraints determine the operations
that can be performed on the type parameters. For reference types, the runtime system
replaces the type parameters with the actual types. For class Stack, no type constraint is
specified, so the default type constraint, object, is used. The scope of a generic class’s type
parameter is the entire class.

Stack Constructors
Class Stack has two constructors. The parameterless constructor (lines 11–15) passes the
default stack size (10) to the one-argument constructor, using the syntax this (line 12) to
invoke another constructor in the same class. The one-argument constructor (lines 18–27)
validates the stackSize argument and creates an array of the specified stackSize (if it’s
greater than 0) or throws an exception, otherwise.

Stack Method Push
Method Push (lines 31–41) first determines whether an attempt is being made to push an
element onto a full Stack. If so, lines 35–36 throw a FullStackException (declared in
Fig. 18.6). If the Stack is not full, line 39 increments the top counter to indicate the new
top position, and line 40 places the argument in that location of array elements.

Stack Method Pop
Method Pop (lines 45–54) first determines whether an attempt is being made to pop an
element from an empty Stack. If so, line 49 throws an EmptyStackException (declared in
Fig. 18.7). Otherwise, line 52 decrements the top counter to indicate the new top posi-
tion, and line 53 returns the original top element of the Stack.

Classes FullStackException and EmptyStackException
Classes FullStackException (Fig. 18.6) and EmptyStackException (Fig. 18.7) each pro-
vide a parameterless constructor, a one-argument constructor of exception classes (as dis-

42
43 // return the top element if not empty,
44 // else throw EmptyStackException
45
46 {
47 if (top == -1) // stack is empty
48 {
49 throw new EmptyStackException("Stack is empty, cannot pop");
50 }
51
52 --top; // decrement top
53 return elements[top + 1]; // return top value
54 }
55 }

Fig. 18.5 | Generic class Stack. (Part 2 of 2.)

public T Pop()

ptg18189312

580 Chapter 18 Generics

cussed in Section 13.8) and a two-argument constructor for creating a new exception
using an existing one. The parameterless constructor sets the default error message while
the other two constructors set custom error messages.

1 // Fig. 18.6: FullStackException.cs
2 // FullStackException indicates a stack is full.
3 using System;
4
5 public class FullStackException : Exception
6 {
7 // parameterless constructor
8 public FullStackException() : base("Stack is full")
9 {

10 // empty constructor
11 }
12
13 // one-parameter constructor
14 public FullStackException(string exception) : base(exception)
15 {
16 // empty constructor
17 }
18
19 // two-parameter constructor
20 public FullStackException(string exception, Exception inner)
21 : base(exception, inner)
22 {
23 // empty constructor
24 }
25 }

Fig. 18.6 | FullStackException indicates a stack is full.

1 // Fig. 18.7: EmptyStackException.cs
2 // EmptyStackException indicates a stack is empty.
3 using System;
4
5 public class EmptyStackException : Exception
6 {
7 // parameterless constructor
8 public EmptyStackException() : base("Stack is empty")
9 {

10 // empty constructor
11 }
12
13 // one-parameter constructor
14 public EmptyStackException(string exception) : base(exception)
15 {
16 // empty constructor
17 }
18

Fig. 18.7 | EmptyStackException indicates a stack is empty. (Part 1 of 2.)

ptg18189312

18.6 Generic Classes 581

Demonstrating Class Stack
Now, let’s consider an app (Fig. 18.8) that uses our generic Stack class. Lines 13–14 de-
clare variables of type Stack<double> (pronounced “Stack of double”) and Stack<int>
(pronounced “Stack of int”). The types double and int are the Stack’s type arguments.
The compiler replaces the type parameters in the generic class and performs type checking.
Method Main instantiates objects doubleStack of size 5 (line 18) and intStack of size 10
(line 19), then calls methods TestPushDouble (declared in lines 28–47), TestPopDouble
(declared in lines 50–71), TestPushInt (declared in lines 74–93) and TestPopInt (de-
clared in lines 96–117) to manipulate the two Stacks in this example.

19 // two-parameter constructor
20 public EmptyStackException(string exception, Exception inner)
21 : base(exception, inner)
22 {
23 // empty constructor
24 }
25 }

1 // Fig. 18.8: StackTest.cs
2 // Testing generic class Stack.
3 using System;
4
5 class StackTest
6 {
7 // create arrays of doubles and ints
8 private static double[] doubleElements =
9 {1.1, 2.2, 3.3, 4.4, 5.5, 6.6};

10 private static int[] intElements =
11 {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11};
12
13
14
15
16 static void Main()
17 {
18
19
20
21 TestPushDouble(); // push doubles onto doubleStack
22 TestPopDouble(); // pop doubles from doubleStack
23 TestPushInt(); // push ints onto intStack
24 TestPopInt(); // pop ints from intStack
25 }
26
27 // test Push method with doubleStack
28 private static void TestPushDouble()
29 {

Fig. 18.8 | Testing generic class Stack. (Part 1 of 4.)

Fig. 18.7 | EmptyStackException indicates a stack is empty. (Part 2 of 2.)

private static Stack<double> doubleStack; // stack stores doubles
private static Stack<int> intStack; // stack stores ints

doubleStack = new Stack<double>(5); // stack of doubles
intStack = new Stack<int>(10); // stack of ints

ptg18189312

582 Chapter 18 Generics

30 // push elements onto stack
31 try
32 {
33 Console.WriteLine("\nPushing elements onto doubleStack");
34
35 // push elements onto stack
36 foreach (var element in doubleElements)
37 {
38 Console.Write($"{element:F1} ");
39
40 }
41 }
42 catch (FullStackException exception)
43 {
44 Console.Error.WriteLine($"\nMessage: {exception.Message}");
45 Console.Error.WriteLine(exception.StackTrace);
46 }
47 }
48
49 // test Pop method with doubleStack
50 private static void TestPopDouble()
51 {
52 // pop elements from stack
53 try
54 {
55 Console.WriteLine("\nPopping elements from doubleStack");
56
57 double popValue; // store element removed from stack
58
59 // remove all elements from stack
60 while (true)
61 {
62
63 Console.Write($"{popValue:F1} ");
64 }
65 }
66 catch (EmptyStackException exception)
67 {
68 Console.Error.WriteLine($"\nMessage: {exception.Message}");
69 Console.Error.WriteLine(exception.StackTrace);
70 }
71 }
72
73 // test Push method with intStack
74 private static void TestPushInt()
75 {
76 // push elements onto stack
77 try
78 {
79 Console.WriteLine("\nPushing elements onto intStack");
80

Fig. 18.8 | Testing generic class Stack. (Part 2 of 4.)

doubleStack.Push(element); // push onto doubleStack

popValue = doubleStack.Pop(); // pop from doubleStack

ptg18189312

18.6 Generic Classes 583

81 // push elements onto stack
82 foreach (var element in intElements)
83 {
84 Console.Write($"{element} ");
85
86 }
87 }
88 catch (FullStackException exception)
89 {
90 Console.Error.WriteLine($"\nMessage: {exception.Message}");
91 Console.Error.WriteLine(exception.StackTrace);
92 }
93 }
94
95 // test Pop method with intStack
96 private static void TestPopInt()
97 {
98 // pop elements from stack
99 try
100 {
101 Console.WriteLine("\nPopping elements from intStack");
102
103 int popValue; // store element removed from stack
104
105 // remove all elements from stack
106 while (true)
107 {
108
109 Console.Write($"{popValue:F1} ");
110 }
111 }
112 catch (EmptyStackException exception)
113 {
114 Console.Error.WriteLine($"\nMessage: {exception.Message}");
115 Console.Error.WriteLine(exception.StackTrace);
116 }
117 }
118 }

Pushing elements onto doubleStack
1.1 2.2 3.3 4.4 5.5 6.6
Message: Stack is full, cannot push 6.6
 at Stack`1.Push(T pushValue) in C:\Users\PaulDeitel\Documents\

 examples\ch20\Fig20_05_08\Stack\Stack\Stack.cs:line 35
 at StackTest.TestPushDouble() in C:\Users\PaulDeitel\Documents\

 examples\ch20\Fig20_05_08\Stack\Stack\StackTest.cs:line 39

Popping elements from doubleStack
5.5 4.4 3.3 2.2 1.1
Message: Stack is empty, cannot pop

 at Stack`1.Pop() in C:\Users\PaulDeitel\Documents\
 examples\ch20\Fig20_05_08\Stack\Stack\Stack.cs:line 49

 at StackTest.TestPopDouble() in C:\Users\PaulDeitel\Documents\
 examples\ch20\Fig20_05_08\Stack\Stack\StackTest.cs:line 62

Fig. 18.8 | Testing generic class Stack. (Part 3 of 4.)

intStack.Push(element); // push onto intStack

popValue = intStack.Pop(); // pop from intStack

ptg18189312

584 Chapter 18 Generics

Method TestPushDouble
Method TestPushDouble (lines 28–47) invokes method Push to place the double values
1.1, 2.2, 3.3, 4.4 and 5.5 from doubleElements onto doubleStack. The foreach state-
ment terminates when the test program attempts to Push a sixth value onto doubleStack
(which is full, because doubleStack can store only five elements), causing the method to
throw a FullStackException (Fig. 18.6). Lines 42–46 of Fig. 18.8 catch this exception
and display the message and stack-trace information. The stack trace indicates the excep-
tion that occurred and shows that Stack method Push generated the exception at line 35
of the file Stack.cs (Fig. 18.5). The trace also shows that method Push was called by
StackTest method TestPushDouble at line 39 of StackTest.cs. This information en-
ables you to determine the methods on the method-call stack at the time that the exception
occurred. Because the program catches the exception, the C# runtime environment con-
siders the exception to have been handled, and the program can continue executing.

Method TestPopDouble
Method TestPopDouble (Fig. 18.8, lines 50–71) invokes Stack method Pop in an infinite
while loop to remove all the values from the stack. Note in the output that the values are
popped off in last-in, first-out order—this, of course, is the defining characteristic of stacks.
The while loop (lines 60–64) continues until the stack is empty. An EmptyStack-
Exception occurs when an attempt is made to pop from the empty stack. This causes the
program to proceed to the catch block (lines 66–70) and handle the exception, so the pro-
gram can continue executing. When the test program attempts to Pop a sixth value, the
doubleStack is empty, so method Pop throws an EmptyStackException.

Methods TestPushInt and TestPopInt
Method TestPushInt (lines 74–93) invokes Stack method Push to place values onto int-
Stack until it’s full. Method TestPopInt (lines 96–117) invokes Stack method Pop to re-
move values from intStack until it’s empty. Again, values pop in last-in, first-out order.

Creating Generic Methods to Test Class Stack<T>
Note that the code in methods TestPushDouble and TestPushInt is virtually identical for
pushing values onto Stacks. Similarly the code in methods TestPopDouble and TestPopInt

Pushing elements onto intStack
1 2 3 4 5 6 7 8 9 10 11
Message: Stack is full, cannot push 11
 at Stack`1.Push(T pushValue) in C:\Users\PaulDeitel\Documents\

 examples\ch20\Fig20_05_08\Stack\Stack\Stack.cs:line 35
 at StackTest.TestPushInt() in C:\Users\PaulDeitel\Documents\

 examples\ch20\Fig20_05_08\Stack\Stack\StackTest.cs:line 85

Popping elements from intStack
10 9 8 7 6 5 4 3 2 1
Message: Stack is empty, cannot pop

 at Stack`1.Pop() in C:\Users\PaulDeitel\Documents\
 examples\ch20\Fig20_05_08\Stack\Stack\Stack.cs:line 49

 at StackTest.TestPopInt() in C:\Users\PaulDeitel\Documents\
 examples\ch20\Fig20_05_08\Stack\Stack\StackTest.cs:line 109

Fig. 18.8 | Testing generic class Stack. (Part 4 of 4.)

ptg18189312

18.6 Generic Classes 585

is virtually identical for popping values from Stacks. This presents another opportunity to
use generic methods. Figure 18.9 declares generic method TestPush (lines 33–53) to per-
form the same tasks as TestPushDouble and TestPushInt in Fig. 18.8—that is, Push values
onto a Stack<T>. Similarly, generic method TestPop (lines 56–77) performs the same tasks
as TestPopDouble and TestPopInt in Fig. 18.8—that is, Pop values off a Stack<T>.

1 // Fig. 18.9: StackTest.cs
2 // Testing generic class Stack.
3 using System;
4 using System.Collections.Generic;
5
6 class StackTest
7 {
8 // create arrays of doubles and ints
9 private static double[] doubleElements =

10 {1.1, 2.2, 3.3, 4.4, 5.5, 6.6};
11 private static int[] intElements =
12 {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11};
13
14 private static Stack<double> doubleStack; // stack stores doubles
15 private static Stack<int> intStack; // stack stores int objects
16
17 static void Main()
18 {
19 doubleStack = new Stack<double>(5); // stack of doubles
20 intStack = new Stack<int>(10); // stack of ints
21
22 // push doubles onto doubleStack
23 TestPush(nameof(doubleStack), doubleStack, doubleElements);
24 // pop doubles from doubleStack
25 TestPop(nameof(doubleStack), doubleStack);
26 // push ints onto intStack
27 TestPush(nameof(doubleStack), intStack, intElements);
28 // pop ints from intStack
29 TestPop(nameof(doubleStack), intStack);
30 }
31
32 // test Push method
33
34
35 {
36 // push elements onto stack
37 try
38 {
39 Console.WriteLine($"\nPushing elements onto {name}");
40
41 // push elements onto stack
42 foreach (var element in elements)
43 {

Fig. 18.9 | Testing generic class Stack. (Part 1 of 3.)

private static void TestPush<T>(string name, Stack<T> stack,
 IEnumerable<T> elements)

ptg18189312

586 Chapter 18 Generics

44 Console.Write($"{element} ");
45
46 }
47 }
48 catch (FullStackException exception)
49 {
50 Console.Error.WriteLine($"\nMessage: {exception.Message}");
51 Console.Error.WriteLine(exception.StackTrace);
52 }
53 }
54
55 // test Pop method
56
57 {
58 // pop elements from stack
59 try
60 {
61 Console.WriteLine($"\nPopping elements from {name}");
62
63 T popValue; // store element removed from stack
64
65 // remove all elements from stack
66 while (true)
67 {
68
69 Console.Write($"{popValue} ");
70 }
71 }
72 catch (EmptyStackException exception)
73 {
74 Console.Error.WriteLine($"\nMessage: {exception.Message}");
75 Console.Error.WriteLine(exception.StackTrace);
76 }
77 }
78 }

Pushing elements onto doubleStack
1.1 2.2 3.3 4.4 5.5 6.6
Message: Stack is full, cannot push 6.6
 at Stack`1.Push(T pushValue) in C:\Users\PaulDeitel\Documents\

 examples\ch20\Fig20_09\Stack\Stack\Stack.cs:line 35
 at StackTest.TestPush[T](String name, Stack`1 stack, IEnumerable`1

 elements) in C:\Users\PaulDeitel\Documents\examples\ch20\Fig20_09\
 Stack\Stack\StackTest.cs:line 45

Popping elements from doubleStack
5.5 4.4 3.3 2.2 1.1
Message: Stack is empty, cannot pop

 at Stack`1.Pop() in C:\Users\PaulDeitel\Documents\
 examples\ch20\Fig20_09\Stack\Stack\Stack.cs:line 49

 at StackTest.TestPop[T](String name, Stack`1 stack) in
 C:\Users\PaulDeitel\Documents\examples\ch20\Fig20_09\Stack\
 Stack\StackTest.cs:line 68

Fig. 18.9 | Testing generic class Stack. (Part 2 of 3.)

stack.Push(element); // push onto stack

private static void TestPop<T>(string name, Stack<T> stack)

popValue = stack.Pop(); // pop from stack

ptg18189312

18.7 Wrap-Up 587

Method Main (Fig. 18.9, lines 17–30) creates the Stack<double> (line 19) and
Stack<int> (line 20) objects. Lines 23–29 invoke generic methods TestPush and TestPop
to test the Stack objects.

Generic method TestPush (lines 33–53) uses type parameter T (specified at line 33)
to represent the data type stored in the Stack. The generic method takes three argu-
ments—a string that represents the name of the Stack object for output purposes, an
object of type Stack<T> and an IEnumerable<T> that contains the elements that will be
Pushed onto Stack<T>. The compiler enforces consistency between the type of the Stack
and the elements that will be pushed onto the Stack when Push is invoked, which is the
type argument of the generic method call. Generic method TestPop (lines 56–77) takes
two arguments—a string that represents the name of the Stack object for output pur-
poses and an object of type Stack<T>.

18.7 Wrap-Up
This chapter introduced generics. We discussed how generics ensure compile-time type
safety by checking for type mismatches at compile time. You learned that the compiler will
allow generic code to compile only if all operations performed on the type parameters in
the generic code are supported for all types that could be used with the generic code. You
also learned how to declare generic methods and classes using type parameters. We
demonstrated how to use a type constraint to specify the requirements for a type parame-
ter—a key component of compile-time type safety. We discussed several kinds of type con-
straints, including reference-type constraints, value-type constraints, class constraints,
interface constraints and constructor constraints. We also discussed how to implement
multiple type constraints for a type parameter. Finally, we showed how generics improve
code reuse. In the next chapter, we demonstrate the .NET Framework Class Library’s col-
lection classes, interfaces and algorithms. Collection classes are pre-built data structures
that you can reuse in your apps, saving you time.

Pushing elements onto intStack
1 2 3 4 5 6 7 8 9 10 11
Message: Stack is full, cannot push 11
 at Stack`1.Push(T pushValue) in C:\Users\PaulDeitel\Documents\

 examples\ch20\Fig20_09\Stack\Stack\Stack.cs:line 35
 at StackTest.TestPush[T](String name, Stack`1 stack, IEnumerable`1

 elements) in C:\Users\PaulDeitel\Documents\examples\ch20\Fig20_09\
 Stack\Stack\StackTest.cs:line 45

Popping elements from intStack
10 9 8 7 6 5 4 3 2 1
Message: Stack is empty, cannot pop

 at Stack`1.Pop() in C:\Users\PaulDeitel\Documents\
 examples\ch20\Fig20_09\Stack\Stack\Stack.cs:line 49

 at StackTest.TestPop[T](String name, Stack`1 stack) in
 C:\Users\PaulDeitel\Documents\examples\ch20\Fig20_09\Stack\
 Stack\StackTest.cs:line 68

Fig. 18.9 | Testing generic class Stack. (Part 3 of 3.)

ptg18189312

19
Generic Collections; Functional
Programming with LINQ/PLINQ

O b j e c t i v e s
In this chapter you’ll:

■ See additional .NET generic collections.
■ Manipulate arrays with class Array’s static methods.
■ Provide a using static directive to access a class’s static

members without fully qualifying their names.
■ Iterate through a collection with enumerators.
■ Use generic collections SortedDictionary and LinkedList.
■ Use the C# 6 null-conditional ?[] operator to access array or

collection elements.
■ Use C# 6 index initializers to initialize a dictionary.
■ Store method references in delegate variables, then use those variables

to invoke the corresponding methods.
■ Use lambda expressions to create anonymous methods and refer to

those methods via delegate variables.
■ Use LINQ method-call syntax and lambdas to demonstrate functional

programming techniques.
■ Parallelize LINQ operations with PLINQ for multicore performance.
■ Be introduced to covariance and contravariance for generic types.

ptg18189312

19.1 Introduction 589

O
u

tl
in

e

19.1 Introduction
For the vast majority of apps, there’s no need to build custom data structures. Instead, you
can use the prepackaged data-structure classes provided by the .NET Framework. These are
known as collection classes—they store collections of data. Each instance of one of these
classes is a collection of items. Some examples of collections are the cards you hold in a
card game, the songs stored in your computer, the real-estate records in your local registry
of deeds (which map book numbers and page numbers to property owners), and the play-
ers on your favorite sports team.

Use the Existing Collection Classes Rather Than Building Your Own
Collection classes enable you to store sets of items by using existing data structures, without
concern for how they’re implemented. This is a nice example of code reuse. You can code
faster and expect excellent performance, maximizing execution speed and minimizing
memory consumption. In this chapter, we discuss

• the collection interfaces that declare each collection type’s capabilities

• the implementation classes

• the enumerators that iterate through collections (these are like iterators in lan-
guages like C++ and Java).

19.1 Introduction
19.2 Collections Overview
19.3 Class Array and Enumerators

19.3.1 C# 6 using static Directive
19.3.2 Class UsingArray’s static Fields
19.3.3 Array Method Sort
19.3.4 Array Method Copy
19.3.5 Array Method BinarySearch
19.3.6 Array Method GetEnumerator and

Interface IEnumerator
19.3.7 Iterating Over a Collection with

foreach
19.3.8 Array Methods Clear, IndexOf,

LastIndexOf and Reverse
19.4 Dictionary Collections

19.4.1 Dictionary Fundamentals
19.4.2 Using the SortedDictionary Col-

lection
19.5 Generic LinkedList Collection
19.6 C# 6 Null Conditional Operator ?[]
19.7 C# 6 Dictionary Initializers and

Collection Initializers
19.8 Delegates

19.8.1 Declaring a Delegate Type
19.8.2 Declaring a Delegate Variable

19.8.3 Delegate Parameters
19.8.4 Passing a Method Name Directly to a

Delegate Parameter
19.9 Lambda Expressions

19.9.1 Expression Lambdas
19.9.2 Assigning Lambdas to Delegate Vari-

ables
19.9.3 Explicitly Typed Lambda Parameters
19.9.4 Statement Lambdas

19.10 Introduction to Functional Program-
ming

19.11 Functional Programming with LINQ
Method-Call Syntax and Lambdas

19.11.1 LINQ Extension Methods Min, Max,
Sum and Average

19.11.2 Aggregate Extension Method for
Reduction Operations

19.11.3 The Where Extension Method for Fil-
tering Operations

19.11.4 Select Extension Method for Map-
ping Operations

19.12 PLINQ: Improving LINQ to Objects
Performance with Multicore

19.13 (Optional) Covariance and Contra-
variance for Generic Types

19.14 Wrap-Up

ptg18189312

590 Chapter 19 Generic Collections; Functional Programming with LINQ/PLINQ

Collections Namespaces
The .NET Framework provides several namespaces dedicated to collections:

• System.Collections contains collections that store objects. Such collections
can store objects of many different types at the same time, because all C# types
derive directly or indirectly from object. You might encounter this namespace’s
classes, such as ArrayList, Stack and Hashtable, in C# legacy code prior to the
introduction of generics in C# 2.0 (2005). Legacy code uses older programming
techniques—possibly including language and library features that a program-
ming language no longer supports or that have been superseded by newer capa-
bilities.

• System.Collections.Generic contains generic collections, such as the List<T>
(Section 9.4) and Dictionary<K, V> (Section 17.9) classes, that store objects of
types you specify when you create the collection. You should use the generic col-
lections—rather than the object-based legacy collections—to take advantage of
compile-time type checking of your collection-processing code.

• System.Collections.Concurrent contains so-called thread-safe generic collec-
tions for use in multithreaded applications.

• System.Collections.Specialized contains collections that are optimized for
specific scenarios, such as manipulating collections of bits.

Delegates and Lambda Expressions
In Section 14.3.3, we introduced the concept of a delegate—an object that holds a refer-
ence to a method. Delegates enable apps to store methods as data and to pass a method as
an argument to another method. In event handling, a delegate stores a reference to the
event-handler method that will be called when a user interacts with a GUI control. In this
chapter, we’ll discuss delegates in more detail and introduce lambda expressions, which al-
low you to define anonymous methods that can be used with delegates. Here we’ll focus
on using lambdas to pass method references to methods that specify delegate parameters.

Introduction to Functional Programming
So far, we’ve demonstrated three programming paradigms:

• structured programming (also known as procedural programming)

• object-oriented programming

• generic programming (which we’ll continue discussing in this chapter).

Sections 19.10–19.11 define and introduce functional programming, showing how to use
it with LINQ to Objects to write code more concisely and with fewer bugs than programs
written with other techniques. In Section 19.12, with one additional method call, we’ll
demonstrate how PLINQ (Parallel LINQ) can improve LINQ to Objects performance
substantially on multicore systems. Many earlier examples can be reimplemented using
functional-programming techniques.

19.2 Collections Overview
All collection classes in the .NET Framework implement some combination of the collec-
tion interfaces that declare the operations to be performed on various types of collections.

ptg18189312

19.2 Collections Overview 591

Figure 19.1 lists some of the collection interfaces in namespace System.Collections.Ge-
neric, which also have legacy object-based analogs in System.Collections. Many col-
lection classes implement these interfaces. You may also provide implementations specific
to your own requirements.

Namespace System.Collections.Generic
With the collections of the System.Collections.Generic namespace, you can specify the
exact type that will be stored in a collection. This provides two key benefits over the
object-based legacy collections:

• Compile-time type checking ensures that you’re using appropriate types with your
collection and, if not, the compiler issues error messages.

• Any item you retrieve from a generic collection will have the correct type. With
object-based collections, any item you retrieve is returned as an object. Then,
you must explicitly cast the object to the type that your program manipulates.
This could lead to InvalidCastExceptions at execution time if the referenced
object does not have the appropriate type.

Interface Description

IEnumerable<T> An object that can be enumerated—for example, a
foreach loop can iterate over such an object’s elements.
This interface contains one method, GetEnumerator,
which returns an IEnumerator<T> object, which (as you’ll
see in Section 19.3) can be used manually to iterate
through a collection. In fact, foreach uses a collection’s
IEnumerator<T> object behind the scenes.
ICollection<T> extends IEnumerable<T> so all collection
classes implement IEnumerable directly or indirectly.

ICollection<T> The interface from which interfaces IList<T> and
IDictionary<K,V> inherit. Contains a Count property to
determine the size of a collection and a CopyTo method
for copying a collection’s contents to a traditional array,
and an IsReadOnly property.

IList<T> An ordered collection that can be manipulated like an
array. Provides a [] operator (known as an indexer) for
accessing elements with an int index. Also has methods
for searching and modifying a collection, including Add,
Remove, Contains and IndexOf.

IDictionary<K,V> A collection of values, indexed by an arbitrary “key”
object of type K. Provides an indexer ([]) for accessing
elements by key and methods for modifying the collec-
tion (e.g., Add, Remove). IDictionary<K,V> property Keys
contains all the keys, and property Values contains all
the stored values.

Fig. 19.1 | Some common generic collection interfaces.

ptg18189312

592 Chapter 19 Generic Collections; Functional Programming with LINQ/PLINQ

Generic collections are especially useful for storing value types, since they eliminate the
overhead of boxing and unboxing required with object-based legacy collections.

In this chapter, we continue our discussion of data structures and collections with
additional built-in array capabilities, as well as the generic SortedDictionary and
LinkedList classes. Namespace System.Collections.Generic provides many other data
structures, including Stack<T>, Queue<T> and SortedList<K,V> (a collection of key–value
pairs that are sorted by key and can be accessed either by key or by index). Figure 19.2
summarizes many of the collection classes—for a complete list, visit

The collection classes have many common capabilities specified by the interfaces the
classes implement. Once you know how to use a few collections (like List, Dictionary,
LinkedList and SortedDictionary), you can figure out how to use the others via their
online documentation, which includes sample code.

https://msdn.microsoft.com/library/system.collections.generic

Class
Implements
interface Description

System namespace
Array IList The base class of all conventional arrays. See

Section 19.3.

System.Collections.Generic namespace
Dictionary<K, V> IDictionary<K, V> A generic, unordered collection of key–

value pairs that can be accessed rapidly by
key. See Section 17.9.2.

LinkedList<T> ICollection<T> A generic doubly linked list. See
Section 19.5.

List<T> IList<T> A generic array-based list. See Section 9.4.

Queue<T> ICollection<T> A generic first-in, first-out (FIFO) collection.

SortedDictionary<K, V> IDictionary<K, V> A Dictionary that sorts the data by the keys
in a binary tree. See Section 19.4.

SortedList<K, V> IDictionary<K, V> Similar to a SortedDictionary, but uses
arrays internally. If the data already exists
and is sorted before insertion in a collec-
tion, then inserting in a SortedList is faster
than a SortedDictionary. If the data is not
sorted, insertion in a SortedDictionary is
faster.

Stack<T> ICollection<T> A generic last-in, first-out (LIFO) collection.

Legacy collections of the System.Collections namespace
ArrayList IList Mimics conventional arrays, but will grow

or shrink as needed to accommodate the
number of elements.

Fig. 19.2 | Some .NET Framework collection classes. (Part 1 of 2.)

https://msdn.microsoft.com/library/system.collections.generic

ptg18189312

19.3 Class Array and Enumerators 593

We also discuss the IEnumerator<T> interface. Each collection class’s enumerator
allows you to iterate through the collection. Although these enumerators have different
implementations, they all implement the IEnumerator<T> interface so that an app can
iterate through a collection’s elements (e.g., with a foreach statement). In the next sec-
tion, we begin our discussion by examining enumerators and the capabilities for array
manipulation. Collection classes directly or indirectly implement ICollection<T> and
IEnumerable<T> (or their object-based equivalents ICollection and IEnumerable for
legacy collections).

19.3 Class Array and Enumerators
Chapter 8 presented basic array-processing capabilities. All arrays implicitly inherit from
abstract base class Array (namespace System); this class defines property Length, which
specifies the number of elements in the array. In addition, class Array provides static
methods that provide algorithms for processing arrays. Typically, class Array overloads
these methods—for example, Array method Reverse can reverse the order of the elements
in an entire array or in a specified range of elements. For a complete list of class Array’s
static methods visit

Figure 19.3 demonstrates several static methods of class Array.

BitArray ICollection A memory-efficient array of bits in which
each bit’s 0 or 1 value represents the bool
value false or true.

Hashtable IDictionary An unordered collection of key–value pairs
that can be accessed rapidly by key.

Queue ICollection A first-in, first-out (FIFO) collection.

SortedList IDictionary A collection of key–value pairs that are
sorted by key and can be accessed either by
key or by index.

Stack ICollection A last-in, first-out (LIFO) collection.

https://msdn.microsoft.com/library/system.array

1 // Fig. 19.3: UsingArray.cs
2 // Array class static methods for common array manipulations.
3 using System;
4

Fig. 19.3 | Array class static methods for common array manipulations. (Part 1 of 3.)

Class
Implements
interface Description

Fig. 19.2 | Some .NET Framework collection classes. (Part 2 of 2.)

using static System.Array;

https://msdn.microsoft.com/library/system.array

ptg18189312

594 Chapter 19 Generic Collections; Functional Programming with LINQ/PLINQ

5 using System.Collections;
6
7 // demonstrate algorithms of class Array
8 class UsingArray
9 {

10 private static int[] intValues = {1, 2, 3, 4, 5, 6};
11 private static double[] doubleValues = {8.4, 9.3, 0.2, 7.9, 3.4};
12 private static int[] intValuesCopy;
13
14 // method Main demonstrates class Array's methods
15 static void Main()
16 {
17 intValuesCopy = new int[intValues.Length]; // defaults to zeroes
18
19 Console.WriteLine("Initial array values:\n");
20 PrintArrays(); // output initial array contents
21
22 // sort doubleValues
23
24
25 // copy intValues into intValuesCopy
26
27
28 Console.WriteLine("\nArray values after Sort and Copy:\n");
29 PrintArrays(); // output array contents
30 Console.WriteLine();
31
32 // search for 5 in intValues
33
34 Console.WriteLine(result >= 0 ?
35 $"5 found at element {result} in intValues" :
36 "5 not found in intValues");
37
38 // search for 8763 in intValues
39
40 Console.WriteLine(result >= 0 ?
41 $"8763 found at element {result} in intValues" :
42 "8763 not found in intValues");
43 }
44
45 // output array content with enumerators
46 private static void PrintArrays()
47 {
48 Console.Write("doubleValues: ");
49
50 // iterate through the double array with an enumerator
51
52
53 while ()
54 {
55 Console.Write($"{ } ");
56 }
57

Fig. 19.3 | Array class static methods for common array manipulations. (Part 2 of 3.)

Sort(doubleValues); // unqualified call to Array static method Sort

Array.Copy(intValues, intValuesCopy, intValues.Length);

int result = Array.BinarySearch(intValues, 5);

result = Array.BinarySearch(intValues, 8763);

IEnumerator enumerator = doubleValues.GetEnumerator();

enumerator.MoveNext()

enumerator.Current

ptg18189312

19.3 Class Array and Enumerators 595

19.3.1 C# 6 using static Directive
The using directives in lines 3 and 5 include the namespaces System (for classes Array and
Console) and System.Collections (for interface IEnumerator, which we discuss shortly).
Line 4 introduces C# 6’s using static directive for accessing a type’s static members
without fully qualifying their names—in this case, class Array’s static members. Line 23

shows an unqualified call to Array static method Sort, which is equivalent to

Though we could use unqualified calls for all of class Array’s static members in this ex-
ample (e.g., Copy in line 26 and BinarySearch in lines 33 and 39), the code is easier to
read with the fully qualified method calls, which make it absolutely clear which class con-
tains a given static method.

58 Console.Write("\nintValues: ");
59
60 // iterate through the int array with an enumerator
61
62
63 while ()
64 {
65 Console.Write($"{ } ");
66 }
67
68 Console.Write("\nintValuesCopy: ");
69
70 // iterate through the second int array with a foreach statement
71
72 {
73 Console.Write($"{element} ");
74 }
75
76 Console.WriteLine();
77 }
78 }

Initial array values:

doubleValues: 8.4 9.3 0.2 7.9 3.4
intValues: 1 2 3 4 5 6
intValuesCopy: 0 0 0 0 0 0

Array values after Sort and Copy:

doubleValues: 0.2 3.4 7.9 8.4 9.3
intValues: 1 2 3 4 5 6
intValuesCopy: 1 2 3 4 5 6

5 found at element 4 in intValues
8763 not found in intValues

Sort(doubleValues); // unqualified call to Array static method Sort

Array.Sort(doubleValues); // call to Array static method Sort

Fig. 19.3 | Array class static methods for common array manipulations. (Part 3 of 3.)

enumerator = intValues.GetEnumerator();

enumerator.MoveNext()

enumerator.Current

foreach (var element in intValuesCopy)

ptg18189312

596 Chapter 19 Generic Collections; Functional Programming with LINQ/PLINQ

19.3.2 Class UsingArray’s static Fields
Our test class declares three static array variables (lines 10–12). The first two lines ini-
tialize intValues and doubleValues to an int and double array, respectively. static vari-
able intValuesCopy is intended to demonstrate the Array’s Copy method—it’s initially
null, so it does not yet refer to an array.

Line 17 initializes intValuesCopy to an int array with the same length as array int-
Values. Line 20 calls the PrintArrays method (lines 46–77) to output the initial contents
of all three arrays. We discuss the PrintArrays method shortly. The output of Fig. 19.3
shows that each element of array intValuesCopy is initialized to the default value 0.

19.3.3 Array Method Sort
Line 23 uses static Array method Sort to sort array doubleValues in ascending order.
The elements in the array must implement the IComparable interface (as all simple types
do), which enables method Sort to compare elements to determine their order.

19.3.4 Array Method Copy
Line 26 uses static Array method Copy to copy elements from array intValues to array
intValuesCopy. The first argument is the array to copy (intValues), the second argument
is the destination array (intValuesCopy) and the third argument is an int representing the
number of elements to copy (in this case, intValues.Length specifies all elements). Class
Array also provides overloads for copying portions of arrays.

19.3.5 Array Method BinarySearch
Lines 33 and 39 invoke static Array method BinarySearch to perform binary searches
on array intValues. Method BinarySearch receives the sorted array in which to search and
the key for which to search. The method returns the index in the array at which it finds
the key (or a negative number if the key was not found). BinarySearch assumes that it
receives a sorted array. Its behavior on an unsorted array is undefined.

19.3.6 Array Method GetEnumerator and Interface IEnumerator
Method PrintArrays (lines 46–77) uses class Array’s methods to iterate over the elements
of the arrays. Class Array implements the IEnumerable interface (the non-generic version
of IEnumerable<T>). All arrays inherit implicitly from Array, so both the int[] and dou-
ble[] array types implement IEnumerable interface method GetEnumerator, which re-
turns an enumerator that can iterate over the collection—this method always returns an
enumerator positioned before the first element. Interface IEnumerator (which all enumera-
tors implement) defines methods MoveNext and Reset and property Current:

• MoveNext moves the enumerator to the next element in the collection. The first call
to MoveNext positions the enumerator at the first element of the collection—if there
is an element, MoveNext returns true; otherwise, the method returns false.

• Method Reset positions the enumerator before the first element of the collection.

ptg18189312

19.4 Dictionary Collections 597

• Read-only property Current returns the object at the current location in the col-
lection (determined by the last call to MoveNext).

Enumerators cannot be used to modify the contents of collections, only to obtain the con-
tents.

When an enumerator is returned by the GetEnumerator method in line 51, it’s ini-
tially positioned before the first element in Array doubleValues. Then when line 53 calls
MoveNext in the first iteration of the while loop, the enumerator advances to the first ele-
ment in doubleValues. The while statement in lines 53–56 iterates over each element
until the enumerator passes the end of doubleValues and MoveNext returns false. In each
iteration, we use the enumerator’s Current property to obtain and output the current array
element. Lines 63–66 iterate over array intValues.

19.3.7 Iterating Over a Collection with foreach
Lines 71–74 use a foreach statement to iterate over the collection. Both foreach and an
enumerator loop over the elements of an array one by one in consecutive order. Neither
allows you to modify the elements during the iteration. This is not a coincidence. Every
foreach statement implicitly obtains an enumerator via the GetEnumerator method and
uses the enumerator’s MoveNext method and Current property to traverse the collection,
just as we did explicitly in lines 51–56 and 61–66. For this reason, you should use the
foreach statement to iterate over any collection that implements IEnumerable or IEnu-
merable<T>—as you saw for class List<T> in Section 9.4. Even class string implements
IEnumerable<char> so you can iterate over a string’s characters.

19.3.8 Array Methods Clear, IndexOf, LastIndexOf and Reverse
Other static Array methods include:

• Clear which sets a range of elements to 0, false or null, as appropriate.

• IndexOf which locates the first occurrence of an object in an array or portion of
an array.

• LastIndexOf which locates the last occurrence of an object in an array or portion
of an array.

• Reverse which reverses the contents of an array or portion of an array.

19.4 Dictionary Collections
A dictionary is the general term for a collection of key–value pairs. Section 17.9.2 intro-
duced the generic Dictionary collection. In this section, we discuss fundamentals of how
a Dictionary works, then demonstrate the related SortedDictionary collection.

Common Programming Error 19.1
If a collection is modified after an enumerator is created for that collection, the enumera-
tor immediately becomes invalid—for this reason, enumerators are said to be “fail fast.”
Any calls to the enumerator’s Reset or MoveNext methods after this point throw Invalid-
OperationExceptions. This is true for collections, but not for arrays.

ptg18189312

598 Chapter 19 Generic Collections; Functional Programming with LINQ/PLINQ

19.4.1 Dictionary Fundamentals
When an app creates objects of new or existing types, it needs to manage those objects ef-
ficiently. This includes sorting and retrieving objects. Sorting and retrieving information
with arrays is efficient if some aspect of your data directly matches the key value and if
those keys are unique and tightly packed. If you have 100 employees with nine-digit social
security numbers and you want to store and retrieve employee data by using the social se-
curity number as a key, it would nominally require an array with 1,000,000,000 elements,
because there are 1,000,000,000 unique nine-digit numbers. If you have an array that
large, you could get high performance storing and retrieving employee records by simply
using the social security number as the array index, but it would be a huge waste of mem-
ory. Many apps have this problem—either the keys are of the wrong type (i.e., not non-
negative integers), or they’re of the right type but are sparsely spread over a large range.

Hashing
What’s needed is a high-speed scheme for converting keys such as social security numbers
and inventory part numbers to unique array indices. Then, when an app needs to store
something, the scheme could convert the key rapidly to an index and the record of infor-
mation could be stored at that location in the array. Retrieval occurs the same way—once
the app has a key for which it wants to retrieve the data record, the app simply applies the
conversion to the key, which produces the array index where the data resides in the array
and retrieves the data.

The scheme we describe here is the basis of a technique called hashing. Why the name?
Because, when we convert a key into an array index, we literally scramble the bits, making a
“hash” of the number. The number actually has no real significance beyond its usefulness
in storing and retrieving this particular data record. Data structures that use hashing are
commonly called hash tables (like class Hashtable in the System.Collections name-
space). A hash table is one way to implement a dictionary—class Dictionary<K,V> in the
System.Collections.Generic namespace is implemented as a hash table.

Collisions
A glitch in the scheme occurs when there are collisions (i.e., two different keys “hash into”
the same cell, or element, in the array). Since we cannot sort two different data records to
the same space, we need to find an alternative home for all records beyond the first that
hash to a particular array index. One scheme for doing this is to “hash again” (i.e., to re-
apply the hashing transformation to the key to provide a next candidate cell in the array).
The hashing process is designed so that with just a few hashes, an available cell will be
found.

Another scheme uses one hash to locate the first candidate cell. If the cell is occupied,
successive cells are searched linearly until an available cell is found. Retrieval works the
same way—the key is hashed once, the resulting cell is checked to determine whether it
contains the desired data. If it does, the search is complete. If it does not, successive cells
are searched linearly until the desired data is found.

The most popular solution to hash-table collisions is to have each cell of the table be
a hash “bucket”—typically, a linked list of all the key–value pairs that hash to that cell.
This is the solution that the .NET Framework’s Dictionary class implements.

ptg18189312

19.4 Dictionary Collections 599

Load Factor
The load factor affects the performance of hashing schemes. The load factor is the ratio of
the number of objects stored in the hash table to the total number of cells of the hash table.
As this ratio gets higher, the chance of collisions tends to increase.

Hash Function
A hash function performs a calculation that determines where to place data in the hash
table. The hash function is applied to the key in a key–value pair of objects. Any object
can be used as a key. For this reason, class object defines method GetHashCode, which all
objects inherit. Most classes that are candidates to be used as keys in a hash table, such as
string, override this method to provide one that performs efficient hash-code calculations
for a specific type.

19.4.2 Using the SortedDictionary Collection
The .NET Framework provides several implementations of dictionaries that implement
the IDictionary<K,V> interface (described in Fig. 19.1). The app in Fig. 19.4 demon-
strates the generic class SortedDictionary. Unlike class Dictionary—which is imple-
mented as a hash table—class SortedDictionary stores its key–value pairs in a binary
search tree. As the class name suggests, the entries in SortedDictionary are sorted by key.
For key types that implement IComparable<T>, the SortedDictionary uses the results of
IComparable<T> method CompareTo to sort the keys. Despite these implementation de-
tails, we use the same public methods, properties and indexers with classes Dictionary
and SortedDictionary. In many scenarios, these classes are interchangeable—this is the
beauty of object-oriented programming.

Performance Tip 19.1
The load factor in a hash table is a classic example of a space/time trade-off: By increasing
the load factor, we get better memory utilization, but the app runs slower due to increased
hashing collisions. By decreasing the load factor, we get better speed because of reduced
hashing collisions, but we get poorer memory utilization because a larger portion of the
hash table remains empty.

Performance Tip 19.2
Because class SortedDictionary keeps its elements sorted in a binary tree, obtaining or
inserting a key–value pair takes O(log n) time, which is fast compared to linear searching,
then inserting.

1 // Fig. 19.4: SortedDictionaryTest.cs
2 // App counts the number of occurrences of each word in a string
3 // and stores them in a generic sorted dictionary.
4 using System;
5 using System.Text.RegularExpressions;
6 using System.Collections.Generic;

Fig. 19.4 | App counts the number of occurrences of each word in a string and stores them in
a generic sorted dictionary. (Part 1 of 3.)

ptg18189312

600 Chapter 19 Generic Collections; Functional Programming with LINQ/PLINQ

7
8 class SortedDictionaryTest
9 {

10 static void Main()
11 {
12 // create sorted dictionary based on user input
13
14
15 DisplayDictionary(dictionary); // display sorted dictionary content
16 }
17
18 // create sorted dictionary from user input
19 private static CollectWords()
20 {
21 // create a new sorted dictionary
22
23
24 Console.WriteLine("Enter a string: "); // prompt for user input
25 string input = Console.ReadLine(); // get input
26
27 // split input text into tokens
28
29
30 // processing input words
31 foreach (var word in words)
32 {
33 var key = word.ToLower(); // get word in lowercase
34
35 // if the dictionary contains the word
36 if ()
37 {
38
39 }
40 else
41 {
42 // add new word with a count of 1 to the dictionary
43
44 }
45 }
46
47 return dictionary;
48 }
49
50 // display dictionary content
51
52
53 {
54 Console.WriteLine(
55 $"\nSorted dictionary contains:\n{"Key",-12}{"Value",-12}");
56

Fig. 19.4 | App counts the number of occurrences of each word in a string and stores them in
a generic sorted dictionary. (Part 2 of 3.)

SortedDictionary<string, int> dictionary = CollectWords();

SortedDictionary<string, int>

var dictionary = new SortedDictionary<string, int>();

string[] words = Regex.Split(input, @"\s+");

dictionary.ContainsKey(key)

++dictionary[key];

dictionary.Add(key, 1);

private static void DisplayDictionary<K, V>(
 SortedDictionary<K, V> dictionary)

ptg18189312

19.4 Dictionary Collections 601

Lines 4–6 contain using directives for namespaces System (for class Console),
System.Text.RegularExpressions (for class Regex) and System.Collections.Generic
(for class SortedDictionary). Generic class SortedDictionary takes two type arguments:

• the first specifies the type of key (i.e., string) and

• the second the type of value (i.e., int).

Class SortedDictionaryTest declares three static methods:

• Method CollectWords (lines 19–48) inputs a sentence and returns a Sorted-
Dictionary<string, int> in which the keys are the words in the sentence and
the values are the number of times each word appears in the sentence.

• Method DisplayDictionary (lines 51–65) displays the SortedDictionary
passed to it in column format.

• Method Main (lines 10–16) simply invokes CollectWords (line 13), then passes
the SortedDictionary<string, int> returned by CollectWords to Display-
Dictionary in line 15.

Method CollectWords
Method CollectWords (lines 19–48) begins by initializing local variable dictionary with
a new SortedDictionary<string, int> (line 22). Lines 24–25 prompt the user and input
a sentence as a string. We use static method Split of class Regex (introduced in the
online section of Chapter 16 at http://www.deitel.com/books/CSharp6FP) in line 28 to

57 // generate output for each key in the sorted dictionary
58 // by iterating through the Keys property with a foreach statement
59 foreach (var key in)
60 {
61 Console.WriteLine($"{key,-12}{ ,-12}");
62 }
63
64 Console.WriteLine($"\nsize: { }");
65 }
66 }

Enter a string:
We few, we happy few, we band of brothers

Sorted dictionary contains:
Key Value
band 1
brothers 1
few, 2
happy 1
of 1
we 3

size: 6

Fig. 19.4 | App counts the number of occurrences of each word in a string and stores them in
a generic sorted dictionary. (Part 3 of 3.)

dictionary.Keys

dictionary[key]

dictionary.Count

http://www.deitel.com/books/CSharp6FP

ptg18189312

602 Chapter 19 Generic Collections; Functional Programming with LINQ/PLINQ

divide the string by its whitespace characters. In the regular expression \s+, \s means
whitespace and + means one or more of the expression to its left—so the words are sepa-
rated by one or more whitespace characters, which are discarded. This creates an array of
“words,” which we then store in local variable words.

SortedDictionary Methods ContainsKey and Add
Lines 31–45 iterate through the array words. Each word is converted to lowercase with
string method ToLower, then stored in variable key (line 33). Next, line 36 calls Sorted-
Dictionary method ContainsKey to determine whether the word is in the dictionary. If
so, that word occurred previously in the sentence. If the SortedDictionary does not con-
tain an entry for the word, line 43 uses SortedDictionary method Add to create a new
entry in the dictionary, with the lowercase word as the key and 1 as the value.

SortedDictionary Indexer
If the word is already a key in the hash table, line 38 uses the SortedDictionary’s indexer
to obtain and set the key’s associated value (the word count) in the dictionary. Using the
set accessor with a key that does not exist in the hash table creates a new entry, as if you
had used the Add method, so line 43 could have been written as

Method DisplayDictionary
Line 47 returns the dictionary to the Main method, which then passes it to method Dis-
playDictionary (lines 51–65), which displays all the key–value pairs. This method uses
read-only property Keys (line 59) to get an ICollection<T> that contains all the keys. Be-
cause the interface ICollection<T> extends IEnumerable<T>, we can use this collection
in the foreach statement in lines 59–62 to iterate over the keys. This loop accesses and
outputs each key and its corresponding value using the iteration variable and the Sorted-
Dictionary indexer’s get accessor. Each key and value is displayed left aligned in a field
width of 12 positions. Because a SortedDictionary stores its key–value pairs in a binary
search tree, the key–value pairs are displayed with the keys in sorted order. Line 64 uses
SortedDictionary property Count to get the number of key–value pairs in the dictionary.

Iterating Over a SortedDictionary’s KeyValuePairs
Lines 59–62 could have also used the foreach statement with the SortedDictionary ob-
ject itself, instead of using the Keys property. If you use a foreach statement with a
SortedDictionary object, the iteration variable will be of type KeyValuePair<K,V>. The
enumerator of a SortedDictionary uses the KeyValuePair<K,V> struct value type to
store key–value pairs. KeyValuePair<K,V> provides properties Key and Value for retriev-
ing the key and value of the current element.

Common Programming Error 19.2
Using the Add method to add a key that already exists in the hash table causes an Argu-
mentException.

dictionary[key] = 1;

Common Programming Error 19.3
Invoking the get accessor of a SortedDictionary indexer with a key that does not exist
in the collection causes a KeyNotFoundException.

ptg18189312

19.5 Generic LinkedList Collection 603

SortedDictionary’s Values Property
If you do not need the keys, class SortedDictionary also provides a read-only Values
property that gets an ICollection<T> of all the values stored in the SortedDictionary.
You could use this property to iterate through the values stored in the SortedDictionary
without regard for their corresponding keys.

19.5 Generic LinkedList Collection
Section 9.4 introduced the generic List<T> collection, which defines an array-based list
implementation. Here, we discuss class LinkedList<T>, which defines a doubly linked list
that an app can navigate both forwards and backwards. A LinkedList<T> contains nodes
of generic class LinkedListNode<T>. Each node contains property Value and read-only
properties Previous and Next. The Value property’s type matches LinkedList<T>’s single
type parameter because it contains the data stored in the node. Previous gets a reference
to the preceding node in the linked list (or null if the node is the first of the list). Similarly,
Next gets a reference to the subsequent reference in the linked list (or null if the node is
the last of the list). We demonstrate a few linked-list manipulations in Fig. 19.5.

1 // Fig. 19.5: LinkedListTest.cs
2 // Using LinkedLists.
3 using System;
4 using System.Collections.Generic;
5
6 class LinkedListTest
7 {
8 private static readonly string[] colors =
9 {"black", "yellow", "green", "blue", "violet", "silver"};

10 private static readonly string[] colors2 =
11 {"gold", "white", "brown", "blue", "gray"};
12
13 // set up and manipulate LinkedList objects
14 static void Main()
15 {
16
17
18 // add elements to first linked list
19 foreach (var color in colors)
20 {
21
22 }
23
24 // add elements to second linked list via constructor
25
26
27 Concatenate(list1, list2); // concatenate list2 onto list1
28 PrintList(list1); // display list1 elements
29
30 Console.WriteLine("\nConverting strings in list1 to uppercase\n");
31 ToUppercaseStrings(list1); // convert to uppercase string

Fig. 19.5 | Using LinkedLists. (Part 1 of 3.)

var list1 = new LinkedList<string>();

list1.AddLast(color);

var list2 = new LinkedList<string>(colors2);

ptg18189312

604 Chapter 19 Generic Collections; Functional Programming with LINQ/PLINQ

32 PrintList(list1); // display list1 elements
33
34 Console.WriteLine("\nDeleting strings between BLACK and BROWN\n");
35 RemoveItemsBetween(list1, "BLACK", "BROWN");
36
37 PrintList(list1); // display list1 elements
38 PrintReversedList(list1); // display list in reverse order
39 }
40
41 // display list contents
42
43 {
44 Console.WriteLine("Linked list: ");
45
46
47 {
48 Console.Write($"{value} ");
49 }
50
51 Console.WriteLine();
52 }
53
54 // concatenate the second list on the end of the first list
55
56
57 {
58 // concatenate lists by copying element values
59 // in order from the second list to the first list
60 foreach (var value in list2)
61 {
62
63 }
64 }
65
66 // locate string objects and convert to uppercase
67
68 {
69 // iterate over the list by using the nodes
70
71
72 while (currentNode != null)
73 {
74 string color = ; // get value in node
75 = color.ToUpper(); // convert to uppercase
76 currentNode = ; // get next node
77 }
78 }
79
80 // delete list items between two given items
81
82
83 {

Fig. 19.5 | Using LinkedLists. (Part 2 of 3.)

private static void PrintList<T>(LinkedList<T> list)

foreach (var value in list)

private static void Concatenate<T>(
 LinkedList<T> list1, LinkedList<T> list2)

list1.AddLast(value); // add new node

private static void ToUppercaseStrings(LinkedList<string> list)

LinkedListNode<string> currentNode = list.First;

currentNode.Value
currentNode.Value

currentNode.Next

private static void RemoveItemsBetween<T>(
 LinkedList<T> list, T startItem, T endItem)

ptg18189312

19.5 Generic LinkedList Collection 605

Lines 16–25 create LinkedLists of strings named list1 and list2 and fill them
with the contents of arrays colors and colors2, respectively. LinkedList is a generic class
that has one type parameter for which we specify the type argument string in this
example (lines 16 and 25).

LinkedList Methods AddLast and AddFirst
We demonstrate two ways to fill the lists. Lines 19–22 use the foreach statement and
method AddLast to fill list1. The AddLast method creates a new LinkedListNode (with

84 // get the nodes corresponding to the start and end item
85
86
87
88 // remove items after the start item
89 // until we find the last item or the end of the linked list
90
91 {
92
93 }
94 }
95
96 // display reversed list
97
98 {
99 Console.WriteLine("Reversed List:");
100
101 // iterate over the list by using the nodes
102
103
104 while (currentNode != null)
105 {
106 Console.Write($"{ } ");
107 currentNode = ; // get previous node
108 }
109
110 Console.WriteLine();
111 }
112 }

Linked list:
black yellow green blue violet silver gold white brown blue gray

Converting strings in list1 to uppercase

Linked list:
BLACK YELLOW GREEN BLUE VIOLET SILVER GOLD WHITE BROWN BLUE GRAY

Deleting strings between BLACK and BROWN

Linked list:
BLACK BROWN BLUE GRAY
Reversed List:
GRAY BLUE BROWN BLACK

Fig. 19.5 | Using LinkedLists. (Part 3 of 3.)

LinkedListNode<T> currentNode = list.Find(startItem);
LinkedListNode<T> endNode = list.Find(endItem);

while ((currentNode.Next != null) && (currentNode.Next != endNode))

list.Remove(currentNode.Next); // remove next node

private static void PrintReversedList<T>(LinkedList<T> list)

LinkedListNode<T> currentNode = list.Last;

currentNode.Value
currentNode.Previous

ptg18189312

606 Chapter 19 Generic Collections; Functional Programming with LINQ/PLINQ

the node’s value available via the Value property) and appends this node to the end of the
list. There’s also an AddFirst method that inserts a node at the beginning of the list.

Line 25 invokes the constructor that takes an IEnumerable<T> parameter. All arrays
implement the generic interfaces IList<T> and IEnumerable<T> with the array’s element
type as the type argument, so a string array implements IEnumerable<string>. Thus,
colors2 is an IEnumerable<string> and can be passed to the List<string> constructor
to initialize the List. This constructor copies array colors2’s contents into list2.

Methods That Test Class LinkedList
Line 27 calls generic method Concatenate (lines 55–64) to append all elements of list2
to the end of list1. Line 28 calls method PrintList (lines 42–52) to output list1’s con-
tents. Line 31 calls method ToUppercaseStrings (lines 67–78) to convert each string el-
ement to uppercase, then line 32 calls PrintList again to display the modified strings.
Line 35 calls method RemoveItemsBetween (lines 81–94) to remove the elements between
"BLACK" and "BROWN"—not including either. Line 37 outputs the list again, then line 38
invokes method PrintReversedList (lines 97–111) to display the list in reverse order.

Generic Method Concatentate
Generic method Concatenate (lines 55–64) iterates over its second parameter (list2)
with a foreach statement and calls method AddLast to append each value to the end of its
first parameter (list1). The LinkedList class’s enumerator loops over the values of the
nodes, not the nodes themselves, so the iteration variable is inferred to be of the
LinkedList’s element type T. Notice that this creates a new node in list1 for each node
in list2. One LinkedListNode cannot be a member of more than one LinkedList. If you
want the same data to belong to more than one LinkedList, you must make a copy of the
node for each list to avoid InvalidOperationExceptions.

Generic Method PrintList and Method ToUppercaseStrings
Generic method PrintList (lines 42–52) similarly uses a foreach statement to iterate
over the values in a LinkedList, and outputs them. Method ToUppercaseStrings (lines
67–78) takes a linked list of strings and converts each string value to uppercase. This
method replaces the strings stored in the list, so we cannot use a foreach statement as in
the previous two methods. Instead, we obtain the first LinkedListNode via the First
property (line 70) and use a sentinel-controlled while statement to loop through the list
(lines 72–77). Each iteration of the while statement obtains and updates the contents of
currentNode via property Value (line 74), using string method ToUpper to create an up-
percase version of the string (line 75). Then line 76 moves to the next node in the list by
assigning to currentNode the value of currentNode.Next, which refers to the
LinkedList’s next node. The Next property of the LinkedList’s last node is null, so when
the while statement iterates past the end of the list, the loop exits.

Method ToUppercaseStrings is not a Generic Method
It does not make sense to declare ToUppercaseStrings as a generic method, because it uses
the string-specific methods of the values in the nodes.

Software Engineering Observation 19.1
For maximal code reuse, define methods with generic type parameters whenever possible.

ptg18189312

19.6 C# 6 Null Conditional Operator ?[] 607

Generic Method RemoveItemsBetween
Generic method RemoveItemsBetween (lines 81–94) removes a range of items between two
nodes. Lines 85–86 obtain the two “boundary” nodes of the range by using method Find,
which performs a linear search on the list and returns the first node that contains a value
equal to Find’s argument, or null if the value is not found. We store the node preceding
the range in local variable currentNode and the node following the range in endNode.

Lines 90–93 remove all the elements between currentNode and endNode. Each itera-
tion of the loop removes the node following currentNode by invoking method Remove
(line 92), which takes a LinkedListNode, splices it out of the LinkedList, and fixes the
references of the surrounding nodes. After the Remove call, currentNode’s Next property
now refers to the node following the node just removed, and that node’s Previous property
refers to currentNode. The while statement continues to loop until there are no nodes left
between currentNode and endNode, or until currentNode is the last node in the list. An
overloaded version of method Remove performs a linear search for a specified value and
removes the first node in the list that contains it.

Method PrintReversedList
Method PrintReversedList (lines 97–111) displays the list backwards by navigating the
nodes manually. Line 102 obtains the last element of the list via the Last property and stores
it in currentNode. The while statement in lines 104–108 iterates through the list backwards
by assigning to currentNode the value of currentNode.Previous (the previous node in the
list). The loop terminates when currentNode.Previous is null. Note how similar this code
is to lines 70–77, which iterated through the list from the beginning to the end.

19.6 C# 6 Null Conditional Operator ?[]
Section 13.9 introduced nullable types and C# 6’s null-conditional operator (?.), which
checks whether a reference is null before using it to call a method or access a property. C#
6 provides another null-conditional operator, ?[], for arrays and for collections that sup-
port the [] indexing operator.

Assume that a class Employee has a decimal Salary property and that an app defines
a List<Employee> named employees. The statement

uses both null-conditional operators and executes as follows:

• First the ?[] operator determines whether employees is null. If so, the expres-
sion employees?[0]?.Salary short circuits—that is, it terminates immediate-
ly—and the expression evaluates to null. In the preceding statement, this is
assigned to the nullable decimal variable salary. If employees is not null,
employees?[0] accesses the element at position 0 of the List<Employee>.

• Element 0 could be null or a reference to an Employee object, so we use the ?.
operator to check whether employees?[0] is null. If so, once again the entire ex-
pression evaluates to null, which is assigned to the nullable decimal variable
salary; otherwise, the property Salary’s value is assigned to salary.

Note in the preceding statement that salary must be declared as a nullable type, because
the expression employees?[0]?.Salary can return null or a decimal value.

decimal? salary = employees?[0]?.Salary;

ptg18189312

608 Chapter 19 Generic Collections; Functional Programming with LINQ/PLINQ

19.7 C# 6 Dictionary Initializers and Collection
Initializers
C# 6 supports two new features with respect to initializing collections—index initializers
and using collection initializers with collections that have an Add extension method.

C# 6 Index Initializers
Prior to C# 6, you could use a fully braced collection initializer to initialize a Dictionary’s
key–value pairs. For example, if you have a Dictionary<string, int> named toolInven-
tory, you could create and initialize it as follows:

This is shorthand for creating the Dictionary then using its Add method to add each key–
value pairs.

C# 6 introduces the index initializers, which enable you to clearly indicate the key
and the value in each key–value pair as follows:

C# 6 Collection Initializers Now Support Collections with Add Extension Methods
Prior to C# 6, any collection that defined an Add instance method could be initialized with
a collection initializer. As of C# 6, the compiler also supports collection initializers for any
collection that has an Add extension method.

19.8 Delegates
In Section 14.3.3, we introduced the concept of a delegate—an object that holds a refer-
ence to a method.1 You can call a method through a variable of a delegate type—thus del-
egating to the referenced method the responsibilty of performing a task. Delegates also
allow you to pass methods to and from other methods. We introduced delegates in the
context of GUI event handlers, but they’re used in many areas of the .NET Framework.
For example, in Chapter 9, we introduced LINQ query syntax. The compiler converts
such LINQ queries into calls to extension methods—many of which have delegate param-
eters. Figure 19.6 declares and uses a delegate type. In Section 19.11, we’ll use delegates
in the context of LINQ extension methods.

var toolInventory = new Dictionary<string, int>{
 {"Hammer", 13},
 {"Saw", 17},
 {"Screwdriver", 7}

};

var toolInventory = new Dictionary<string, int>{
 ["Hammer"] = 13,
 ["Saw"] = 17,
 ["Screwdriver"] = 7

};

1. This is similar to function pointers and function objects (also called functors) in C++.

ptg18189312

19.8 Delegates 609

1 // Fig. 19.6: Delegates.cs
2 // Using delegates to pass functions as arguments.
3 using System;
4 using System.Collections.Generic;
5
6 class Delegates
7 {
8 // delegate for a function that receives an int and returns a bool
9

10
11 static void Main()
12 {
13 int[] numbers = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
14
15 // create an instance of the NumberPredicate delegate type
16
17
18 // call IsEven using a delegate variable
19 Console.WriteLine(
20 $"Call IsEven using a delegate variable: { }");
21
22 // filter the even numbers using method IsEven
23 List<int> evenNumbers = ;
24
25 // display the result
26 DisplayList("Use IsEven to filter even numbers: ", evenNumbers);
27
28 // filter the odd numbers using method IsOdd
29 List<int> oddNumbers = ;
30
31 // display the result
32 DisplayList("Use IsOdd to filter odd numbers: ", oddNumbers);
33
34 // filter numbers greater than 5 using method IsOver5
35 List<int> numbersOver5 = ;
36
37 // display the result
38 DisplayList("Use IsOver5 to filter numbers over 5: ", numbersOver5);
39 }
40
41 // select an array's elements that satisfy the predicate
42 private static List<int> FilterArray(int[] intArray,
43)
44 {
45 // hold the selected elements
46 var result = new List<int>();
47
48 // iterate over each element in the array
49 foreach (var item in intArray)
50 {
51 // if the element satisfies the predicate
52 if () // invokes method referenced by predicate
53 {

Fig. 19.6 | Using delegates to pass functions as arguments. (Part 1 of 2.)

public delegate bool NumberPredicate(int number);

NumberPredicate evenPredicate = IsEven;

evenPredicate(4)

FilterArray(numbers, evenPredicate)

FilterArray(numbers, IsOdd)

FilterArray(numbers, IsOver5)

NumberPredicate predicate

predicate(item)

ptg18189312

610 Chapter 19 Generic Collections; Functional Programming with LINQ/PLINQ

19.8.1 Declaring a Delegate Type
Line 9 defines a delegate type named NumberPredicate. A variable of this type can store a
reference to any method that takes one int argument and returns a bool. A delegate type
is declared by preceding a method header with keyword delegate (placed after any access
specifiers, such as public or private) and following the method header with a semicolon.
A delegate type declaration includes the method header only—the header describes a set
of methods with specific parameters and a specific return type.

19.8.2 Declaring a Delegate Variable
Line 16 declares evenPredicate as a NumberPredicate variable and initializes it with a ref-
erence to the expression-bodied IsEven method (line 62). Since method IsEven’s signa-
ture matches the NumberPredicate delegate’s signature, IsEven can be referenced by a

54 result.Add(item); // add the element to the result
55 }
56 }
57
58 return result; // return the result
59 }
60
61 // determine whether an int is even
62
63
64 // determine whether an int is odd
65
66
67 // determine whether an int is greater than 5
68
69
70 // display the elements of a List
71 private static void DisplayList(string description, List<int> list)
72 {
73 Console.Write(description); // display the output's description
74
75 // iterate over each element in the List
76 foreach (var item in list)
77 {
78 Console.Write($"{item} "); // print item followed by a space
79 }
80
81 Console.WriteLine(); // add a new line
82 }
83 }

Call IsEven using a delegate variable: True
Use IsEven to filter even numbers: 2 4 6 8 10
Use IsOdd to filter odd numbers: 1 3 5 7 9
Use IsOver5 to filter numbers over 5: 6 7 8 9 10

Fig. 19.6 | Using delegates to pass functions as arguments. (Part 2 of 2.)

private static bool IsEven(int number) => number % 2 == 0;

private static bool IsOdd(int number) => number % 2 == 1;

private static bool IsOver5(int number) => number > 5;

ptg18189312

19.9 Lambda Expressions 611

variable of type NumberPredicate. Variable evenPredicate can now be used as an alias
for method IsEven. A NumberPredicate variable can hold a reference to any method that
receives an int and returns a bool. Lines 19–20 use variable evenPredicate to call meth-
od IsEven, then display the result. The method referenced by the delegate is called using
the delegate variable’s name in place of the method’s name, as in

19.8.3 Delegate Parameters
The real power of delegates is in passing method references as arguments to methods, as
we do in this example with method FilterArray (lines 42–59). The method takes as
arguments

• an int array and

• a NumberPredicate that references a method used to filter the array elements.

The method returns a List<int> containing only the ints that satisfy the condition spec-
ified by the NumberPredicate. FilterArray returns a List, because we don’t know in ad-
vance how many elements will be included in the result.

The foreach statement (lines 49–56) calls the method referenced by the NumberPred-
icate delegate (line 52) once for each element of the array. If the method call returns true,
the element is included in result. The NumberPredicate is guaranteed to return either
true or false, because any method referenced by a NumberPredicate must return a
bool—as specified by the definition of the NumberPredicate delegate type (line 9). Line
23 passes to FilterArray the int array (numbers) and the NumberPredicate that refer-
ences the IsEven method (evenPredicate). FilterArray then calls the NumberPredicate
delegate on each array element. Line 23 assigns the List returned by FilterArray to vari-
able evenNumbers and line 26 calls method DisplayList (lines 71–82) to display the
results.

19.8.4 Passing a Method Name Directly to a Delegate Parameter
Line 29 calls method FilterArray to select the odd numbers in the array. In this case, we
pass the method name IsOdd (defined in line 65) as FilterArray’s second argument, rath-
er than creating a NumberPredicate variable. Line 32 displays the results showing only the
odd numbers. Line 35 calls method FilterArray to select the numbers greater than 5 in
the array, using method IsOver5 (defined in line 68) as FilterArray’s second argument.
Line 38 displays the elements that are greater than 5.

19.9 Lambda Expressions
Lambda expressions allow you to define simple, anonymous methods—that is, methods
that do not have names and that are defined where they are assigned to a delegate or passed
to a delegate parameter. In many cases, working with lambda expressions can reduce the
size of your code and the complexity of working with delegates. As you’ll see in later ex-
amples, lambda expressions are particularly powerful when combined with the where
clause in LINQ queries. Figure 19.7 reimplements the example of Fig. 19.6 using lambda
expressions rather than explicitly declared methods IsEven, IsOdd and IsOver5.

evenPredicate(4)

ptg18189312

612 Chapter 19 Generic Collections; Functional Programming with LINQ/PLINQ

1 // Fig. 19.7: Lambdas.cs
2 // Using lambda expressions.
3 using System;
4 using System.Collections.Generic;
5
6 class Lambdas
7 {
8 // delegate for a function that receives an int and returns a bool
9

10
11 static void Main(string[] args)
12 {
13 int[] numbers = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
14
15 // create an instance of the NumberPredicate delegate type using an
16 // implicit lambda expression
17 NumberPredicate evenPredicate = number => ;
18
19 // call a lambda expression through a variable
20 Console.WriteLine(
21 $"Use a lambda-expression variable: { }");
22
23 // filter the even numbers using a lambda expression
24 List<int> evenNumbers = FilterArray(numbers,);
25
26 // display the result
27 DisplayList("Use a lambda expression to filter even numbers: ",
28 evenNumbers);
29
30 // filter the odd numbers using an explicitly typed lambda
31 // expression
32 List<int> oddNumbers =
33 FilterArray(numbers, (int number) =>);
34
35 // display the result
36 DisplayList("Use a lambda expression to filter odd numbers: ",
37 oddNumbers);
38
39 // filter numbers greater than 5 using an implicit lambda statement
40 List<int> numbersOver5 =
41 FilterArray(numbers,);
42
43 // display the result
44 DisplayList("Use a lambda expression to filter numbers over 5: ",
45 numbersOver5);
46 }
47
48 // select an array's elements that satisfy the predicate
49 private static List<int> FilterArray(
50 int[] intArray,)
51 {
52 // hold the selected elements
53 var result = new List<int>();

Fig. 19.7 | Using lambda expressions. (Part 1 of 2.)

public delegate bool NumberPredicate(int number);

number % 2 == 0

evenPredicate(4)

evenPredicate

number % 2 == 1

number => {return number > 5;}

NumberPredicate predicate

ptg18189312

19.9 Lambda Expressions 613

19.9.1 Expression Lambdas
A lambda expression (line 17)

begins with a parameter list (number in this case). The parameter list is followed by the =>
lambda operator (read as “goes to”) and an expression that represents the lambda’s body.
The lambda expression in line 17 uses the % operator to determine whether the parameter’s
number value is an even int. The value produced by the expression—true if the int is
even, false otherwise—is implicitly returned by the lambda expression. The lambda in
line 17 is called an expression lambda, because it has a single expression to the right of the
lambda operator. Note that we do not specify a return type for the lambda expression—
the return type is inferred from the return value or, in some cases, from a delegate’s return
type. The lambda expression in line 17 is equivalent to the IsEven method in Fig. 19.6.
Note that C# 6’s expression-bodied methods use a similar syntax to expression lambdas,
including the lambda operator (=>).

54
55 // iterate over each element in the array
56 foreach (var item in intArray)
57 {
58 // if the element satisfies the predicate
59 if ()
60 {
61 result.Add(item); // add the element to the result
62 }
63 }
64
65 return result; // return the result
66 }
67
68 // display the elements of a List
69 private static void DisplayList(string description, List<int> list)
70 {
71 Console.Write(description); // display the output's description
72
73 // iterate over each element in the List
74 foreach (int item in list)
75 {
76 Console.Write($"{item} "); // print item followed by a space
77 }
78
79 Console.WriteLine(); // add a new line
80 }
81 }

Use a lambda expression variable: True
Use a lambda expression to filter even numbers: 2 4 6 8 10
Use a lambda expression to filter odd numbers: 1 3 5 7 9
Use a lambda expression to filter numbers over 5: 6 7 8 9 10

number => number % 2 == 0

Fig. 19.7 | Using lambda expressions. (Part 2 of 2.)

predicate(item)

ptg18189312

614 Chapter 19 Generic Collections; Functional Programming with LINQ/PLINQ

19.9.2 Assigning Lambdas to Delegate Variables
In line 17 of Fig. 19.7, the lambda expression is assigned to a variable of type NumberPred-
icate—the delegate type declared in line 9. A delegate can hold a reference to a lambda ex-
pression. As with traditional methods, a method defined by a lambda expression must have
a signature that’s compatible with the delegate type. The NumberPredicate delegate can
hold a reference to any method that receives an int and returns a bool. Based on this, the
compiler is able to infer that the lambda expression in line 17 defines a method that implic-
itly takes an int as an argument and returns the bool result of the expression in its body.

Lines 20–21 display the result of calling the lambda expression defined in line 17. The
lambda expression is called via the variable that references it (evenPredicate). Line 24
passes evenPredicate to method FilterArray (lines 49–66), which is identical to the
method used in Fig. 19.6—it uses the NumberPredicate delegate to determine whether an
array element should be included in the result. Lines 27–28 display the filtered results.

19.9.3 Explicitly Typed Lambda Parameters
Lambda expressions often are used as arguments to methods with delegate-type parame-
ters, rather than defining and referencing a separate method or defining a delegate variable
that references a lambda. Lines 32–33 select the odd array elements with the lambda

In this case, the lambda is passed directly to method FilterArray and is implicitly stored
in the NumberPredicate delegate parameter.

The lambda expression’s input parameter number is explicitly typed as an int here—
sometimes this is necessary to avoid ambiguity that would lead to compilation errors
(though that is not the case here). When specifying a lambda parameter’s type and/or
when a lambda has more than one parameter, you must enclose the parameter list in
parentheses as in line 33. The lambda expression in line 33 is equivalent to the IsOdd
method defined in Fig. 19.6. Lines 36–37 of Fig. 19.7 display the filtered results.

19.9.4 Statement Lambdas
Lines 40–41 use the lambda

to find the ints greater than 5 in the array and store the results. This lambda is equivalent
to the IsOver5 method in Fig. 19.6.

The preceding lambda is called a statement lambda, because it contains a statement
block—one or more statements enclosed in braces ({})—to the right of the lambda oper-
ator. This lambda’s signature is compatible with the NumberPredicate delegate, because
the parameter number’s type is inferred to be int and the statement in the lambda returns
a bool. For additional information on lambdas, visit

19.10 Introduction to Functional Programming
So far, you’ve seen structured, object-oriented and generic programming techniques in
C#. Though you often used .NET Framework classes and interfaces to perform various

(int number) => number % 2 == 1

number => {return number > 5;}

https://msdn.microsoft.com/library/bb397687

https://msdn.microsoft.com/library/bb397687

ptg18189312

19.10 Introduction to Functional Programming 615

tasks, you typically determined what you wanted to accomplish in a task, then specified
precisely how to accomplish it.

For example, let’s assume that what you’d like to accomplish is to sum the elements
of an int array named values (the data source). You might use the following code:

This loop specifies precisely how to add each array element’s value to the sum—with a for
iteration statement that processes each element one at a time, adding its value to the sum.
This technique is known as external iteration—because you specify how to iterate, not the
library—and requires you to access the elements sequentially from beginning to end in a
single thread of execution. To perform the preceding task, you also create two variables
(sum and counter) that are mutated repeatedly—their values change as the iteration is per-
formed. You performed many similar array and collection tasks, such as displaying the el-
ements of an array, summarizing the faces of a die that was rolled 60,000,000 times,
calculating the average of an array’s elements and more.

External Iteration Is Error Prone
The problem with external iteration is that even in this simple loop, there are many oppor-
tunities for error. You could, for example,

• initialize variable sum incorrectly,

• initialize control variable counter incorrectly,

• use the wrong loop-continuation condition,

• increment control variable counter incorrectly or

• incorrectly add each value in the array to the sum.

Internal Iteration
In functional programming, you specify what you want to accomplish in a task, but not
how to accomplish it. As you’ll see, to sum a numeric data source’s elements (such as those
in an array or collection), you can use LINQ capabilities that allow you to say, “Here’s a
data source, give me the sum of its elements.” You do not need to specify how to iterate
through the elements or declare and use any mutable (that is, modifiable) variables. This
is known as internal iteration, because the library code (behind the scenes) iterates
through all the elements to perform the task.2

var sum = 0;

for (var counter = 0; counter < values.Length; ++counter)
{

 sum += values[counter];
}

2. Systems developers have been familiar with the “what vs. how” distinction for decades. They begin a
systems development effort by defining a requirements document that specifies what the system is sup-
posed to do. Then, they use tools, such as the UML, to design the system, which specifies how the
system should be built to meet the requirements. In the online chapters, we build the software for a
very simple ATM. We begin with a requirements document that specifies what the software is sup-
posed to do, then we use the UML to specify how the software should do it. We specify the final de-
tails of how by writing the actual C# code.

ptg18189312

616 Chapter 19 Generic Collections; Functional Programming with LINQ/PLINQ

A key aspect of functional programming is immutability—not modifying the data
source being processed or any other program state, such as counter-control variables in
loops. By using internal iteration, you eliminate from your programs common errors that
are caused by modifying data incorrectly. This makes it easier to write correct code.

Filter, Map and Reduce
Three common functional-programming operations that you’ll perform on collections of
data are filter, map and reduce:

• A filter operation results in a new collection containing only the elements that sat-
isfy a condition. For example, you might filter a collection of ints to locate only
the even integers, or you might filter a collection of Employee’s to locate people
in a specific department of a large company. Filter operations do not modify the
original collection.

• A map operation results in a new collection in which each element of the original
collection is mapped to a new value (possibly of a different type)—e.g., mapping
numeric values to the squares of the numeric values. The new collection has the
same number of elements as the collection that was mapped. Map operations do
not modify the original collection.

• A reduce operation combines the elements of a collection into a single new value
typically using a lambda that specifies how to combine the elements. For exam-
ple, you might reduce a collection of int grades from zero to 100 on an exam to
the number of students who passed with a grade greater than or equal to 60. Re-
duce operations do not modify the original collection.

In the next section, we’ll demonstrate filter, map and reduce operations using class Enu-
merable’s LINQ to Objects extension methods Where, Select and Aggregate, respective-
ly. The extension methods defined by class Enumerable operate on collections that
implement the interface IEnumerable<T>.

C# and Functional Programming
Though C# was not originally designed as a functional-programming language, C#’s
LINQ query syntax and LINQ extension methods support functional-programming tech-
niques, such as internal iteration and immutability. In addition, C# 6’s getter-only, auto-
implemented properties make it easier to define immutable types. We expect future ver-
sions of C# and most other popular programming languages to include more functional-
programming capabilities that make implementing programs with a functional style more
natural.

19.11 Functional Programming with LINQ Method-Call
Syntax and Lambdas
In Chapter 9, we introduced LINQ, demonstrated LINQ query syntax and introduced
some LINQ extension methods. The same tasks you can perform with LINQ query syntax
can also be performed with various LINQ extension methods and lambdas. In fact, the
compiler translates LINQ query syntax into calls to LINQ extension methods that receive
lambdas as arguments. For example, lines 21–24 of Fig. 9.2

ptg18189312

19.11 Functional Programming with LINQ Method-Call Syntax and Lambdas 617

can be written as

Figure 19.8 demonstrates simple functional programming techniques using a list of inte-
gers.

var filtered =
 from value in values // data source is values
 where value > 4
 select value;

var filtered = values.Where(value => value > 4);

1 // Fig. 19.8: FunctionalProgramming.cs
2 // Functional programming with LINQ extension methods and lambdas.
3 using System;
4 using System.Collections.Generic;
5 using System.Linq;
6
7 namespace FilterMapReduce
8 {
9 class FunctionalProgramming

10 {
11 static void Main()
12 {
13 var values = new List<int> {3, 10, 6, 1, 4, 8, 2, 5, 9, 7};
14
15 Console.Write("Original values: ");
16 values.Display(); // call Display extension method
17
18 // display the Min, Max, Sum and Average
19 Console.WriteLine($"\nMin: { }");
20 Console.WriteLine($"Max: { }");
21 Console.WriteLine($"Sum: { }");
22 Console.WriteLine($"Average: { }");
23
24 // sum of values via Aggregate
25 Console.WriteLine("\nSum via Aggregate method: " +
26);
27
28 // sum of squares of values via Aggregate
29 Console.WriteLine("Sum of squares via Aggregate method: " +
30);
31
32 // product of values via Aggregate
33 Console.WriteLine("Product via Aggregate method: " +
34);
35
36 // even values displayed in sorted order
37 Console.Write("\nEven values displayed in sorted order: ");
38
39
40
41

Fig. 19.8 | Functional programming with LINQ extension methods and lambdas. (Part 1 of 2.)

values.Min()
values.Max()
values.Sum()

values.Average()

values.Aggregate(0, (x, y) => x + y)

values.Aggregate(0, (x, y) => x + y * y)

values.Aggregate(1, (x, y) => x * y)

values.Where(value => value % 2 == 0) // find even integers
 .OrderBy(value => value) // sort remaining values
 .Display(); // show results

ptg18189312

618 Chapter 19 Generic Collections; Functional Programming with LINQ/PLINQ

Extension Method Display
Throughout this example, we display the results of various operations by calling our own
extension method named Display, which is defined in the static class Extensions
(lines 57–64). The method uses string method Join to concatenate the IEnumerable<T>
argument’s elements separated by spaces.

Note at the beginning and end of Main that when we call Display directly on the
values collection (lines 16 and 52) the same values are displayed in the same order. These
outputs confirm that the functional-programming operations performed throughout Main
(which we discuss in Sections 19.11.1–19.11.4) do not modify the contents of the original
values collection.

42 // odd values multiplied by 10 and displayed in sorted order
43 Console.Write(
44 "Odd values multiplied by 10 displayed in sorted order: ");
45
46
47
48
49
50 // display original values again to prove they were not modified
51 Console.Write("\nOriginal values: ");
52 values.Display(); // call Display extension method
53 }
54 }
55
56 // declares an extension method
57 static class Extensions
58 {
59 // extension method that displays all elements separated by spaces
60 public static void Display<T>(this IEnumerable<T> data)
61 {
62 Console.WriteLine(string.Join(" ", data));
63 }
64 }
65 }

Original values: 3 10 6 1 4 8 2 5 9 7

Min: 1
Max: 10
Sum: 55
Average: 5.5

Sum via Aggregate method: 55
Sum of squares via Aggregate method: 385
Product via Aggregate method: 3628800

Even values displayed in sorted order: 2 4 6 8 10
Odd values multiplied by 10 displayed in sorted order: 10 30 50 70 90

Original values: 3 10 6 1 4 8 2 5 9 7

Fig. 19.8 | Functional programming with LINQ extension methods and lambdas. (Part 2 of 2.)

values.Where(value => value % 2 != 0) // find odd integers
 .Select(value => value * 10) // multiply each by 10
 .OrderBy(value => value) // sort the values
 .Display(); // show results

ptg18189312

19.11 Functional Programming with LINQ Method-Call Syntax and Lambdas 619

19.11.1 LINQ Extension Methods Min, Max, Sum and Average
Class Enumerable (namespace System.Linq) defines various LINQ extension methods for
performing common reduction operations including:

• Min (line 19) returns the smallest value in the collection.

• Max (line 20) returns the largest value in the collection.

• Sum (line 21) returns the sum of all the values in the collection.

• Average (line 22) returns the average of all the values in the collection.

Iteration and Mutation Are Hidden from You
Note in lines 19–22 that for each of these reduction operations:

• We simply say what we want to accomplish, not how to accomplish it—there are
no iteration details in the app.

• No mutable variables are used in the app to perform these operations.

• The values collection is not modified (confirmed by the output of line 52).

In fact, the LINQ operations have no side effects that modify the original collection or any
other variables in the app—a key aspect of functional programming.

Of course, behind the scenes iteration and mutable variables are required:

• All four extension methods iterate through the collection and must keep track of
the current element they’re processing.

• While iterating through the collection, Min and Max must store the current small-
est and largest items, respectively, and Sum and Average must keep track of the
total of the elements processed so far—all of these require mutating a local vari-
able that’s hidden from you.

The other operations in Sections 19.11.2–19.11.4 also require iteration and mutable vari-
ables, but the library—which has already been thoroughly debugged and tested—handles
these details for you. To see how LINQ extension methods like Min, Max, Sum and Average
implement these concepts, check out class Enumerable in the .NET source code at

Class Enumerable is divided into many partial classes—you can find methods Min, Max,
Sum and Average in the files Min.cs, Max.cs, Sum.cs and Average.cs.

19.11.2 Aggregate Extension Method for Reduction Operations
You can define your own reductions with the Aggregate LINQ extension method. For ex-
ample, the call to Aggregate in lines 25–26 sums the elements of values. The version of
Aggregate used here receives two arguments:

• The first argument (0) is a value that helps you begin the reduction operation.
When summing the elements of a collection, we begin with the value 0. Shortly,
we’ll use 1 to begin calculating the product of the elements.

• The second argument is a delegate of type Func (namespace System) that represents
a method which receives two arguments of the same type and returns a value—
there are many versions of type Func that specify from 0 to 16 arguments of any

https://github.com/dotnet/corefx/tree/master/src/System.Linq/src/
System/Linq

https://github.com/dotnet/corefx/tree/master/src/System.Linq/src/System/Linq
https://github.com/dotnet/corefx/tree/master/src/System.Linq/src/System/Linq

ptg18189312

620 Chapter 19 Generic Collections; Functional Programming with LINQ/PLINQ

type. In this case, we pass the following lambda expression, which returns the sum
of its two arguments:

Once for each element in the collection, Aggregate calls this lambda expression.

• On the first call to the lambda, parameter x’s value is Aggregate’s first argument (0)
and parameter y’s value is the first int in values (3), producing the value 3 (0 + 3).

• Each subsequent call to the lambda uses the result of the previous call as the lamb-
da’s first argument and the next element of the collection as the second. On the
second call to the lambda, parameter x’s value is the result of the first calculation
(3) and parameter y’s value is the second int in values (10), producing the sum
13 (3 + 10).

• On the third call to the lambda, parameter x’s value is the result of the previous
calculation (13) and parameter y’s value is the third int in values (6), producing
the sum 19 (13 + 6).

This process continues producing a running total of the values until they’ve all been used,
at which point the final sum is returned by Aggregate. Note again that no mutable vari-
ables are used to reduce the collection to the sum of its elements and that the original val-
ues collection is not modified.

Summing the Squares of the Values with Method Aggregate
Lines 29–30 use Aggregate to calculate the sums of the squares of values’ elements. The
lambda in this case,

adds the square of the current value to the running total. Evaluation of the reduction pro-
ceeds as follows:

• On the first call to the lambda, parameter x’s value is Aggregate’s first argument
(0) and parameter y’s value is the first int in values (3), producing the value 9
(0 + 32).

• On the next call to the lambda, parameter x’s value is the result of the first calcu-
lation (9) and parameter y’s value is the second int in values (10), producing the
sum 109 (9 + 102).

• On the next call to the lambda, parameter x’s value is the result of the previous
calculation (109) and parameter y’s value is the third int in values (6), producing
the sum 145 (109 + 62).

This process continues producing a running total of the squares of the elements until
they’ve all been used, at which point the final sum is returned by Aggregate. Note again
that no mutable variables are used to reduce the collection to the sum of its squares and that
the original values collection is not modified.

Calculating the Product of the Values with Method Aggregate
Lines 33–34 use Aggregate to calculate the product of values’ elements. The lambda

 (x, y) => x + y

(x, y) => x + y * y

(x, y) => x * y

ptg18189312

19.11 Functional Programming with LINQ Method-Call Syntax and Lambdas 621

multiplies its two arguments. Because we’re producing a product, we begin with the value
1 in this case. Evaluation of the reduction proceeds as follows:

• On the first call to the lambda, parameter x’s value is Aggregate’s first argument (1)
and parameter y’s value is the first int in values (3), producing the value 3 (1 * 3).

• On the next call to the lambda, parameter x’s value is the result of the first calcu-
lation (3) and parameter y’s value is the second int in values (10), producing the
sum 30 (3 * 10).

• On the next call to the lambda, parameter x’s value is the result of the previous
calculation (30) and parameter y’s value is the third int in values (6), producing
the sum 180 (30 * 6).

This process continues producing a running product of the elements until they’ve all been
used, at which point the final product is returned. Note again that no mutable variables are
used to reduce the collection to the product of its elements and that the original values
collection is not modified.

19.11.3 The Where Extension Method for Filtering Operations
Lines 38–40 filter the even integers in values, sort them in ascending order and display
the results. You filter elements to produce a new collection of results that match a condi-
tion known as a predicate. LINQ extension method Where (line 38) receives as its argument
a Func delegate for a method that receives one argument and returns a bool indicating
whether a given element should be included in the collection returned by Where.

The lambda in line 38:

receives a value and returns a bool indicating whether the value satisfies the predicate—in
this case, if the value it receives is divisible by 2.

Sorting the Results
The OrderBy extension method receives as its argument a Func delegate representing a
method that receives one parameter and returns a value that’s used to order the results. In
this case (line 39), the lambda expression

simply returns its argument, which OrderBy uses to sort the values in ascending order—for
descending order you’d use OrderByDescending. Note again that no mutable variables are
used to filter or sort the collection and that the original values collection is not modified.

Deferred Execution
Calls to Where and OrderBy use the same deferred execution we discussed in Section 9.5.2—
they aren’t evaluated until you iterate over the results. In lines 38–40 (Fig. 19.8), this occurs
when our Display extension method is called (line 40). This means you can save the opera-
tion into a variable for future execution, as in

value => value % 2 == 0

value => value

var evenIntegers =
 values.Where(value => value % 2 == 0) // find even integers

 .OrderBy(value => value); // sort remaining values

ptg18189312

622 Chapter 19 Generic Collections; Functional Programming with LINQ/PLINQ

You can execute the operation by iterating over evenIntegers later. Each time you execute
the operation, the current elements in values will be filtered and sorted. So, if you modify
values by adding more even integers to the collection, these will appear in the results
when you iterate over evenIntegers.

19.11.4 Select Extension Method for Mapping Operations
Lines 45–48 filter the odd integers in values, multiply each odd integer by 10, sort the val-
ues in ascending order and display the results. The new feature here is the mapping oper-
ation that takes each value and multiplies it by 10. Mapping transforms a collection’s
elements to new values, which sometimes are of different types from the original elements.

LINQ extension method Select receives as its argument a Func delegate for a method
that receives one argument and maps it to a new value (possibly of another type) that’s
included in the collection returned by Select. The lambda in line 46:

multiplies its value argument by 10, thus mapping it to a new value. Line 47 sorts the results.
Calls to Select are deferred until you iterate over the results—in this case, when our Display
extension method is called (line 48). Note again that no mutable variables are used to map
the collection’s elements and that the original values collection is not modified.

19.12 PLINQ: Improving LINQ to Objects Performance
with Multicore
Today’s computers are likely to have multicore processors with four or eight cores. One
vendor already offers a 61-core processor3 and future processors are likely to have many
more cores. Your computer’s operating system shares the cores among operating system
tasks and the apps running at a given time.

Threads
A concept called threads enables the operating system to run parts of an app concurrent-
ly—for example, while the user-interface thread (commonly called the GUI thread) waits
for the user to interact with a GUI control, separate threads in the same app could be per-
forming other tasks like complex calculations, downloading a video, playing music, send-
ing an e-mail, etc. Though all of these tasks can make progress concurrently, they may do
so by sharing one processor core.

Sharing Processors
With multicore processors, apps can operate truly in parallel (that is, simultaneously) on sep-
arate cores. In addition, the operating system can allow one app’s threads to operate truly in
parallel on separate cores, possibly increasing the app’s performance substantially. Paralleliz-
ing apps and algorithms to take advantage of multiple cores is difficult and highly error
prone, especially if those tasks share data that can be modified by one or more of the tasks.

PLINQ (Parallel LINQ)
In Section 19.10, we mentioned that a benefit of functional programming and internal it-
eration is that the library code (behind the scenes) iterates through all the elements of a

value => value * 10

3. The website http://processors.specout.com shows a range of processors with 1 to 61 cores.

http://processors.specout.com

ptg18189312

19.12 PLINQ: Improving LINQ to Objects Performance with Multicore 623

collection to perform a task. Another benefit is that you can easily ask the library to per-
form a task with parallel processing to take advantage of a processor’s multiple cores. This
is the purpose of PLINQ (Parallel LINQ)—an implementation of the LINQ to Objects
extension methods that parallelizes the operations for increased performance. PLINQ
handles for you the error-prone aspects of breaking tasks into smaller pieces that can exe-
cute in parallel and coordinating the results of those pieces, making it easier for you to
write high-performance apps that take advantage of multicore processors.

Demonstrating PLINQ
Figure 19.9 demonstrates the LINQ to Objects and PLINQ extension methods Min, Max
and Average operating on a 10,000,000-element array of random int values (created in
lines 13–15). As with LINQ to Objects, the PLINQ versions of these operations do not
modify the original collection. We time the operations to show the substantial performance
improvements of PLINQ (using multiple cores) over LINQ to Objects (using a single
core). For the remainder of this discussion we refer to LINQ to Objects simply as LINQ.

1 // Fig. 19.9: ParallelizingWithPLINQ.cs
2 // Comparing performance of LINQ and PLINQ Min, Max and Average methods.
3 using System;
4 using System.Linq;
5
6 class ParallelizingWithPLINQ
7 {
8 static void Main()
9 {

10 var random = new Random();
11
12 // create array of random ints in the range 1-999
13
14
15
16
17 // time the Min, Max and Average LINQ extension methods
18 Console.WriteLine(
19 "Min, Max and Average with LINQ to Objects using a single core");
20
21 var linqMin = values.Min();
22 var linqMax = values.Max();
23 var linqAverage = values.Average();
24
25
26 // display results and total time in milliseconds
27
28 DisplayResults(linqMin, linqMax, linqAverage, linqTime);
29
30 // time the Min, Max and Average PLINQ extension methods
31 Console.WriteLine(
32 "\nMin, Max and Average with PLINQ using multiple cores");

Fig. 19.9 | Comparing performance of LINQ and PLINQ Min, Max and Average methods. (Part
1 of 2.)

int[] values = Enumerable.Range(1, 10000000)
 .Select(x => random.Next(1, 1000))
 .ToArray();

var linqStart = DateTime.Now; // get time before method calls

var linqEnd = DateTime.Now; // get time after method calls

var linqTime = linqEnd.Subtract(linqStart).TotalMilliseconds;

ptg18189312

624 Chapter 19 Generic Collections; Functional Programming with LINQ/PLINQ

33
34 var plinqMin = values. .Min();
35 var plinqMax = values. .Max();
36 var plinqAverage = values. .Average();
37
38
39 // display results and total time in milliseconds
40
41 DisplayResults(plinqMin, plinqMax, plinqAverage, plinqTime);
42
43 // display time difference as a percentage
44 Console.WriteLine("\nPLINQ took " +
45 $"{((linqTime - plinqTime) / linqTime):P0}" +
46 " less time than LINQ");
47 }
48
49 // displays results and total time in milliseconds
50 static void DisplayResults(
51 int min, int max, double average, double time)
52 {
53 Console.WriteLine($"Min: {min}\nMax: {max}\n" +
54 $"Average: {average:F}\nTotal time in milliseconds: {time:F}");
55 }
56 }

Min, Max and Average with LINQ to Objects using a single core
Min: 1
Max: 999
Average: 499.96
Total time in milliseconds: 179.03

Min, Max and Average with PLINQ using multiple cores
Min: 1
Max: 999
Average: 499.96
Total time in milliseconds: 80.99

PLINQ took 55 % less time than LINQ

Min, Max and Average with LINQ to Objects using a single core
Min: 1
Max: 999
Average: 500.07
Total time in milliseconds: 152.13

Min, Max and Average with PLINQ using multiple cores
Min: 1
Max: 999
Average: 500.07
Total time in milliseconds: 89.05

PLINQ took 41 % less time than LINQ

Fig. 19.9 | Comparing performance of LINQ and PLINQ Min, Max and Average methods. (Part
2 of 2.)

var plinqStart = DateTime.Now; // get time before method calls
AsParallel()
AsParallel()

AsParallel()
var plinqEnd = DateTime.Now; // get time after method calls

var plinqTime = plinqEnd.Subtract(plinqStart).TotalMilliseconds;

ptg18189312

19.12 PLINQ: Improving LINQ to Objects Performance with Multicore 625

Generating a Range of ints with Enumerable Method Range
Using functional techniques, lines 13–15 create an array of 10,000,000 random ints.
Class Enumerable provides static method Range to produce an IEnumerable<int> con-
taining integer values. The expression

produces an IEnumerable<int> containing the values 1 through 10,000,000—the first ar-
gument specifies the starting value in the range and the second specifies the number of val-
ues to produce. Next, line 14 uses LINQ extension method Select to map every element
to a random integer in the range 1–999. The lambda

ignores its parameter (x) and simply returns a random value that becomes part of the IEnu-
merable<int> returned by Select. Finally, line 15 calls extension method ToArray, which
returns an array of ints containing the elements produced by the Select operation. Note
that class Enumerable also provides extension method ToList to obtain a List<T> rather
than an array.

Min, Max and Average with LINQ
To calculate the total time required for the LINQ Min, Max and Average extension-method
calls, we use type DateTime’s Now property to get the current time before (line 20) and after
(line 24) the LINQ operations. Lines 21–23 perform Min, Max and Average on the array
values. Line 27 uses DateTime method Subtract to compute the difference between the
end and start times, which is returned as a TimeSpan. We then store the TimeSpan’s Total-
Milliseconds value for use in a later calculation showing PLINQ’s percentage improve-
ment over LINQ.

Min, Max and Average with PLINQ
Lines 33–41 perform the same tasks as lines 20–28, but use PLINQ Min, Max and Average
extension-method calls to demonstrate the performance improvement over LINQ. To ini-
tiate parallel processing, lines 34–36 invoke IEnumerable<T> extension method AsParal-
lel (from class ParallelEnumerable), which returns a ParallelQuery<T> (in this
example, T is int). An object that implements ParallelQuery<T> can be used with
PLINQ’s parallelized versions of the LINQ extension methods. Class ParallelEnumera-
ble defines the ParallelQuery<T> (PLINQ) parallelized versions as well as several
PLINQ-specific extension methods. For more information on the extension methods de-
fined in class ParallelEnumerable, visit

Performance Difference
Lines 44–46 calculate and display the percentage improvement in processing time of
PLINQ over LINQ. As you can see from the sample outputs, the simple choice of PLINQ
(via AsParallel) decreased the total processing time substantially—55% and 41% less
time in the two sample outputs. We ran the app many more times (using up to three cores)
and processing-time savings were generally within the 41–55% range—though we did
have a 61% savings on one sample execution. The overall savings will be affected by your
processor’s number of cores and by what else is running on your computer.

Enumerable.Range(1, 10000000)

x => random.Next(1, 1000)

https://msdn.microsoft.com/library/system.linq.parallelenumerable

https://msdn.microsoft.com/library/system.linq.parallelenumerable

ptg18189312

626 Chapter 19 Generic Collections; Functional Programming with LINQ/PLINQ

19.13 (Optional) Covariance and Contravariance for
Generic Types
C# supports covariance and contravariance of generic interface and delegate types. We’ll
consider these concepts in the context of arrays, which have always been covariant and
contravariant in C#.

Covariance in Arrays
Recall our Employee class hierarchy from Section 12.5, which consisted of the base class
Employee and the derived classes SalariedEmployee, HourlyEmployee, CommissionEm-
ployee and BasePlusCommissionEmployee. Assuming the declarations

we can write the following statement:

Even though the array type SalariedEmployee[] does not derive from the array type
Employee[], the preceding assignment is allowed because class SalariedEmployee is a de-
rived class of Employee.

Similarly, suppose we have the following method, which displays the string repre-
sentation of each Employee in its employees array parameter:

We can call this method with the array of SalariedEmployees, as in

and the method will correctly display the string representation of each SalariedEmploy-
ee object in the argument array. Assigning an array of a derived-class type to an array vari-
able of a base-class type is an example of covariance.

Covariance in Generic Types
Covariance works with several generic interface and delegate types, including IEnumera-
ble<T>. Arrays and generic collections implement the IEnumerable<T> interface. Using
the salariedEmployees array declared previously, consider the following statement:

In earlier versions of C#, this generated a compilation error. Interface IEnumerable<T> is
now covariant, so the preceding statement is allowed. If we modify method PrintEmploy-
ees, as in

we can call PrintEmployees with the array of SalariedEmployee objects, because that ar-
ray implements the interface IEnumerable<SalariedEmployee> and because a Salaried-
Employee is an Employee and because IEnumerable<T> is covariant. Covariance like this
works only with reference types that are related by a class hierarchy.

SalariedEmployee[] salariedEmployees = {
 new SalariedEmployee("Bob", "Blue", "111-11-1111", 800M),

 new SalariedEmployee("Rachel", "Red", "222-22-2222", 1234M) };
Employee[] employees;

employees = salariedEmployees;

void PrintEmployees(Employee[] employees)

PrintEmployees(salariedEmployees);

IEnumerable<Employee> employees = salariedEmployees;

void PrintEmployees(IEnumerable<Employee> employees)

ptg18189312

19.13 (Optional) Covariance and Contravariance for Generic Types 627

Contravariance in Arrays
Previously, we showed that an array of a derived-class type (salariedEmployees) can be
assigned to an array variable of a base-class type (employees). Now, consider the following
statement, which has always compiled in C#:

Based on the previous statements, we know that the Employee array variable employees
currently refers to an array of SalariedEmployees. Using a cast operator to assign employ-
ees—an array of base-class-type elements—to salariedEmployees2—an array of de-
rived-class-type elements—is an example of contravariance. The preceding cast will fail at
runtime if employees is not an array of SalariedEmployees.

Contravariance in Generic Types
To understand contravariance in generic types, consider a SortedSet of SalariedEmploy-
ees. Class SortedSet<T> maintains a set of objects in sorted order—no duplicates are al-
lowed. The objects placed in a SortedSet must implement the IComparable<T> interface.
For classes that do not implement this interface, you can still compare their objects using
an object that implements the IComparer<T> interface. This interface’s Compare method
compares its two arguments and returns 0 if they’re equal, a negative integer if the first
object is less than the second, or a positive integer if the first object is greater than the sec-
ond.

Our Employee hierarchy classes do not implement IComparable<T>. Let’s assume we
wish to sort Employees by social security number. We can implement the following class
to compare any two Employees:

Method Compare returns the result of comparing the two Employees’ social security num-
bers using string method CompareTo.

Now consider the following statement, which creates a SortedSet:

When the type argument does not implement IComparable<T>, you must supply an ap-
propriate IComparer<T> object to compare the objects that will be placed in the Sorted-
Set. Since, we’re creating a SortedSet of SalariedEmployees, the compiler expects the
IComparer<T> object to implement the IComparer<SalariedEmployee>. Instead, we pro-
vided an object that implements IComparer<Employee>. The compiler allows us to pro-
vide an IComparer for a base-class type where an IComparer for a derived-class type is
expected because interface IComparer<T> supports contravariance.

SalariedEmployee[] salariedEmployees2 =
 (SalariedEmployee[]) employees;

class EmployeeComparer : IComparer<Employee>
{

 int IComparer<Employee>.Compare(Employee a, Employee b)
 {

 return a.SocialSecurityNumber.CompareTo(
b.SocialSecurityNumber);

 }
}

SortedSet<SalariedEmployee> set =
 new SortedSet<SalariedEmployee>(new EmployeeComparer());

ptg18189312

628 Chapter 19 Generic Collections; Functional Programming with LINQ/PLINQ

Web Resources
For a list of covariant and contravariant interface types, visit

It’s also possible to create your own types that support covariance and contravariance. For
information, visit

19.14 Wrap-Up
This chapter introduced the prepackaged collection classes provided by the .NET Frame-
work. We presented the hierarchy of interfaces that many of the collection classes imple-
ment, overviewed many of the implementation classes and introduced enumerators that
enable programs to iterate through collections.

We discussed the .NET Framework namespaces dedicated to collections, including
System.Collections for object-based collections and System.Collections.Generic for
generic collections—such as the List<T>, LinkedList<T>, Dictionary<K,V> and Sorted-
Dictionary<K,V> classes—that store objects of types you specify when you create the col-
lection. We also mentioned the namespace System.Collections.Concurrent containing
so-called thread-safe generic collections for use in multithreaded applications, and
System.Collections.Specialized containing collections that are optimized for specific
scenarios, such as manipulating collections of bits.

You saw how to use class Array to perform array manipulations. We continued our
discussion of delegates that hold references to methods and introduced lambda expres-
sions, which allow you to define anonymous methods that can be used with delegates. We
focused on using lambdas to pass method references to methods that specify delegate
parameters.

We provided a brief introduction to functional programming, showing how to use it
to write code more concisely and with fewer bugs than programs written with previous
techniques. In particular, we used LINQ extension methods and lambdas to implement
functional operations that manipulated lists of values.

In Chapter 20, we begin our discussion of databases, which organize data in such a
way that the data can be selected and updated quickly. We introduce the ADO.NET
Entity Framework and LINQ to Entities, which allow you to write LINQ queries that are
used to query databases.

https://msdn.microsoft.com/library/dd799517#VariantList

https://msdn.microsoft.com/library/mt654058

https://msdn.microsoft.com/library/dd799517#VariantList
https://msdn.microsoft.com/library/mt654058

ptg18189312

20
Databases and LINQ

O b j e c t i v e s
In this chapter you’ll:

■ Be introduced to the relational database model.
■ Use an ADO.NET Entity Data Model to create classes for

interacting with a database via LINQ to Entities.
■ Use LINQ to retrieve and manipulate data from a database.
■ Add data sources to projects.
■ Use the IDE’s drag-and-drop capabilities to display database

tables in apps.
■ Use data binding to move data seamlessly between GUI

controls and databases.
■ Create Master/Detail views that enable you to select a record

and display its details.

ptg18189312

630 Chapter 20 Databases and LINQ

O
u

tl
in

e

20.1 Introduction
A database is an organized collection of data. A database management system (DBMS)
provides mechanisms for storing, organizing, retrieving and modifying data. Many of to-
day’s most popular DBMSs manage relational databases, which organize data simply as ta-
bles with rows and columns.

Some popular proprietary DBMSs are Microsoft SQL Server, Oracle, Sybase and
IBM DB2. PostgreSQL, MariaDB and MySQL are popular open-source DBMSs that can
be downloaded and used freely by anyone. In this chapter, we use a version of Microsoft’s
SQL Server that’s installed with Visual Studio. It also can be downloaded separately from

SQL Server Express
SQL Server Express provides many features of Microsoft’s full (fee-based) SQL Server
product, but has some limitations, such as a maximum database size of 10GB. A SQL
Server Express database file can be easily migrated to a full version of SQL Server. You can
learn more about the SQL Server versions at

The version of SQL Server bundled with Visual Studio Community is called SQL Server
Express LocalDB. It’s meant for development and testing of apps on your computer.

Structured Query Language (SQL)
A language called Structured Query Language (SQL)—pronounced “sequel”—is an in-
ternational standard used with relational databases to perform queries (that is, to request
information that satisfies given criteria) and to manipulate data. For years, programs that

20.1 Introduction
20.2 Relational Databases
20.3 A Books Database
20.4 LINQ to Entities and the ADO.NET

Entity Framework
20.5 Querying a Database with LINQ

20.5.1 Creating the ADO.NET Entity Data
Model Class Library

20.5.2 Creating a Windows Forms Project
and Configuring It to Use the Entity
Data Model

20.5.3 Data Bindings Between Controls and
the Entity Data Model

20.6 Dynamically Binding Query Results
20.6.1 Creating the Display Query Results

GUI
20.6.2 Coding the Display Query Results

App

20.7 Retrieving Data from Multiple Tables
with LINQ

20.8 Creating a Master/Detail View App
20.8.1 Creating the Master/Detail GUI
20.8.2 Coding the Master/Detail App

20.9 Address Book Case Study
20.9.1 Creating the Address Book App’s

GUI
20.9.2 Coding the Address Book App

20.10 Tools and Web Resources
20.11 Wrap-Up

https://www.microsoft.com/en-us/server-cloud/products/sql-server-
editions/sql-server-express.aspx

https://www.microsoft.com/en-us/server-cloud/products/sql-server-
editions/overview.aspx

https://www.microsoft.com/en-us/server-cloud/products/sql-server-editions/sql-server-express.aspx
https://www.microsoft.com/en-us/server-cloud/products/sql-server-editions/sql-server-express.aspx
https://www.microsoft.com/en-us/server-cloud/products/sql-server-editions/overview.aspx
https://www.microsoft.com/en-us/server-cloud/products/sql-server-editions/overview.aspx

ptg18189312

20.2 Relational Databases 631

accessed a relational database passed SQL queries as strings to the database management
system, then processed the results.

LINQ to Entities and the ADO.NET Entity Framework
A logical extension of querying and manipulating data in databases is to perform similar
operations on any sources of data, such as arrays, collections (like the Items collection of
a ListBox) and files. Chapter 9 introduced LINQ to Objects and used it to manipulate data
stored in arrays. LINQ to Entities allows you to manipulate data stored in a relational da-
tabase—in our case, a SQL Server Express database. As with LINQ to Objects, the IDE
provides IntelliSense for your LINQ to Entities queries.

The ADO.NET Entity Framework (EF) enables apps to interact with data in various
forms, including data stored in relational databases. You’ll use the ADO.NET Entity
Framework and Visual Studio to create a so-called entity data model that represents the
database, then use LINQ to Entities to manipulate objects in the entity data model.
Though you’ll manipulate data in a SQL Server Express database in this chapter, the
ADO.NET Entity Framework works with most popular database management systems.
Behind the scenes, the ADO.NET Entity Framework generates SQL statements that
interact with a database.

This chapter introduces general concepts of relational databases, then implements sev-
eral database apps using the ADO.NET Entity Framework, LINQ to Entities and the
IDE’s tools for working with databases. Databases are at the heart of most “industrial
strength” apps.

20.2 Relational Databases
A relational database organizes data in tables. Figure 20.1 illustrates a sample Employees
table that might be used in a personnel system. The table stores the attributes of employ-
ees. Tables are composed of rows (also called records) and columns (also called fields) in
which values are stored. This table consists of six rows (one per employee) and five col-
umns (one per attribute). The attributes are the employee’s

• ID,

• name,

• department,

• salary and

• location.

The ID column of each row is the table’s primary key—a column (or group of col-
umns) requiring a unique value that cannot be duplicated in other rows. This guarantees
that each primary-key value can be used to identify one row. A primary key composed of
two or more columns is known as a composite key—in this case, every combination of
column values in the composite key must be unique. Good examples of primary-key col-
umns in other apps are a book’s ISBN number in a book information system or a part
number in an inventory system—values in each of these columns must be unique. We
show an example of a composite primary key in Section 20.3. LINQ to Entities requires
every table to have a primary key to support updating the data in tables. The rows in

ptg18189312

632 Chapter 20 Databases and LINQ

Fig. 20.1 are displayed in ascending order by primary key. But they could be listed in
descending order or in no particular order at all.

Each column represents a different data attribute. Some column values may be dupli-
cated between rows. For example, three different rows in the Employees table’s Depart-
ment column contain the number 413, indicating that these employees work in the same
department.

Selecting Data Subsets
You can use LINQ to Entities to define queries that select subsets of the data from a table.
For example, a program might select data from the Employees table to create a query result
that shows where each department is located, in ascending order by Department number
(Fig. 20.2).

20.3 A Books Database
We now consider a simple Books database that stores information about some Deitel
books. First, we overview the database’s tables. A database’s tables, their fields and the re-
lationships among them are collectively known as a database schema. The ADO.NET
Entity Framework uses a database’s schema to define classes that enable you to interact
with the database. Sections 20.5–20.8 show how to manipulate the Books database. The
database file—Books.mdf—is provided with this chapter’s examples. SQL Server database
files have the .mdf (“master data file”) filename extension.

Authors Table
The database consists of three tables: Authors, Titles and AuthorISBN. The Authors ta-
ble (described in Fig. 20.3) consists of three columns that maintain each author’s unique

Fig. 20.1 | Employees table sample data.

Fig. 20.2 | Distinct Department and Location data from the Employees table.

23603

24568

34589

35761

47132

78321

Jones

Kerwin

Larson

Myers

Neumann

Stephens

ID

Primary key

Row

Column

Name

413

413

642

611

413

611

Department

1100

2000

1800

1400

9000

8500

Salary

New Jersey

New Jersey

Los Angeles

Orlando

New Jersey

Orlando

Location

413
611
642

New Jersey
Orlando
Los Angeles

Department Location

ptg18189312

20.3 A Books Database 633

ID number, first name and last name, respectively. Figure 20.4 contains the sample data
from the Authors table.

Titles Table
The Titles table (described in Fig. 20.5) consists of four columns that maintain informa-
tion about each book in the database, including its ISBN, title, edition number and copy-
right year. Figure 20.6 contains the data from the Titles table.

Column Description

AuthorID Author’s ID number in the database. In the
Books database, this integer column is defined as
an identity column, also known as an autoincre-
mented column—for each row inserted in the
table, the AuthorID value is increased by 1 auto-
matically to ensure that each row has a unique
AuthorID. This is the primary key.

FirstName Author’s first name (a string).
LastName Author’s last name (a string).

Fig. 20.3 | Authors table of the Books database.

AuthorID FirstName LastName

1 Paul Deitel

2 Harvey Deitel

3 Abbey Deitel

4 Sue Green

4 John Purple

Fig. 20.4 | Data from the Authors table.

Column Description

ISBN ISBN of the book (a string). The table’s primary
key. ISBN is an abbreviation for “International
Standard Book Number”—a numbering scheme
that publishers worldwide use to give every book
a unique identification number.

Title Title of the book (a string).
EditionNumber Edition number of the book (an integer).
Copyright Copyright year of the book (a string).

Fig. 20.5 | Titles table of the Books database.

ptg18189312

634 Chapter 20 Databases and LINQ

AuthorISBN Table of the Books Database
The AuthorISBN table (described in Fig. 20.7) consists of two columns that maintain
ISBNs for each book and their corresponding authors’ ID numbers. This table associates
authors with their books. The AuthorID column is a foreign key—a column in this table
that matches the primary-key column in another table (that is, AuthorID in the Authors
table). The ISBN column is also a foreign key—it matches the primary-key column (that is,
ISBN) in the Titles table. A database might consist of many tables. A goal of a database’s
designer is to minimize the amount of duplicated data among the database’s tables. For-
eign keys, which are specified when a database table is created in the database, link the data
in multiple tables. Together the AuthorID and ISBN columns in this table form a composite
primary key. Every row in this table uniquely matches one author to one book’s ISBN.
Figure 20.8 contains the data from the AuthorISBN table of the Books database.

ISBN Title EditionNumber Copyright

0132151006 Internet & World Wide Web How to Program 5 2012

0133807800 Java How to Program 10 2015

0132575655 Java How to Program, Late Objects Version 10 2015

0133976890 C How to Program 8 2016

0133406954 Visual Basic 2012 How to Program 6 2014

0134601548 Visual C# How to Program 6 2017

0134448235 C++ How to Program 10 2016

0134444302 Android How to Program 3 2016

0134289366 Android 6 for Programmers: An App-Driven

Approach

3 2016

0133965260 iOS 8 for Programmers: An App-Driven

Approach with Swift

3 2015

0134021363 Swift for Programmers 1 2015

Fig. 20.6 | Data from the Titles table of the Books database.

Column Description

AuthorID The author’s ID number, a foreign key to the Authors table.

ISBN The ISBN for a book, a foreign key to the Titles table.

Fig. 20.7 | AuthorISBN table of the Books database.

AuthorID ISBN AuthorID ISBN

1 0132151006 1 0132575655

1 0133807800 1 0133976890

Fig. 20.8 | Data from the AuthorISBN table of the Books database. (Part 1 of 2.)

ptg18189312

20.3 A Books Database 635

Every foreign-key value must appear as another table’s primary-key value so the
DBMS can ensure that the foreign key value is valid. For example, the DBMS ensures that
the AuthorID value for any particular row of the AuthorISBN table (Fig. 20.8) is valid by
checking that there is a row in the Authors table with that AuthorID as the primary key.

Foreign keys also allow related data in multiple tables to be selected from those tables—
this is known as joining the data. There’s a one-to-many relationship between a primary key
and a corresponding foreign key—e.g., an author can write many books and a book can be
written by many authors. So a foreign key can appear many times in its own table but only
once (as the primary key) in another table. For example, the ISBN 0132151006 can appear in
several rows of AuthorISBN but only once in Titles, where ISBN is the primary key.

Entity-Relationship Diagram for the Books Database
Figure 20.9 is an entity-relationship (ER) diagram for the Books database. This diagram
shows the tables in the database and the relationships among them.

Primary Keys
The first compartment in each box contains the table’s name. The names in italic font are
primary keys—AuthorID in the Authors table, AuthorID and ISBN in the AuthorISBN table,
and ISBN in the Titles table. Every row must have a value in the primary-key column (or
group of columns), and the value of the key must be unique in the table; otherwise, the
DBMS will report an error. The names AuthorID and ISBN in the AuthorISBN table are
both italic—together these form a composite primary key for the AuthorISBN table.

1 0133406954 2 0133406954

1 0134601548 2 0134601548

1 0134448235 2 0134448235

1 0134444302 2 0134444302

1 0134289366 2 0134289366

1 0133965260 2 0133965260

1 0134021363 2 0134021363

2 0132151006 3 0132151006

2 0133807800 3 0133406954

2 0132575655 4 0134289366

2 0133976890 5 0134289366

Fig. 20.9 | Entity-relationship diagram for the Books database.

AuthorID ISBN AuthorID ISBN

Fig. 20.8 | Data from the AuthorISBN table of the Books database. (Part 2 of 2.)

1 1 Titles

Copyright

EditionNumber
Title
ISBN

AuthorISBN

ISBN
AuthorID

Authors

LastName
FirstName
AuthorID

ptg18189312

636 Chapter 20 Databases and LINQ

Relationships Between Tables
The lines connecting the tables in Fig. 20.9 represent the relationships among the tables.
Consider the line between the Authors and AuthorISBN tables. On the Authors end of the
line, there’s a 1, and on the AuthorISBN end, an infinity symbol (∞) . This indicates a one-
to-many relationship—for each author in the Authors table, there can be an arbitrary num-
ber of ISBNs for books written by that author in the AuthorISBN table (that is, an author
can write any number of books). Note that the relationship line links the AuthorID col-
umn in the Authors table (where AuthorID is the primary key) to the AuthorID column
in the AuthorISBN table (where AuthorID is a foreign key)—the line between the tables
links the primary key to the matching foreign key.

The line between the Titles and AuthorISBN tables illustrates a one-to-many relation-
ship—one book can be written by many authors. Note that the line between the tables
links the primary key ISBN in the Titles table to the corresponding foreign key in the
AuthorISBN table. Figure 20.9 illustrates that the sole purpose of the AuthorISBN table is
to provide a many-to-many relationship between the Authors and Titles tables—an
author can write many books, and a book can have many authors.

20.4 LINQ to Entities and the ADO.NET Entity
Framework
When using the ADO.NET Entity Framework, you interact with the database via classes
that the IDE generates from the database schema. You’ll initiate this process by adding a
new ADO.NET Entity Data Model to your project (as you’ll see in Section 20.5.1).

Classes Generated in the Entity Data Model
For the Authors and Titles tables in the Books database, the IDE creates two classes each
in the data model:

• The first class represents a row of the table and contains properties for each col-
umn in the table. Objects of this class—called row objects—store the data from
individual rows of the table. The IDE uses the singular version of a table’s plural
name as the row class’s name. For the Books database’s Authors table, the row
class’s name is Author, and for the Titles table, it’s Title.

• The second class represents the table itself. An object of this class stores a collec-
tion of row objects that correspond to all of the rows in the table. The table classes
for the Books database are named Authors and Titles.

Once generated, the entity data model classes have full IntelliSense support in the IDE.
Section 20.7 demonstrates queries that use the relationships among the Books database’s
tables to join data.

Relationships Between Tables in the Entity Data Model
You’ll notice that we did not mention the Books database’s AuthorISBN table. Recall that
this table links

• each author in the Authors table to that author’s books in the Titles table, and

• each book in the Titles table to the book’s authors in the Authors table.

ptg18189312

20.5 Querying a Database with LINQ 637

The entity data model’s generated classes include the relationships between tables. For ex-
ample, the Author row class contains a navigation property named Titles which provides
access to the Title objects representing all the books written by that author. The IDE au-
tomatically adds the “s” to “Title” to indicate that this property represents a collection of
Title objects. Similarly, the Title row class contains a navigation property named Au-
thors, which provides access to the Author objects representing a given book’s authors.

DbContext Class
A DbContext (namespace System.Data.Entity) manages the data flow between the pro-
gram and the database. When the IDE generates the entity data model’s row and table class-
es, it also creates a derived class of DbContext that’s specific to the database being
manipulated. For the Books database, this derived class has properties for the Authors and
Titles tables. As you’ll see, these can be used as data sources for manipulating data in
LINQ queries and in GUIs. Any changes made to the data managed by the DbContext can
be saved back to the database using the DbContext’s SaveChanges method.

IQueryable<T> Interface
LINQ to Entities works through interface IQueryable<T>, which inherits from interface
IEnumerable<T> introduced in Chapter 9. When a LINQ to Entities query on an IQuery-
able<T> object executes against the database, the results are loaded into objects of the cor-
responding entity data model classes for convenient access in your code.

Using Extension Methods to Manipulate IQueryable<T> Objects
Recall that extension methods add functionality to an existing class without modifying the
class’s source code. In Chapter 9, we introduced several LINQ extension methods, includ-
ing First, Any, Count, Distinct, ToArray and ToList. These methods, which are defined
as static methods of class Enumerable (namespace System.Linq), can be applied to any
object that implements the IEnumerable<T> interface, such as arrays, collections and the
results of LINQ to Objects queries.

In this chapter, we use a combination of the LINQ query syntax and LINQ extension
methods to manipulate database contents. The extension methods we use are defined as
static methods of class Queryable (namespace System.Linq) and can be applied to any
object that implements the IQueryable<T> interface—these include various entity data
model objects and the results of LINQ to Entities queries.

20.5 Querying a Database with LINQ
In this section, we demonstrate how to

• connect to a database,

• query it and

• display the results of the query.

There is little code in this section—the IDE provides visual programming tools and wizards
that simplify accessing data in apps. These tools establish database connections and create
the objects necessary to view and manipulate the data through Windows Forms GUI con-
trols—a technique known as data binding.

ptg18189312

638 Chapter 20 Databases and LINQ

For the examples in Sections 20.5–20.8, we’ll create one solution that contains several
projects. One will be a reusable class library containing the ADO.NET Entity Data Model
for interacting with the Books database. The other projects will be Windows Forms apps that
use the ADO.NET Entity Data Model in the class library to manipulate the database.

Our first example performs a simple query on the Books database from Section 20.3.
We retrieve the entire Authors table, ordered by the authors’ last name, then first name.
We then use data binding to display the data in a DataGridView—a control from name-
space System.Windows.Forms that can display data from a data source in tabular format.
The basic steps we’ll perform are:

• Create the ADO.NET entity data model classes for manipulating the database.

• Add the entity data model object that represents the Authors table as a data source.

• Drag the Authors table data source onto the Design view to create a GUI for dis-
playing the table’s data.

• Add code that allows the app to interact with the database.

The GUI for the program is shown in Fig. 20.10. All of the controls in this GUI are
automatically generated when we drag a data source that represents the Authors table onto
the Form in Design view. The BindingNavigator toolbar at the top of the window is a col-
lection of controls that allow you to navigate through the records in the DataGridView that
fills the rest of the window.

The BindingNavigator’s controls help you add records, delete records, modify
existing records and save your changes to the database. You can add a new record by
pressing the Add new button

then entering the new author’s first and last name in the DataGridView. You can delete an
existing record by selecting an author (either in the DataGridView or via the controls on
the BindingNavigator) and pressing the Delete button

Fig. 20.10 | GUI for the Display Authors Table app.

GUI controls for the
BindingNavigator

DataGridView with
the Authors table’s

column names

Move first

Move previous

Current position

Move next

Move last

Add new

Delete

Save Data

You can add a new record by
typing in this row of the

DataGridView

ptg18189312

20.5 Querying a Database with LINQ 639

You can edit an existing record by clicking the first-name or last-name field for that record
and typing the new value. To save your changes to the database, click the Save Data button

Empty values are not allowed in the Authors table of the Books database, so if you attempt
to save a record that does not contain a value for both the first name and last name, an
exception occurs.

20.5.1 Creating the ADO.NET Entity Data Model Class Library
This section presents the steps required to create the entity data model from an existing
database. A model describes the data that you’ll be manipulating—in our case, the data rep-
resented by the tables in the Books database.

Step 1: Creating a Class Library Project for the ADO.NET Entity Data Model
Select File > New > Project… to display the New Project dialog, then select Class Library from
the Visual C# templates and name the project BooksExamples. Click OK to create the proj-
ect, then delete the Class1.cs file from the Solution Explorer.

Step 2: Adding the ADO.NET Entity Data Model to the Class Library
To interact with the database, you’ll add an ADO.NET entity data model to the class li-
brary project. This will also configure the connection to the database.

1. Adding the ADO.NET Entity Data Model. Right click the BooksExamples project
in the Solution Explorer, then select Add > New Item… to display the Add New Item di-
alog (Fig. 20.11). From the Data category select ADO.NET Entity Data Model and
name the model BooksModel—this will be the name of a file (with the filename ex-
tension.edmx) that configures the entity data model. Click Add to add the entity
data model to the class library and display the Entity Data Model Wizard dialog.

Fig. 20.11 | Selecting ADO.NET Entity Data Model in the Add New Item Dialog.

ptg18189312

640 Chapter 20 Databases and LINQ

2. Choosing the Model Contents. The Choose Model Contents step in the Entity Data

Model Wizard dialog (Fig. 20.12) enables you to specify the entity data model’s
contents. The model in these examples will consist of data from the Books data-
base, so select EF Designer from database and click Next > to display the Choose Your

Data Connection step.

3. Choosing the Data Connection. In the Choose Your Data Connection step, click New

Connection… to display the Connection Properties dialog (Fig. 20.13). (If the IDE

i

Fig. 20.12 | Entity Data Model Wizard dialog’s Choose Model Contents step.

i

Fig. 20.13 | Connection Properties dialog.

ptg18189312

20.5 Querying a Database with LINQ 641

displays a Choose Data Source dialog, select Microsoft SQL Server Database File and
click Continue.) For the Data source field, if Microsoft SQL Server Database File (Sql-

Client) is not displayed, click Change…, select Microsoft SQL Server Database File

(SqlClient) and click OK. Next, click Browse… to the right of the Database file name

field to locate and select the Books.mdf file in the Databases directory included
with this chapter’s examples. You can click Test Connection to verify that the IDE
can connect to the database through SQL Server Express. Click OK to create the
connection. Figure 20.14 shows the Connection string for the Books.mdf database.
This contains the information that the ADO.NET Entity Framework requires to
connect to the database at runtime. Click Next >. A dialog will appear asking if
you’d like to add the database file to your project. Click Yes to move to the next
step.

4. Choosing the Entity Framework Version. In the Choose Your Version step, select
the Entity Framework 6.x (Fig. 20.15), then click Next >. This adds the latest version
of the Entity Framework to your project.

5. Choosing the Database Objects to Include in the Model. In the Choose Your Data-

base Objects and Settings step, you’ll specify the parts of the database that should
be used in the ADO.NET Entity Data Model. Select the Tables node as shown
in Fig. 20.16, then click Finish. At this point, the IDE will download the Entity
Framework 6.x templates you need and add them to your project. You may see
one or more Security Warning dialogs—Visual Studio displays these when you at-
tempt to use downloaded content in your projects. Click OK to dismiss each dia-
log. These warnings are intended primarily for cases in which a Visual Studio
template is downloaded from an untrusted website.

Fig. 20.14 | Choose Your Data Connection step after selecting Books.mdf.

ptg18189312

642 Chapter 20 Databases and LINQ

6. Viewing the Entity Data Model Diagram in the Model Designer. At this point,
the IDE creates the entity data model and displays a diagram (Fig. 20.17) in the
model designer. The diagram contains Author and Title entities—these represent au-

Fig. 20.15 | Choosing the Entity Framework version to use in the project.

Fig. 20.16 | Selecting the database’s tables to include in the ADO.NET Entity Data Model.

ptg18189312

20.5 Querying a Database with LINQ 643

thors and titles in the database and the properties of each. Notice that the IDE
renamed the Title column of the Titles table as Title1 to avoid a naming con-
flict with the class Title that represents a row in the table. The line between the
entities indicates a relationship between authors and titles—this relationship is
implemented in the Books database as the AuthorISBN table. The asterisk (*) at
each end of the line indicates a many-to-many relationship—each author can au-
thor many titles and each title can have many authors. The Navigation Properties

section in the Author entity contains the Titles property, which connects an author
to all titles written by that author. Similarly, the Navigation Properties section in
the Title entity contains the Authors property, which connects a title to all of its
authors.

7. Building the Class Library. Select Build > Build Solution to build the class library
that you’ll reuse in the next several examples—this will compile the entity data
model classes that were generated by the IDE.1 When you build the class library,
the IDE generates the classes that you can use to interact with the database. These
include a class for each table you selected from the database and a derived class of
DbContext named BooksEntities that enables you to programmatically interact
with the database—the IDE created the name BooksEntities (Fig. 20.14) by
adding Entities to the database file’s base name (Books in Books.mdf). Building
the project causes the IDE to execute a script that creates and compiles the entity
data model classes.

20.5.2 Creating a Windows Forms Project and Configuring It to Use the
Entity Data Model
Recall that the next several examples will all be part of one solution containing several proj-
ects—the class library project with our reusable model and individual Windows Forms
apps for each example. In this section, you’ll create a new Windows Forms app and config-
ure it to be able to use the entity data model that you created in the preceding section.

Step 1: Creating the Project
To add a new Windows Forms project to the existing solution:

i

Fig. 20.17 | Entity data model diagram for the Author and Title entities.

1. If you get an error message indicating that the IDE can’t copy the .mdf file to the bin\Debug folder
because it’s in use, close Visual Studio, then reopen the project and try to build the solution again.

ptg18189312

644 Chapter 20 Databases and LINQ

1. Right click Solution 'BooksExamples' (the solution name) in Solution Explorer and
select Add > New Project… to display the Add New Project dialog.

2. Select Windows Forms Application from the Visual C# > Windows > Classic Desktop

category, name the project DisplayTable and click OK.

3. Change the name of the Form1.cs source file to DisplayAuthorsTable.cs. The
IDE updates the Form’s class name to match the source file. Set the Form’s Text

property to Display Authors Table.

4. Right click the DisplayTable project’s name in the Solution Explorer, then select
Set as Startup Project to configure the solution so that project DisplayTable will
execute when you select Debug > Start Debugging (or press F5).

Step 2: Adding a Reference to the BooksExamples Class Library
To use the entity data model classes for data binding, you must first add a reference to the
class library you created in Section 20.5.1—this allows the new project to use that class
library. Each project you create typically contains references to several .NET class libraries
(called assemblies) by default—for example, a Windows Forms project contains a reference
to the System.Windows.Forms library. When you compile a class library, the IDE creates
a .dll file containing the library’s components. To add a reference to the class library con-
taining the entity data model’s classes:

1. Right click the DisplayTable project’s References node in the Solution Explorer

and select Add Reference….

2. In the left column of the Reference Manager dialog that appears, select Projects to
display the other projects in this solution, then in center of the dialog ensure that
the checkbox next to BooksExamples is checked and click OK. BooksExamples
should now appear in the projects References node.

Step 3: Adding a Reference to EntityFramework
You’ll also need a reference to the EntityFramework library to use the ADO.NET Entity
Framework. This library was added by the IDE to the BooksExamples class library project
when we created the entity data model, but you also must add the EntityFramework li-
brary to each app that will use the entity data model. To add an EntityFramework library
reference to a project:

1. Right click the project’s name in the Solution Explorer and select Manage NuGet

Packages… to display the NuGet tab in Visual Studio’s editors area. NuGet is a
tool (known as a package manager) that that helps you download and manage li-
braries (known as packages) used by your projects.

2. In the dialog that appears, click Browse, then select the EntityFramework by Micro-

soft and click Install (Fig. 20.18).

3. The IDE will ask you to review the changes. Click OK.

4. The IDE will ask you to accept the EntityFramework license. Click I Accept to
complete the installation.

EntityFramework should now appear in the projects References node. You can now close
the NuGet tab.

ptg18189312

20.5 Querying a Database with LINQ 645

Step 4: Adding the Connection String to the Windows Forms App
Each app that will use the entity data model also requires the connection string that tells the
Entity Framework how to connect to the database. The connection string is stored in the
BooksExamples class library’s App.Config file. In the Solution Explorer, open the Books-
Examples class library’s App.Config file, then copy the connectionStrings element (lines
7–9 in our file), which has the format:

Next, open the App.Config file in the DisplayTable project and paste the connection
string information after the line containing </entityFramework> and before the line con-
taining </configuration>. Save, then close the App.Config file.

20.5.3 Data Bindings Between Controls and the Entity Data Model
You’ll now use the IDE’s drag-and-drop GUI design capabilities to create the GUI for in-
teracting with the Books database. You must write a small amount of code to enable the
autogenerated GUI to interact with the entity data model. You’ll now perform the steps
to display the contents of the Authors table in a GUI.

Step 1: Adding a Data Source for the Authors Table
To use the entity data model classes for data binding, you must first add them as a data
source. To do so:

1. Select View > Other Windows > Data Sources to display the Data Sources window
at the left side of the IDE, then in that window click the Add New Data Source…

link to display the Data Source Configuration Wizard.

2. The Entity Data Model classes are used to create objects representing the tables in
the database, so we’ll use an Object data source. In the dialog, select Object and

Fig. 20.18 | Selecting and installing the EntityFramework in the NuGet tab.

<connectionStrings>
 Connection string information appears here

</connectionStrings>

ptg18189312

646 Chapter 20 Databases and LINQ

click Next >. Expand the tree view as shown in Fig. 20.19 and ensure that Author

is checked. An object of this class will be this app’s data source.

3. Click Finish.

The Authors table in the database is now a data source that can be bound to a GUI
control that obtains author data automatically. In the Data Sources window (Fig. 20.20),
you can see the Author class that you added in the previous step. We expanded the node
to show Author’s properties, representing columns of the database’s Authors table, as well
as the Titles navigation property, representing the relationship between the database’s
Authors and Titles tables.

Step 2: Creating GUI Elements
Next, you’ll use the Design view to create a DataGridView control that can display the
Authors table’s data. To do so:

1. Switch to Design view for the DisplayAuthorsTable class.

Fig. 20.19 | Selecting the Entity Data Model class Author as the data source.

Fig. 20.20 | Data Sources window showing the expanded Author class as a data source.

ptg18189312

20.5 Querying a Database with LINQ 647

2. Click the Author node in the Data Sources window—it should change to a drop-
down list. Open the drop-down by clicking the down arrow and ensure that the
DataGridView option is selected—this is the GUI control that will be used to dis-
play and interact with the data.

3. Drag the Author node from the Data Sources window onto the Form in Design

view. You’ll need to resize the Form to fit the DataGridView.

The IDE creates a DataGridView (Fig. 20.21) with column names representing all the
properties for an Author, including the Titles navigation property.

The IDE also creates a BindingNavigator that contains Buttons for

• moving between entries,

• adding entries,

• deleting entries and

• saving changes to the database.

In addition, the IDE generates a BindingSource (authorBindingSource), which handles
the transfer of data between the data source and the data-bound controls on the Form. Non-
visual components such as the BindingSource and the nonvisual aspects of the Binding-
Navigator appear in the component tray—the gray region below the Form in Design view.
The IDE names the BindingNavigator and BindingSource (authorBindingNavigator
and authorBindingSource, respectively) based on the data source’s name (Author). We
use the default names for automatically generated components throughout this chapter to
show exactly what the IDE creates.

To make the DataGridView occupy the entire window below the BindingNavigator,
select the DataGridView, then use the Properties window to set the Dock property to Fill.
You can stretch the window horizontally to see all the DataGridView columns. We do not

Fig. 20.21 | Component tray holds nonvisual components in Design view.

Objects in the component
tray (the gray area below

the Form)

GUI controls for the
BindingNavigator

DataGridView with
the Authors table’s

column names

ptg18189312

648 Chapter 20 Databases and LINQ

use the Titles column in this example, so right click the DataGridView and select Edit Col-

umns… to display the Edit Columns dialog. Select Titles in the Selected Columns list, click
Remove to remove that column, then click OK.

Step 3: Connecting the Data Source to the authorBindingSource
The final step is to connect the data source to the authorBindingSource, so that the app
can interact with the database. Figure 20.22 shows the code needed to obtain data from
the database and to save any changes that the user makes to the data back into the database.

1 // Fig. 20.22: DisplayAuthorsTable.cs
2 // Displaying data from a database table in a DataGridView.
3 using System;
4
5
6 using System.Linq;
7 using System.Windows.Forms;
8
9 namespace DisplayTable

10 {
11 public partial class DisplayAuthorsTable : Form
12 {
13 // constructor
14 public DisplayAuthorsTable()
15 {
16 InitializeComponent();
17 }
18
19 // Entity Framework DbContext
20
21
22
23 // load data from database into DataGridView
24 private void DisplayAuthorsTable_Load(object sender, EventArgs e)
25 {
26 // load Authors table ordered by LastName then FirstName
27
28
29
30
31
32 // specify DataSource for authorBindingSource
33
34 }
35
36 // click event handler for the Save Button in the
37 // BindingNavigator saves the changes made to the data
38
39
40 {
41
42

Fig. 20.22 | Displaying data from a database table in a DataGridView. (Part 1 of 2.)

using System.Data.Entity;
using System.Data.Entity.Validation;

private BooksExamples.BooksEntities dbcontext =
 new BooksExamples.BooksEntities();

dbcontext.Authors
 .OrderBy(author => author.LastName)

 .ThenBy(author => author.FirstName)
 .Load();

authorBindingSource.DataSource = dbcontext.Authors.Local;

private void authorBindingNavigatorSaveItem_Click(
 object sender, EventArgs e)

Validate(); // validate the input fields
authorBindingSource.EndEdit(); // complete current edit, if any

ptg18189312

20.5 Querying a Database with LINQ 649

Creating the DbContext Object
As mentioned in Section 20.4, a DbContext object interacts with the database on the app’s
behalf. The BooksEntities class (a derived class of DbContext) was automatically gener-
ated by the IDE when you created the entity data model classes to access the Books data-
base (Section 20.5.1). Lines 20–21 create an object of this class named dbcontext.

DisplayAuthorsTable_Load Event Handler
You can create the Form’s Load event handler (lines 24–34) by double clicking the Form’s
title bar in Design view. In this app, we allow data to move between the DbContext and the
database by using LINQ to Entities extension methods to extract data from the Books-
Entities’s Authors property (lines 27–30), which corresponds to the Authors table in the
database. The expression

indicates that we wish to get data from the Authors table.
The OrderBy extension method call

indicates that the rows of the table should be retrieved in ascending order by the authors’
last names. Extension method OrderBy receives as its argument a Func delegate (name-
space System) representing a method that receives one parameter and returns a value that’s

43
44 // try to save changes
45 try
46 {
47
48 }
49 catch(DbEntityValidationException)
50 {
51 MessageBox.Show("FirstName and LastName must contain values",
52 "Entity Validation Exception");
53 }
54 }
55 }
56 }

dbcontext.Authors

 .OrderBy(author => author.LastName)

Fig. 20.22 | Displaying data from a database table in a DataGridView. (Part 2 of 2.)

dbcontext.SaveChanges(); // write changes to database file

ptg18189312

650 Chapter 20 Databases and LINQ

used to order the results. In this case, we pass a lambda expression that defines an anony-
mous method in which

• the parameter author (an object of the Author entity data model class) is passed
to the method, and

• the expression to the right of the lambda operator (=>)—the author’s LastName
in this case—is implicitly returned by the method.

The lambda expression infers author’s type from dbcontext.Authors—which contains
Author objects—and infers the lambda’s return type (string) from author.LastName.

When there are multiple authors with the same last name, we’d like them to be listed
in ascending order by first name as well. The ThenBy extension method call

enables you to order results by an additional column. This is applied to the Author objects
that have already been ordered by last name. Like OrderBy, ThenBy also receives a Func del-
egate that’s used to order the results.

Finally, line 30 calls the Load extension method (defined in class DbExtensions from
the namespace System.Data.Entity). This method executes the LINQ to Entities query
and loads the results into memory. This data is tracked by the BookEntities DbContext
in local memory so that any changes made to the data can eventually be saved into the
database. Lines 27–30 are equivalent to using the following statement:

Line 33 sets the authorBindingSource’s DataSource property to the Local property
of the dbcontext.Authors object. In this case, the Local property is an ObservableCol-
lection<Author> that represents the query results that were loaded into memory by lines
27–30. When a BindingSource’s DataSource property is assigned an ObservableCollec-
tion<T> (namespace System.Collections.ObjectModel), the GUI that’s bound to the
BindingSource is notified of any changes to the data so the GUI can be updated accord-
ingly. In addition, changes made by the user to the data in the GUI will be tracked so the
DbContext can eventually save those changes to the database.

authorBindingNavigatorSaveItem_Click Event Handler: Saving Modifications to
the Database
If the user modifies the data in the DataGridView, we’d also like to save the modifications
in the database. By default, the BindingNavigator’s Save Data Button

is disabled. To enable it, right click this Button’s icon in the BindingNavigator and select
Enabled. Then, double click the icon to create its Click event handler and add the code in
the method’s body (lines 41–53).

Saving the data entered in the DataGridView back to the database is a three-step pro-
cess. First, the Form’s controls are validated (line 41) by calling the inherited Validate
method—if any control has an event handler for the Validating event, it executes. You
typically handle this event to determine whether a control’s contents are valid. Next, line

 .ThenBy(author => author.FirstName)

(from author in dbcontext.Authors
 orderby author.LastName, author.FirstName
 select author).Load();

ptg18189312

20.6 Dynamically Binding Query Results 651

42 calls EndEdit on the authorBindingSource, which forces it to save any pending
changes into the BooksEntities model in memory. Finally, line 47 calls SaveChanges on
the BooksEntities object (dbcontext) to store any changes into the database. We placed
this call in a try statement, because the Authors table does not allow empty values for the
first name and last name—these rules were configured when we originally created the data-
base. When SaveChanges is called, any changes stored into the Authors table must satisfy
the table’s rules. If any do not, a DBEntityValidationException occurs.

20.6 Dynamically Binding Query Results
Next we show how to perform several different queries and display the results in a Data-
GridView. This app only reads data from the entity data model, so we disabled the buttons
in the BindingNavigator that enable the user to add and delete records—simply select
each button and set its Enabled property to False in the Properties window. You also could
delete these buttons from the BindingNavigator. Later, we’ll explain why we do not sup-
port modifying the database in this example.

The Display Query Results app (Figs. 20.23–20.25) allows the user to select a query
from the ComboBox at the bottom of the window, then displays the results of the query.

Fig. 20.23 | Results of the Display Query Results app’s All titles query, which shows the
contents of the Titles table ordered by the book titles.

Fig. 20.24 | Results of the Display Query Results app’s Titles with 2016 copyright query.

ptg18189312

652 Chapter 20 Databases and LINQ

20.6.1 Creating the Display Query Results GUI
Perform the following steps to build the Display Query Results app’s GUI.

Step 1: Creating the Project
Perform the steps in Section 20.5.2 to create a new Windows Forms Application project
named DisplayQueryResult in the same solution as the DisplayTable app. Rename the
Form1.cs source file to TitleQueries.cs. Set the Form’s Text property to Display Query
Results. Be sure to add references to the BooksExamples and EntityFramework libraries,
add the connection string to the project’s App.Config file and set the DisplayQuery-
Result project as the startup project.

Step 2: Creating a DataGridView to Display the Titles Table
Follow Steps 1 and 2 in Section 20.5.3 to create the data source and the DataGridView.
For this example, select the Title class (rather than Author) as the data source, and drag
the Title node from the Data Sources window onto the form. Remove the Authors column
from the DataGridView, as it will not be used in this example.

Step 3: Adding a ComboBox to the Form
In Design view, add a ComboBox named queriesComboBox below the DataGridView on the
Form. Users will select which query to execute from this control. Set the ComboBox’s Dock
property to Bottom and the DataGridView’s Dock property to Fill.

Next, you’ll add the names of the queries to the ComboBox. Open the ComboBox’s String

Collection Editor by right clicking the ComboBox and selecting Edit Items…. You also can
access the String Collection Editor from the ComboBox’s smart tag menu. A smart tag menu
provides you with quick access to common properties you might set for a control (such as
the Multiline property of a TextBox), so you can set these properties directly in Design

view, rather than in the Properties window. You can open a control’s smart tag menu by
clicking the small arrowhead

that appears in the control’s upper-right corner in Design view when the control is selected.
In the String Collection Editor, add the following three items to queriesComboBox—one for
each of the queries we’ll create:

Fig. 20.25 | Results of the Display Query Results app’s Titles ending with "How to Pro-

gram" query.

ptg18189312

20.6 Dynamically Binding Query Results 653

1. All titles

2. Titles with 2016 copyright

3. Titles ending with "How to Program"

20.6.2 Coding the Display Query Results App
Next you’ll create the code for this app (Fig. 20.26).

1 // Fig. 20.26: TitleQueries.cs
2 // Displaying the result of a user-selected query in a DataGridView.
3 using System;
4 using System.Data.Entity;
5 using System.Linq;
6 using System.Windows.Forms;
7
8 namespace DisplayQueryResult
9 {

10 public partial class TitleQueries : Form
11 {
12 public TitleQueries()
13 {
14 InitializeComponent();
15 }
16
17 // Entity Framework DbContext
18 private BooksExamples.BooksEntities dbcontext =
19 new BooksExamples.BooksEntities();
20
21 // load data from database into DataGridView
22 private void TitleQueries_Load(object sender, EventArgs e)
23 {
24
25
26 // set the ComboBox to show the default query that
27 // selects all books from the Titles table
28
29 }
30
31 // loads data into titleBindingSource based on user-selected query
32 private void queriesComboBox_SelectedIndexChanged(
33 object sender, EventArgs e)
34 {
35 // set the data displayed according to what is selected
36 switch (queriesComboBox.SelectedIndex)
37 {
38 case 0: // all titles
39 // use LINQ to order the books by title
40
41
42 break;

Fig. 20.26 | Displaying the result of a user-selected query in a DataGridView. (Part 1 of 2.)

dbcontext.Titles.Load(); // load Titles table into memory

queriesComboBox.SelectedIndex = 0;

titleBindingSource.DataSource =
 dbcontext.Titles.Local.OrderBy(book => book.Title1);

ptg18189312

654 Chapter 20 Databases and LINQ

Customizing the Form’s Load Event Handler
Create the TitleQueries_Load event handler (lines 22–29) by double clicking the title bar
in Design view. When the Form loads, it should display the complete list of books from the
Titles table, sorted by title. Line 24 calls the Load extension method on the BookEnti-
ties DbContext’s Titles property to load the Titles table’s contents into memory. Rath-
er than defining the same LINQ query as in lines 40–41, we can programmatically cause
the queriesComboBox_SelectedIndexChanged event handler to execute simply by setting
the queriesComboBox’s SelectedIndex to 0 (line 28).

queriesComboBox_SelectedIndexChanged Event Handler
Next you must write code that executes the appropriate query each time the user chooses
a different item from queriesComboBox. Double click queriesComboBox in Design view to
generate a queriesComboBox_SelectedIndexChanged event handler (lines 32–63) in the
TitleQueries.cs file. In the event handler, add a switch statement (lines 36–60). Each
case in the switch will change the titleBindingSource’s DataSource property to the re-
sults of a query that returns the correct set of data. The data bindings created by the IDE
automatically update the titleDataGridView each time we change its DataSource. The
BindingSource maintains a Position property that represents the current item in the data
source. The MoveFirst method of the BindingSource (line 62) sets the Position property
to 0 to move to the first row of the result each time a query executes. The results of the
queries in lines 40–41, 46–49 and 54–58 are shown in Figs. 20.23–20.25, respectively.
Because we do not modify the data in this app, each of the queries is performed on the in-
memory representation of the Titles table, which is accessible through dbcontext.Ti-
tles.Local.

43 case 1: // titles with 2016 copyright
44 // use LINQ to get titles with 2016
45 // copyright and sort them by title
46
47
48
49
50 break;
51 case 2: // titles ending with "How to Program"
52 // use LINQ to get titles ending with
53 // "How to Program" and sort them by title
54
55
56
57
58
59 break;
60 }
61
62
63 }
64 }
65 }

Fig. 20.26 | Displaying the result of a user-selected query in a DataGridView. (Part 2 of 2.)

titleBindingSource.DataSource =
 dbcontext.Titles.Local

 .Where(book => book.Copyright == "2016")
 .OrderBy(book => book.Title1);

titleBindingSource.DataSource =
 dbcontext.Titles.Local

 .Where(
 book => book.Title1.EndsWith("How to Program"))

 .OrderBy(book => book.Title1);

titleBindingSource.MoveFirst(); // move to first entry

ptg18189312

20.7 Retrieving Data from Multiple Tables with LINQ 655

Ordering the Books By Title
Lines 40–41 invoke the OrderBy extension method on dbcontext.Titles.Local to order
the Title objects by their Title1 property values. As we mentioned previously, the IDE
renamed the Title column of the database’s Titles table as Title1 in the generated Ti-
tle entity data model class to avoid a naming conflict with the class’s name. Recall that
Local returns an ObservableCollection<T> containing the row objects of the specified
table—in this case, Local returns an ObservableCollection<Title>. When you invoke
OrderBy on an ObservableCollection<T>, the method returns an IOrderedEnumera-
ble<T>. We assign that object to the titleBindingSource’s DataSource property. When
the DataSource property changes, the DataGridView iterates through the contents of the
IEnumerable<T> and displays the data.

Selecting Books with 2016 Copyright
Lines 46–49 filter the titles displayed by using the Where extension method with the lamb-
da expression

as an argument. The Where extension method expects as its parameter a Func delegate rep-
resenting a method that receives one parameter and returns a bool indicating whether the
method’s argument matches the specified criteria. The lambda expression used here takes
one Title object (named book) as its parameter and uses it to check whether the given Ti-
tle’s Copyright property (a string in the database) is equal to 2014. A lambda expression
that’s used with the Where extension method must return a bool value. Only Title objects
for which this lambda expression returns true will be selected. We use OrderBy to order
the results by the Title1 property so the books are displayed in ascending order by title.
The type of the lambda’s book parameter is inferred from dbcontext.Titles.Local,
which contains Title objects. As soon as the titleBindingSource’s DataSource property
changes, the DataGridView is updated with the query results.

Selecting Books with Titles That End in “How to Program”
Lines 54–58 filter the titles displayed by using the Where extension method with the lamb-
da expression

as an argument. This lambda expression takes one Title object (named book) as its pa-
rameter and uses it to check whether the given Title’s Title1 property value ends with
"How to Program". The expression books.Title1 returns the string stored in that prop-
erty, then we use the string class’s EndsWith method to perform the test. We order the re-
sults by the Title1 property so the books are displayed in ascending order by title.

20.7 Retrieving Data from Multiple Tables with LINQ
In this section, you’ll perform LINQ to Entities queries using the LINQ query syntax that
was introduced in Chapter 9. In particular, you’ll learn how to obtain query results that
combine data from multiple tables (Figs. 20.27–20.29). The Joining Tables with LINQ app
uses LINQ to Entities to combine and organize data from multiple tables, and shows the
results of queries that perform the following tasks:

book => book.Copyright == "2016"

book => book.Title1.EndsWith("How to Program")

ptg18189312

656 Chapter 20 Databases and LINQ

• Get a list of all the authors and the ISBNs of the books they’ve authored, sorted
by last name, then first name (Fig. 20.27).

• Get a list of all the authors and the titles of the books they’ve authored, sorted by
last name, then first name; for each author sort the titles alphabetically
(Fig. 20.28).

• Get a list of all the book titles grouped by author, sorted by last name, then first
name; for a given author sort the titles alphabetically (Fig. 20.29).

Fig. 20.27 | Joining Tables with LINQ app showing the list of authors and the ISBNs of the
books they’ve authored. The authors are sorted by last name, then first name.

Fig. 20.28 | Joining Tables with LINQ app showing the list of authors and the titles of the
book’s they’ve authored. The authors are sorted by last name, then first name, and the titles for a
given author are sorted alphabetically.

ptg18189312

20.7 Retrieving Data from Multiple Tables with LINQ 657

GUI for the Joining Tables with LINQ App
For this example (Fig. 20.30–Fig. 20.33), perform the steps in Section 20.5.2 to create a
new Windows Forms Application project named JoinQueries in the same solution as the
previous examples. Rename the Form1.cs source file to JoiningTableData.cs. Set the
Form’s Text property to Joining Tables with LINQ. Be sure to add references to the Books-
Examples and EntityFramework libraries, add the connection string to the project’s
App.Config file and set the JoinQueries project as the startup project. We set the follow-
ing properties for the outputTextBox:

• Font property: Set to Lucida Console to display the output in a fixed-width font.

• Multiline property: Set to True so that multiple lines of text can be displayed.

• Anchor property: Set to Top, Bottom, Left, Right so that you can resize the win-
dow and the outputTextBox will resize accordingly.

• Scrollbars property: Set to Vertical, so that you can scroll through the output.

Creating the DbContext
The code uses the entity data model classes to combine data from the tables in the Books
database and display the relationships between the authors and books in three different
ways. We split the code for class JoiningTableData into several figures (Figs. 20.30–
20.33) for presentation purposes. As in previous examples, the DbContext object
(Fig. 20.30, line 19) allows the program to interact with the database.

Fig. 20.29 | Joining Tables with LINQ app showing the list of titles grouped by author. The
authors are sorted by last name, then first name, and the titles for a given author are sorted
alphabetically.

ptg18189312

658 Chapter 20 Databases and LINQ

Combining Author Names with the ISBNs of the Books They’ve Written
The first query (Fig. 20.31, lines 22–26) joins data from two tables and returns a list of
author names and the ISBNs representing the books they’ve written, sorted by LastName,
then FirstName. The query takes advantage of the properties in the entity data model
classes that were created based on foreign-key relationships between the database’s tables.
These properties enable you to easily combine data from related rows in multiple tables.

The first from clause (line 23) gets each author from the Authors table. The second
from clause (line 24) uses the Author class’s Titles property to get the ISBNs for the cur-
rent author. The entity data model uses the foreign-key information stored in the data-

1 // Fig. 20.30: JoiningTableData.cs
2 // Using LINQ to perform a join and aggregate data across tables.
3 using System;
4 using System.Linq;
5 using System.Windows.Forms;
6
7 namespace JoinQueries
8 {
9 public partial class JoiningTableData : Form

10 {
11 public JoiningTableData()
12 {
13 InitializeComponent();
14 }
15
16 private void JoiningTableData_Load(object sender, EventArgs e)
17 {
18 // Entity Framework DbContext
19
20

Fig. 20.30 | Creating the BooksEntities for querying the Books database.

21 // get authors and ISBNs of each book they co-authored
22
23
24
25
26
27
28 outputTextBox.AppendText("Authors and ISBNs:");
29
30 // display authors and ISBNs in tabular format
31 foreach (var element in authorsAndISBNs)
32 {
33 outputTextBox.AppendText($"\r\n\t{element.FirstName,-10} " +
34 $"{element.LastName,-10} {element.ISBN,-10}");
35 }
36

Fig. 20.31 | Getting a list of authors and the ISBNs of the books they’ve authored.

var dbcontext = new BooksExamples.BooksEntities();

var authorsAndISBNs =
 from author in dbcontext.Authors
 from book in author.Titles
 orderby author.LastName, author.FirstName
 select new {author.FirstName, author.LastName, book.ISBN};

ptg18189312

20.7 Retrieving Data from Multiple Tables with LINQ 659

base’s AuthorISBN table to get the appropriate ISBNs. The combined result of the two
from clauses is a collection of all the authors and the ISBNs of the books they’ve authored.
The two from clauses introduce two range variables into the scope of this query—other
clauses can access both range variables to combine data from multiple tables. Line 25
orders the results by the author’s LastName, then FirstName. Line 26 creates a new anon-
ymous type containing an author’s FirstName and LastName from the Authors table and
the ISBN for one of that author’s books from the Titles table.

Anonymous Types
Recall from Section 9.3.5 that a LINQ query’s select clause can create an anonymous
type with the properties specified in the initializer list—in this case, FirstName, LastName
and ISBN (line 26). Note that all properties of an anonymous type are public and read-
only. Because the type has no name, you must use implicitly typed local variables to store
references to objects of anonymous types (e.g., line 31). Also, in addition to the ToString
method in an anonymous type, the compiler provides an Equals method, which compares
the properties of the anonymous object that calls the method and the anonymous object
that it receives as an argument.

Combining Author Names with the Titles of the Books They’ve Written
The second query (Fig. 20.32, lines 38–42) gives similar output, but uses the foreign-key
relationships to get the title of each book that an author wrote.

The first from clause (line 39) gets each book from the Titles table. The second from
clause (line 40) uses the generated Authors property of the Title class to get only the
authors for the current book. The entity data model uses the foreign-key information
stored in the database’s AuthorISBN table to get the appropriate authors. The author
objects give us access to the names of the current book’s authors. The select clause (line
42) uses the author and book range variables to get the FirstName and LastName of each
author from the Authors table and the title of one of the author’s books from the Titles
table.

37 // get authors and titles of each book they co-authored
38
39
40
41
42
43
44 outputTextBox.AppendText("\r\n\r\nAuthors and titles:");
45
46 // display authors and titles in tabular format
47 foreach (var element in authorsAndTitles)
48 {
49 outputTextBox.AppendText($"\r\n\t{element.FirstName,-10} " +
50 $"{element.LastName,-10} {element.Title1}");
51 }
52

Fig. 20.32 | Getting a list of authors and the titles of the books they’ve authored.

var authorsAndTitles =
 from book in dbcontext.Titles
 from author in book.Authors
 orderby author.LastName, author.FirstName, book.Title1
 select new {author.FirstName, author.LastName, book.Title1};

ptg18189312

660 Chapter 20 Databases and LINQ

Organizing Book Titles by Author
Most queries return results with data arranged in a relational-style table of rows and col-
umns. The last query (Fig. 20.33, lines 55–62) returns hierarchical results. Each element
in the results contains the name of an Author and a list of Titles that the author wrote.
The LINQ query does this by using a nested query in the select clause. The outer query
iterates over the authors in the database. The inner query takes a specific author and re-
trieves all titles that the author wrote. The select clause (lines 58–62) creates an anony-
mous type with two properties:

• The property Name (line 58) is initialized with a string that separates the author’s
first and last names by a space.

• The property Titles (lines 59–62) is initialized with the result of the nested
query, which returns the title of each book written by the current author.

In this case, we’re providing names for each property in the new anonymous type. When
you create an anonymous type, you can specify the name for each property by using the
format name = value.

The range variable book in the nested query iterates over the current author’s books
using the Titles property. The Title1 property of a given book returns the Title column
from that row of the Titles table in the database.

53 // get authors and titles of each book
54 // they co-authored; group by author
55
56
57
58
59
60
61
62
63
64 outputTextBox.AppendText("\r\n\r\nTitles grouped by author:");
65
66 // display titles written by each author, grouped by author
67
68 {
69 // display author's name
70 outputTextBox.AppendText($"\r\n\t{author.Name}:");
71
72 // display titles written by that author
73
74 {
75 outputTextBox.AppendText($"\r\n\t\t{title}");
76 }
77 }
78 }
79 }
80 }

Fig. 20.33 | Getting a list of titles grouped by authors.

var titlesByAuthor =
 from author in dbcontext.Authors
 orderby author.LastName, author.FirstName
 select new {Name = author.FirstName + " " + author.LastName,

 Titles =
 from book in author.Titles
 orderby book.Title1
 select book.Title1};

foreach (var author in titlesByAuthor)

foreach (var title in author.Titles)

ptg18189312

20.8 Creating a Master/Detail View App 661

The nested foreach statements (lines 67–77) use the anonymous type’s properties to
output the hierarchical results. The outer loop displays the author’s name and the inner
loop displays the titles of all the books written by that author.

20.8 Creating a Master/Detail View App
Figure 20.34 shows a so-called master/detail view—one part of the GUI (the master) al-
lows you to select an entry, and another part (the details) displays detailed information
about that entry. When the app first loads, it displays the name of the first author in the
data source and shows that author’s books in the DataGridView. When you use the but-
tons on the BindingNavigator to change authors, the app displays the details of the books
written by the corresponding author—Fig. 20.34 shows the second author’s books. This
app only reads data from the entity data model, so we disabled the buttons in the Bind-
ingNavigator that enable the user to add and delete records. When you run the app, ex-
periment with the BindingNavigator’s controls. The DVD-player-like buttons of the
BindingNavigator allow you to change the currently displayed row.

20.8.1 Creating the Master/Detail GUI
You’ve seen that the IDE can automatically generate the BindingSource, BindingNavi-
gator and GUI elements when you drag a data source onto the Form. You’ll now use two
BindingSources—one for the master list of authors and one for the titles associated with
a given author. Both will be generated by the IDE. The completed GUI that you’ll now
build is shown in Fig. 20.35.

Step 1: Creating the Project
Follow the instructions in Section 20.5.2 to create and configure a new Windows Forms Ap-

plication project called MasterDetail. Name the source file Details.cs and set the Form’s
Text property to Master/Detail. Be sure to add references to the BooksExamples and Enti-
tyFramework libraries, add the connection string to the project’s App.Config file and set
the MasterDetail project as the startup project.

Fig. 20.34 | Master/Detail app displaying books for an author in the data source.

ptg18189312

662 Chapter 20 Databases and LINQ

Step 2: Adding a Data Source for the Authors Table
Follow the steps in Section 20.5.3 to add a data source for the Authors table. Although
you’ll be displaying records from the Titles table for each author, you do not need to add
a data source for that table. The title information will be obtained from the Titles navi-
gation property in the Author entity data model class.

Step 3: Creating GUI Elements
Next, you’ll use the Design view to create the GUI components by dragging-and-dropping
items from the Data Sources window onto the Form. In the earlier sections, you dragged an
object from the Data Sources window to the Form to create a DataGridView. The IDE al-
lows you to specify the type of control(s) that it will create when you drag-and-drop an
object from the Data Sources window onto a Form. To do so:

1. Switch to Design view for the Details class.

2. Click the Author node in the Data Sources window—it should change to a drop-
down list. Open the drop-down by clicking the down arrow and select the Details

option—this indicates that we’d like to generate Label–TextBox pairs that repre-
sent each column of the Authors table.

3. Drag the Author node from the Data Sources window onto the Form in Design

view. This creates the authorBindingSource, the authorBindingNavigator and
the Label–TextBox pairs that represent each column in the table. Initially, the
controls appear as shown in Fig. 20.36. We rearranged the controls as shown in
Fig. 20.35.

4. By default, the Titles navigation property is implemented in the entity data
model classes as a HashSet<Title>. To bind the data to GUI controls properly,
you must change this to an ObservableCollection<Title>. To do this, expand

Fig. 20.35 | Finished design of the Master/Detail app.

ptg18189312

20.8 Creating a Master/Detail View App 663

the class library project’s BooksModel.edmx node in the Solution Explorer, then ex-
pand the BooksModel.tt node and open Author.cs in the editor. Add a using
statement for the namespace System.Collections.ObjectModel. Then, in the
Author constructor change HashSet to ObservableCollection, and in the Ti-
tles property’s declaration, change ICollection to ObservableCollection.
Right click the class library project in the Solution Explorer and select Build to re-
compile the class.

5. Select the MasterDetail project in the Solution Explorer. Next, click the Titles

node that’s nested in the Author node in the Data Sources window—it should
change to a drop-down list. Open the drop-down by clicking the down arrow and
ensure that the DataGridView option is selected—this is the GUI control that
will be used to display the data from the Titles table that corresponds to a given
author.

6. Drag the Titles node onto the Form in Design view. This creates the titlesBind-
ingSource and the DataGridView. This control is only for viewing data, so set its
ReadOnly property to True using the Properties window. Because we dragged the
Titles node from the Author node in the Data Sources window, the DataGridView
will automatically display the books for the currently selected author once we
bind the author data to the authorBindingSource.

We used the DataGridView’s Anchor property to anchor it to all four sides of the Form. We
also set the Form’s Size and MinimumSize properties to 550, 300 to set the Form’s initial
size and minimum size, respectively.

20.8.2 Coding the Master/Detail App
The code to display an author and the corresponding books (Fig. 20.37) is straightfor-
ward. Lines 18–19 create the DbContext. The Form’s Load event handler (lines 22–32) or-
ders the Author objects by LastName (line 26) and FirstName (line 27), then loads them
into memory (line 28). Next, line 31 assigns dbcontext.Authors.Local to the author-
BindingSource’s DataSource property. At this point:

• the BindingNavigator displays the number of Author objects and indicates that
the first one in the results is selected,

• the TextBoxes display the currently selected Author’s AuthorID, FirstName and
LastName property values, and

• the currently selected Author’s titles are automatically assigned to the titles-
BindingSource’s DataSource, which causes the DataGridView to display those
titles.

Fig. 20.36 | Details representation of an Author.

ptg18189312

664 Chapter 20 Databases and LINQ

Now, when you use the BindingNavigator to change the selected Author, the correspond-
ing titles are displayed in the DataGridView.

20.9 Address Book Case Study
Our final example implements a simple AddressBook app (with sample outputs in
(Figs. 20.38–20.40) that enables users to perform the following tasks on the database Ad-
dressBook.mdf (which is included in the directory with this chapter’s examples):

• Insert new contacts.

• Find contacts whose last names begin with the specified letters.

• Update existing contacts.

• Delete contacts.

We populated the database with six fictional contacts.

1 // Fig. 20.37: Details.cs
2 // Using a DataGridView to display details based on a selection.
3 using System;
4 using System.Data.Entity;
5 using System.Linq;
6 using System.Windows.Forms;
7
8 namespace MasterDetail
9 {

10 public partial class Details : Form
11 {
12 public Details()
13 {
14 InitializeComponent();
15 }
16
17 // Entity Framework DbContext
18 BooksExamples.BooksEntities dbcontext =
19 new BooksExamples.BooksEntities();
20
21 // initialize data sources when the Form is loaded
22 private void Details_Load(object sender, EventArgs e)
23 {
24 // load Authors table ordered by LastName then FirstName
25
26
27
28
29
30 // specify DataSource for authorBindingSource
31 authorBindingSource.DataSource = dbcontext.Authors.Local;
32 }
33 }
34 }

Fig. 20.37 | Using a DataGridView to display details based on a selection.

dbcontext.Authors
 .OrderBy(author => author.LastName)

 .ThenBy(author => author.FirstName)
 .Load();

ptg18189312

20.9 Address Book Case Study 665

Fig. 20.38 | Use the BindingNavigator’s controls to navigate through the contacts.

Fig. 20.39 | Type a search string in the Last Name TextBox, then press Find to locate con-
tacts whose last names begin with that string. Only two names start with Br, so the BindingNav-
igator shows the first of two matching records.

Fig. 20.40 | Click Browse All Entries to clear a search and return to browsing all contacts.

ptg18189312

666 Chapter 20 Databases and LINQ

Rather than displaying a database table in a DataGridView, this app presents the
details of one contact at a time in several TextBoxes. The BindingNavigator at the top of
the window allows you to control which row of the table is displayed at any given time.
The BindingNavigator also allows you to add a contact and delete a contact—but only
when browsing the complete contact list. When you filter the contacts by last name, the
app disables the Add new

and Delete

buttons (we’ll explain why shortly). Clicking Browse All Entries enables these buttons again.
Adding a row clears the TextBoxes and sets the TextBox to the right of Address ID to zero
to indicate that the TextBoxes now represent a new record. When you save a new entry,
the Address ID field is automatically changed from zero to a unique ID number by the da-
tabase. No changes are made to the underlying database unless you click the Save Data but-
ton:

20.9.1 Creating the Address Book App’s GUI
We discuss the app’s code momentarily. First you’ll set up a new solution containing the
entity data model and a Windows Forms app. Close the BooksExamples solution you used
in this chapter’s previous examples.

Step 1: Creating a Class Library Project for the Entity Data Model
Perform the steps in Section 20.5.1 to create a Class Library project named AddressExam-
ple that contains an entity data model for the AddressBook.mdf database, which contains
only an Addresses table with AddressID, FirstName, LastName, Email and PhoneNumber
columns. Name the entity data model AddressModel. The AddressBook.mdf database is
located in the Databases folder with this chapter’s examples.

Step 2: Creating a Windows Forms Application Project for the AddressBook App
Perform the steps in Section 20.5.2 to create a new Windows Forms Application project
named AddressBook in the AddressExample solution. Set the Form’s filename to Con-
tacts.cs, then set the Form’s Text property to Address Book. Set the AddressBook project
as the solution’s startup project.

Step 3: Adding the Address Object as a Data Source
Add the entity data model’s Address object as a data source, as you did with the Author
object in Step 1 of Section 20.5.3.

Step 4: Displaying the Details of Each Row
In Design view, select the Address node in the Data Sources window. Click the Address

node’s down arrow and select the Details option to indicate that the IDE should create a
set of Label–TextBox pairs to show the details of a single record at a time.

ptg18189312

20.9 Address Book Case Study 667

Step 5: Dragging the Address Data-Source Node to the Form
Drag the Address node from the Data Sources window to the Form. This automatically cre-
ates a BindingNavigator and the Labels and TextBoxes corresponding to the columns of
the database table. The fields are placed in alphabetical order. Reorder the components,
using Design view, so they’re in the order shown in Fig. 20.38. You’ll also want to change
the tab order of the controls. To do so, select View > Tab Order, then click the TextBoxes
from top to bottom in the order they appear in Fig. 20.38.

Step 5: Making the AddressID TextBox ReadOnly
The AddressID column of the Addresses table is an autoincremented identity column, so
users should not be allowed to edit the values in this column. Select the TextBox for the
AddressID and set its ReadOnly property to True using the Properties window.

Step 6: Adding Controls to Allow Users to Specify a Last Name to Locate
While the BindingNavigator allows you to browse the address book, it would be more
convenient to be able to find a specific entry by last name. To add this functionality to the
app, we must create controls to allow the user to enter a last name and provide event han-
dlers to perform the search.

Add a Label named findLabel, a TextBox named findTextBox, and a Button named
findButton. Place these controls in a GroupBox named findGroupBox, then set its Text
property to Find an entry by last name. Set the Text property of the Label to Last Name: and
set the Text property of the Button to Find.

Step 7: Allowing the User to Return to Browsing All Rows of the Database
To allow users to return to browsing all the contacts after searching for contacts with a spe-
cific last name, add a Button named browseAllButton below the findGroupBox. Set the
Text property of browseAllButton to Browse All Entries.

20.9.2 Coding the Address Book App
The Contacts.cs code-behind file is split into several figures (Figs. 20.41–20.45) for pre-
sentation purposes.

Method RefreshContacts
As we showed in previous examples, we must connect the addressBindingSource that
controls the GUI with the DbContext that interacts with the database. In this example, we
declare the AddressEntities DbContext object at line 20 of Fig. 20.41, but create it and
initiate the data binding in the RefreshContacts method (lines 23–45), which is called
from several other methods in the app. When this method is called, if dbcontext is not
null, we call its Dispose method, then create a new AddressEntities DbContext at line
32. We do this so we can re-sort the data in the entity data model. If we maintained one
dbcontext.Addresses object in memory for the duration of the program and the user
changed a person’s last name or first name, the records would still remain in their original
order in the dbcontext.Addresses object, even if that order is incorrect. Lines 36–39 or-
der the Address objects by LastName, then FirstName and load the objects into memory.
Then line 42 sets the addressBindingSource’s DataSource property to dbcontext.Ad-
dresses.Local to bind the data in memory to the GUI.

ptg18189312

668 Chapter 20 Databases and LINQ

Method Contacts_Load
Method Contacts_Load (Fig. 20.42) calls RefreshContacts (line 50) so that the first re-
cord is displayed when the app starts. As before, you create the Load event handler by dou-
ble clicking the Form’s title bar.

1 // Fig. 20.41: Contact.cs
2 // Manipulating an address book.
3 using System;
4 using System.Data;
5 using System.Data.Entity;
6 using System.Data.Entity.Validation;
7 using System.Linq;
8 using System.Windows.Forms;
9

10 namespace AddressBook
11 {
12 public partial class Contacts : Form
13 {
14 public Contacts()
15 {
16 InitializeComponent();
17 }
18
19 // Entity Framework DbContext
20
21
22 // fill our addressBindingSource with all rows, ordered by name
23 private void RefreshContacts()
24 {
25 // Dispose old DbContext, if any
26 if (dbcontext != null)
27 {
28
29 }
30
31 // create new DbContext so we can reorder records based on edits
32
33
34 // use LINQ to order the Addresses table contents
35 // by last name, then first name
36
37
38
39
40
41 // specify DataSource for addressBindingSource
42
43
44 findTextBox.Clear(); // clear the Find TextBox
45 }
46

Fig. 20.41 | Creating the BooksEntities and defining method RefreshContacts for use in
other methods.

private AddressExample.AddressBookEntities dbcontext = null;

dbcontext.Dispose();

dbcontext = new AddressExample.AddressBookEntities();

dbcontext.Addresses
 .OrderBy(entry => entry.LastName)
 .ThenBy(entry => entry.FirstName)
 .Load();

addressBindingSource.DataSource = dbcontext.Addresses.Local;
addressBindingSource.MoveFirst(); // go to first result

ptg18189312

20.9 Address Book Case Study 669

Method addressBindingNavigatorSaveItem_Click
Method addressBindingNavigatorSaveItem_Click (Fig. 20.43) saves the changes to the
database when the BindingNavigator’s Save Data Button is clicked. (Remember to enable
this button.) The AddressBook database requires values for the first name, last name,
phone number and e-mail. If a field is empty when you attempt to save, a DbEntityVal-
idationException exception occurs. We call RefreshContacts (line 72) after saving to
re-sort the data and move back to the first element.

Method findButton_Click
Method findButton_Click (Fig. 20.44) uses LINQ query syntax (lines 81–85) to select
only people whose last names start with the characters in the findTextBox. The query sorts
the results by last name, then first name. In LINQ to Entities, you cannot bind a LINQ
query’s results directly to a BindingSource’s DataSource. So, line 88 calls the query ob-
ject’s ToList method to get a List representation of the filtered data and assigns the List
to the BindingSource’s DataSource. When you convert the query result to a List, only
changes to existing records in the DbContext are tracked by the DbContext—any records

47 // when the form loads, fill it with data from the database
48 private void Contacts_Load(object sender, EventArgs e)
49 {
50
51 }
52

Fig. 20.42 | Calling RefreshContacts to fill the TextBoxes when the app loads.

53 // Click event handler for the Save Button in the
54 // BindingNavigator saves the changes made to the data
55 private void addressBindingNavigatorSaveItem_Click(
56 object sender, EventArgs e)
57 {
58 Validate(); // validate input fields
59 addressBindingSource.EndEdit(); // complete current edit, if any
60
61 // try to save changes
62 try
63 {
64 dbcontext.SaveChanges(); // write changes to database file
65 }
66 catch (DbEntityValidationException)
67 {
68 MessageBox.Show("Columns cannot be empty",
69 "Entity Validation Exception");
70 }
71
72
73 }
74

Fig. 20.43 | Saving changes to the database when the user clicks Save Data.

RefreshContacts(); // fill binding with data from database

RefreshContacts(); // change back to updated unfiltered data

ptg18189312

670 Chapter 20 Databases and LINQ

that you add or remove while viewing the filtered data would be lost. For this reason we
disabled the Add new and Delete buttons when the data is filtered. When you enter a last
name and click Find, the BindingNavigator allows the user to browse only the rows con-
taining the matching last names. This is because the data source bound to the Form’s con-
trols (the result of the LINQ query) has changed and now contains only a limited number
of rows.

Method browseAllButton_Click
Method browseAllButton_Click (Fig. 20.45) allows users to return to browsing all the
rows after searching for specific rows. Double click browseAllButton to create a Click
event handler. The event handler enables the Add new and Delete buttons, then calls
RefreshContacts to restore the data source to the full list of people (in sorted order) and
clear the findTextBox.

75 // use LINQ to create a data source that contains only people
76 // with last names that start with the specified text
77 private void findButton_Click(object sender, EventArgs e)
78 {
79 // use LINQ to filter contacts with last names that
80 // start with findTextBox contents
81
82
83
84
85
86
87 // display matching contacts
88
89
90
91 // don't allow add/delete when contacts are filtered
92 bindingNavigatorAddNewItem.Enabled = false;
93 bindingNavigatorDeleteItem.Enabled = false;
94 }
95

Fig. 20.44 | Finding the contacts whose last names begin with a specified String.

96 // reload addressBindingSource with all rows
97 private void browseAllButton_Click(object sender, EventArgs e)
98 {
99 // allow add/delete when contacts are not filtered
100 bindingNavigatorAddNewItem.Enabled = true;
101 bindingNavigatorDeleteItem.Enabled = true;
102
103 }
104 }
105 }

Fig. 20.45 | Allowing the user to browse all contacts.

var lastNameQuery =
 from address in dbcontext.Addresses
 where address.LastName.StartsWith(findTextBox.Text)
 orderby address.LastName, address.FirstName
 select address;

addressBindingSource.DataSource = lastNameQuery.ToList();
addressBindingSource.MoveFirst(); // go to first result

RefreshContacts(); // change back to initial unfiltered data

ptg18189312

20.10 Tools and Web Resources 671

20.10 Tools and Web Resources
Our LINQ Resource Center at www.deitel.com/LINQ contains many links to additional
information, including blogs by Microsoft LINQ team members, sample chapters, tutori-
als, videos, downloads, FAQs, forums, webcasts and other resource sites.

A useful tool for learning LINQ is LINQPad

which allows you to execute and view the results of any C# or Visual Basic expression, in-
cluding LINQ queries. It also supports the ADO.NET Entity Framework and LINQ to
Entities.

This chapter is meant as an introduction to databases, the ADO.NET Entity Frame-
work and LINQ to Entities. Microsoft’s Entity Framework site

provides lots of additional information on working with the ADO.NET Entity Frame-
work and LINQ to Entities, including tutorials, videos and more.

20.11 Wrap-Up
This chapter introduced the relational database model, the ADO.NET Entity Framework,
LINQ to Entities and Visual Studio’s visual programming tools for working with databas-
es. You examined the contents of a simple Books database and learned about the relation-
ships among the tables in the database. You used LINQ to Entities and the entity data
model classes generated by the IDE to retrieve data from, add new data to, delete data from
and update data in a SQL Server Express database.

We discussed the entity data model classes automatically generated by the IDE, such
as the DbContext class that manages an app’s interactions with a database. You learned
how to use the IDE’s tools to connect to databases and to generate entity data model
classes based on an existing database’s schema. You then used the IDE’s drag-and-drop
capabilities to automatically generate GUIs for displaying and manipulating database data.
In the next chapter, we’ll show how to use asynchronous programming with C#’s async
modifier and await operator to take advantage of multicore architectures.

http://www.linqpad.net

https://msdn.microsoft.com/en-us/data/aa937723

http://www.deitel.com/LINQ
http://www.linqpad.net
https://msdn.microsoft.com/en-us/data/aa937723

ptg18189312

21
Asynchronous Programming with

async and await

 .

O b j e c t i v e s
In this chapter you’ll:
■ Understand what asynchronous programming is and how it

can improve the performance of your apps.
■ Use the async modifier to indicate that a method is

asynchronous.
■ Use an await expression to wait for an asynchronous task

to complete execution so that an async method can
continue its execution.

■ Take advantage of multicore processors by executing tasks
asynchronously via Task Parallel Library (TPL) features.

■ Use Task method WhenAll to wait for multiple tasks to
complete before an async method continues.

■ Time multiple tasks running on a single-core system and a
dual-core system (all with the same processor speeds) to
determine the performance improvement when these tasks
are run on the dual-core system.

■ Use an HttpClient to invoke a web service
asynchronously.

■ Show an asynchronous task’s progress and intermediate
results.

ptg18189312

21.1 Introduction 673

O
u

tl
in

e

21.1 Introduction
It would be nice if we could focus our attention on performing only one task at a time and
doing it well. That’s usually difficult to do in a complex world in which there’s so much go-
ing on at once. This chapter presents C#’s capabilities for developing programs that create
and manage multiple tasks. As we’ll demonstrate, this can greatly improve program perfor-
mance, especially on multicore systems.

Concurrency
When we say that two tasks are operating concurrently, we mean that they’re both making
progress at once. Until recently, most computers had only a single processor. Operating sys-
tems on such computers execute tasks concurrently by rapidly switching between them,
doing a small portion of each before moving on to the next, so that all tasks keep progress-
ing. For example, it’s common for personal computers to compile a program, send a file
to a printer, receive electronic mail messages over a network and more, concurrently. Tasks
like these that proceed independently of one another are said to execute asynchronously
and are referred to as asynchronous tasks.

Parallelism
When we say that two tasks are operating in parallel, we mean that they’re executing si-
multaneously. In this sense, parallelism is a subset of concurrency. The human body per-
forms a great variety of operations in parallel. Respiration, blood circulation, digestion,
thinking and walking, for example, can occur in parallel, as can all the senses—sight, hear-

21.1 Introduction
21.2 Basics of async and await

21.2.1 async Modifier
21.2.2 await Expression
21.2.3 async, await and Threads

21.3 Executing an Asynchronous Task
from a GUI App

21.3.1 Performing a Task Asynchronously
21.3.2 Method calculateButton_Click
21.3.3 Task Method Run: Executing Asyn-

chronously in a Separate Thread
21.3.4 awaiting the Result
21.3.5 Calculating the Next Fibonacci Value

Synchronously
21.4 Sequential Execution of Two Com-

pute-Intensive Tasks
21.5 Asynchronous Execution of Two

Compute-Intensive Tasks
21.5.1 awaiting Multiple Tasks with Task

Method WhenAll
21.5.2 Method StartFibonacci

21.5.3 Modifying a GUI from a Separate
Thread

21.5.4 awaiting One of Several Tasks with
Task Method WhenAny

21.6 Invoking a Flickr Web Service Asyn-
chronously with HttpClient

21.6.1 Using Class HttpClient to Invoke a
Web Service

21.6.2 Invoking the Flickr Web Service’s
flickr.photos.search Method

21.6.3 Processing the XML Response
21.6.4 Binding the Photo Titles to the List-

Box
21.6.5 Asynchronously Downloading an Im-

age’s Bytes
21.7 Displaying an Asynchronous Task’s

Progress
21.8 Wrap-Up

ptg18189312

674 Chapter 21 Asynchronous Programming with async and await

ing, touch, smell and taste. It’s believed that this parallelism is possible because the human
brain is thought to contain billions of “processors.” Today’s multicore computers have
multiple processors that can perform tasks in parallel.

Multithreading
C# makes concurrency available to you through the language and APIs. C# programs can
have multiple threads of execution, where each thread has its own method-call stack, al-
lowing it to execute concurrently with other threads while sharing with them application-
wide resources such as memory and files. This capability is called multithreading.

Multithreading Is Difficult
People find it difficult to jump between concurrent trains of thought. To see why multi-
threaded programs can be difficult to write and understand, try the following experiment:
Open three books to page 1, and try reading the books concurrently. Read a few words
from the first book, then a few from the second, then a few from the third, then loop back
and read the next few words from the first book, the second and so on. After this experi-
ment, you’ll appreciate many of the challenges of multithreading—switching between the
books, reading briefly, remembering your place in each book, moving the book you’re
reading closer so that you can see it and pushing the books you’re not reading aside—and,
amid all this chaos, trying to comprehend the content of the books!

Asynchronous Programming, async and await
To take full advantage of multicore architectures you need to write applications that can
process tasks asynchronously. Asynchronous programming is a technique for writing apps
containing tasks that can execute asynchronously, which can improve app performance
and GUI responsiveness in apps with long-running or compute-intensive tasks. Before
languages like C#, such apps were implemented with operating-system primitives available
only to experienced systems programmers. Then C# and other programming languages
began enabling app developers to specify concurrent operations. Initially, these capabilities
were complex to use, which led to frequent and subtle bugs.

The async modifier and await operator greatly simplify asynchronous programming,
reduce errors and enable your apps to take advantage of the processing power in today’s
multicore computers, smartphones and tablets. Many .NET classes for web access, file
processing, networking, image processing and more have methods that return Task objects
for use with async and await, so you can take advantage of asynchronous programming
model. This chapter presents a simple introduction to asynchronous programming with
async and await.

Performance Tip 21.1
A problem with single-threaded applications that can lead to poor responsiveness is that
lengthy activities must complete before others can begin. In a multithreaded application,
threads can be distributed across multiple cores (if available) so that multiple tasks execute
in parallel and the application can operate more efficiently. Multithreading can also in-
crease performance on single-processor systems—when one thread cannot proceed (because,
for example, it’s waiting for the result of an I/O operation), another can use the processor.

ptg18189312

21.2 Basics of async and await 675

21.2 Basics of async and await
Before async and await, it was common for a method that was called synchronously (i.e.,
performing tasks one after another in order) in the calling thread to launch a long-running
task asynchronously and to provide that task with a callback method (or, in some cases, reg-
ister an event handler) that would be invoked once the asynchronous task completed. This
style of coding is simplified with async and await.

21.2.1 async Modifier
The async modifier indicates that a method or lambda expression contains at least one
await expression. An async method executes its body in the same thread as the calling
method. (Throughout the remainder of this discussion, we’ll use the term “method” to
mean “method or lambda expression.”)

21.2.2 await Expression
An await expression, which can appear only in an async method, consists of the await
operator followed by an expression that returns an awaitable entity—typically a Task ob-
ject (as you’ll see in Section 21.3), though it is possible to create your own awaitable enti-
ties. Creating awaitable entities is beyond the scope of our discussion. For more
information, see

When an async method encounters an await expression:

• If the asynchronous task has already completed, the async method simply con-
tinues executing.

• Otherwise, program control returns to the async method’s caller until the asyn-
chronous task completes execution. This allows the caller to perform other work
that does not depend on the results of the asynchronous task.

When the asynchronous task completes, control returns to the async method and contin-
ues with the next statement after the await expression.

21.2.3 async, await and Threads
The async and await mechanism does not create new threads. If any threads are required,
the method that you call to start an asynchronous task on which you await the results is
responsible for creating the threads that are used to perform the asynchronous task. For
example, we’ll show how to use class Task’s Run method in several examples to start new
threads of execution for executing tasks asynchronously. Task method Run returns a Task
on which a method can await the result.

http://blogs.msdn.com/b/pfxteam/archive/2011/01/13/10115642.aspx

Software Engineering Observation 21.1
The mechanisms for determining whether to return control to an async method’s caller or
continue executing an async method, and for continuing an async method’s execution
when the asynchronous task completes, are handled entirely by code that’s written for you
by the compiler.

http://blogs.msdn.com/b/pfxteam/archive/2011/01/13/10115642.aspx

ptg18189312

676 Chapter 21 Asynchronous Programming with async and await

21.3 Executing an Asynchronous Task from a GUI App
This section demonstrates the benefits of executing compute-intensive tasks asynchro-
nously in a GUI app.

21.3.1 Performing a Task Asynchronously
Figure 21.1 demonstrates executing an asynchronous task from a GUI app. Consider the
GUI at the end of Fig. 21.1. In the GUI’s top half, you can enter an integer, then click
Calculate to calculate that integer’s Fibonacci value (discussed momentarily) using a com-
pute-intensive recursive implementation (Section 21.3.2). Starting with integers in the
40s (on our test computer), the recursive calculation can take seconds or even minutes to
calculate. If this calculation were to be performed synchronously, the GUI would freeze for
that amount of time and the user would not be able to interact with the app (as we’ll
demonstrate in Fig. 21.2). We launch the calculation asynchronously and have it execute
on a separate thread so the GUI remains responsive. To demonstrate this, in the GUI’s bot-
tom half, you can click Next Number repeatedly to calculate the next Fibonacci number by
simply adding the two previous numbers in the sequence. For the screen captures in
Fig. 21.1, we used the top half of the GUI to calculate Fibonacci(45), which took over a
minute on our test computer. While that calculation proceeded in a separate thread, we
clicked Next Number repeatedly to demonstrate that we could still interact with the GUI
and that the iterative Fibonacci calculation is much more efficient.

A Compute-Intensive Algorithm: Calculating Fibonacci Numbers Recursively
The examples in this section and in Sections 21.4–21.5 each perform a compute-intensive
recursive Fibonacci calculation (defined in the Fibonacci method at lines 53–63). The
Fibonacci series

begins with 0 and 1, and each subsequent Fibonacci number is the sum of the previous
two Fibonacci numbers. The Fibonacci series can be defined recursively as follows:

0, 1, 1, 2, 3, 5, 8, 13, 21, …

Fibonacci(0) = 0
Fibonacci(1) = 1
Fibonacci(n) = Fibonacci(n – 1) + Fibonacci(n – 2)

1 // Fig. 21.1: FibonacciForm.cs
2 // Performing a compute-intensive calculation from a GUI app
3 using System;
4 using System.Threading.Tasks;
5 using System.Windows.Forms;
6
7 namespace FibonacciTest
8 {
9 public partial class FibonacciForm : Form

10 {
11
12

Fig. 21.1 | Performing a compute-intensive calculation from a GUI app. (Part 1 of 3.)

private long n1 = 0; // initialize with first Fibonacci number
private long n2 = 1; // initialize with second Fibonacci number

ptg18189312

21.3 Executing an Asynchronous Task from a GUI App 677

13 private int count = 1; // current Fibonacci number to display
14
15 public FibonacciForm()
16 {
17 InitializeComponent();
18 }
19
20 // start an async Task to calculate specified Fibonacci number
21 private void calculateButton_Click(object sender, EventArgs e)
22 {
23 // retrieve user's input as an integer
24 int number = int.Parse(inputTextBox.Text);
25
26 asyncResultLabel.Text = "Calculating...";
27
28 // Task to perform Fibonacci calculation in separate thread
29
30
31 // wait for Task in separate thread to complete
32
33
34 // display result after Task in separate thread completes
35 asyncResultLabel.Text = ;
36 }
37
38 // calculate next Fibonacci number iteratively
39 private void nextNumberButton_Click(object sender, EventArgs e)
40 {
41 // calculate the next Fibonacci number
42
43
44
45 ++count;
46
47 // display the next Fibonacci number
48 displayLabel.Text = $"Fibonacci of {count}:";
49 syncResultLabel.Text = n2.ToString();
50 }
51
52 // recursive method Fibonacci; calculates nth Fibonacci number
53
54 {
55 if (n == 0 || n == 1)
56 {
57 return n;
58 }
59 else
60 {
61
62 }
63 }
64 }
65 }

Fig. 21.1 | Performing a compute-intensive calculation from a GUI app. (Part 2 of 3.)

async

Task<long> fibonacciTask = Task.Run(() => Fibonacci(number));

await fibonacciTask;

fibonacciTask.Result.ToString()

long temp = n1 + n2; // calculate next Fibonacci number
n1 = n2; // store prior Fibonacci number in n1
n2 = temp; // store new Fibonacci

public long Fibonacci(long n)

return Fibonacci(n - 1) + Fibonacci(n - 2);

ptg18189312

678 Chapter 21 Asynchronous Programming with async and await

Exponential Complexity
A word of caution is in order about recursive methods like the one we use here to generate
Fibonacci numbers. The number of recursive calls that are required to calculate the nth
Fibonacci number is on the order of 2n. This rapidly gets out of hand as n gets larger. Cal-
culating only the 20th Fibonacci number would require on the order of 220 or about a mil-
lion calls, calculating the 30th Fibonacci number would require on the order of 230 or
about a billion calls, and so on. This exponential complexity can humble even the world’s
most powerful computers! Calculating just Fibonacci(47) recursively—even on today’s
most recent desktop and notebook computers—can take minutes.

21.3.2 Method calculateButton_Click
The Calculate button’s event handler (lines 21–36) initiates the call to method Fibonacci
in a separate thread and displays the results when the call completes. The method is de-
clared async (line 21) to indicate to the compiler that the method will initiate an asyn-
chronous task and await the results. In an async method, you write code that looks as if
it executes sequentially, and the compiler handles the complicated issues of managing
asynchronous execution. This makes your code easier to write, debug, modify and main-
tain, and reduces errors.

Fig. 21.1 | Performing a compute-intensive calculation from a GUI app. (Part 3 of 3.)

a) GUI after Fibonacci(45) began executing in
a separate thread

b) GUI while Fibonacci(45) was still executing
in a separate thread

c) GUI after Fibonacci(45) completed

Each time you click Next
Number the app updates this
Label to indicate the next
Fibonacci number being
calculated, then immediately
displays the result to the right.

ptg18189312

21.3 Executing an Asynchronous Task from a GUI App 679

21.3.3 Task Method Run: Executing Asynchronously in a Separate
Thread
Line 29 creates and starts a Task<TResult> (namespace System.Threading.Tasks), which
promises to return a result of generic type TResult at some point in the future. Class Task
is part of .NET’s Task Parallel Library (TPL) for parallel and asynchronous programming.
The version of class Task’s static method Run used in line 29 receives a Func<TResult>
delegate (delegates were introduced in Section 14.3.3) as an argument and executes a
method in a separate thread. The delegate Func<TResult> represents any method that takes
no arguments and returns a result of the type specified by the TResult type parameter. The
return type of the method you pass to Run is used by the compiler as the type argument
for Run’s Func delegate and for the Task that Run returns.

Method Fibonacci requires an argument, so line 29 passes the lambda expression

which takes no arguments—this lambda encapsulates the call to Fibonacci with the argu-
ment number (the value entered by the user). The lambda expression implicitly returns the
Fibonacci call’s result (a long), so it meets the Func<TResult> delegate’s requirements. In
this example, Task’s static method Run creates and returns a Task<long>. The compiler
infers the type long from the return type of method Fibonacci. We could declare local
variable fibonacciTask (line 29) with var—we explicitly used the type Task<long> for
clarity, because Task method Run’s return type is not obvious from the call.

21.3.4 awaiting the Result
Next, line 32 awaits the result of the fibonacciTask that’s executing asynchronously. If
the fibonacciTask is already complete, execution continues with line 35. Otherwise, con-
trol returns to calculateButton_Click’s caller (the GUI event-handling thread) until the
result of the fibonacciTask is available. This allows the GUI to remain responsive while
the Task executes. Once the Task completes, calculateButton_Click continues execu-
tion at line 35, which uses Task property Result to get the value returned by Fibonacci
and display it on asyncResultLabel.

An async method can perform statements between those that launch an asynchro-
nous Task and await the results. In such a case, the method continues executing those
statements after launching the asynchronous Task until it reaches the await expression.

Lines 29 and 32 can be written more concisely as

In this case, the await operator unwraps and returns the Task’s result—the long returned
by method Fibonacci. You can then use the long value directly without accessing the
Task’s Result property.

21.3.5 Calculating the Next Fibonacci Value Synchronously
When you click Next Number, the event handler nextNumberButton_Click (lines 39–50)
executes. Lines 42–45 add the previous two Fibonacci numbers stored in instance variables
n1 and n2 to determine the next number in the sequence, update instance variables n1 and

() => Fibonacci(number)

long result = await Task.Run(() => Fibonacci(number));

ptg18189312

680 Chapter 21 Asynchronous Programming with async and await

n2 to their new values and increment instance variable count. Then lines 48–49 update
the GUI to display the Fibonacci number that was just calculated.

The code in the Next Number event handler is performed in the GUI thread of execu-
tion that processes user interactions with controls. Handling such short computations in
this thread does not cause the GUI to become unresponsive. Because the longer Fibonacci
computation is performed in a separate thread, it’s possible to get the next Fibonacci
number while the recursive computation is still in progress.

21.4 Sequential Execution of Two Compute-Intensive
Tasks
Figure 21.2 uses the recursive Fibonacci method that we introduced in Section 21.3. The
example sequentially performs the calculations Fibonacci(46) (line 22) and Fibonac-
ci(45) (line 35) when the user clicks the Start Sequential Fibonacci Calls Button. Note that
once you click the Button, the app becomes nonresponsive. This occurs because the Fibo-
nacci calculations are performed in the GUI thread—once the calculations complete,
you’ll be able to interact with the app again. Before and after each Fibonacci call, we cap-
ture the time (as a DateTime; Section 15.4) so that we can calculate the total time required
for that calculation and the total time required for both calculations. In this app, we used
DateTime’s overloaded minus (-) operator to calculate the differences between DateTimes
(lines 27, 40 and 45)—like method Subtract introduced previously, the minus (-) oper-
ator returns a TimeSpan.

The first two outputs show the results of executing the app on a dual-core Windows
10 computer. The last two outputs show the results of executing the app on a single-core
Windows 10 computer. In all cases, the cores operated at the same speed. The app always
took longer to execute (in our testing) on the single-core computer, because the processor
was being shared between this app and all the others that happened to be executing on the
computer at the same time. On the dual-core system, one of the cores could have been
handling the “other stuff” executing on the computer, reducing the demand on the core
performing the synchronous calculation. Results may vary across systems based on pro-
cessor speeds, the number of cores, apps currently executing and the chores the operating
system is performing.

1 // Fig. 21.2: SynchronousTestForm.cs
2 // Fibonacci calculations performed sequentially
3 using System;
4 using System.Windows.Forms;
5
6 namespace FibonacciSynchronous
7 {
8 public partial class SynchronousTestForm : Form
9 {

10 public SynchronousTestForm()
11 {
12 InitializeComponent();
13 }

Fig. 21.2 | Fibonacci calculations performed sequentially. (Part 1 of 3.)

ptg18189312

21.4 Sequential Execution of Two Compute-Intensive Tasks 681

14
15 // start sequential calls to Fibonacci
16 private void startButton_Click(object sender, EventArgs e)
17 {
18 // calculate Fibonacci (46)
19 outputTextBox.Text = "Calculating Fibonacci(46)\r\n";
20 outputTextBox.Refresh(); // force outputTextBox to repaint
21 DateTime startTime1 = DateTime.Now; // time before calculation
22
23 DateTime endTime1 = DateTime.Now; // time after calculation
24
25 // display results for Fibonacci(46)
26 outputTextBox.AppendText($"Fibonacci(46) = {result1}\r\n");
27 double minutes = (endTime1 - startTime1).TotalMinutes;
28 outputTextBox.AppendText(
29 $"Calculation time = {minutes:F6} minutes\r\n\r\n");
30
31 // calculate Fibonacci (45)
32 outputTextBox.AppendText("Calculating Fibonacci(45)\r\n");
33 outputTextBox.Refresh(); // force outputTextBox to repaint
34 DateTime startTime2 = DateTime.Now;
35
36 DateTime endTime2 = DateTime.Now;
37
38 // display results for Fibonacci(45)
39 outputTextBox.AppendText($"Fibonacci(45) = {result2}\r\n");
40 minutes = (endTime2 - startTime2).TotalMinutes;
41 outputTextBox.AppendText(
42 $"Calculation time = {minutes:F6} minutes\r\n\r\n");
43
44 // show total calculation time
45 double totalMinutes = (endTime2 - startTime1).TotalMinutes;
46 outputTextBox.AppendText(
47 $"Total calculation time = {totalMinutes:F6} minutes\r\n");
48 }
49
50 // Recursively calculates Fibonacci numbers
51 public long Fibonacci(long n)
52 {
53 if (n == 0 || n == 1)
54 {
55 return n;
56 }
57 else
58 {
59 return Fibonacci(n - 1) + Fibonacci(n - 2);
60 }
61 }
62 }
63 }

Fig. 21.2 | Fibonacci calculations performed sequentially. (Part 2 of 3.)

long result1 = Fibonacci(46); // synchronous call

long result2 = Fibonacci(45); // synchronous call

ptg18189312

682 Chapter 21 Asynchronous Programming with async and await

21.5 Asynchronous Execution of Two Compute-
Intensive Tasks
When you run any program, its tasks compete for processor time with the operating sys-
tem, other programs and other activities that the operating system is running on your be-
half. When you execute the next example, the time to perform the Fibonacci calculations
can vary based on your computer’s processor speed, number of cores and what else is run-
ning on your computer. It’s like a drive to the supermarket—the time it takes can vary
based on traffic conditions, weather, timing of traffic lights and other factors.

Figure 21.3 also uses the recursive Fibonacci method, but the two initial calls to
Fibonacci execute in separate threads. The first two outputs show the results on a dual-core
computer. Though execution times varied, the total time to perform both Fibonacci cal-
culations (in our tests) was typically significantly less than the total sequential-execution
time in Fig. 21.2. Dividing the compute-intensive calculations into threads and running
them on a dual-core system does not perform the calculations twice as fast, but they’ll typ-

a) Outputs on a Dual-Core Windows 10 Computer

b) Outputs on a Single-Core Windows 10 Computer

Fig. 21.2 | Fibonacci calculations performed sequentially. (Part 3 of 3.)

ptg18189312

21.5 Asynchronous Execution of Two Compute-Intensive Tasks 683

ically run faster than when performed in sequence on one core. Though the total time was
the compute time for the longer calculation, this is not always the case, as there’s overhead
inherent in using threads to perform separate Tasks.

The last two outputs show that executing calculations in multiple threads on a single-
core processor can actually take longer than simply performing them synchronously, due
to the overhead of sharing one processor among the app’s threads, all the other apps exe-
cuting on the computer and the chores the operating system was performing.

1 // Fig. 21.3: AsynchronousTestForm.cs
2 // Fibonacci calculations performed in separate threads
3 using System;
4 using System.Threading.Tasks;
5 using System.Windows.Forms;
6
7 namespace FibonacciAsynchronous
8 {
9 public partial class AsynchronousTestForm : Form

10 {
11 public AsynchronousTestForm()
12 {
13 InitializeComponent();
14 }
15
16 // start asynchronous calls to Fibonacci
17 private void startButton_Click(object sender, EventArgs e)
18 {
19 outputTextBox.Text =
20 "Starting Task to calculate Fibonacci(46)\r\n";
21
22 // create Task to perform Fibonacci(46) calculation in a thread
23
24
25 outputTextBox.AppendText(
26 "Starting Task to calculate Fibonacci(45)\r\n");
27
28 // create Task to perform Fibonacci(45) calculation in a thread
29
30
31
32
33 // determine time that first thread started
34 DateTime startTime =
35 (task1.Result.StartTime < task2.Result.StartTime) ?
36 task1.Result.StartTime : task2.Result.StartTime;
37
38 // determine time that last thread ended
39 DateTime endTime =
40 (task1.Result.EndTime > task2.Result.EndTime) ?
41 task1.Result.EndTime : task2.Result.EndTime;
42

Fig. 21.3 | Fibonacci calculations performed in separate threads. (Part 1 of 3.)

async

Task<TimeData> task1 = Task.Run(() => StartFibonacci(46));

Task<TimeData> task2 = Task.Run(() => StartFibonacci(45));

await Task.WhenAll(task1, task2); // wait for both to complete

ptg18189312

684 Chapter 21 Asynchronous Programming with async and await

43 // display total time for calculations
44 double totalMinutes = (endTime - startTime).TotalMinutes;
45 outputTextBox.AppendText(
46 $"Total calculation time = {totalMinutes:F6} minutes\r\n");
47 }
48
49 // starts a call to Fibonacci and captures start/end times
50 TimeData StartFibonacci(int n)
51 {
52 // create a TimeData object to store start/end times
53 var result = new TimeData();
54
55 AppendText($"Calculating Fibonacci({n})");
56 result.StartTime = DateTime.Now;
57
58 result.EndTime = DateTime.Now;
59
60 AppendText($"Fibonacci({n}) = {fibonacciValue}");
61 double minutes =
62 (result.EndTime - result.StartTime).TotalMinutes;
63 AppendText($"Calculation time = {minutes:F6} minutes\r\n");
64
65 return result;
66 }
67
68 // Recursively calculates Fibonacci numbers
69 public long Fibonacci(long n)
70 {
71 if (n == 0 || n == 1)
72 {
73 return n;
74 }
75 else
76 {
77 return Fibonacci(n - 1) + Fibonacci(n - 2);
78 }
79 }
80
81 // append text to outputTextBox in UI thread
82 public void AppendText(String text)
83 {
84 if (InvokeRequired) // not GUI thread, so add to GUI thread
85 {
86
87 }
88 else // GUI thread so append text
89 {
90 outputTextBox.AppendText(text + "\r\n");
91 }
92 }
93 }
94 }

Fig. 21.3 | Fibonacci calculations performed in separate threads. (Part 2 of 3.)

long fibonacciValue = Fibonacci(n);

Invoke(new MethodInvoker(() => AppendText(text)));

ptg18189312

21.5 Asynchronous Execution of Two Compute-Intensive Tasks 685

21.5.1 awaiting Multiple Tasks with Task Method WhenAll
In method startButton_Click, lines 23 and 29 use Task method Run to create and start
Tasks that execute method StartFibonacci (lines 50–66)—one to calculate Fibonac-
ci(46) and one to calculate Fibonacci(45). To show the total calculation time, the app
must wait for both Tasks to complete before executing lines 34–46. You can wait for mul-
tiple Tasks to complete by awaiting the result of Task static method WhenAll (line 31),
which returns a Task that waits for all of WhenAll’s argument Tasks to complete and places
all the results in an array. In this app, the Task’s Result is a TimeData[], because both of
WhenAll’s argument Tasks execute methods that return TimeData objects. Class TimeData
is defined as follows in this project’s TimeData.cs file:

a) Outputs on a Dual-Core Windows 10 Computer

b) Outputs on a Single-Core Windows 10 Computer

class TimeData
{

 public DateTime StartTime { get; set; }
 public DateTime EndTime { get; set; }

}

Fig. 21.3 | Fibonacci calculations performed in separate threads. (Part 3 of 3.)

ptg18189312

686 Chapter 21 Asynchronous Programming with async and await

We use objects of this class to store the time just before and immediately after the call to
Fibonacci—we use these properties to perform time calculations. The TimeData array can
be used to iterate through the results of the awaited Tasks. In this example, we have only
two Tasks, so we interact with the task1 and task2 objects directly in the remainder of
the event handler.

21.5.2 Method StartFibonacci
Method StartFibonacci (lines 50–66) specifies the task to perform—in this case, to call
Fibonacci (line 57) to perform the recursive calculation, to time the calculation (lines 56
and 58), to display the calculation’s result (line 60) and to display the time the calculation
took (lines 61–63). The method returns a TimeData object that contains the time before
and after each thread’s call to Fibonacci.

21.5.3 Modifying a GUI from a Separate Thread
Lines 55, 60 and 63 in StartFibonacci call method AppendText (lines 82–92) to append
text to the outputTextBox. GUI controls are designed to be manipulated only by the GUI
thread—all GUI event handlers are invoked in the GUI thread automatically. Modifying
GUI controls one from a non-GUI thread can corrupt the GUI, making it unreadable or
unusable. When updating a control from a non-GUI thread, you must schedule that update
to be performed by the GUI thread. To do so in Windows Forms, check the inherited Form
property InvokeRequired (line 84). If this property is true, the code is executing in a non-
GUI thread and must not update the GUI directly. Instead, you call the inherited Form
method Invoke method (line 86), which receives as an argument a Delegate representing
the update to perform in the GUI thread. In this example, we pass a MethodInvoker
(namespace System.Windows.Forms)—a Delegate that invokes a method with no argu-
ments and a void return type. We initialize the MethodInvoker with a lambda expression
that calls AppendText. Line 86 schedules this MethodInvoker to execute in the GUI thread.
When the method is called from the GUI thread, line 90 updates the outputTextBox.
Similar concepts also apply to WPF and Universal Windows Platform GUIs.

21.5.4 awaiting One of Several Tasks with Task Method WhenAny
Similar to WhenAll, class Task also provides static method WhenAny, which enables you
to wait for any one of several Tasks specified as arguments to complete. WhenAny returns
the Task that completes first. One use of WhenAny might be to initiate several Tasks that
perform the same complex calculation on computers around the Internet, then wait for
any one of those computers to send results back. This would allow you to take advantage
of computing power that’s available to you to get the result as fast as possible. In this case,
it’s up to you to decide whether to cancel the remaining Tasks or allow them to continue
executing. For details on how to do this, see

Another use of WhenAny might be to download several large files—one per Task. In this
case, you might want all the results eventually, but you’d like to start processing immedi-

https://msdn.microsoft.com/library/jj155758

https://msdn.microsoft.com/library/jj155758

ptg18189312

21.6 Invoking a Flickr Web Service Asynchronously with HttpClient 687

ately the results from the first Task that returns. You could then call WhenAny again for the
remaining Tasks that are still executing.

21.6 Invoking a Flickr Web Service Asynchronously with
HttpClient
In this section, we present a Flickr Viewer app that allows you to search for photos on Flickr
(flickr.com)—one of the first photo-sharing websites—then browse through the results.
The app uses an asynchronous method to invoke a Flickr web service—that is, a software
component that can receive method calls over the Internet using standard web technologies.

XML and LINQ to XML
Many web services return data in XML (Extensible Markup Language) format. XML is a
widely supported standard for describing data that is commonly used to exchange that data
between applications over the Internet. XML describes data in a way that both human be-
ings and computers can understand.

The Flickr web-service method we use in this example returns XML by default. We’ll
use LINQ to XML, which is built into the .NET platform, to process the data returned
by Flickr. We’ll explain in Section 21.6.3 the small amount of XML and LINQ to XML
needed.

REST Web Service
Flickr provides a so-called REST (Representational State Transfer) web service that can re-
ceive method calls via standard web technologies. As you’ll see, the app invokes a Flickr
web-service method via a URL, just as you’d use to access a web page from a web browser.

Asynchronously Invoking a Web Service
Because there can be unpredictably long delays while awaiting a web-service response, asyn-
chronous Tasks are frequently used in GUI apps that invoke web services (or perform net-
work communication in general) to ensure that the apps remain responsive to their users.

A Flickr API Key Is Required
To run this example on your computer, you must obtain your own Flickr API key at

and use it to replace the words YOUR API KEY HERE inside the quotes in line 18 of Fig. 21.4.
This key is a unique string of characters and numbers that enables Flickr to track your
usage of its APIs. Be sure to read the Flickr API’s Terms of Use carefully.

Flicker Viewer App
Our Flickr Viewer app (Fig. 21.4) allows you to search by tag for photos that users worldwide
have uploaded to Flickr. Tagging—or labeling content—is part of the collaborative nature
of social media. A tag is any user-supplied word or phrase that helps organize web content.
Tagging items with meaningful words or phrases creates a strong identification of the con-
tent. Flickr uses the tags to improve its photo-search service, giving users better results.

https://www.flickr.com/services/apps/create/apply

https://www.flickr.com/services/apps/create/apply

ptg18189312

688 Chapter 21 Asynchronous Programming with async and await

1 // Fig. 21.4: FickrViewerForm.cs
2 // Invoking a web service asynchronously with class HttpClient
3 using System;
4 using System.Drawing;
5 using System.IO;
6 using System.Linq;
7 using System.Net.Http;
8 using System.Threading.Tasks;
9 using System.Windows.Forms;

10 using System.Xml.Linq;
11
12 namespace FlickrViewer
13 {
14 public partial class FickrViewerForm : Form
15 {
16 // Use your Flickr API key here--you can get one at:
17 // https://www.flickr.com/services/apps/create/apply
18 private const string KEY = ;
19
20 // object used to invoke Flickr web service
21
22
23
24
25 public FickrViewerForm()
26 {
27 InitializeComponent();
28 }
29
30 // initiate asynchronous Flickr search query;
31 // display results when query completes
32 private async void searchButton_Click(object sender, EventArgs e)
33 {
34 // if flickrTask already running, prompt user
35 if ()
36 {
37 var result = MessageBox.Show(
38 "Cancel the current Flickr search?",
39 "Are you sure?", MessageBoxButtons.YesNo,
40 MessageBoxIcon.Question);
41
42 // determine whether user wants to cancel prior search
43 if (result == DialogResult.No)
44 {
45 return;
46 }
47 else
48 {
49
50 }
51 }

Fig. 21.4 | Invoking a web service asynchronously with class HttpClient. (Part 1 of 3.) [Pho-
tos used in this example ©Paul Deitel. All rights reserved.]

"YOUR API KEY HERE"

private static HttpClient flickrClient = new HttpClient();

Task<string> flickrTask = null; // Task<string> that queries Flickr

flickrTask?.Status != TaskStatus.RanToCompletion

flickrClient.CancelPendingRequests(); // cancel search

https://www.flickr.com/services/apps/create/apply

ptg18189312

21.6 Invoking a Flickr Web Service Asynchronously with HttpClient 689

52
53 // Flickr's web service URL for searches
54 var flickrURL = "https://api.flickr.com/services/rest/?method=" +
55 $"flickr.photos.search&api_key={KEY}&" +
56 $"tags={inputTextBox.Text.Replace(" ", ",")}" +
57 "&tag_mode=all&per_page=500&privacy_filter=1";
58
59 imagesListBox.DataSource = null; // remove prior data source
60 imagesListBox.Items.Clear(); // clear imagesListBox
61 pictureBox.Image = null; // clear pictureBox
62 imagesListBox.Items.Add("Loading..."); // display Loading...
63
64 // invoke Flickr web service to search Flickr with user's tags
65
66
67 // await flickrTask then parse results with XDocument and LINQ
68
69
70 // gather information on all photos
71
72
73
74
75
76
77
78
79
80
81
82
83
84 imagesListBox.Items.Clear(); // clear imagesListBox
85
86 // set ListBox properties only if results were found
87 if ()
88 {
89
90
91 }
92 else // no matches were found
93 {
94 imagesListBox.Items.Add("No matches");
95 }
96 }
97
98 // display selected image
99 private async void imagesListBox_SelectedIndexChanged(
100 object sender, EventArgs e)
101 {

Fig. 21.4 | Invoking a web service asynchronously with class HttpClient. (Part 2 of 3.) [Pho-
tos used in this example ©Paul Deitel. All rights reserved.]

flickrTask = flickrClient.GetStringAsync(flickrURL);

XDocument flickrXML = XDocument.Parse(await flickrTask);

var flickrPhotos =
 from photo in flickrXML.Descendants("photo")
 let id = photo.Attribute("id").Value
 let title = photo.Attribute("title").Value
 let secret = photo.Attribute("secret").Value
 let server = photo.Attribute("server").Value
 let farm = photo.Attribute("farm").Value
 select new FlickrResult
 {

 Title = title,
 URL = $"https://farm{farm}.staticflickr.com/" +

 $"{server}/{id}_{secret}.jpg"
 };

flickrPhotos.Any()

imagesListBox.DataSource = flickrPhotos.ToList();
imagesListBox.DisplayMember = "Title";

https://api.flickr.com/services/rest/?method="
https://farm{farm}.staticflickr.com/"

ptg18189312

690 Chapter 21 Asynchronous Programming with async and await

102 if (imagesListBox.SelectedItem != null)
103 {
104 string selectedURL =
105 ((FlickrResult) imagesListBox.SelectedItem).URL;
106
107 // use HttpClient to get selected image's bytes asynchronously
108
109
110
111 // display downloaded image in pictureBox
112 MemoryStream memoryStream = new MemoryStream(imageBytes);
113 pictureBox.Image = Image.FromStream(memoryStream);
114 }
115 }
116 }
117 }

Fig. 21.4 | Invoking a web service asynchronously with class HttpClient. (Part 3 of 3.) [Pho-
tos used in this example ©Paul Deitel. All rights reserved.]

byte[] imageBytes =
 await flickrClient.GetByteArrayAsync(selectedURL);

ptg18189312

21.6 Invoking a Flickr Web Service Asynchronously with HttpClient 691

As shown in Fig. 21.4, you can type one or more tags (e.g., “pdeitel flowers”) into the
TextBox. When you click the Search Button, the application invokes the Flickr web service
that searches for photos, which returns an XML document containing links to the first 500
(or fewer if there are not 500) results that match the tags you specify. We use LINQ to
XML to parse the results and display a list of photo titles in a ListBox. When you select
an image’s title in the ListBox, the app uses another asynchronous Task to download the
full-size image from Flickr and display it in a PictureBox.

21.6.1 Using Class HttpClient to Invoke a Web Service
This app uses class HttpClient (namespace System.Net.Http) to interact with Flickr’s
web service and retrieve photos that match the search tags. Line 21 creates the static
HttpClient object flickrClient that’s used in this app to download data from Flickr.
Class HttpClient is one of many .NET classes that support asynchronous programming
with async and await. In searchButton_Click (lines 32–96), we use class HttpClient’s
GetStringAsync method to start a new Task (line 65). When we create that Task, we
assign it to instance variable flickrTask (declared in line 23) so that we can test whether
the Task is still executing when the user initiates a new search.

21.6.2 Invoking the Flickr Web Service’s flickr.photos.search
Method
Method searchButton_Click (lines 32–96) initiates the asynchronous Flickr search, so it’s
declared as an async method. First, lines 35–51 check whether you started a search previ-
ously and, if so, whether that search has already completed (lines 34–35). If an existing
search is still being performed, we display a dialog asking if you wish to cancel the search
(lines 37–40). If you click No, the event handler simply returns. Otherwise, we call the
HttpClient’s CancelPendingRequests method to terminate the search (line 49).

Lines 54–57 create the URL that invokes Flickr’s flickr.photos.search web-service
method, which searches for photos, based on the provided parameters. You can learn more
about this method’s parameters and the format of the URL for invoking the method at

In this example, we specify values for the following flickr.photos.search parameters:

• api_key—Your Flickr API key. Remember that you must obtain your own key
from https://www.flickr.com/services/apps/create/apply.

• tags—A comma-separated list of the tags for which to search. In our sample ex-
ecutions it was "pdeitel,flowers". If the user separates the tags with spaces, the
app replaces the spaces with commas.

• tag_mode—We use the all mode to get results that match all the tags specified
in the search. You also can use any to get results that match one or more of the tags.

Software Engineering Observation 21.2
An HttpClient object is typically declared static so it can be used by all of an app’s
threads. According to the HttpClient documentation, a static HttpClient object can
be used from multiple threads of execution.

https://www.flickr.com/services/api/flickr.photos.search.html

https://www.flickr.com/services/apps/create/apply
https://www.flickr.com/services/api/flickr.photos.search.html

ptg18189312

692 Chapter 21 Asynchronous Programming with async and await

• per_page—The maximum number of results to return (up to 500). If this pa-
rameter is omitted, the default is 100.

• privacy_filter—1 indicates only publicly accessible photos should be returned.

Line 65 calls class HttpClient’s GetStringAsync method, which uses the URL specified
as the string argument to request information from a web server. Because this URL rep-
resents a call to a web-service method, calling GetStringAsync will invoke the Flickr web
service to perform the search. GetStringAsync returns a Task<string> representing a
promise to eventually return a string containing the search results. Line 68 then awaits
the Task’s result. At this point, if the Task is complete, method searchButton_Click’s ex-
ecution continues at line 71; otherwise, program control returns to method searchBut-
ton_Click’s caller until the results are received. This allows the GUI thread of execution
to handle other events, so the GUI remains responsive while the search is ongoing. Thus,
you could decide to start a different search at any time (which cancels the original search
in this app).

21.6.3 Processing the XML Response
When the Task completes, program control continues in method searchButton_Click at
line 68 where the app begins processing the XML returned by the web service. A sample
of the XML is shown in Fig. 21.5.

XML Elements and Attributes
XML represents data as elements, attributes and text. XML delimits elements with start
tags and end tags. A start tag consists of the element name, possibly followed by at-
tributeName=value pairs, all enclosed in angle brackets. For example, line 1 in the sample
XML

is the start tag for an rsp element containing the entire web-service response. This tag also
contains the attribute stat (for “status”)—the value "ok" indicates that the Flickr web-ser-
vice request was successful. An end tag consists of the element name preceded by a forward
slash (/) in angle brackets (for example, </rsp> in line 13, which denotes “end of response”).

1 <rsp stat="ok">
2 <photos page="1" pages="1" perpage="500" total="5">
3 <photo id="8708146820" owner="8832668@N04" secret="40fabab966"
4 server="8130" farm="9" title="fuchsiaflowers" ispublic="1"
5 isfriend="0" isfamily="0"/>
6 <photo id="8707026559" owner="8832668@N04" secret="97be93bb05"
7 server="8115" farm="9" title="redflowers" ispublic="1"
8 isfriend="0" isfamily="0"/>
9 <photo id="8707023603" owner="8832668@N04" secret="54db053efd"

10 server="8263" farm="9" title="yellowflowers" ispublic="1"
11 isfriend="0" isfamily="0"/>
12 </photos>
13 </rsp>

Fig. 21.5 | Sample XML response from the Flickr APIs.

<rsp stat="ok">

ptg18189312

21.6 Invoking a Flickr Web Service Asynchronously with HttpClient 693

An element’s start and end tags enclose

• text that represents a piece of data or

• other nested elements—for example, the rsp element contains one photos ele-
ment (lines 2–12) and the photos element contains five photo elements (lines 3–
11) representing the photos that were found by the web service.

An element is empty if it does not contain text or nested elements between its start and end
tags. Such an element can be represented by a start tag that ends with />. For example,
lines 3–5 define an empty photo element with several attribute=value pairs in the start tag.

Class XDocument and LINQ to XML
Namespace System.Xml.Linq contains the classes used to manipulate XML using LINQ
to XML—we use several of these classes to process the Flickr response. Once the app re-
ceives the XML search results, line 68 (Fig. 21.4) uses XDocument method Parse to convert
into an XDocument object the string of XML returned by the await expression. LINQ to
XML can query an XDocument to extract data from the XML.

Lines 71–83 use LINQ to XML to gather from each photo element in the XDocument
the attributes required to locate the corresponding photo on Flickr:

• XDocument method Descendants (line 72) returns a list of XElement objects rep-
resenting the elements with the name specified as an argument—in this case, the
photo elements.

• Lines 73–77 use XElement method Attribute to extract XAttributes represent-
ing the element’s id, title, secret, server and farm attributes from the current
photo XElement.

• XAttribute property Value (lines 73–77) returns the value of a given attribute.

For each photo, we create an object of class FlickrResult (located in this project’s
FlickrResult.cs file) containing:

• A Title property—initialized with the photo element’s title attribute and used
cnnto display the photo’s title in the app’s ListBox.

• A URL property—assembled from the photo element’s id, secret, server and
farm (a farm is a collection of servers on the Internet) attributes. The format of
the URL for each image is specified at

We use a FlickrResult’s URL in imagesListBox_SelectedIndexChanged (Section 21.6.5)
to download the corresponding photo when the user selects it in the ListBox.

21.6.4 Binding the Photo Titles to the ListBox
If there are any results (line 87), lines 89–90 bind the results’ titles to the ListBox. You
cannot bind a LINQ query’s result directly to a ListBox, so line 89 invokes LINQ method
ToList on the flickrPhotos LINQ query to convert it to a List first, then assigns the
result to the ListBox’s DataSource property. This indicates that the List’s data should be
used to populate the ListBox’s Items collection. The List contains FlickrResult ob-
jects, so line 90 sets the ListBox’s DisplayMember property to indicate that each Flickr-
Result’s Title property should be displayed in the ListBox.

http://www.flickr.com/services/api/misc.urls.html

http://www.flickr.com/services/api/misc.urls.html

ptg18189312

694 Chapter 21 Asynchronous Programming with async and await

21.6.5 Asynchronously Downloading an Image’s Bytes
Method imagesListBox_SelectedIndexChanged (lines 99–115) is declared async be-
cause it awaits an asynchronous download of a photo. Lines 104–105 get the URL property
of the selected ListBox item. Then lines 108–109 invoke HttpClient’s GetByteArray-
Async method, which gets a byte array containing the photo. The method uses the URL
specified as the method’s string argument to request the photo from Flickr and returns a
Task<byte[]>—a promise to return a byte[] once the task completes execution. The
event handler then awaits the result. When the Task completes, the await expression re-
turns the byte[]. Line 112 creates a MemoryStream from the byte[] (which allows reading
bytes as a stream from an array in memory), then line 113 uses the Image class’s static
FromStream method to create an Image from the byte array and assign it to the Picture-
Box’s Image property to display the selected photo.

21.7 Displaying an Asynchronous Task’s Progress
Our last example shows how to display an asynchronous task’s progress and intermediate
results. Figure 21.6 presents class FindPrimes, which asynchronously determines whether
each value from 2 up to a user-entered value is a prime number. During the asynchronous
testing of each value, we update a TextBox with each prime that’s found and update a Pro-
gressBar and Label to show the percentage of the testing that has been completed so far.

1 // Fig. 21.6: FindPrimes.cs
2 // Displaying an asynchronous task's progress and intermediate results
3 using System;
4 using System.Linq;
5 using System.Threading.Tasks;
6 using System.Windows.Forms;
7
8 namespace FindPrimes
9 {

10 public partial class FindPrimesForm : Form
11 {
12 // used to enable cancelation of the async task
13 private bool Canceled { get; set; } = false;
14
15
16 public FindPrimesForm()
17 {
18 InitializeComponent();
19
20 percentageLabel.Text = $"{0:P0}"; // display 0 %
21 }
22
23 // handles getPrimesButton's click event
24 private void getPrimesButton_Click(object sender, EventArgs e)
25 {
26 // get user input
27 var maximum = int.Parse(maxValueTextBox.Text);

Fig. 21.6 | Displaying an asynchronous task’s progress and intermediate results. (Part 1 of 3.)

private bool[] primes; // array used to determine primes

progressBar.Minimum = 2; // 2 is the smallest prime number

async

ptg18189312

21.7 Displaying an Asynchronous Task’s Progress 695

28
29 // create array for determining primes
30
31
32 // reset Canceled and GUI
33 Canceled = false;
34 getPrimesButton.Enabled = false; // disable getPrimesButton
35 cancelButton.Enabled = true; // enable cancelButton
36 primesTextBox.Text = string.Empty; // clear primesTextBox
37 statusLabel.Text = string.Empty; // clear statusLabel
38 percentageLabel.Text = $"{0:P0}"; // display 0 %
39
40
41
42 // show primes up to maximum
43
44 statusLabel.Text = $"Found {count} prime(s)";
45 }
46
47 // displays prime numbers in primesTextBox
48 private async Task<int> FindPrimes(int maximum)
49 {
50 var primeCount = 0;
51
52 // find primes less than maximum
53 for (var i = 2; i < maximum && !Canceled; ++i)
54 {
55 // if i is prime, display it
56 if ()
57 {
58 ++primeCount; // increment number of primes found
59 primesTextBox.AppendText($"{i}{Environment.NewLine}");
60 }
61
62 var percentage = (double)progressBar.Value /
63 (progressBar.Maximum - progressBar.Minimum + 1);
64 percentageLabel.Text = $"{percentage:P0}";
65
66 }
67
68 // display message if operation was canceled
69 if (Canceled)
70 {
71 primesTextBox.AppendText($"Canceled{Environment.NewLine}");
72 }
73
74 getPrimesButton.Enabled = true; // enable getPrimesButton
75 cancelButton.Enabled = false; // disable cancelButton
76 return primeCount;
77 }
78

Fig. 21.6 | Displaying an asynchronous task’s progress and intermediate results. (Part 2 of 3.)

primes = Enumerable.Repeat(true, maximum).ToArray();

progressBar.Value = progressBar.Minimum; // reset progressBar min
progressBar.Maximum = maximum; // set progressBar max

int count = await FindPrimes(maximum);

await Task.Run(() => IsPrime(i))

progressBar.Value = i + 1; // update progress

ptg18189312

696 Chapter 21 Asynchronous Programming with async and await

Sieve of Eratosthenes
Line 14 declares the bool array primes, which we use with the Sieve of Eratosthenes algo-
rithm (https://wikipedia.org/wiki/Sieve_of_Eratosthenes) to find all prime num-

79 // check whether value is a prime number
80 // and mark all multiples as not prime
81 public bool IsPrime(int value)
82 {
83 // if value is prime, mark all of multiples
84 // as not prime and return true
85 if ()
86 {
87 // mark all multiples of value as not prime
88 for (var i = value + value; i < primes.Length; i += value)
89 {
90 primes[i] = false; // i is not prime
91 }
92
93 return true;
94 }
95 else
96 {
97 return false;
98 }
99 }
100
101 // if user clicks Cancel Button, stop displaying primes
102 private void cancelButton_Click(object sender, EventArgs e)
103 {
104 Canceled = true;
105 getPrimesButton.Enabled = true; // enable getPrimesButton
106 cancelButton.Enabled = false; // disable cancelButton
107 }
108 }
109 }

Fig. 21.6 | Displaying an asynchronous task’s progress and intermediate results. (Part 3 of 3.)

primes[value]

https://wikipedia.org/wiki/Sieve_of_Eratosthenes

ptg18189312

21.7 Displaying an Asynchronous Task’s Progress 697

bers less than a maximum value. The Sieve of Eratosthenes takes a list of integers and,
beginning with the first prime, filters out all multiples of that prime. It then moves to the
next number not yet filtered out, which is the next prime, then eliminates all of its multiples.
It continues until all nonprimes have been filtered out. Algorithmically, we begin with ele-
ment 2 of the bool array (ignoring elements 0 and 1) and set the elements at all indices that
are multiples of 2 to false to indicate that they’re divisible by 2 and thus not prime. We
then move to the next array element, check whether it’s true, and if so set all of its multiples
to false to indicate that they’re divisible by the current index. When the algorithm com-
pletes, all indices that contain true are prime, as they have no divisors. The Sieve of Eratos-
thenes in this example is implemented by methods FindPrimes (lines 48–77) and IsPrime
(lines 81–99). Each time IsPrime determines that a specific number is prime, it immediately
eliminates all multiples of that number.1

Constructor
Class FindPrimesForm’s constructor (lines 16–21) sets progressBar’s Minimum property to
2—the first prime number—and sets the percentageLabel’s Text to 0 formatted as a
whole-number percentage. In the format specifier P0, P indicates that the value should be
formatted as a percentage and 0 indicates zero decimal places.

async Method getPrimesButton_Click
When the user enters a number in the maxValueTextBox and presses the Get Primes Button,
method getPrimesButton_Click (lines 24–45) is called. This method is declared async be-
cause it will await the results of the FindPrimes method. Line 27 gets the maximum value en-
tered by the user, then line 30 creates a bool array with that number of elements and fills it
with true values. The elements with indices that are not prime numbers will eventually be
set to false. Enumerable static method Repeat creates a list of elements containing its first
argument’s value. The second argument specifies the length of the list. We then call ToArray
on the result to get an array representation of the elements. Repeat is a generic method—the
type of the list it returns is determined by the first argument’s type.

Lines 33–40 reset the Canceled property to false and reset the GUI to prepare to deter-
mine the prime numbers. Lines 39–40 reset the progressBar’s Value to the Minimum value
and set Maximum to the new value entered by the user. As we test each number from 2 to the
maximum to determine whether its prime, we’ll set the progressBar’s Value property to the
current number being tested. As this number increases, the progressBar will fill proportion-
ally with color to show the asynchronous task’s progress.

Line 43 calls async method FindPrimes to begin the process of finding prime num-
bers. Upon completion, FindPrimes returns the number of primes less than the maximum
value entered by the user, which the app then displays at line 44.

1. Visit https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes to learn more about the Sieve of
Eratosthenes. The algorithm as implemented in Fig. 21.6 is inefficient—it keeps eliminating multi-
ples of primes even after the array already represents all primes up to the maximum entered by the
user. The algorithm is complete once it eliminates the multiples of all primes that are less than or
equal to the square root of the maximum value. As an exercise, you could update the algorithm, then
modify the code that updates the ProgressBar and percentage Label so that they indicate the prog-
ress of the algorithm, rather than the progress of checking whether each number in the range is prime.

https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes

ptg18189312

698 Chapter 21 Asynchronous Programming with async and await

async Method FindPrimes
The async method FindPrimes implements the Sieve of Eratosthenes algorithm, displays
the primes that are found and updates the progressBar and percentage completion. Line
50 initially sets primeCount to 0 to indicate that no primes have been found yet. Lines 53–
66 iterate through the values from 2 up to, but not including, the maximum entered by
the user. For each value, line 56 launches an async Task to determine whether that value
is prime and awaits the Task’s result. When that result is returned, if it’s true, line 58 in-
crements primeCount to indicate that a prime number was found and line 59 appends that
number’s string representation to the primesTextBox’s text—thus displaying one of the
intermediate results. Regardless of whether a value is prime, lines 62–64 calculate the per-
centage of the loop that has completed so far and display that percentage, and line 65 up-
dates the progressBar’s Value.

At any point during the execution of FindPrimes, the user could click the app’s Cancel

Button, in which case property Canceled will be set to true and the loop will terminate
early. If this occurs, lines 69–72 display "Canceled" in the primesTextBox.

Method IsPrime
Method IsPrime (lines 81–99) is called by async method FindPrimes to perform part of
the Sieve of Eratosthenes. IsPrime tests whether its value argument is prime by checking
the corresponding element in array primes (line 85). If value is prime, lines 88–91 set to
false the primes elements at all indices that are multiples of value, then line 93 returns
true to indicate that value is prime; otherwise, the method returns false.

Method cancelButton_Click
When the user clicks the Cancel Button, method cancelButton_Click (lines 102–107)
sets property Canceled to true, then enables the Get Primes Button and disables the Cancel

Button. When the condition at line 53 is evaluated next, the loop in method FindPrimes
terminates.

21.8 Wrap-Up
In this chapter, you learned how to use the async modifier, await operator and Tasks to
perform long-running or compute-intensive tasks asynchronously. You learned that tasks
that proceed independently of one another are said to execute asynchronously and are re-
ferred to as asynchronous tasks.

We showed that multithreading enables threads to execute concurrently with other
threads while sharing application-wide resources such as memory and processors. To take
full advantage of multicore architecture, we wrote applications that processed tasks asyn-
chronously. You learned that asynchronous programming is a technique for writing apps
containing tasks that can execute asynchronously, which can improve app performance
and GUI responsiveness in apps with long-running or compute-intensive tasks.

To provide a convincing demonstration of asynchronous programming, we presented
several apps:

• The first showed how to execute a compute-intensive calculation asynchronously
in a GUI app so that the GUI remained responsive while the calculation executed.

ptg18189312

21.8 Wrap-Up 699

• The second app performed two compute-intensive calculations synchronously
(sequentially). When that app executed, the GUI froze because the calculations
were performed in the GUI thread. The third app executed the same compute-
intensive calculations asynchronously. We executed these two apps on single-core
and dual-core computers to demonstrate the performance of each program in
each scenario.

• The fourth app used class HttpClient to interact with the Flickr website to search
for photos. You learned that class HttpClient is one of many built-in .NET Frame-
work classes that can initiate asynchronous tasks for use with async and await.

• The last app demonstrated how to show an asynchronous task’s progress in a
ProgressBar.

We hope you’ve enjoyed the book and we wish you great success!

ptg18189312

A
Operator Precedence Chart

Operators are shown in decreasing order of precedence from top to bottom with each level
of precedence separated by a horizontal line. The associativity of the operators is shown in
the right column.

Operator Type Associativity

. member access left-to-right
?. null-conditional member access
() method call
[] element access
?[] null-conditional element access
++ postfix increment
-- postfix decrement
nameof string representation of an identifier
new object creation
typeof get System.Type object for a type
sizeof get size in bytes of a type
checked checked evaluation
unchecked unchecked evaluation
+ unary plus right-to-left
- unary minus
! logical negation
~ bitwise complement
++ prefix increment
-- prefix decrement
(type) cast
* multiplication left-to-right
/ division
% remainder

Fig. A.1 | Operator precedence chart (Part 1 of 2.).

ptg18189312

701

+ addition left-to-right
- subtraction
>> right shift left-to-right
<< left shift
< less than left-to-right
> greater than
<= less than or equal to
>= greater than or equal to
is type comparison
as type conversion
!= is not equal to left-to-right
== is equal to
& logical AND left-to-right
^ logical XOR left-to-right
| logical OR left-to-right
&& conditional AND left-to-right
|| conditional OR left-to-right
?? null coalescing right-to-left
?: conditional right-to-left
= assignment right-to-left
*= multiplication assignment
/= division assignment
%= remainder assignment
+= addition assignment
-= subtraction assignment
<<= left shift assignment
>>= right shift assignment
&= logical AND assignment
^= logical XOR assignment
|= logical OR assignment

Operator Type Associativity

Fig. A.1 | Operator precedence chart (Part 2 of 2.).

ptg18189312

B
Simple Types

Type Size in bits Value range Standard

bool 8 true or false

byte 8 0 to 255, inclusive

sbyte 8 –128 to 127, inclusive

char 16 '\u0000' to '\uFFFF' (0 to 65535), inclusive Unicode

short 16 –32768 to 32767, inclusive

ushort 16 0 to 65535, inclusive

int 32 –2,147,483,648 to 2,147,483,647, inclusive

uint 32 0 to 4,294,967,295, inclusive

float 32 Approximate negative range:
–3.4028234663852886E+38 to
–1.40129846432481707E–45
Approximate positive range:
1.40129846432481707E–45 to
3.4028234663852886E+38
Other supported values:
positive and negative zero
positive and negative infinity
not-a-number (NaN)

IEEE 754
IEC 60559

long 64 –9,223,372,036,854,775,808 to
9,223,372,036,854,775,807, inclusive

ulong 64 0 to 18,446,744,073,709,551,615, inclusive

Fig. B.1 | Simple types. (Part 1 of 2.)

ptg18189312

703

Additional Simple Type Information
• This appendix is based on information from the Types section of Microsoft’s C#

6 specification. A draft of this document can be found at:

• Values of type float have seven digits of precision.

• Values of type double have 15–16 digits of precision.

• Values of type decimal are represented as integer values that are scaled by a power
of 10. Values between –1.0 and 1.0 are represented exactly to 28 digits.

• For more information on IEEE 754 visit http://grouper.ieee.org/groups/
754/.

• For more information on Unicode, visit http://unicode.org.

double 64 Approximate negative range:
–1.7976931348623157E+308 to
–4.94065645841246544E–324
Approximate positive range:
4.94065645841246544E–324 to
1.7976931348623157E+308
Other supported values:
positive and negative zero
positive and negative infinity
not-a-number (NaN)

IEEE 754
IEC 60559

decimal 128 Negative range:
–79,228,162,514,264,337,593,543,950,335
(–7.9E+28) to –1.0E–28
Positive range:
1.0E–28 to
79,228,162,514,264,337,593,543,950,335
(7.9E+28)

 http://msdn.microsoft.com/vcsharp/aa336809

Type Size in bits Value range Standard

Fig. B.1 | Simple types. (Part 2 of 2.)

http://grouper.ieee.org/groups/754/
http://grouper.ieee.org/groups/754/
http://unicode.org
http://msdn.microsoft.com/vcsharp/aa336809

ptg18189312

C
ASCII Character Set

The digits at the left of the table are the left digits of the decimal equivalent (0–127) of the
character code, and the digits at the top of the table are the right digits opf the character
code. For example, the character code for “F” is 70, and the character code for “&” is 38.

Most users of this book are interested in the ASCII character set used to represent
English characters on many computers. The ASCII character set is a subset of the Unicode
character set used by C# to represent characters from most of the world’s languages. For
more information on the Unicode character set, see http://unicode.org.

0 1 2 3 4 5 6 7 8 9

0 nul soh stx etx eot enq ack bel bs ht

1 nl vt ff cr so si dle dc1 dc2 dc3

2 dc4 nak syn etb can em sub esc fs gs

3 rs us sp ! " # $ % & ‘

4 () * + , - . / 0 1

5 2 3 4 5 6 7 8 9 : ;

6 < = > ? @ A B C D E

7 F G H I J K L M N O

8 P Q R S T U V W X Y

9 Z [\] ^ _ ’ a b c

10 d e f g h i j k l m

11 n o p q r s t u v w

12 x y z { | } ~ del

Fig. C.1 | ASCII Character Set.

http://unicode.org

ptg18189312

Symbols
^, boolean logical exclusive OR

143, 145
truth table 146

--, prefix/postfix decrement
118, 119

-, subtraction 60, 61
!, logical negation 143, 146

truth table 146
!=, not equals 62
?:, ternary conditional operator

103, 120
?? (null coalescing operator)

391, 392
?., null-conditional operator

(C# 6) 390, 391, 607
?[], null-conditional operator

(C# 6) 607
. (member access operator) 70
.NET Core xxxv
"", empty string 190
{, left brace 45
}, right brace 45
@ verbatim string character 504
*, multiplication 60, 61
*=, multiplication compound

assignment operator 118
/ forward slash in end tags 692
/, division 60, 61
/* */ delimited comment 42
//, single-line comment 42
\, escape character 55
\", double-quote escape

sequence 54
\=, division compound

assignment operator 118
\n, newline escape sequence 54
\r, carriage-return escape

sequence 55
\t, horizontal tab escape

sequence 54

&, boolean logical AND 143,
145

&, menu access shortcut 440,
442

&&, conditional AND 143, 144
truth table 144

%, remainder 60, 61
%=, remainder compound

assignment operator 118
+, addition 60, 61
+, concatenation operator 515
++, prefix/postfix increment 118
+=, addition compound

assignment operator 117
<, less than 62
<=, less than or equal 62
<>, angle brackets for XML

elements 692
=, assignment operator 58
-=, subtraction compound

assignment operator 117
==, comparison operator 508
==, is equal to 62
=> (in an expression-bodied

method) 185
=>, lambda operator 613, 650
>, greater than 62
>=, greater than or equal to 62
|, boolean logical inclusive OR

143, 145
||, conditional OR 143, 144

truth table 144
$ (dollar sign for interpolated

string) 56

A
Abs method of Math 153
absolute value 153
abstract class 334, 335, 353
abstract keyword 316, 334
abstract method 334, 336, 338

abstraction 71
AcceptButton property of class

Form 398
AcceptsReturn property of class

TextBox 411
access modifier 75

private 75, 270, 303
protected 270, 303
public 75, 270, 303

access modifier in the UML
- (private) 76
+ (public) 76

access private member of a class
76

access shortcut 439
action 100, 106
action expression in the UML

98
action state in the UML 98
action state symbol 97
Activation property of class

ListView 474
activation record 177
active control 407
active tab 21
active window 397
ActiveLinkColor property of

class LinkLabel 453
ActiveMdiChild property of

class Form 485, 486
activity diagram 98, 100

do...while statement 133
for statement 128
if statement 100
if...else statement 101
in the UML 106
sequence statement 97
switch statement 138
while statement 107

activity in the UML 97
add a database to a project 639

Index

ptg18189312

706 Index

add a reference to a class library
532, 644

Add method of class List<T> 260
Add method of class

ObjectCollection 459
Add method of class

SortedDictionary<K,V> 602
Add Tab menu item 480
Add User Control… option in

Visual Studio .NET 499
Add Windows Form… option in

Visual Studio 485
AddDay method of structure

DateTime 453
addition 60
AddLast method of class

LinkedList 605
AddRange method of class

List<T> 257
AddYears method of structure

DateTime 453
ADO.NET Entity Data Model

636
data source for data binding

645
entities 642

ADO.NET Entity Framework
631
DbContext class 649
DbExtensions class 650
Entity Data Model 636

AfterSelected event of class
TreeView 469

Aggregate LINQ extension

method 619
algebraic notation 60
Alphabetic icon 27
alphabetizing 507
Alt key 433
Alt key shortcut 439
Alt property of class

KeyEventArgs 434, 436
Analyze menu 21
anchor a control 407
Anchor property of class Control

409
anchoring a control 407
Anchoring demonstration 408
Android

operating system 9

angle bracket (<>) for XML
elements 692

anonymous method 590, 611,
650

anonymous type 256, 659
Equals method 659
ToString method 659

Any extension method of
interface IEnumerable<T> 255

app 45
app bar 9
App Developer Agreement 10
Appearance property of class

CheckBox 416
Append method of class

StringBuilder 520
AppendFormat method of class

StringBuilder 521, 522
AppendText method of class File

557
application 16
Application class 448

Exit method 448, 461
arbitrary number of arguments

236
args parameter of Main method

238
argument promotion 160
argument to a method 46
ArgumentException class 602
ArgumentOutOfRangeException

class 268, 276, 505, 514, 522
arithmetic compound

assignment operators 117
arithmetic operators 59
ArrangeIcons value of

enumeration MdiLayout 487
array

bounds checking 209
ignoring element zero 210
Length property 198
pass an array element to a

method 217
pass an array to a method

217
array-access expression 197
Array class 244, 592, 593, 596

Resize method 198

Array class static methods for
common array manipulations
593

array-creation expression 198,
199

array initializer 200
for jagged array 226
for rectangular array 225
nested 225

array-access expression
for jagged arrays 226
for rectangular arrays 225

ArrayList class 592
arrays as references 240
arrow 98
as operator (downcasting) 349,

391
ascending modifier of a LINQ

orderby clause 250
ASCII (American Standard

Code for Information
Interchange) 436
character set 138, 704

ASP.NET 7
AsParallel method of class

ParallelEnumerable 625
assembly (compiled code) 51,

644
assign a value to a variable 58
assignment operator

= 58, 61
compound 117

assignment statement 58
associativity of operators 61, 65,

120
left to right 65, 121
right to left 61, 65, 120

async xxv, 7
async modifier 674, 675, 678
asynchronous programming 7,

674
asynchronous task 673, 675
attribute

in the UML 4, 76
of a class 2
of an object 4

Attribute method of class
XElement 693

attributes (XML) 692
augmented reality 10

ptg18189312

Index 707

AuthorISBN table of Books
database 632, 634

Authors table of Books database
632, 633

auto-implemented property 83,
87, 534
getter only (C# 6) 212, 282

auto-hide 24
autoincremented database

column 633
automatic garbage collection

374
automatic memory

management 284
AutoPopDelay property of class

ToolTip 427
AutoScroll property of class

Form 398
AutoScroll property of class

Panel 413
AutoSize property of class

TextBox 33
average calculation 107, 109,

110
Average IEnumerable<T>

extension method 619, 625
Average ParallelQuery<T>

extension method 625
await xxv
await expression 7, 675, 679
await multiple Tasks 685
awaitable entity 675

B
BackColor property of a form 32
BackColor property of class

Control 406
background color 32
BackgroundImage property of

class Control 406
backslash, (\) 54
bar chart 205, 206
bar of asterisks 205, 206
base

for constructor initializers
316

for invoking overridden
methods 323

keyword 303, 316, 323, 324
base case 186

base class 300
constructor 307
default constructor 307
direct 300, 302
indirect 300, 302
method overridden in a

derived class 323
behavior of a class 2
BigInteger struct 189
binary operator 58, 59, 146
binary search tree 599
BinaryFormatter class 550

Deserialize method 550
Serialize method 554

BinarySearch method of class
Array 596

BindingNavigator class 638, 647
BindingSource class 647

DataSource property 650
EndEdit method 651
MoveFirst method 654
Position property 654

BitArray class 593
bitwise operators 418
bitwise Xor operator 449
blank line 43
block of statements 64, 102,

113, 159
BMP (Windows bitmap) 36
body

of a class declaration 45
of a method 46
of an if statement 61

body of a loop 106
Bohm, C. 97
Books database 632

table relationships 635
bool simple type 99, 702

expression 103
Boolean 99
boolean logical AND, & 143,

145
boolean logical exclusive OR, ^

143, 145
truth table 146

boolean logical inclusive OR, |
145

BorderStyle property of class
Panel 413

boundary of control 498

bounds checking 209
boxing 592
braces ({ and }) 102, 113
braces ({}) 64
braces not required 137
braces, { } 200
break statement 136, 141

exiting a for statement 142
brittle software 320
buffer 531
BufferedStream class 531
buffering 531
Build menu 21
built-in array capabilities 592
button 396
Button class 12, 396, 410

Click event 411
FlatStyle property 411
Text property 411

Button properties and events
411

Button property of class
MouseEventArgs 431

ButtonBase class 410
byte simple type 702

C
C format specifier 92
C format specifier (for currency)

91
C# 6 185

Add extension method
support in collection
initializers 608

exception filter 392
expression-bodied method

185
expression-bodied property

185
getter-only auto-

implemented property
212, 282, 289

index initializer 608
nameof operator 276
null-conditional operator

(?.) 390, 391, 607
null-conditional operator

(?[]) 607
string interpolation 55, 56
using static 595

ptg18189312

708 Index

C# 6 Specification xxi, 373
C# Coding Conventions 207
.cs file name extension 45
C# keywords 44
C# programming language 5
Calculating values to be placed

into the elements of an array
201

calculations 66, 97
CalendarForeColor property of

class DateTimePicker 450
CalendarMonthBackground

property of class
DateTimePicker 450

call stack 382
callback method 675
calling method (caller) 73
camel case 44, 58, 72
CancelButton property of class

Form 398
CancelPendingRequests method

of class HttpClient 691
Capacity property of class

List<T> 257
Capacity property of class

StringBuilder 518
Card class represents a playing

card 212
card games 212
card shuffling

Fisher-Yates 215
Card shuffling and dealing

application 216
carriage return 55
Cascade value of enumeration

MdiLayout 487
cascaded method calls 297
cascaded window 487
case 136, 137

keyword 136
case sensitive 44
casino 164, 169
cast

downcast 349
cast operator 112, 113, 161,

173
catch

general catch clause 370
catch all exception types 370
catch an exception 367

Catch block 211
catch block 369

when clause (C# 6) 392
with no exception type 370
with no identifier 369

catch-related errors 373
Categorized icon 27
Ceiling method of Math 153
char simple type 57, 702

array 505
Char struct 503

CompareTo method 527
IsDigit method 526
IsLetter method 527
IsLetterOrDigit method

527
IsLower method 527
IsPunctuation method 527
IsSymbol method 527
IsUpper method 527
IsWhiteSpace method 527
static character-testing

methods and case-
conversion methods 525

ToLower method 527
ToUpper method 527

character 163
constant 138, 504
string 46

check box 410
CheckBox class 396, 416

Appearance property 416
Checked property 416
CheckedChanged event 416
CheckState property 416
properties and events 416
Text property 416
ThreeState property 416

CheckBoxes property
of class ListView 474
of class TreeView 469

Checked property
of class CheckBox 416
of class RadioButton 419
of class ToolStripMenuItem

443, 448
of class TreeNode 469

CheckedChanged event
of class CheckBox 416
of class RadioButton 419

CheckedIndices property of
class CheckedListBox 462

CheckedItems property of class
CheckedListBox 462

CheckedListBox class 439, 457,
461
CheckedIndices property

462
CheckedItems property 462
GetItemChecked method 462
ItemCheck event 461, 462
properties and events 462
SelectionMode property 462

CheckOnClick property of class
ToolStripMenuItem 443

CheckState property of class
CheckBox 416

child node 468
child window 484

maximized 486
minimized 486

Choose Items… option in Visual
Studio 500

chromeless window 9
class 2, 3, 152

constructor 84
declaration 44, 45
default constructor 86
instance variable 154
name 44, 45, 493
user defined 44

class average 107
class cannot extend a sealed class

351
class constraint 576
class hierarchy 300, 335
class library 7, 301, 325, 493

add a reference 644
add a reference to 532
compile into 532

class variable 154
Class View (Visual Studio .NET)

289
“class-wide” information 285
Classes

Application 448
ArgumentException 602
ArgumentOutOfRange-

Exception 276
Array 244, 592, 593, 596, 597

ptg18189312

Index 709

Classes (cont.)
ArrayList 592
BinaryFormatter 550
BindingNavigator 647
BindingSource 647, 651
BitArray 593
BufferedStream 531
Button 410
ButtonBase 410
CheckBox 416
CheckedListBox 439, 457,

461
ComboBox 439, 464
Console 46, 53, 530, 531
Control 406, 409, 497
DataContractJson-

Serializer 550
DataGridView 638
DateTimePicker 450
DbContext 637, 643
Delegate 404
Dictionary 565, 592
Dictionary<K,V> 598
Directory 557, 561
DirectoryInfo 479, 557
DivideByZeroException

365, 368, 372
Enumerable 616, 637
EventArgs 400
Exception 372
ExecutionEngineException

372
File 557, 561, 565
FileInfo 479
FileStream 531
Font 418
Form 397, 398, 485, 486
FormatException 366, 369
Graphics 433, 467
GroupBox 413
Hashtable 602
HttpClient 691
ImageList 469, 475
IndexOutOfRangeException

211
InvalidCastException 349,

391, 591
InvalidOperationException

597, 606

Classes (cont.)
ItemCheckEventArgs 462
KeyEventArgs 433, 434, 436
KeyNotFoundException 602
LinkedList 592, 605
LinkedList<T> 592, 603
LinkedListNode<T> 603
LinkLabel 439, 453, 453
List 592
List<T> 256, 257, 260, 592
ListBox 439, 456
ListBox.ObjectCollection

458
ListView 474
ListViewItem 475
Match 503, 527
Math 153
MemoryStream 531
MenuStrip 440
MonthCalendar 449
MouseEventArgs 430
MulticastDelegate 404
NullReferenceException

372
NumericUpDown 396, 428
object 305, 325
ObjectCollection 458, 459,

461
ObservableCollection<T>

650, 655
OpenFileDialog 543, 549
OutOfMemoryException 372
PaintEventArgs 497
Panel 413
ParallelEnumerable 625
ParallelQuery<T> 625
Path 473, 565
PictureBox 424, 487
Process 456
ProgressBar 694
Queryable 637
Queue<T> 592, 593
RadioButton 416, 419
Random 164
ResourceManager 426
Resources 426
SaveFileDialog 538
SolidBrush 433
SortedDictionary 592, 599,

601

Classes (cont.)
SortedDictionary<K,V> 592
SortedList 592, 593
SortedList<K,V> 592
SortedSet<T> 627
Stack 577
Stack<T> 592, 593
StackOverflowException

372
Stream 531, 531
StreamReader 531
StreamWriter 531
string 73, 503
StringBuilder 503, 517,

520, 521, 522
SystemException 372
TabControl 480
TabPage 480
Task<TResult> 679
TextBox 396
TextReader 531
TextWriter 531
Timer 499
ToolStripMenuItem 440,

442
ToolTip 426, 427
TreeNode 469
TreeNodeCollection 469
TreeView 439, 468, 469
TreeViewEventArgs 469
Type 326, 350
UnauthorizedAccess-

Exception 473
UserControl 497
ValueType 525
XAttribute 693
XDocument 693
XElement 693
XmlSerializer 550

Clear method of class Array 597
Clear method of class

Dictionary 565
Clear method of class Graphics

467
Clear method of class List<T>

257
Clear method of class

ObjectCollection 461
ClearSelected method of class

ListBox 458

ptg18189312

710 Index

click a Button 398, 410
Click event of class Button 411
Click event of class PictureBox

424
Click event of class

ToolStripMenuItem 442, 443
Clicks property of class

MouseEventArgs 431
client of a class 73, 78
client code 330
client of a class 75
ClipRectangle property of class

PaintEventArgs 497, 498
clock 498
cloning objects

shallow copy 326
close a project 21
close a window 398
close box 38
Close method of class Form 398
CLR (Common Language

Runtime) 7, 374, 388
code reuse 300, 589
code snippets 174
Coding Conventions (C#) 207
coding requirements 207
coin tossing 165
collapse a tree 25
Collapse method of class

TreeNode 470
collapse node 469
collection 256, 569, 589
collection class 589
collection initializer 263, 608

Add extension method (C# 6)
608

collision 598
Color structure 433
column 225
column in a database table 631,

632
column index 229
columns of a two-dimensional

array 225
ComboBox class 396, 439, 464

DropDownStyle property
464, 465

Items property 465
MaxDropDownItems property

464

ComboBox class (cont.)
SelectedIndex property 465
SelectedIndexChanged event

465
SelectedIndexChanged event

handler 654
SelectedItem property 465
Sorted property 465

ComboBox demonstration 464
ComboBox properties and an

event 465
ComboBox used to draw a selected

shape 465
ComboBoxStyle enumeration 464

DropDown value 464
DropDownList value 464
Simple value 464

comma (,) 129
comma-separated list 129

of parameters 157
of arguments 74

command-line argument 237,
239

Command Prompt 41, 238
comment 42
CommissionEmployee class 305,

320
extends Employee 343

Common Language Runtime
(CLR) 7, 374, 388

Common Programming Errors
overview xxvii

CompareTo method
of interface IComparable

360, 527, 574
comparison operator 61, 360
compartment in a UML class

diagram 76
compilation error 42
compile 47
compile into a class library 532
compile-time error 42
compiler 113
compiler error 42
compile-time type safety 568
ComplexNumber class 292
component 2, 396
component tray 427, 647
composite key 631
composite primary key 634

composition 280, 301, 303
compound assignment

operators 117, 120
*= 118
\= 118
%= 118
+= 117
-= 117

compound interest 129
calculating with for 129

Concat method of class string
515

concatenate strings 286
concrete class 334
concrete derived class 339
concurrent operations 673
condition 61, 133
conditional AND (&&) operator

143, 145, 255
truth table 144

conditional expression 103
conditional operator, ?: 103,

120
conditional OR, || 143, 144

truth table 144
confusing the equality operator

== with the assignment
operator = 61

connect to a database 637, 639
connection string 641, 645
console app 41, 47
Console class 530, 531
console window 41, 53, 54
Console.WriteLine 46, 53
const keyword 139, 154, 202,

288
constant 139, 154, 202

declare 202
must be initialized 202
Pascal Case 202

constant integral expression
133, 138

constant string expression 133
Constants

Nan of structure Double 366,
388

NegativeInfinity of
structure Double 366

PositiveInfinity of
structure Double 366

ptg18189312

Index 711

constituent controls 497
constructor 84

multiple parameters 87
constructor constraint (new())

576
constructor header 85
constructor initializer 276, 316

with keyword base 316
constructors cannot specify a

return type 85
container 396, 397

parent 409
container control in a GUI 407
Contains method of class

List<T> 257, 260
ContainsKey method of class

Dictionary 565
ContainsKey method of

SortedDictionary<K,V> 602
context-sensitive help 28
contextual keyword 82

value 82
contextual keywords 44
continue keyword 141
continue statement 141, 142

terminating an iteration of a
for statement 143

contravariance 627
control 20, 26, 396
control boundary 498
Control class 406, 497

Anchor property 409
BackColor property 406
BackgroundImage property

406
Dock property 409
Enabled property 407
Focused property 406
Font property 407
ForeColor property 407
Hide method 407
KeyDown event 433, 434
KeyPress event 433, 434
KeyUp event 433, 434
Location property 409
MaximumSize property 409
MinimumSize property 409
MouseDown event 431
MouseEnter event 431
MouseHover event 431

Control class (cont.)
MouseLeave event 431
MouseMove event 431
MouseUp event 431
MouseWheel event 431
OnPaint method 497
Padding property 409
Select method 407
Show method 407
Size property 409
TabIndex property 407
TabStop property 407
Text property 407
Visible property 407

control layout and properties
406

Control property of class
KeyEventArgs 434, 436

control statement 97, 99, 100
nesting 99
stacking 99

control variable 124, 126, 127
Controls 12

BindingNavigator 647
Button 12
DataGridView 638
GroupBox 12
Label 20, 29, 32
Panel 12
PictureBox 20, 29, 35
RadioButton 12

Controls property of class
GroupBox 413, 414

Controls property of class Panel
413

converge on a base case 186
convert

an integral value to a
floating-point value 162

Copy method of class Array 596
Copy method of class File 557
copying objects

shallow copy 326
CopyTo method of class string

506
Cos method of Math 153
cosine 153
Count extension method of

interface IEnumerable<T> 255
Count method (LINQ) 565

Count property
of class List<T> 257
of SortedDictionary<K,V>

602
counter-controlled iteration

107, 112, 115, 124, 125
with the for iteration

statement 125
with the while iteration

statement 125
counting loop 125
covariance 626
covariant

interface 626
craps (casino game) 164, 169
create a reusable class 493
create an object (instance) of a

class 69, 70
Create method of class File 557
CreateDirectory method of

class Directory 557
CreateText method of class File

557
creating a child Form to be added

to an MDI Form 485
creating a generic method 584
creating and initializing an array

199
credit inquiry 545
.cs file name extension 25, 72
.csproj file extension 36
Ctrl key 136, 433
Ctrl + z 136
culture settings 91, 114
Current property of

IEnumerator 596
current time 499
CurrentValue property of class

ItemCheckEventArgs 462
cursor 46, 53
custom control 497, 498

creation 498, 500
Custom palette 32
Custom tab 32
Custom value of enumeration

DateTimePickerFormat 450
CustomFormat property of class

DateTimePicker 450
customize a Form 26
customize Visual Studio IDE 21

ptg18189312

712 Index

D
D format specifier for integer

values 92, 206
data binding 637
data source 249, 615

entity data model 645
Data Source Configuration Wizard

645
Data Sources window 645, 646
data types

bool 99
double 110
float 110

database 630
add to a project 639
saving changes in LINQ to

Entities 650
schema 632

database connection 639
database management system

(DBMS) 630
database schema 632, 636
database table 631
DataContext class

SaveChanges method 637
DataContractJsonSerializer

class 550
DataGridView control 638, 638,

646
DataSource property

BindingSource class 650
Date property of a DateTime 450
DateChanged event of class

MonthCalendar 449, 450
DateTime structure 499, 680

AddDay method 453
AddYears method 453
DayOfWeek property 453
Now property 499, 625
Subtract method 625
ToLongDateString method

453
ToLongTimeString method

499
DateTimePicker class 450

CalendarForeColor property
450

CalendarMonthBackground

property 450
CustomFormat property 450

DateTimePicker class (cont.)
Format property 450
MaxDate property 450, 453
MinDate property 450, 453
ShowCheckBox property 450
ShowUpDown property 451
Value property 450, 451,

452
ValueChanged event 450

DateTimePickerFormat

enumeration 450
Custom value 450
Long value 450
Short value 450
Time value 450

DayOfWeek

enumeration 453
property of structure

DateTime 453
DB2 630
DbContext class 637, 643, 649

SaveChanges method 651
DbExtensions class 650

Load extension method 650,
654

DBMS (database management
system) 630

dealing a card 212
Debug menu 21
Debugging 21
decimal literal 89
decimal point 110, 114
decimal simple type 57, 87,

130, 703
Parse method 92

decimal type
Parse method 93

DecimalPlaces property of class
NumericUpDown 428

decision 61, 99
decision symbol 99
declaration 55

class 44, 45
method 46

declarative programming 247
declare a constant 202
decrement operator, -- 118, 119
default

case in a switch 136
keyword 136

default case 168
default constructor 86, 279, 307
default event of a control 404
default settings 12
default type constraint (object)

of a type parameter 579
default value 73, 121
default value for optional

parameter 183, 183
deferred execution 263, 621
definitely assigned 109, 172
Delegate 686
delegate 403, 590, 608

Delegate class 404
Func 619, 621, 649, 650,

655
MulticastDelegate class 404
registering an event handler

403
delegate keyword 403, 610
Delete method of class

Directory 558
Delete method of class File

557, 565
delimited comments 42
dependent condition 145
derived class 300
Descendants method of class

XDocument 693
descending modifier of a LINQ

orderby clause 250
deselected state 419
Deserialize method of class

BinaryFormatter 550
deserialized object 550
design mode 38
design process 5
Design view 19, 30
destructor 284
dialog 19
DialogResult enumeration 424,

538
diamond 99

in the UML 97
dice game 169
dictionary 597
Dictionary class 592
Dictionary<K,V> class 565, 592,

598
Clear method 565

ptg18189312

Index 713

Dictionary<K,V> class (cont.)
ContainsKey method 565
Keys property 565
Remove method 565

digit 57
direct base class 300, 302
Directory class 557, 561

CreateDirectory method 557
GetFiles method 565
methods (partial list) 558

DirectoryInfo class 479, 557
Exists method 479
FullName property 479
GetDirectories method 479
GetFiles method 479
Name property 479
Parent property 479

display output 65
displaying line numbers in the

IDE xxxv
Dispose method of interface

IDisposable 361, 381
distance between values

(random numbers) 168
Distinct extension method of

interface IEnumerable<T> 255
divide and conquer 186
divide by zero 365, 368
DivideByZeroException class

365, 368, 369, 372
division 60
.dll file 51, 494
do keyword 132
do...while iteration statement

98, 132, 133
dock a control 407
Dock property of class Control

409, 647
docking demonstration 409
.NET 8

Framework 7, 569
Framework Class Library

(FCL) 5, 8, 43, 152, 162,
360

Framework documentation
43

initiative 7
.NET 4.6 8
.NET Core xxxv, 6, 8
dotted line in the UML 98

Double 574
(double) cast 113
double data type 110
double equals, == 61
double quote, " 46, 54
double-selection statement 98
double simple type 57, 131, 703

Parse method 157
Double.NaN 366, 388
Double.NegativeInfinity 366
Double.PositiveInfinity 366
down-arrow button 32
downcast 349
drag the mouse 27
Draw event of class ToolTip 427
draw on control 498
DrawEllipse method of class

Graphics 468
DrawPie method of class

Graphics 468
DrawRectangle method of class

Graphics 468
DreamSpark xxviii
driver class 69
drop-down list 396, 464
DropDown value of enumeration

ComboBoxStyle 464
DropDownList value of

enumeration ComboBoxStyle
464

DropDownStyle property of class
ComboBox 464, 465

dummy value 110
DVD 530
dynamic binding 348
dynamic resizing 246
dynamic resizing of a List

collection 257
dynamically linked library 51,

494

E
E format specifier 92
ECMA-334 (C# Standard) 6
Edit menu 21
editable list 465
EF (ADO.NET Entity

Framework) 631
element (XML) 692
element of an array 197

element of chance 164
eligible for destruction 284, 287
eligible for garbage collection

284, 287
eliminate resource leak 375
ellipsis button 33
else 100
Employee abstract base class 338,

357
Employee class with FirstName,

LastName and MonthlySalary
properties 251

Employee class with references to
other objects 283

Employee hierarchy test
application 346

empty parameter list 75
empty statement (a semicolon,

;) 103
empty string 190

"" 190
string.Empty 190

EmptyStackException indicates a
stack is empty 580

Enabled property of class
Control 407

encapsulation 4, 312, 351
“end of data entry” 110
end-of-file indicator 530

EOF 136
end tag 692
EndEdit method of class

BindingSource 651
EndsWith method of class string

510, 511
EnsureCapacity method of class

StringBuilder 518
Enter (or Return) key 30, 46
enter data from the keyboard 396
entities in an entity data model

642
entity connection string 641
Entity Data Model 631, 636,

638, 649
ADO.NET Entity

Framework 636
create from database 639
data source for data binding

645
entities 642

ptg18189312

714 Index

entity-relationship diagram 635
entry point 46

of an application 154
enum 172

keyword 172
Enumerable class 616, 637

Range method 625
Repeat method 697
ToArray method 263
ToList method 263, 625

enumeration 172
enumeration constant 173
enumerations

ComboBoxStyle 464
DateTimePickerFormat 450
DayOfWeek 453
MdiLayout 487
SelectionMode 457

enumerator 589, 596
fail fast 597
of a LinkedList 606

equal likelihood 166
equality operators (== and !=) 99
Equals method of an

anonymous type 659
Equals method of class object

325
Equals method of class string

508, 509
Error List window 51
Error property of class Console

530
escape character 54
escape sequence 54, 57

carriage return, \r 55
escape character, \ 55
horizontal tab, \t 54
newline, \n 54, 57

event 398
event driven 6, 398
event handler 398, 403
event handling 398
event handling model 398
event multicasting 404
event sender 403
EventArgs class 400
events 6
events at an interval 499
exception 58, 209, 211, 363

ArgumentException 602

exception (cont.)
handler 211
handling 209
IndexOutOfRangeException

211
InvalidCastException 349,

391, 591
InvalidOperationException

597, 606
KeyNotFoundException 602
Message property 211
parameter 211

Exception Assistant 370
Exception class 372
exception filter (C# 6) 392

when clause 392
exception handler 363, 373
exception handling 58
.exe file name extension 51
executable 8, 51
execute an application 47
ExecutionEngineException class

372
exhausting memory 189
Exists method of class

Directory 558
Exists method of class

DirectoryInfo 479
Exit method of class

Application 448, 461
exit point of a control statement

99
Exp method of Math 154
expand a tree 25
Expand method of class TreeNode

470
expand node 469
ExpandAll method of class

TreeNode 470
explicit conversion 113
explicit type argument 573
exponential complexity 678
exponential method 154
exponentiation operator 130
expression 59, 99, 114
expression bodied (C# 6)

=> 185
method 185
property 185

expression lambda 613

extend a class 300
extensibility 330
extensible programming

language 68
extension method 255, 295,

608, 618, 637
Aggregate 616, 619
Enumerable class 616
IEnumerable<T> 616
LINQ 608, 616
LINQ to Entities 649
Max 619
Min 619
OrderBy 621
Reverse 507
Select 616, 622
Sum 619
Where 616, 621

external iteration 615

F
F format specifier 92

for floating-point numbers
114

factorial 186
Factorial method 187
false keyword 61, 99, 100
fault tolerant 58
fault-tolerant program 211, 363
Fibonacci series 676, 678
field

default initial value 73
in a database table 631

field of a class 154, 175
field width 131
File class 557, 561

Delete method 565
File class methods (partial list)

557
File menu 21
File name extensions

.cs 25

.csproj 36
FileAccess enumeration 539
FileInfo class 479

FullName property 479
Name property 479

file-position pointer 544
files 530

ptg18189312

Index 715

FileStream class 531, 538, 544,
555
Seek method 549

FillEllipse method of class
Graphics 433, 468

FillPie method of class
Graphics 468

FillRectangle method of class
Graphics 468

filter (functional programming)
616, 621

filter a collection using LINQ
247

filter elements 621
filtering array elements 611
final state in the UML 98
Finalize method

of class object 325
finally block 370, 374
finally blocks always execute,

even when no exception
occurs 375

Find method of class LinkedList
607

Finished design of MasterDetail
app 662

First extension method of
interface IEnumerable<T> 255

FirstDayOfWeek property of
class MonthCalendar 449

FirstNode property of class
TreeNode 469

Fisher-Yates shuffling algorithm
215

flag value 110
flash drive 530
FlatStyle property of class

Button 411
Flickr 687
Flickr API key 687
float simple type 57, 110, 131,

702
floating-point division 114
floating-point number 110, 112

double data type 110
float data type 110

Floor method of Math 153
flow of control 106, 112
flow of control in the if...else

statement 100

focus 397
Focused property of class

Control 406
Font class 418

Style property 418
Font dialog 34
Font property of a Label 33
Font property of class Control

407
Font property of class Form 398
font size 33
font style 34, 416
Font window 34
FontStyle enumeration 418
for iteration statement 98, 125,

126, 128, 129
activity diagram 128
header 126

foreach iteration statement
203, 597
on rectangular arrays 234

ForeColor property of class
Control 407

foreign key 634, 636
form 20
form background color 32
Form class 397

AcceptButton property 398
ActiveMdiChild property

486
AutoScroll property 398
CancelButton property 398
Close method 398
Font property 398
FormBorderStyle property

398
Hide method 398
IsMdiChild property 486
IsMdiContainer property

485, 486
LayoutMdi method 486, 487
Load event 398
MaximumSize property 409
MdiChildActivate event 486
MdiChildren property 486
MdiParent property 485
MinimumSize property 409
Padding property 408
Show method 398
Text property 398

Form properties, methods and
events 398

format item 522
Format menu 21
Format property of class

DateTimePicker 450
format specifier 91

C for currency 91
D for integer values 92, 206
E for scientific notation 92
F for floating-point numbers

92, 114
G for scientific or floating-

point notation depending
on the context 92

N for numbers 92
table 92

format string 522
FormatException class 366, 369
formatted output

field width 131
left align 131
right align 131

FormBorderStyle property of
class Form 398

forward slash character (/) in
end tags 692

fragile software 320
Framework Class Library 574
from clause of a LINQ query

249
FromStream method of class

Image 694
FullName property of class

DirectoryInfo 479
FullName property of class

FileInfo 479
FullName property of class Type

326
FullPath property of class

TreeNode 469
FullStackException indicates a

stack is full 580
fully qualified class name 162,

399, 494
fully qualified name 158, 162,

399
Func delegate 619, 621, 649,

650, 655
Func<TResult> delegate 679

ptg18189312

716 Index

function key 436
functional programming 6, 247,

590, 615
filter 616
map 616
reduce 616

G
G format specifier 92
game playing 164
garbage collector 284, 374
general catch clause 370, 372,

392
general class average problem

110
generic class 257, 568, 577

Dictionary 592
LinkedList 592, 603
LinkedListNode 603
List 592
Queue 592
SortedDictionary 592, 599,

601
SortedList 592
SortedSet 627
Stack 592

generic interface 568
generic method 568, 571

creating 584
implementation 571

generic programming 590
generics 568

class 568
class constraint 576
compile-time type safety 568
constructor constraint

(new()) 576
default type constraint

(object) of a type
parameter 579

interface 568
interface constraint 576
method 571
overloading 577
reference type constraint

class 576
reusability 577
scope of a type parameter

579

generics (cont.)
specifying type constraints 574
Stack class 577
type argument 573, 581
type checking 568
type constraint of a type

parameter 574, 576
type parameter 572
type parameter list 572
value type constraint struct

576
where clause 576

get accessor of a property 4, 79,
80, 81

get keyword 82
GetByteArrayAsync method of

class HttpClient 694
GetCreationTime method of

class Directory 558
GetCreationTime method of

class File 557
GetDirectories method of class

Directory 473, 558
GetDirectories method of class

DirectoryInfo 479
GetEnumerator method of

interface IEnumerable 596
GetExtension method of class

Path 565
GetFiles method of class

Directory 558, 565
GetFiles method of class

DirectoryInfo 479
GetHashCode method of class

Object 599
GetItemChecked method of class

CheckedListBox 462
GetLastAccessTime method of

class Directory 558
GetLastAccessTime method of

class File 557
GetLastWriteTime method of

class Directory 558
GetLastWriteTime method of

class File 557
GetLength method of an array 229
GetNodeCount method of class

TreeNode 470
GetObject method of class

ResourceManager 426

GetSelected method of class
ListBox 458

GetStringAsync method of class
HttpClient 691, 692

getter-only auto-implemented
properties (C# 6) 212

getter-only auto-implemented
property 282, 289

GetType method of class object
326, 350

GetValueOrDefault method of a
nullable type 391

GIF (Graphic Interchange
Format) 36

global namespace 162
Good Programming Practices

overview xxvii
goto elimination 97
goto statement 96
graph information 206
Graphic Interchange Format

(GIF) 36
graphical user interface (GUI)

19, 163, 395
Graphics class 433, 467

Clear method 467
DrawEllipse method 468
DrawPie method 468
DrawRectangle method 468
FillEllipse method 433,

468
FillPie method 468
FillRectangle method 468

Graphics property of class
PaintEventArgs 497, 498

group by (LINQ) 565
GroupBox class 12
GroupBox control 413

Controls property 414
properties 413
Text property 413

guard condition in the UML 99
GUI (graphical user interface)

19, 395
container control 407
control 396
control, basic examples 396
thread 622
Windows Forms 396

guillemets (« and ») 87

ptg18189312

Index 717

H
handle an event 403
handle an exception 367
hard disk 530
has-a relationship 280, 300
hash function 599
hash table 598
hashing 598
Hashtable class 593
HasValue property of a nullable

type 391
Height property of structure

Size 409
Help menu 22, 28
HelpLink property of Exception

383
“hidden” fields 175
hide implementation details 270
Hide method of class Control

407
Hide method of class Form 398
HoloLens 10
horizontal tab 54
hot key 439
HourlyEmployee class that

extends Employee 341
HttpClient class 691

CancelPendingRequests

method 691
GetByteArrayAsync method

694
GetStringAsync method

691, 692

I
IBM

DB2 630
ICollection<T> interface 591
IComparable interface 360
IComparable<T> interface 574,

627
CompareTo method 574

IComparer<T> interface 627
IComponent interface 360, 396
icon 22
IDE (Integrated Development

Environment) 10, 16
identifier 44, 55
identity column in a database

table 633

IDictionary<K,V> interface 591
IDisposable interface 361, 381

Dispose method 361
IEC 60559 702
IEEE 754 702
IEnumerable interface

method GetEnumerator 596
IEnumerable<T> extension

method
Any 255
Average 619, 625
Count 255
Distinct 255
First 255
Max 625
Min 625

IEnumerable<T> interface 251,
591, 596, 637

IEnumerator interface 361, 596
if single-selection statement 61,

64, 98, 99, 100, 133
activity diagram 100

if...else double-selection
statement 98, 100, 101, 112,
133
activity diagram 101

ignoring array element zero 210
IList<T> interface 591
Image property of class

PictureBox 35, 424
image resource 426
ImageIndex property of class

ListViewItem 475
ImageIndex property of class

TreeNode 469
ImageList class 469, 475

Images property 475
ImageList property of class

TabControl 481
ImageList property of class

TreeView 469
Images Collection Editor 475
Images property of class

ImageList 475
imaginary part of a complex

number 292
immutability 616
immutable string 286, 506
imperative programming 247

implement an interface 329,
353, 358

implementation-dependent
code 270

implementing a Dispose
method (link to MSDN
article) 361

implicit conversion 114
implicit conversions between

simple types 161
implicitly typed local variable

206, 207, 250, 256
in parallel 673
In property of class Console 530
increment 129

a control variable 124
expression 142

increment and decrement
operators 118

increment operator, ++ 118
Increment property of class

NumericUpDown 428
indefinite repetition 110
indentation 46, 64, 100, 102

indent size 45
independent software vendor

(ISV) 324
index 197, 209
index initializer (C# 6) 608
Index property of class

ItemCheckEventArgs 462
index zero 197
indexer 506

[] operator 591
of a SortedDictionary<K,V>

602
IndexOf method

of class Array 597
of class List<T> 257
of class string 511, 513

IndexOfAny method of class
string 511

IndexOutOfRangeException class
209, 211, 372

indirect base class 300, 302
infer a local variable’s type 206
infinite loop 106, 113, 127, 189
infinite recursion 189
infinity symbol 636
information hiding 4, 75, 351

ptg18189312

718 Index

inherit from class Control 498
inherit from Windows Form

control 498
inheritance 4, 300, 305, 324

examples 301
hierarchy 301
hierarchy for class Shape 302
hierarchy for university

CommunityMembers 302
single 300
with exceptions 373

initial state in the UML 98
initial value of control variable

124
InitialDelay property of class

ToolTip 427
initializer list 200
Initializing jagged and

rectangular arrays 227
Initializing the elements of an

array with an array initializer
200

initializing two-dimensional
arrays in declarations 227

inlining method calls 351
InnerException property of

Exception 382, 386
innermost set of brackets 210
input data from the keyboard 65
input validation 369
Insert method of class List<T>

260
Insert Separator option 442
Insert Snippet window 174
inserting separators in a menu

442
instance 3
instance variable 4, 72, 73, 154
int operands promoted to

double 114
int simple type 57, 117, 702

Parse method 58
TryParse method 369

Int32 struct 574
integer 56

division 60, 110
value 57

integer array 200
integer division without

exception handling 364

integer promotion 114
Integrated Development

Environment (IDE) 10, 16
IntelliSense 49, 249, 297, 298,

631, 636
interest rate 129
interface 251, 329, 353, 359

declaration 352
interface constraint 576
interface keyword 352, 359
Interfaces

ICollection<T> 591
IComparable 360, 574
IComparable<T> 627
IComparer<T> 627
IComponent 360, 396
IDictionary 591
IDictionary<K,V> 591
IDisposable 361, 381
IEnumerable 596
IEnumerable<T> 251, 591,

637
IEnumerator 361, 596
IList<T> 591
IQueryable<T> 637
ISerializable 550

interpolation
$ before a string literal 56
string 55, 56

interpolation expression 56, 59,
64
calculation in 59
specify a format 91

Interval property of class Timer
499

InvalidCastException class
349, 391, 591

InvalidOperationException

class 597, 606
Invoice class implements

IPayable 355
Invoke method of class Control

686
InvokeRequired property of

class Control 686
iOS 9
IPayable interface declaration

355
IPayable interface hierarchy

UML class diagram 354

IQueryable<T> interface 637
is-a relationship 300, 330
is operator 349
IsDigit method of Char 526
ISerializable interface 550
IsLetter method of Char 527
IsLetterOrDigit method of

Char 527
IsLower method of Char 527
IsMdiChild property of class

Form 486
IsMdiContainer property of

class Form 485, 486
IsPunctuation method of

struct Char 527
IsSymbol method of struct Char

527
IsUpper method of struct Char

527
IsWhiteSpace method of struct

Char 527
ItemActivate event of class

ListView 474
ItemCheck event of class

CheckedListBox 461, 462
ItemCheckEventArgs class 462

CurrentValue property 462
Index property 462
NewValue property 462

Items property
of class ComboBox 465
of class ListBox 457, 458
of class ListView 474

ItemSize property of class
TabControl 481

iteration 109
counter controlled 115
of a loop 142
sentinel controlled 110

iteration (looping)
of a for loop 210

iteration statement 97, 98, 106
do...while 98, 132, 133, 133
for 98, 128
foreach 98
while 98, 107

iteration terminates 106
iteration variable 203
iterative 189

ptg18189312

Index 719

J
Jacopini, G. 97
jagged array 225, 226, 227
JIT (just-in-time) compilation 8
joining database tables 635, 658

LINQ to Entities 655
Joint Photographic Experts

Group (JPEG) 36
JPEG (Joint Photographic

Experts Group) 36
just-in-time (JIT) compiler 8

K
key code 436
key data 436
key event 433, 434
key value 436
keyboard 56, 396
keyboard shortcuts 439
KeyChar property of class

KeyPressEventArgs 433
KeyCode property of class

KeyEventArgs 434
KeyData property of class

KeyEventArgs 434
KeyDown event of class Control

433, 434
KeyEventArgs class 433

Alt property 434, 436
Control property 434, 436
KeyCode property 434
KeyData property 434
KeyValue property 434
Modifiers property 434
properties 434
Shift property 434, 436

KeyNotFoundException class 602
KeyPress event of class Control

433, 434
KeyPressEventArgs class 433

KeyChar property 433, 434
properties 434

keys
function 436
modifier 433

Keys enumeration 433
Keys property

of Dictionary 565
of SortedDictionary<K,V>

602

KeyUp event of class Control
433, 434

KeyValue property of class
KeyEventArgs 434

KeyValuePair<K,V> structure 602
Keywords 44, 98

abstract 316, 334
as 349, 391
async 674, 675, 678
await 675, 679
base 303, 316, 323, 324
break 136
case 136
char 57
class 44
const 139, 154, 202, 288
continue 141
decimal 57, 87
default 136
delegate 403, 610
do 132
else 100
enum 172
float 57
for 125
get 82
if 61, 99, 100
int 57
interface 352
is 349
nameof 276
namespace 493
new 70, 198, 226
null 73, 121, 189, 198
operator 293
out 191
override 213, 308, 316
params 236
partial 401
private 75, 270, 303
protected 75, 270, 303
public 75, 267, 270, 303
readonly 288
ref 191, 217
return 75, 160
sealed 351
set 82
static 130, 157
struct 292
this 271, 285

Keywords (cont.)
value (contextual) 82
var 206
virtual 316
void 46, 73
while 106, 132

L
Label 33
label 410
Label class 20, 29, 32
Label control 396, 410
label in a switch 136, 137
lambda expression 611, 621,

650, 655, 675, 679
expression lambda 613
lambda operator (=>) 613,

650
statement lambda 614

lambda operator 613
language independence 8
Language Integrated Query

(LINQ) 246
language interoperability 8
LargeImageList property of

class ListView 475
last-in first-out (LIFO) order 584
Last property of class

LinkedList 607
last-in, first-out (LIFO) 177
LastIndexOf method of class

Array 597
LastIndexOf method of class

string 511, 513
LastIndexOfAny method of class

string 511
LastNode property of class

TreeNode 469
late binding 348
layout, control 406
LayoutMdi method of class Form

486, 487
leading 0 206
left align output 131
left brace, { 45, 46, 57
legacy code 590
Length property

of an array 198, 198
of class string 506, 507
of class StringBuilder 518

ptg18189312

720 Index

let clause of a LINQ query 263
LIFO (last-in, first-out) 177,

584
line numbers xxxv
LinkArea property of class

LinkLabel 453
LinkBehavior property of class

LinkLabel 454
LinkClicked event of class

LinkLabel 453, 454
LinkColor property of class

LinkLabel 454
LinkedList generic class 592

AddFirst method 606
AddLast method 605
method Find 607
method Remove 607
property First 606
property Last 607

LinkedList<T> class 592
LinkedList<T> generic class 603
LinkedListNode class

property Next 603
property Previous 603
property Value 603

LinkedListNode<T> generic class
603

LinkLabel class 439, 453
ActiveLinkColor property

453
LinkArea property 453
LinkBehavior property 454
LinkClicked event 453, 454
LinkColor property 454
LinkVisited property 454
Text property 454
UseMnemonic property 454
VisitedLinkColor property

454
LinkLabel properties and an

event 453
LinkVisited property of class

LinkLabel 454
LINQ (Language Integrated

Query) 246, 561, 615
anonymous type 256
ascending modifier 250
Count method 565
deferred execution 263
descending modifier 250

LINQ (Language Integrated
Query) (cont.)
extension method 616
extension method Aggregate

619
extension method Max 619
extension method Min 619
extension method Select

622
extension method Sum 619
extension method Where 621
extension methods for

arithmetic 619
from clause 249
group by 565
let clause 263
LINQ to Entities 247, 631
LINQ to Objects 246, 561,

631
LINQ to XML 247
orderby clause 250
provider 247
query expression 246
query syntax 616, 637
range variable 249
Resource Center 671
select clause 250
usage throughout the book

247
where clause 250

LINQ to Entities 247, 631,
632, 649
data binding 637
DbContext class 637, 643
extension methods 649
Object data source 645
primary keys 631
saving changes back to a

database 650
LINQ to Objects 246, 247,

588, 590, 623, 631, 637
using a List<T> 261
using an array of Employee

objects 252
using an int array 248

LINQ to XML 247, 687, 691
LINQPad (www.linqpad.net)

671
Linux 9
List class 592

list, editable 465
List<T> generic class 256, 592

Add method 260
AddRange method 257
Capacity property 257
Clear method 257
Contains method 257, 260
Count property 257
IndexOf method 257
Insert method 260
methods 257
Remove method 257, 260
RemoveAt method 257, 260
RemoveRange method 257
Sort method 257
TrimExcess method 257

ListBox control 396, 439, 456
ClearSelected method 458
GetSelected method 458
Items property 458
MultiColumn property 457
properties, method and

event 457
SelectedIndex property 458
SelectedIndexChanged event

457
SelectedIndices property

458
SelectedItem property 458
SelectedItems property 458
SelectionMode property 457
Sorted property 458

ListBox.ObjectCollection class
458

ListView control 474
Activation property 474
CheckBoxes property 474
ItemActivate event 474
Items property 474
LargeImageList property

475
MultiSelect property 474
SelectedItems property 474
SmallImageList property

475
View property 474

ListView displaying files and
folders 475

ListView properties and events
474

http://www.linqpad.net

ptg18189312

Index 721

ListViewItem class 475
ImageIndex property 475

literal 46
Load event of class Form 398
Load extension method of class

DbExtensions 650, 654
load factor 599
local variable 74, 108, 109, 174,

175, 176, 272
local variable “goes out of scope”

530
Location property of class

Control 409
Log method of Math 154
logarithm 154
logic error 58
logical negation, ! 146

operator truth table 146
logical operators 143, 146, 147
logical output operation 531
logical XOR, ^ 145
long simple type 702
long-term retention of data 530
Long value of enumeration

DateTimePickerFormat 450
loop 107

body 132
continuation condition 98
counter 124
infinite 106, 113

loop-continuation condition
124, 126, 132, 133, 142

looping 109
lowercase letter 44

M
m-by-n array 225
m to indicate a decimal literal 89
magic numbers 202
Main method 46, 57
make your point (game of craps)

169
managed code 7
many-to-many relationship

636, 643
map (functional programming)

616, 622
map elements to new values 622
MariaDB 630
mask the user input 410

master/detail view 661
Match class 503, 527
Math class 153

Abs method 153
Ceiling method 153
Cos method 153
E constant 154
Exp method 154
Floor method 153
Log method 154
Max method 154
Min method 154
PI constant 154
Pow method 130, 131, 153,

154
Sin method 153
Sqrt method 153, 154, 160,

388
Tan method 153

Max IEnumerable<T> extension
method 619, 625

Max method of Math 154
Max ParallelQuery<T> extension

method 625
MaxDate property of class

DateTimePicker 450, 453
MaxDate property of class

MonthCalendar 449
MaxDropDownItems property of

class ComboBox 464
Maximum property of class

NumericUpDown 428
MaximumSize property of class

Control 409
MaximumSize property of class

Form 409
MaxSelectionCount property of

class MonthCalendar 449
.mdf file extension 632
MDI (Multiple Document

Interface) 484
child 491
parent and child properties,

method and event 486
title bar 487
window 396

MdiChildActivate event of class
Form 486

MdiChildren property of class
Form 485, 486

MdiLayout enumeration 487
ArrangeIcons value 487
Cascade value 487
TileHorizontal value 487
TileVertical value 487

MdiParent property of class Form
485

MdiWindowListItem property of
class MenuStrip 487

member access (.) operator 130,
153, 285

member access operator (.) 70
MemberwiseClone method of

class object 326
memory consumption 589
memory leak 284, 374
MemoryStream class 531
menu 21, 396, 439

access shortcut 439
access shortcut, create 440
Analyze 21
Build 21
Debug 21
Edit 21
ellipsis convention 442
expanded and checked 440
File 21
Format 21
Help 22, 28
Project 21
Team 21
Test 21
Tools 21
View 21, 24
Window 22

menu bar 21, 396
in Visual Studio IDE 21

menu item 21, 439
MenuItem property

MdiWindowListItem example
487

MenuStrip class 440
MdiWindowListItem property

487
RightToLeft property 443

MenuStrip properties and events
443

merge symbol in the UML 106
message 46

ptg18189312

722 Index

Message property of Exception
211, 379, 382

method 3, 46
local variable 74
parameter 74
parameter list 74
static 130

method call 3, 157
method-call stack 177, 382
method declaration 157
method header 73
method overloading 181
method parameter list 236
MethodInvoker delegate 686
methods implicitly sealed 351
methods of class List<T> 257
Metro 9
Microsoft

SQL Server 630
Microsoft Developer Network

(MSDN) 18
Microsoft Intermediate

Language (MSIL) 8, 51
Microsoft Visual Studio

Community edition xxxiii
Min IEnumerable<T> extension

method 619, 625
Min LINQ exension method
Min method of Math 154
Min ParallelQuery<T> extension

method 625
MinDate property of class

DateTimePicker 450, 453
MinDate property of class

MonthCalendar 449
minimized and maximized child

window 486
Minimum property of class

NumericUpDown 428
MinimumSize property of class

Control 409
MinimumSize property of class

Form 409
mobile application 2
modal dialog 538
model 639
model designer 642
modifier key 433
Modifiers property of class

KeyEventArgs 434

modulus operator (%) 59
monetary amount 87
monetary calculations 131
monetizing your apps 10
Mono Project xxxv, 6
MonthCalendar class 449

DateChanged event 449
FirstDayOfWeek property

449
MaxDate property 449
MaxSelectionCount property

449
MinDate property 449
MonthlyBoldedDates

property 449
SelectionEnd property 449
SelectionRange property

449
SelectionStart property

449
MonthlyBoldedDates property of

class MonthCalendar 449
More Windows... option in Visual

Studio .NET 487
mouse 396

pointer 23
mouse click 430
mouse event 430, 431
mouse move 430
MouseDown event of class Control

431
MouseEnter event of class

Control 431
MouseEventArgs class 430

Button property 431
Clicks property 431
X property 431
Y property 431

MouseEventArgs properties 431
MouseEventHandler delegate

430
MouseHover event of class

Control 431
MouseLeave event of class

Control 431
MouseMove event of class Control

431
MouseUp event of class Control

431

MouseWheel event of class
Control 431

Move method of class Directory
558

Move method of class File 557
MoveFirst method of class

BindingSource 654
MoveNext method of

IEnumerator 596
MSDN (Microsoft Developers

Network) 18
MSIL (Microsoft Intermediate

Language) 8
multicast delegate 404
multicast event 404
MulticastDelegate class 404
MultiColumn property of class

ListBox 457
multidimensional array 225
MultiExtended value of

enumeration SelectionMode
457

Multiline property of class
TabControl 481

Multiline property of class
TextBox 411

multiple document interface
(MDI) 396, 484

multiple-selection statement 98
multiplication, * 59
MultiSelect property of class

ListView 474
MultiSimple value of

enumeration SelectionMode
457

multithreading 674
mutual exclusion 419
mutually exclusive options 419
MySQL 630

N
N format specifier 92
name collision 399, 494
name conflict 399, 494
Name property of class

DirectoryInfo 479
Name property of class FileInfo

479
named constant 202
named parameter 185

ptg18189312

Index 723

nameof operator (C# 6) 276
namespace 43, 162, 493

declaration 493
keyword 493

namespace declaration 399
Namespaces

of the FCL 162
System 164
System.Collections 163,

574, 590
System.Collections.Con-

current 590
System.Collections.Generic

163, 256, 565, 590
System.Collections.Spe-

cialized 590
System.Data.Entity 163,

637
System.Data.Linq 163
System.Diagnostics 456
System.Drawing 418
System.IO 163, 531
System.Linq 163, 248, 637
System.Net.Http 691
System.Runtime.Serializ-

ation.Formatters.Binary

550
System.Runtime.Serializ-

ation.Json 550
System.Text 163, 503
System.Text.Regular-

Expressions 503
System.Threading.Tasks

679
System.Web 163
System.Windows.Controls

163
System.Windows.Forms 163,

397
System.Windows.Input 163
System.Windows.Media 163
System.Windows.Shapes 163
System.Xml 163
System.Xml.Linq 163, 693
System.Xml.Serialization

550
naming convention for methods

that return boolean 139
NaN constant of structure Double

366, 388

natural logarithm 154
navigation property 637, 646,

647
NegativeInfinity constant of

structure Double 366
NegativeNumberException

represents exceptions caused
by illegal operations
performed on negative
numbers 387

nested array initializer 225
nested control statements 114,

168
nested for statement 206, 227,

229
nested foreach statement 229
nested if selection statement

104, 105
nested if...else selection

statement 101, 104, 105
nested parentheses 60
new keyword 70, 198, 226
New Project dialog 19, 20, 29
new() (constructor constraint)

576
newline character 54
newline escape sequence, \n 54,

57
NewValue property of class

ItemCheckEventArgs 462
Next method of class Random

164, 165, 168
Next property of class

LinkedListNode 603
NextNode property of class

TreeNode 469
node 468

child 468
expand and collapse 469
parent 468
root 468
sibling 468

Nodes property
of class TreeNode 469
of class TreeView 469

non-static class member 285
None value of enumeration

SelectionMode 457
not selected state 419
note (in the UML) 98

Notepad 454
Now property of DateTime 625
Now property of structure

DateTime 499
NuGet package manager 644
null coalescing operator (??)

391, 392
null keyword 73, 121, 189, 198
nullable type 391, 607

GetValueOrDefault method
391

HasValue property 391
Value property 391

null-conditional operator (?.)
390, 391, 607

null-conditional operator (?[])
607

NullReferenceException class
372

numbers with decimal points 87
numeric literal

whole number 130
with a decimal point 130

NumericUpDown control 396, 428
DecimalPlaces property 428
Increment property 428
Maximum property 428
Minimum property 428
ReadOnly property 430
UpDownAlign property 429
Value property 429
ValueChanged event 429

NumericUpDown properties and
events 428

O
object 2
Object Browser (Visual Studio

.NET) 289
object class 300, 305, 325

Equals method 325
Finalize method 325
GetHashCode method 326
GetType method 326, 350
MemberwiseClone method

326
ReferenceEquals method

326
ToString method 307, 326

ptg18189312

724 Index

object-creation expression 70,
85

Object data source 645
object initializer 291
object initializer list 291
object methods that are

inherited directly or
indirectly by all classes 325

object of a class 4
object of a derived class 331
object of a derived class is

instantiated 324
object-oriented analysis and

design (OOAD) 5
object-oriented language 5
object-oriented programming

(OOP) 5, 300
object serialization 550
ObjectCollection collection

Add method 459
Clear method 461
RemoveAt method 459

object-oriented programming
590

ObservableCollection<T> class
650, 655

one-to-many relationship 635,
636

One value of enumeration
SelectionMode 457

OnPaint method of class Control
497

OOAD (object-oriented
analysis and design) 5

OOP (object-oriented
programming) 5, 300

Open method of class File 557
OpenFileDialog class 543, 549
opening a project 21
OpenRead method of class File

557
OpenText method of class File

557
OpenWrite method of class File

557
operand 58
operands of a binary operator 59
operating system 8
operation in the UML 76

operation parameter in the
UML 77

operator 59
operator keyword 293
operator overloading 291
operator precedence 60

operator precedence chart
114

rules 60
Operators 613, 650

^, boolean logical exclusive
OR 143, 145

--, prefix decrement/postfix
decrement 118, 119

-, subtraction 60, 61
!, logical negation 143, 146
!=, not equals 62
?:, ternary conditional

operator 103, 120
*, multiplication 60, 61
*=, multiplication

compound assignment
118

/, division 60, 61
\=, division compound

assignment 118
&, boolean logical AND 143,

145
&&, conditional AND 143,

144
%, remainder 60, 61
%=, remainder compound

assignment 118
+, addition 60, 61
++, prefix increment/postfix

increment 118, 119
+=, addition assignment

operator 117
+=, addition compound

assignment 117
<, less than 62
<=, less than or equal 62
=, assignment operator 58
-=, subtraction compound

assignment 117
==, is equal to 62
>, greater than 62
>=, greater than or equal to

62

Operators (cont.)
|, boolean logical inclusive

OR 143, 145
||, conditional OR 143, 144
arithmetic 59
as 349, 391
await 675
binary 58, 59
boolean logical AND, & 143,

145
boolean logical exclusive

OR, ^ 143, 145
boolean logical inclusive

OR, | 145
cast 113, 173
compound assignment 117,

120
conditional AND, && 143,

143, 145, 255
conditional operator, ?:

103, 120
conditional OR, || 143,

144, 145
decrement operator, -- 118,

119
increment and decrement

118
increment operator, ++ 118
is 349
logical negation, ! 146
logical operators 143, 146
logical XOR, ^ 145
member access (.) 130, 285
postfix decrement 118
postfix increment 118
precedence chart 700
prefix decrement 118
prefix increment 118
remainder, % 59

optimizing compiler 131
optional parameter 183, 184

default value 183, 183
Oracle Corporation 630
orderby clause of a LINQ query

250
ascending modifier 250
descending modifier 250

OrderBy extension method 621
OrderBy extension method of

class Queryable 649, 655

ptg18189312

Index 725

out keyword 191
out-of-range array index 372
Out property of class Console 530
outer set of brackets 210
OutOfMemoryException class 372
output 54
output parameter 191
overloaded constructors 273
overloaded generic methods 577
overloaded methods 49, 181, 569
overloaded operators for

complex numbers 294
overloading constructors 86
override a base class method

303, 307
override keyword 213, 308,

316

P
package manager

NuGet 644
Padding property of class

Control 409
Padding property of class Form

408
page layout software 503
PaintEventArgs class 497

ClipRectangle property 497
Graphics property 497

PaintEventArgs properties 498
pair of braces {} 64
palette 32
Panel class 12, 396, 413

AutoScroll property 413
BorderStyle property 413
Controls property 413
properties 413
scrollbars 414

parallel 673
operations 673

Parallel LINQ 247
ParallelEnumerable

AsParallel method 625
ParallelEnumerable class 625
ParallelQuery<T> class 625
ParallelQuery<T> extension

method
Average 625
Max 625
Min 625

parameter 74, 74, 85
output 191

parameter in the UML 77
Parameter Info window 49
parameter list 74

empty 75
parameter name 74
parameter type 74
parameterless constructor 275,

280, 576
struct 293

params keyword 236
parent container 409
parent menu 439
parent node 468
Parent property of class

DirectoryInfo 479
parent window 484
parentheses 46, 60

nested 60
Parse method

of simple type decimal 92
of simple type double 157

Parse method of class XDocument
693

Parse method of type decimal
93

Parse method of type int 58
partial class 397
partial keyword 401
Pascal Case 44

constants 202
Pascal case 72
pass an array element to a

method 217
pass an array to a method 217
pass-by-reference 190
pass-by-value 190, 217
Passing an array reference by

value and by reference 241
Passing arrays and individual

array elements to methods
217

passing options to a program
with command-line
arguments 238

password TextBox 410
Path class 473, 565

GetExtension method 565
perform a calculation 66

perform a task 74, 85
perform an action 46
performance 674
performing operations

concurrently 673
permission setting 475
persistent

data 530
physical output operation 531
PictureBox class 20, 29, 35,

424, 487
Click event 424
Image property 424
properties and event 424
SizeMode property 424

pin icon 24
platform 10
platform independence 8
PLINQ (Parallel LINQ) 590,

623
PNG (Portable Network

Graphics) 36
Poll analysis application 209
polymorphically process

Invoices and Employees 358
polymorphism 139, 326, 328
pop off a stack 177
portability 8
Portable Network Graphics

(PNG) 36
porting 8
position number 197
Position property of class

BindingSource 654
PositiveInfinity constant of

structure Double 366
postdecrement 118
postfix decrement operator 118
postfix increment operator 118,

127
PostgreSQL 630
postincrement 118
Pow method of Math 130, 131,

153, 154
power (exponent) 154
power of 3 larger than 100 106
precedence 65, 120

arithmetic operators 61
chart 61

precedence chart 114

ptg18189312

726 Index

precedence chart appendix 700
precision

of double values 703
of float values 703

precision of a floating-point
value 111

predecrement 118
predicate 250, 621
prefix decrement operator 118
prefix increment operator 118
preincrement 118
prepackaged data structures 589
Previous property of class

LinkedListNode 603
PrevNode property of class

TreeNode 470
primary key 631, 636

in LINQ to Entities 631
primitive data type promotion

114
principal in an interest

calculation 129
principle of least privilege 288
private

access modifier 75, 271, 303
static class member 285

probability 164
procedural programming 590
Process class 456

Start method 456
program execution stack 177
program in the general 328
program in the specific 328
programming paradigms

functional 590
generic 590
object oriented 590
procedural 590
structured 590

ProgressBar class 694
project 18
Project menu 21
projection 256
promotion 114, 130

rules 160
Properties window 26, 28, 30, 34
property 4, 79
property declaration 82
property of a form or control 26
proprietary class 324

protected access modifier 75,
270, 303

pseudocode 100
pseudorandom number 165,

168
public

access modifier 75, 267, 303
interface 267
member of a derived class

303
method 268, 270
service 267
static class members 285
static method 285

push onto a stack 177

Q
query 246, 630, 632
query expression (LINQ) 246
Queryable class 637

OrderBy extension method
649, 655

ThenBy extension method
650

Where extension method 655
Queue class 592, 593
Queue generic class 592
Queue<T> class 592

R
radians 153
radio button 410, 419

group 419
using with TabPage 484

RadioButton control 12, 416,
419
Checked property 419
CheckedChanged event 419
properties and events 419
Text property 419

Random class 164
Next method 164, 165, 168

random number generation 212
random numbers 168

in a range 168
scaling factor 165, 168
seed value 165, 169
shifting value 168

Range method of class
Enumerable 625

range variable of a LINQ query
249

Read method of class Console
531

read-only property 104
ReadLine method of class

Console 58, 70, 136, 531
readonly

keyword 288
ReadOnly property of class

NumericUpDown 430
ReadOnly property of class

TextBox 411
ReadToEnd method of class

StreamReader 561
real number 110
real part of a complex number

292
realization in the UML 354
reclaim memory 287
record 534, 631
rectangular array 225, 226

with three rows and four
columns 225, 226

recursion 473
recursion step 186
recursive call 186
recursive evaluation 187

of 5! 187
recursive factorial 186
recursive method 186
reduce (functional

programming) 616
ref keyword 191, 217
refer to an object 189
reference 189
reference type 189
reference type constraint class

576
Reference, output and value

parameters 192
ReferenceEquals method of

object 326
Regex class 503
regular expression 527
reinventing the wheel 43
relational database 630, 631
relational database table 631
relational operators 61
release resource 375

ptg18189312

Index 727

release unmanaged resources
361

remainder 60
remainder operator, % 59, 60
Remove method of class

Dictionary 565
Remove method of class

LinkedList 607
Remove method of class List<T>

257, 260
Remove method of class

StringBuilder 522
RemoveAt method of class

List<T> 257, 260
RemoveAt method of class

ObjectCollection 459
RemoveRange method of class

List<T> 257
Repeat method of class

Enumerable 697
repetition

counter controlled 112
sentinel controlled 112

repetition statement
while 109, 112

Replace method of class string
515, 516

Replace method of class
StringBuilder 524

representational error in floating
point 131

requirements 5
requirements of an app 139
reserved word 44, 98

false 99
true 99

Reset method of interface
IEnumerator 596

ReshowDelay property of class
ToolTip 427

Resize method of class Array
198, 246, 256

resource 426
resource leak 284, 374
ResourceManager class 426

GetObject method 426
Resources class 426
responses to a survey 209, 210
REST web service 687

result of an uncaught exception
370

Result property of class Task
679

resumption model of exception
handling 371

rethrow an exception 380
return keyword 75, 160
return statement 82, 186
return type 75

of a method 73
reusability 577
reusable component 301
reusable software components 2,

162
reuse 43
Reverse extension method 507
Reverse method of class Array

597
right align output 131
right brace, } 46, 57, 109, 112
RightToLeft property of class

MenuStrip 443
robust 58
robust application 363
Roll a six-sided die 6,000,000

times 166
Roll a six-sided die 60,000,000

times 208
rolling two dice 172
root node 468

create 470
rounding a number 60, 110,

114, 153
for display 114

row in a database table 631
row objects representing rows in

a database table 636
rows of a two-dimensional array

225
rules of operator precedence 60
Run command in Windows 456
Run method of class Task 679,

685
run mode 38
run-time logic error 58
running an app 456
runtime class 350
runtime system 577

S
SalariedEmployee class that

extends Employee 340
SaveChanges method of a LINQ

to Entities DbContext 637,
651

SaveFileDialog class 538
saving changes back to a

database in LINQ to Entities
650

savings account 129
sbyte simple type 702
scaling factor (random

numbers) 165, 168
schema (database) 632
scope 127, 175

of a declaration 174
of a type parameter 579
static variable 285

screen cursor 46, 53, 54
screen-manager program 330
scrollbar 27
ScrollBars property of class

TextBox 411
scrollbox 27
SDI (Single Document

Interface) 484
sealed

class 351
keyword 351
method 351

secondary storage device 530
secondary storage devices

DVD 530
flash drive 530
hard disk 530
tape 530

seed value (random numbers)
165, 169

Seek method of class FileStream
549

SeekOrigin enumeration 549
select clause of a LINQ query

250
Select LINQ extension method

622
Select method of class Control

407
Select Resource dialog 35
selected state 419

ptg18189312

728 Index

SelectedImageIndex property of
class TreeNode 470

SelectedIndex property of class
ComboBox 465

SelectedIndex property of class
ListBox 458

SelectedIndex property of class
TabControl 481

SelectedIndexChanged event
handler
ComboBox class 654

SelectedIndexChanged event of
class ComboBox 465

SelectedIndexChanged event of
class ListBox 457

SelectedIndexChanged event of
class TabControl 481

SelectedIndices property of
class ListBox 458

SelectedItem property of class
ComboBox 465

SelectedItem property of class
ListBox 458

SelectedItems property of class
ListBox 458

SelectedItems property of class
ListView 474

SelectedNode property of class
TreeView 469

SelectedTab property of class
TabControl 481

selecting an item from a menu
398

selecting data from a table 632
selection 99
selection statement 97, 98

if 98, 99, 100, 133
if...else 98, 100, 101, 112,

133
switch 98, 133, 138

SelectionEnd property of class
MonthCalendar 449

SelectionMode enumeration
457
MultiExtended value 457
MultiSimple value 457
None value 457
One value 457

SelectionMode property of class
CheckedListBox 462

SelectionMode property of class
ListBox 457, 458

SelectionRange property of
class MonthCalendar 449

SelectionStart property of
class MonthCalendar 449

semicolon (;) 46, 56
sentinel-controlled iteration 110
sentinel-controlled repetition

110, 112
sentinel value 110, 112
sentinel-controlled loop 606
separator bar 442
sequence 97
sequence structure 97
sequence-structure activity

diagram 97
sequential-access file 534
sequential execution 96
[Serializable] attribute 550
SerializationException class

554
Serialize method of class

BinaryFormatter 550, 554
serialized object 550
service of a class 270
set accessor of a property 4, 79,

80, 81
Set as Startup Project 644
set keyword 82
shadow 273
shallow copy 326
Shape class hierarchy 302
shift 165
Shift key 433
Shift property of class

KeyEventArgs 434, 436
Shifted and scaled random

integers 166
shifting value (random

numbers) 165, 168
short-circuit evaluation 145
short simple type 702
Short value of enumeration

DateTimePickerFormat 450
shortcut key 439
ShortcutKeyDisplayString

property of class
ToolStripMenuItem 440, 443

ShortcutKeys property of class
ToolStripMenuItem 440, 443

shortcuts with the & symbol 442
Show All Files icon 25
Show method of class Control

407
Show method of class Form 398,

485, 491
ShowCheckBox property of class

DateTimePicker 450
ShowDialog method of class

OpenFileDialog 543, 549
ShowDialog method of class

SaveFileDialog 538
ShowShortcutKeys property of

class ToolStripMenuItem 440,
443

ShowUpDown property of class
DateTimePicker 451

shuffling 212
Fisher-Yates 215

sibling node 468
side effect 145, 190, 619
Sieve of Eratosthenes 696
signal value 110
signature of a method 182
simple condition 143
simple name 493
simple type 57, 96, 121, 161

bool 702
byte 702
char 57, 702
decimal 57, 87, 703
double 57, 703
float 57, 702
int 57, 117, 702
keywords 57
long 702
sbyte 702
short 702
table of 702
uint 702
ulong 702
ushort 702

Simple value of enumeration
ComboBoxStyle 464

Sin method of Math 153
sine 153
Single Document Interface

(SDI) 484

ptg18189312

Index 729

single-entry/single-exit control
statements 99

single inheritance 300
single-selection statement 98, 99
single-line comment 42
single-selection statement

if 99
Size property of class Control

409
Size structure 409

Height property 409
Width property 409

SizeMode property of class
PictureBox 36, 424

sizing handle 31
.sln file extension 36
small circles in the UML 97
SmallImageList property of

class ListView 475
smart tag menu 652
smartphone 2
snap lines 409, 410
Software Engineering

Observations overview xxviii
software reuse 300, 493
solid circle in the UML 98
solid circle surrounded by a

hollow circle in the UML 98
SolidBrush class 433
solution 11, 18
Solution Explorer window 25
Sort method of class Array 596
Sort method of class List<T>

257
Sorted property of class

ComboBox 465
Sorted property of class ListBox

458
SortedDictionary generic class

592, 599, 601
SortedDictionary<K,V> class

592
ContainsKey method 602
Count property 602
method Add 602
property Values 603

SortedList class 592, 593
SortedList<K,V> generic class

592
SortedSet<T> class 627

source code 41
Source property of Exception

383
space character 43
space/time trade-off 599
spacing convention 45
special character 57, 504
Split method of class Regex 601
Split method of class String

544
SQL 246, 630
SQL Server Express 641
SQL Server Express LocalDB

630
Sqrt method of class Math 388
Sqrt method of Math 153, 154,

160
square brackets, [] 197
square root 154
stack 177, 577
Stack class 592, 593
stack frame 177
Stack generic class 577, 592

Stack< double> 587
Stack<int> 587

stack overflow 178
stack trace 365
stack unwinding 383
Stack unwinding and Exception

class properties 383
Stack<T> class 592
StackOverflowException class

372
StackTrace property of

Exception 382, 383, 386
standard error stream object 531
standard input stream object

531
standard input/output object 46
standard output stream object

531
standard reusable component

301
standard time format 268
Start method of class Process

456
Start Page 17
start tag 692
StartsWith and EndsWith

methods 510

StartsWith method of class
string 263, 510, 511

Startup object for a Visual Studio
project 155

startup project 25
state button 416
statement 46, 74, 85

break 136, 141
continue 141
control statement 97, 99,

100
control-statement nesting 99
control-statement stacking

99
do...while 98, 132, 133
double selection 98
empty 103
for 98, 125, 128, 129
foreach 203
if 61, 64, 98, 99, 100, 133
if...else 98, 100, 101, 112,

133
iteration 97, 99, 106
multiple selection 98
nested 114
nested if...else 101
return 160
selection 97, 98
single selection 98
switch 98, 133, 138
switch multiple-selection

statement 168
throw 268, 379
try 211, 371
using 381
while 98, 107, 109, 112

statement lambda 614
static

class member 285
method 130
variable 284, 285

static binding 351
static class 297
static keyword 157
static member demonstration

287
static method 157
static method cannot access

non-static class members
285

ptg18189312

730 Index

static method Concat 515
static variable 154
static variable scope 285
static variable used to maintain

a count of the number of
Employee objects in memory
286

stereotype in the UML 83
straight-line form 60
stream

standard error 531
standard input 531
standard output 531

Stream class 531
stream of bytes 530
StreamReader class 531

ReadToEnd method 561
StreamWriter class 531
StretchImage value 36
string class 46, 503

Concat method 515
constant 504
CopyTo method 506
EndsWith method 510, 511
Equals method 508, 509
immutable 506
IndexOf method 511, 513
IndexOfAny method 511
LastIndexOf method 511,

513
LastIndexOfAny method

511, 513
Length property 506, 507
literal 46
method ToLower 602
method ToUpper 606
Replace method 515, 516
Split method 544
StartsWith method 263,

511
Substring method 514
ToLower method 515, 516
ToUpper method 263, 515,

516
Trim method 515, 517
verbatim 456, 504

String Collection Editor in Visual
Studio .NET 459

string concatenation 157, 286
string constructors 505

string format specifiers 92
string indexer 507
string indexer, Length property

and CopyTo method 506
string interpolation (C# 6) 55,

56
$ 56

string literal 504
string type 55, 73
string.Empty 190
StringBuilder class 503, 517

Append method 520
AppendFormat method 521
Capacity property 518
constructors 517
EnsureCapacity method 518
Length property 518
Remove method 522
Replace method 524
ToString method 517

StringBuilder constructors 517
StringBuilder size

manipulation 518
StringBuilder text replacement

524
struct

cannot define parameterless
constructor 293

DateTime 499
default constructor 293

struct keyword 292
structured programming 97,

590
Structured Query Language

(SQL) 630
Style property of class Font 418
submenu 439
Substring method of class

string 514
Subtract method of DateTime

625
subtraction 60
Sum LINQ extension method

619
summarizing responses to a

survey 208
summing integers with the for

statement 128
switch code snippet (IDE) 174
switch expression 133, 136

switch logic 139
switch multiple-selection

statement 98, 133, 138, 168
activity diagram with break

statements 138
case label 136, 137
default label 136, 168

Sybase 630
synchronous programming 7
syntax 42
syntax color highlighting 48
syntax error 42
syntax error underlining 52
System 189
System namespace 43, 164, 503
System.Collections namespace

163, 574, 590
System.Collections.Concur-

rent namespace 590
System.Collections.Generic

namespace 163, 256, 565,
590

System.Collections.Special-

ized namespace 590
System.Data.Entity namespace

163, 637
System.Diagnostics namespace

456
System.Drawing namespace 418
System.IO namespace 163, 531
System.Linq namespace 163,

248, 637
System.Net.Http namespace

691
System.Numerics namespace

BigInteger struct 189
System.Runtime.Serialization

.Formatters.Binary

namespace 550
System.Runtime.Serialization

.Json namespace 550
System.Text namespace 163,

503
System.Text.Regular-

Expressions namespace 503
System.Threading.Tasks

namespace 679
System.Web namespace 163
System.Windows.Controls

namespace 163

ptg18189312

Index 731

System.Windows.Forms

namespace 163, 397
System.Windows.Input

namespace 163
System.Windows.Media

namespace 163
System.Windows.Shapes

namespace 163
System.Xml namespace 163
System.Xml.Linq namespace

163, 693
System.Xml.Serialization

namespace 550
SystemException class 372, 388

T
tab 396
tab character, \t 43, 54
tab stops 54
Tabbed pages in Visual Studio

.NET 480
tabbed window 21
TabControl class 480

ImageList property 481
ItemSize property 481
Multiline property 481
SelectedIndex property 481
SelectedIndexChanged event

481
SelectedTab property 481
TabCount property 481
TabPages property 480, 481

TabControl with TabPages
example 481

TabControl, adding a TabPage
481

TabCount property of class
TabControl 481

TabIndex property of class
Control 407

table 225
table element 225
table in a relational database 631
table of simple types 702
table of values 225
TabPage class 480

add to TabControl 480, 481
Text property 480
using radio buttons 484

TabPages property of class
TabControl 480, 481

TabStop property of class
Control 407

tabular format 200
tagging 687
Tan method of Math 153
tangent 153
tape 530
TargetSite property of

Exception 383
Task class

Result property 679
Run method 679, 685
WhenAll method 685
WhenAny method 686

Task Parallel Library 679
Task<TResult> class 679
Team menu 21
template 19
temporary data storage 530
temporary value 113
termination housekeeping 284
termination model of exception

handling 371
ternary operator 103
test harness 224
Testing class

BasePlusCommissionEmployee

312
Testing class

CommissionEmployee 308
Testing generic class Stack 581,

585
Tests interface IPayable with

disparate classes 359
text editor 46, 503
Text property 30, 33
Text property of class Button

411
Text property of class CheckBox

416
Text property of class Control

407
Text property of class Form 398
Text property of class GroupBox

413
Text property of class LinkLabel

454

Text property of class
RadioButton 419

Text property of class TabPage
480

Text property of class TextBox
411

Text property of class
ToolStripMenuItem 443

Text property of class TreeNode
470

TextAlign property of a Label
34

textbox 410
TextBox control 396, 410

AcceptsReturn property 411
Multiline property 411
ReadOnly property 411
ScrollBars property 411
Text property 411
TextChanged event 411
UseSystemPasswordChar

property 410
TextChanged event of class

TextBox 411
Text-displaying application 42
TextReader class 531
TextWriter class 531
ThenBy extension method of

class Queryable 650
this

keyword 271, 272, 285
reference 271
to call another constructor of

the same class 276
this used implicitly and

explicitly to refer to members
of an object 271

thread
of execution 674

ThreeState property of class
CheckBox 416

throw an exception 211, 268,
276, 364, 369

throw point 366, 371
throw statement 379
Tick event of class Timer 499
tile 9
tiled window 487
TileHorizontal value of

enumeration MdiLayout 487

ptg18189312

732 Index

TileVertical value of
enumeration MdiLayout 487

time and date 499
Time value of enumeration

DateTimePickerFormat 450
Time1 class declaration

maintains the time in 24-
hour format 267

Time1 object used in an app 269
Time2 class declaration with

overloaded constructors 273
TimeOfDay property of DateTime

450
Timer class 499

Interval property 499
Tick event 499

TimeSpan 625
TotalMilliseconds property

625
TimeSpan value type 680
title bar 30
title bar, MDI parent and child

487
Titles table of Books database

632, 633
ToArray method of class

Enumerable 263
tokenize a string 544
ToList method of class

Enumerable 263, 625
ToLongDateString method of

structure DateTime 453
ToLongTimeString method of

structure DateTime 499
ToLower method of class string

515, 516, 602
ToLower method of struct Char

527
tool bar 396
tool tip 23
toolbar 22
toolbar icon 22
Toolbox 26
Tools menu 21
ToolStripMenuItem class 440

Checked property 443, 448
CheckOnClick property 443
Click event 442, 443
ShortcutKeyDisplayString

property 440, 443

ShortcutKeys property 440,
443

ShowShortcutKeys property
440, 443

Text property 443
ToolStripMenuItem properties

and an event 443
ToolTip class 426

AutoPopDelay property 427
Draw event 427
InitialDelay property 427
ReshowDelay property 427

ToolTip properties and events
427

ToString method of an
anonymous type 659

ToString method of class
Exception 386

ToString method of class
object 307, 326

ToString method of class
StringBuilder 517, 520

TotalMilliseconds property of
TimeSpan 625

ToUpper method of class string
263, 515, 516, 606

ToUpper method of struct Char
527

trace 584
transfer of control 96
transition arrow in the UML 97,

98, 100, 107
traverse an array 227
tree 468
TreeNode class 469

Checked property 469
Collapse method 470
Expand method 470
ExpandAll method 470
FirstNode property 469
FullPath property 469
GetNodeCount method 470
ImageIndex property 469
LastNode property 469
NextNode property 469
Nodes property 469
PrevNode property 470
SelectedImageIndex

property 470
Text property 470

TreeNode Editor 470
TreeNode properties and

methods 469
TreeNodeCollection class 469
TreeView class 439, 468

AfterSelected event 469
CheckBoxes property 469
ImageList property 469
Nodes property 469
SelectedNode property 469

TreeView displaying a sample
tree 468

TreeView properties and an
event 469

TreeView used to display
directories 471

TreeViewEventArgs class 469
trigger an event 396
trigonometric cosine 153
trigonometric sine 153
trigonometric tangent 153
Trim method of class string 515
TrimExcess method of class

List<T> 257
true 61, 99, 100
truncate 60, 110
truth table 144

for operator ^ 145
for operator ! 146
for operator && 144
for operator || 144

try block 211, 369
try statement 211, 371
TryParse method of structure

int 369
24-hour clock format 267
two-dimensional array 225
type 55, 57
type argument 572, 573, 581
type checking 568
Type class 326, 350

FullName property 326
type constraint 574, 576

specifying 574
type inference 206, 573
type parameter 572, 578, 587

scope 579
type parameter list 572, 578
typesetting system 503
typing in a TextBox 398

ptg18189312

Index 733

U
uint simple type 702
ulong simple type 702
UML

activity diagram 133
UML (Unified Modeling

Language) 5
activity diagram 97, 98, 100,

106
arrow 98
class diagram 76, 83
compartment in a class

diagram 76
diamond 99
dotted line 98
final state 98
guard condition 99
merge symbol 106
modeling properties 83
note 98
solid circle 98
solid circle surrounded by a

hollow circle 98
stereotype 83

UML class diagram 301
unary cast operator 113
unary operator 114, 146
UnauthorizedAccessException

class 473
unboxing conversion 592
uncaught exception 370
uneditable text or icons 396
unhandled exception 366, 370
Unicode character set 121, 138,

504
Unified Modeling Language

(UML) 5
universal-time format 267, 268
Universal Windows Platform

(UWP) 10
unmanaged resource 361
unqualified name 162, 174, 493
unwind a method from the call

stack 386
UpDownAlign property of class

NumericUpDown 429
uppercase letter 44, 57
UseMnemonic property of class

LinkLabel 454
user-defined classes 44

UserControl control 497
UserControl defined clock 498
user-defined exception class 386
user-interface thread 622
UseSystemPasswordChar

property of class TextBox 410
ushort simple type 702
using directive 43, 162
Using lambda expressions 612
using static directive 595

V
valid identifier 55
validate data 78
validate input 369
validation 89
validity checking 89
value contextual keyword 82
Value property of a nullable type

391
Value property of class

DateTimePicker 450, 451,
452

Value property of class
LinkedListNode 603

Value property of class
NumericUpDown 429

Value property of class
XAttribute 693

value type 189
value type constraint struct

576
value types 292
ValueChanged event

of class DateTimePicker 450
of class NumericUpDown 429

Values property of class
SortedDictionary<K,V> 603

ValueType class 525
var keyword 206
variable 55

declaration statement 55, 57
name 55

variable is not modifiable 288
variable-length argument list

236
variable scope 127
verbatim string 456, 504

syntax(@) 504
VIEW menu 21, 24

View property of class ListView
474, 474

virtual

keyword 316
virtual machine (VM) 7
Visible property of class

Control 407
VisitedLinkColor property of

class LinkLabel 454
visual app development 16
visual programming 397
Visual Studio 10

component tray 427
IDE (integrated

development
environment) 10

themes 17
Visual Studio .NET Class View

289
Visual Studio .NET Object

Browser 289
Visual Studio Community 2015

47
Visual Studio® 16
void keyword 46, 73

W
web service 687
when clause of a catch handler

(C# 6) 392
WhenAll method of class Task

685
WhenAny method of class Task

686
where clause 576

of a LINQ query 250
Where extension method 621

of class Queryable 655
while iteration statement 98,

107
activity diagram in the UML

107
while keyword 132
while repetition statement 109,

112
whitespace 43, 46, 65

characters 43
whitespace character (regular

expressions) 517
whole-number literal 130

ptg18189312

734 Index

widget 396
Width property of structure Size

409
window auto hide 24
window gadget 396
Window menu 22
window tab 21
Windows

Font 34
Properties 26, 28, 30, 34
Solution Explorer 25

Windows 10 10
Windows 8 9
Windows 8 UI 9
Windows bitmap (BMP) 36
Windows Explorer 456
Windows Forms 396
Windows operating system 9
Windows Phone 7 9
Windows Phone operating

system 9
Windows Store xxvii, 10
word processor 503, 511
workflow 97

Write method of class Console
53, 531

WriteLine method of class
Console 46, 53, 531

WriteLine method of class
StreamWriter 539

www.deitel.com/LINQ/ 264

X
X format specifier 92
X property of class

MouseEventArgs 431
XAttribute class 693

Value property 693
XDocument class 693

Descendants method 693
Parse method 693

XElement class 693
Attribute method 693

XML (Extensible Markup
Language) 687
element 692
end tag 692
start tag 692

XmlSerializer class 550
Xor bitwise operator 449

Y
Y property of class

MouseEventArgs 431

Z
zeroth element 197

http://www.deitel.com/LINQ/

ptg18189312

D E I T E L® D E V E L O P E R S E R I E S
The DEITEL® DEVELOPER SERIES is designed for professional programmers. The series presents
focused treatments on a growing list of emerging and mature technologies, including C# and .NET,
C++, C, JavaScript®, Internet and web development, Android™ app development, Java™, iOS® app
development, Swift™ and more. Each book in the series contains the same live-code teaching
methodology used in the Deitels’ HOW TO PROGRAM SERIES college textbooks—in this book,
most concepts are presented in the context of completely coded, live apps.

A B O U T T H E C O V E R
The cover of this book features a fractal—a geometric figure that can be generated from a pattern
repeated recursively. The figure is modified by applying the pattern to each segment of the original
figure. Although these figures were studied before the 20th century, it was the mathematician
Benoit Mandelbrot who in the 1970s introduced the term fractal, along with the specifics of how
a fractal is created and practical applications. Fractal geometry provides mathematical models for
many complex forms found in nature, such as mountains, clouds, galaxy clusters and the folds of
the brain. Not all fractals resemble objects in nature. Drawing fractals has become a popular art form.

D E I T E L & A S S O C I A T E S , I N C .
Deitel & Associates, Inc., founded by Paul Deitel and Harvey Deitel, is an internationally recognized
authoring and corporate training organization, specializing in computer programming languages,
object technology, Internet and web software technology, and Android and iOS app development. The
company’s clients include many of the world’s largest corporations, government agencies, branches of
the military and academic institutions. The company offers instructor-led training courses delivered at
client sites worldwide on major programming languages and platforms. Through its 40-year publishing
partnership with Prentice Hall/Pearson, Deitel & Associates, Inc., creates leading-edge programming
professional books, college textbooks, LiveLessons™ video products, e-books and REVEL™ interactive
multimedia courses (revel.pearson.com) with integrated labs and assessment. To learn more about
Deitel & Associates, Inc., its text and video publications and its worldwide instructor-led, on-site training
curriculum, visitwww.deitel.com/or send an email to deitel@deitel.com. Join the Deitel social
media communities on Facebook® (facebook.com/DeitelFan), Twitter® (twitter.com/deitel),
Google+™ (google.com/+DeitelFan), LinkedIn® (bit.ly/DeitelLinkedIn) and YouTube™
(youtube.com/DeitelTV), and subscribe to the Deitel® Buzz Online newsletter (www.deitel.com/
newsletter/subscribe.html).

Cover illustration by Lisa Ewing/GettyImages

COMMENTS FROM RECENT EDITIONS REVIEWERS (Continued From Back Cover)

“I really love the way you guys write—it’s interesting and informative!”—Shay Friedman, Microsoft Visual C# MVP

“Good introduction to the most popular GUI controls and working with events. I use the techniques of the strings chapter in the line of business
apps that I build. I liked the files and streams chapter and the real-world example. I’m pleased to see the inclusion of additional advanced material
online.” —Shawn Weisfeld, Microsoft MVP and President and Founder of UserGroup.tv

“Outstanding presentations of Windows Forms and the .NET I/O facilities. Amazingly clear and intuitive presentation of generics; this chapter represents
why I like this book so much—it really shines at presenting advanced topics in a way that can be easily understood. The presentation of LINQ to
XML is fabulous.” —Octavio Hernandez, Microsoft Certified Solution Developer (MCSD), Principal Software Engineer at Advanced Bionics

“The beginning of the chapter ‘Classes and Objects: A Deeper Look’ shows a class in an ‘amateur’ state—then you do a great job of describing
how many ways one can improve it until it pretty much becomes air-tight in security and functionality. Operator overloading is a good description.
Good example of extension methods.” —Bradley Sward, College of Dupage

“Updating an already excellent book with the latest .NET features can only result in a superb product. I like the explanation of properties and
the discussion of value vs. reference types. I like your explanation of pass-by-value vs. pass-by-reference. The arrays chapter is one of my
favorites. Great job explaining inheritance, polymorphism, interfaces and operator overloading.”

—José Antonio González Seco, Parliament of Andalusia, Spain

“Great job explaining exception handling—with great examples; the new features look pretty sweet. Shows the important things you need
to get going with GUI. Delegates are huge and covered well. Interesting description of C# 6’s exception filters.”

—Bradley Sward, College of Dupage

“An excellent introduction to XML, LINQ to XML and related technologies.” —Helena Kotas, Microsoft

“Good overview of relational databases—it hits on the right LINQ idioms.”—Alex Turner, Microsoft

“Excellent chapter on exceptions.” —Vinay Ahuja, Architect, Microsoft Corporation

“Great chapter on polymorphism.” —Eric Lippert, Formerly of Microsoft

“Introduction to LINQ and the List Collection is a great chapter; you do such a good and consistent job of explaining your code. The focus on
using LINQ to manage data is cutting edge.”—Stephen Hustedde, South Mountain College

“The presentations are always superbly clear. Excellent intro to Visual Studio and visual programming! I like the early presentation of the new
C# 6 string interpolation feature. Introducing UML class diagrams in parallel with the presentation of the language is a great idea. I like the
early introduction of exception handling. Brings readers up to speed fast in GUI design and implementation, and event-driven programming.
Nice example demonstrating the method call stack and activation records. Database chapter perfectly explains LINQ to Entities and UI binding.”

—Octavio Hernandez, Microsoft Certified Solution Developer (MCSD), Principal Software Engineer at Advanced Bionics

“Chapter 2 is perfect for introducing Visual Studio and GUI elements—I wish I had this chapter when I was first getting back into computers.
Everything felt just right in the methods chapter. Recursion will warp anyone’s brain—the stack discussion really helps readers understand
what is going on. I really like the deck of cards example, being a former casino gaming programmer. Multidimensional arrays are handled well.
I like the attention to detail and the UML. Thank you for showing correct code-formatting conventions. Thorough display of all the ‘pass-by’ types.
The card shuffling and dealing simulation is a great example for bringing together many concepts. Good use of overloaded functions for
rectangular arrays and jagged arrays. The LINQ chapter is perfect—much more will be revealed in later chapters but readers will remember
this. The collections are a nice addition as well—a chapter that is important to get a taste of now so the later material can be feasted upon.
Describes inheritance perfectly.” —Bradley Sward, College of Dupage

“This new edition solidifies it as the fundamental tool for learning C# updated to the latest C# 6 features. It covers from the fundamentals of
OOP to the most advanced topics, all in an easily accessible way thanks to its crystal-clear explanations. A good job explaining such a complex
topic as asynchronous programming.”—José Antonio González Seco, Parliament of Andalusia, Spain

“I liked the natural use of C# 6 string interpolation. A good clear explanation of LINQ query syntax. GUI apps are where coding starts to become
fun—you’ve handled it well and covered all the bases. The Game of Craps is an awesome example. I love that you’re paying attention to
formats and using them well.”—Lucian Wischik, C# Language Design Team, Microsoft

“An excellent resource to tame the beast that is C#. In the Windows forms chapter, cool how the message box will be customized to the clicked
buttons. I love the Paint example. A good look at files and directories—with text mode it’s easier to see what’s going on—binary mode is
much more efficient so it’s good to see it here. You show error checking in GUI and files/streams well. File chooser functionality is a nice touch.
Good example of serialization. The recursive directory searching is nice.”—Bradley Sward, College of Dupage

7/7/16 12:31 PM

	Cover
	Title Page
	Copyright Page
	Contents
	Preface
	Before You Begin
	1 Introduction
	1.1 Introduction
	1.2 Object Technology: A Brief Review
	1.3 C#
	1.3.1 Object-Oriented Programming
	1.3.2 Event-Driven Programming
	1.3.3 Visual Programming
	1.3.4 Generic and Functional Programming
	1.3.5 An International Standard
	1.3.6 C# on Non-Windows Platforms
	1.3.7 Internet and Web Programming
	1.3.8 Asynchronous Programming with async and await

	1.4 Microsoft’s .NET
	1.4.1 .NET Framework
	1.4.2 Common Language Runtime
	1.4.3 Platform Independence
	1.4.4 Language Interoperability

	1.5 Microsoft’s Windows® Operating System
	1.6 Visual Studio Integrated Development Environment
	1.7 Painter Test-Drive in Visual Studio Community

	2 Introduction to Visual Studio and Visual Programming
	2.1 Introduction
	2.2 Overview of the Visual Studio Community 2015 IDE
	2.2.1 Introduction to Visual Studio Community 2015
	2.2.2 Visual Studio Themes
	2.2.3 Links on the Start Page
	2.2.4 Creating a New Project
	2.2.5 New Project Dialog and Project Templates
	2.2.6 Forms and Controls

	2.3 Menu Bar and Toolbar
	2.4 Navigating the Visual Studio IDE
	2.4.1 Solution Explorer
	2.4.2 Toolbox
	2.4.3 Properties Window

	2.5 Help Menu and Context-Sensitive Help
	2.6 Visual Programming: Creating a Simple App that Displays Text and an Image
	2.7 Wrap-Up
	2.8 Web Resources

	3 Introduction to C# App Programming
	3.1 Introduction
	3.2 Simple App: Displaying a Line of Text
	3.2.1 Comments
	3.2.2 using Directive
	3.2.3 Blank Lines and Whitespace
	3.2.4 Class Declaration
	3.2.5 Main Method
	3.2.6 Displaying a Line of Text
	3.2.7 Matching Left ({) and Right (}) Braces

	3.3 Creating a Simple App in Visual Studio
	3.3.1 Creating the Console App
	3.3.2 Changing the Name of the App File
	3.3.3 Writing Code and Using IntelliSense
	3.3.4 Compiling and Running the App
	3.3.5 Errors, Error Messages and the Error List Window

	3.4 Modifying Your Simple C# App
	3.4.1 Displaying a Single Line of Text with Multiple Statements
	3.4.2 Displaying Multiple Lines of Text with a Single Statement

	3.5 String Interpolation
	3.6 Another C# App: Adding Integers
	3.6.1 Declaring the int Variable number1
	3.6.2 Declaring Variables number2 and sum
	3.6.3 Prompting the User for Input
	3.6.4 Reading a Value into Variable number1
	3.6.5 Prompting the User for Input and Reading a Value into number2
	3.6.6 Summing number1 and number2
	3.6.7 Displaying the sum with string Interpolation
	3.6.8 Performing Calculations in Output Statements

	3.7 Arithmetic
	3.7.1 Arithmetic Expressions in Straight-Line Form
	3.7.2 Parentheses for Grouping Subexpressions
	3.7.3 Rules of Operator Precedence

	3.8 Decision Making: Equality and Relational Operators
	3.9 Wrap-Up

	4 Introduction to Classes, Objects, Methods and strings
	4.1 Introduction
	4.2 Test-Driving an Account Class
	4.2.1 Instantiating an Object—Keyword new
	4.2.2 Calling Class Account’s GetName Method
	4.2.3 Inputting a Name from the User
	4.2.4 Calling Class Account’s SetName Method

	4.3 Account Class with an Instance Variable and Set and Get Methods
	4.3.1 Account Class Declaration
	4.3.2 Keyword class and the Class Body
	4.3.3 Instance Variable name of Type string
	4.3.4 SetName Method
	4.3.5 GetName Method
	4.3.6 Access Modifiers private and public
	4.3.7 Account UML Class Diagram

	4.4 Creating, Compiling and Running a Visual C# Project with Two Classes
	4.5 Software Engineering with Set and Get Methods
	4.6 Account Class with a Property Rather Than Set and Get Methods
	4.6.1 Class AccountTest Using Account’s Name Property
	4.6.2 Account Class with an Instance Variable and a Property
	4.6.3 Account UML Class Diagram with a Property

	4.7 Auto-Implemented Properties
	4.8 Account Class: Initializing Objects with Constructors
	4.8.1 Declaring an Account Constructor for Custom Object Initialization
	4.8.2 Class AccountTest: Initializing Account Objects When They’re Created

	4.9 Account Class with a Balance; Processing Monetary Amounts
	4.9.1 Account Class with a decimal balance Instance Variable
	4.9.2 AccountTest Class That Uses Account Objects with Balances

	4.10 Wrap-Up

	5 Control Statements: Part 1
	5.1 Introduction
	5.2 Control Structures
	5.2.1 Sequence Structure
	5.2.2 Selection Statements
	5.2.3 Iteration Statements
	5.2.4 Summary of Control Statements

	5.3 if Single-Selection Statement
	5.4 if…else Double-Selection Statement
	5.4.1 Nested if…else Statements
	5.4.2 Dangling-else Problem
	5.4.3 Blocks
	5.4.4 Conditional Operator (?:)

	5.5 Student Class: Nested if…else Statements
	5.6 while Iteration Statement
	5.7 Counter-Controlled Iteration
	5.7.1 Implementing Counter-Controlled Iteration
	5.7.2 Integer Division and Truncation

	5.8 Sentinel-Controlled Iteration
	5.8.1 Implementing Sentinel-Controlled Iteration
	5.8.2 Program Logic for Sentinel-Controlled Iteration
	5.8.3 Braces in a while Statement
	5.8.4 Converting Between Simple Types Explicitly and Implicitly
	5.8.5 Formatting Floating-Point Numbers

	5.9 Nested Control Statements
	5.10 Compound Assignment Operators
	5.11 Increment and Decrement Operators
	5.11.1 Prefix Increment vs. Postfix Increment
	5.11.2 Simplifying Increment Statements
	5.11.3 Operator Precedence and Associativity

	5.12 Simple Types
	5.13 Wrap-Up

	6 Control Statements: Part 2
	6.1 Introduction
	6.2 Essentials of Counter-Controlled Iteration
	6.3 for Iteration Statement
	6.3.1 A Closer Look at the for Statement’s Header
	6.3.2 General Format of a for Statement
	6.3.3 Scope of a for Statement’s Control Variable
	6.3.4 Expressions in a for Statement’s Header Are Optional
	6.3.5 UML Activity Diagram for the for Statement

	6.4 App: Summing Even Integers
	6.5 App: Compound-Interest Calculations
	6.5.1 Performing the Interest Calculations with Math Method pow
	6.5.2 Formatting with Field Widths and Alignment
	6.5.3 Caution: Do Not Use float or double for Monetary Amounts

	6.6 do…while Iteration Statement
	6.7 switch Multiple-Selection Statement
	6.7.1 Using a switch Statement to Count A, B, C, D and F Grades
	6.7.2 switch Statement UML Activity Diagram
	6.7.3 Notes on the Expression in Each case of a switch

	6.8 Class AutoPolicy Case Study: strings in switch Statements
	6.9 break and continue Statements
	6.9.1 break Statement
	6.9.2 continue Statement

	6.10 Logical Operators
	6.10.1 Conditional AND (&&) Operator
	6.10.2 Conditional OR (||) Operator
	6.10.3 Short-Circuit Evaluation of Complex Conditions
	6.10.4 Boolean Logical AND (&) and Boolean Logical OR (|) Operators
	6.10.5 Boolean Logical Exclusive OR (^)
	6.10.6 Logical Negation (!) Operator
	6.10.7 Logical Operators Example

	6.11 Wrap-Up

	7 Methods: A Deeper Look
	7.1 Introduction
	7.2 Packaging Code in C#
	7.3 static Methods, static Variables and Class Math
	7.3.1 Math Class Methods
	7.3.2 Math Class Constants PI and E
	7.3.3 Why Is Main Declared static?
	7.3.4 Additional Comments About Main

	7.4 Methods with Multiple Parameters
	7.4.1 Keyword static
	7.4.2 Method Maximum
	7.4.3 Assembling strings with Concatenation
	7.4.4 Breaking Apart Large string Literals
	7.4.5 When to Declare Variables as Fields
	7.4.6 Implementing Method Maximum by Reusing Method Math.Max

	7.5 Notes on Using Methods
	7.6 Argument Promotion and Casting
	7.6.1 Promotion Rules
	7.6.2 Sometimes Explicit Casts Are Required

	7.7 The .NET Framework Class Library
	7.8 Case Study: Random-Number Generation
	7.8.1 Creating an Object of Type Random
	7.8.2 Generating a Random Integer
	7.8.3 Scaling the Random-Number Range
	7.8.4 Shifting Random-Number Range
	7.8.5 Combining Shifting and Scaling
	7.8.6 Rolling a Six-Sided Die
	7.8.7 Scaling and Shifting Random Numbers
	7.8.8 Repeatability for Testing and Debugging

	7.9 Case Study: A Game of Chance; Introducing Enumerations
	7.9.1 Method RollDice
	7.9.2 Method Main’s Local Variables
	7.9.3 enum Type Status
	7.9.4 The First Roll
	7.9.5 enum Type DiceNames
	7.9.6 Underlying Type of an enum
	7.9.7 Comparing Integers and enum Constants

	7.10 Scope of Declarations
	7.11 Method-Call Stack and Activation Records
	7.11.1 Method-Call Stack
	7.11.2 Stack Frames
	7.11.3 Local Variables and Stack Frames
	7.11.4 Stack Overflow
	7.11.5 Method-Call Stack in Action

	7.12 Method Overloading
	7.12.1 Declaring Overloaded Methods
	7.12.2 Distinguishing Between Overloaded Methods
	7.12.3 Return Types of Overloaded Methods

	7.13 Optional Parameters
	7.14 Named Parameters
	7.15 C# 6 Expression-Bodied Methods and Properties
	7.16 Recursion
	7.16.1 Base Cases and Recursive Calls
	7.16.2 Recursive Factorial Calculations
	7.16.3 Implementing Factorial Recursively

	7.17 Value Types vs. Reference Types
	7.18 Passing Arguments By Value and By Reference
	7.18.1 ref and out Parameters
	7.18.2 Demonstrating ref, out and Value Parameters

	7.19 Wrap-Up

	8 Arrays; Introduction to Exception Handling
	8.1 Introduction
	8.2 Arrays
	8.3 Declaring and Creating Arrays
	8.4 Examples Using Arrays
	8.4.1 Creating and Initializing an Array
	8.4.2 Using an Array Initializer
	8.4.3 Calculating a Value to Store in Each Array Element
	8.4.4 Summing the Elements of an Array
	8.4.5 Iterating Through Arrays with foreach
	8.4.6 Using Bar Charts to Display Array Data Graphically; Introducing Type Inference with var
	8.4.7 Using the Elements of an Array as Counters

	8.5 Using Arrays to Analyze Survey Results; Intro to Exception Handling
	8.5.1 Summarizing the Results
	8.5.2 Exception Handling: Processing the Incorrect Response
	8.5.3 The try Statement
	8.5.4 Executing the catch Block
	8.5.5 Message Property of the Exception Parameter

	8.6 Case Study: Card Shuffling and Dealing Simulation
	8.6.1 Class Card and Getter-Only Auto-Implemented Properties
	8.6.2 Class DeckOfCards
	8.6.3 Shuffling and Dealing Cards

	8.7 Passing Arrays and Array Elements to Methods
	8.8 Case Study: GradeBook Using an Array to Store Grades
	8.9 Multidimensional Arrays
	8.9.1 Rectangular Arrays
	8.9.2 Jagged Arrays
	8.9.3 Two-Dimensional Array Example: Displaying Element Values

	8.10 Case Study: GradeBook Using a Rectangular Array
	8.11 Variable-Length Argument Lists
	8.12 Using Command-Line Arguments
	8.13 (Optional) Passing Arrays by Value and by Reference
	8.14 Wrap-Up

	9 Introduction to LINQ and the List Collection
	9.1 Introduction
	9.2 Querying an Array of int Values Using LINQ
	9.2.1 The from Clause
	9.2.2 The where Clause
	9.2.3 The select Clause
	9.2.4 Iterating Through the Results of the LINQ Query
	9.2.5 The orderby Clause
	9.2.6 Interface IEnumerable<T>

	9.3 Querying an Array of Employee Objects Using LINQ
	9.3.1 Accessing the Properties of a LINQ Query’s Range Variable
	9.3.2 Sorting a LINQ Query’s Results by Multiple Properties
	9.3.3 Any, First and Count Extension Methods
	9.3.4 Selecting a Property of an Object
	9.3.5 Creating New Types in the select Clause of a LINQ Query

	9.4 Introduction to Collections
	9.4.1 List<T> Collection
	9.4.2 Dynamically Resizing a List<T> Collection

	9.5 Querying the Generic List Collection Using LINQ
	9.5.1 The let Clause
	9.5.2 Deferred Execution
	9.5.3 Extension Methods ToArray and ToList
	9.5.4 Collection Initializers

	9.6 Wrap-Up
	9.7 Deitel LINQ Resource Center

	10 Classes and Objects: A Deeper Look
	10.1 Introduction
	10.2 Time Class Case Study; Throwing Exceptions
	10.2.1 Time1 Class Declaration
	10.2.2 Using Class Time1

	10.3 Controlling Access to Members
	10.4 Referring to the Current Object’s Members with the this Reference
	10.5 Time Class Case Study: Overloaded Constructors
	10.5.1 Class Time2 with Overloaded Constructors
	10.5.2 Using Class Time2’s Overloaded Constructors

	10.6 Default and Parameterless Constructors
	10.7 Composition
	10.7.1 Class Date
	10.7.2 Class Employee
	10.7.3 Class EmployeeTest

	10.8 Garbage Collection and Destructors
	10.9 static Class Members
	10.10 readonly Instance Variables
	10.11 Class View and Object Browser
	10.11.1 Using the Class View Window
	10.11.2 Using the Object Browser

	10.12 Object Initializers
	10.13 Operator Overloading; Introducing struct
	10.13.1 Creating Value Types with struct
	10.13.2 Value Type ComplexNumber
	10.13.3 Class ComplexTest

	10.14 Time Class Case Study: Extension Methods
	10.15 Wrap-Up

	11 Object-Oriented Programming: Inheritance
	11.1 Introduction
	11.2 Base Classes and Derived Classes
	11.3 protected Members
	11.4 Relationship between Base Classes and Derived Classes
	11.4.1 Creating and Using a CommissionEmployee Class
	11.4.2 Creating a BasePlusCommissionEmployee Class without Using Inheritance
	11.4.3 Creating a CommissionEmployee–BasePlusCommissionEmployee Inheritance Hierarchy
	11.4.4 CommissionEmployee–BasePlusCommissionEmployee Inheritance Hierarchy Using protected Instance Variables
	11.4.5 CommissionEmployee–BasePlusCommissionEmployee Inheritance Hierarchy Using private Instance Variables

	11.5 Constructors in Derived Classes
	11.6 Software Engineering with Inheritance
	11.7 Class object
	11.8 Wrap-Up

	12 OOP: Polymorphism and Interfaces
	12.1 Introduction
	12.2 Polymorphism Examples
	12.3 Demonstrating Polymorphic Behavior
	12.4 Abstract Classes and Methods
	12.5 Case Study: Payroll System Using Polymorphism
	12.5.1 Creating Abstract Base Class Employee
	12.5.2 Creating Concrete Derived Class SalariedEmployee
	12.5.3 Creating Concrete Derived Class HourlyEmployee
	12.5.4 Creating Concrete Derived Class CommissionEmployee
	12.5.5 Creating Indirect Concrete Derived Class BasePlusCommissionEmployee
	12.5.6 Polymorphic Processing, Operator is and Downcasting
	12.5.7 Summary of the Allowed Assignments Between Base-Class and Derived-Class Variables

	12.6 sealed Methods and Classes
	12.7 Case Study: Creating and Using Interfaces
	12.7.1 Developing an IPayable Hierarchy
	12.7.2 Declaring Interface IPayable
	12.7.3 Creating Class Invoice
	12.7.4 Modifying Class Employee to Implement Interface IPayable
	12.7.5 Using Interface IPayable to Process Invoices and Employees Polymorphically
	12.7.6 Common Interfaces of the .NET Framework Class Library

	12.8 Wrap-Up

	13 Exception Handling: A Deeper Look
	13.1 Introduction
	13.2 Example: Divide by Zero without Exception Handling
	13.2.1 Dividing By Zero
	13.2.2 Enter a Non-Numeric Denominator
	13.2.3 Unhandled Exceptions Terminate the App

	13.3 Example: Handling DivideByZeroExceptions and FormatExceptions
	13.3.1 Enclosing Code in a try Block
	13.3.2 Catching Exceptions
	13.3.3 Uncaught Exceptions
	13.3.4 Termination Model of Exception Handling
	13.3.5 Flow of Control When Exceptions Occur

	13.4 .NET Exception Hierarchy
	13.4.1 Class SystemException
	13.4.2 Which Exceptions Might a Method Throw?

	13.5 finally Block
	13.5.1 Moving Resource-Release Code to a finally Block
	13.5.2 Demonstrating the finally Block
	13.5.3 Throwing Exceptions Using the throw Statement
	13.5.4 Rethrowing Exceptions
	13.5.5 Returning After a finally Block

	13.6 The using Statement
	13.7 Exception Properties
	13.7.1 Property InnerException
	13.7.2 Other Exception Properties
	13.7.3 Demonstrating Exception Properties and Stack Unwinding
	13.7.4 Throwing an Exception with an InnerException
	13.7.5 Displaying Information About the Exception

	13.8 User-Defined Exception Classes
	13.9 Checking for null References; Introducing C# 6’s ?. Operator
	13.9.1 Null-Conditional Operator (?.)
	13.9.2 Revisiting Operators is and as
	13.9.3 Nullable Types
	13.9.4 Null Coalescing Operator (??)

	13.10 Exception Filters and the C# 6 when Clause
	13.11 Wrap-Up

	14 Graphical User Interfaces with Windows Forms: Part 1
	14.1 Introduction
	14.2 Windows Forms
	14.3 Event Handling
	14.3.1 A Simple Event-Driven GUI
	14.3.2 Auto-Generated GUI Code
	14.3.3 Delegates and the Event-Handling Mechanism
	14.3.4 Another Way to Create Event Handlers
	14.3.5 Locating Event Information

	14.4 Control Properties and Layout
	14.4.1 Anchoring and Docking
	14.4.2 Using Visual Studio To Edit a GUI’s Layout

	14.5 Labels, TextBoxes and Buttons
	14.6 GroupBoxes and Panels
	14.7 CheckBoxes and RadioButtons
	14.7.1 CheckBoxes
	14.7.2 Combining Font Styles with Bitwise Operators
	14.7.3 RadioButtons

	14.8 PictureBoxes
	14.9 ToolTips
	14.10 NumericUpDown Control
	14.11 Mouse-Event Handling
	14.12 Keyboard-Event Handling
	14.13 Wrap-Up

	15 Graphical User Interfaces with Windows Forms: Part 2
	15.1 Introduction
	15.2 Menus
	15.3 MonthCalendar Control
	15.4 DateTimePicker Control
	15.5 LinkLabel Control
	15.6 ListBox Control
	15.7 CheckedListBox Control
	15.8 ComboBox Control
	15.9 TreeView Control
	15.10 ListView Control
	15.11 TabControl Control
	15.12 Multiple Document Interface (MDI) Windows
	15.13 Visual Inheritance
	15.14 User-Defined Controls
	15.15 Wrap-Up

	16 Strings and Characters: A Deeper Look
	16.1 Introduction
	16.2 Fundamentals of Characters and Strings
	16.3 string Constructors
	16.4 string Indexer, Length Property and CopyTo Method
	16.5 Comparing strings
	16.6 Locating Characters and Substrings in strings
	16.7 Extracting Substrings from strings
	16.8 Concatenating strings
	16.9 Miscellaneous string Methods
	16.10 Class StringBuilder
	16.11 Length and Capacity Properties, EnsureCapacity Method and Indexer of Class StringBuilder
	16.12 Append and AppendFormat Methods of Class StringBuilder
	16.13 Insert, Remove and Replace Methods of Class StringBuilder
	16.14 Char Methods
	16.15 Introduction to Regular Expressions (Online)
	16.16 Wrap-Up

	17 Files and Streams
	17.1 Introduction
	17.2 Files and Streams
	17.3 Creating a Sequential-Access Text File
	17.4 Reading Data from a Sequential-Access Text File
	17.5 Case Study: Credit-Inquiry Program
	17.6 Serialization
	17.7 Creating a Sequential-Access File Using Object Serialization
	17.8 Reading and Deserializing Data from a Binary File
	17.9 Classes File and Directory
	17.9.1 Demonstrating Classes File and Directory
	17.9.2 Searching Directories with LINQ

	17.10 Wrap-Up

	18 Generics
	18.1 Introduction
	18.2 Motivation for Generic Methods
	18.3 Generic-Method Implementation
	18.4 Type Constraints
	18.4.1 IComparable<T> Interface
	18.4.2 Specifying Type Constraints

	18.5 Overloading Generic Methods
	18.6 Generic Classes
	18.7 Wrap-Up

	19 Generic Collections; Functional Programming with LINQ/PLINQ
	19.1 Introduction
	19.2 Collections Overview
	19.3 Class Array and Enumerators
	19.3.1 C# 6 using static Directive
	19.3.2 Class UsingArray’s static Fields
	19.3.3 Array Method Sort
	19.3.4 Array Method Copy
	19.3.5 Array Method BinarySearch
	19.3.6 Array Method GetEnumerator and Interface IEnumerator
	19.3.7 Iterating Over a Collection with foreach
	19.3.8 Array Methods Clear, IndexOf, LastIndexOf and Reverse

	19.4 Dictionary Collections
	19.4.1 Dictionary Fundamentals
	19.4.2 Using the SortedDictionary Collection

	19.5 Generic LinkedList Collection
	19.6 C# 6 Null Conditional Operator ? []
	19.7 C# 6 Dictionary Initializers and Collection Initializers
	19.8 Delegates
	19.8.1 Declaring a Delegate Type
	19.8.2 Declaring a Delegate Variable
	19.8.3 Delegate Parameters
	19.8.4 Passing a Method Name Directly to a Delegate Parameter

	19.9 Lambda Expressions
	19.9.1 Expression Lambdas
	19.9.2 Assigning Lambdas to Delegate Variables
	19.9.3 Explicitly Typed Lambda Parameters
	19.9.4 Statement Lambdas

	19.10 Introduction to Functional Programming
	19.11 Functional Programming with LINQ Method-Call Syntax and Lambdas
	19.11.1 LINQ Extension Methods Min, Max, Sum and Average
	19.11.2 Aggregate Extension Method for Reduction Operations
	19.11.3 The Where Extension Method for Filtering Operations
	19.11.4 Select Extension Method for Mapping Operations

	19.12 PLINQ: Improving LINQ to Objects Performance with Multicore
	19.13 (Optional) Covariance and Contravariance for Generic Types
	19.14 Wrap-Up

	20 Databases and LINQ
	20.1 Introduction
	20.2 Relational Databases
	20.3 A Books Database
	20.4 LINQ to Entities and the ADO.NET Entity Framework
	20.5 Querying a Database with LINQ
	20.5.1 Creating the ADO.NET Entity Data Model Class Library
	20.5.2 Creating a Windows Forms Project and Configuring It to Use the Entity Data Model
	20.5.3 Data Bindings Between Controls and the Entity Data Model

	20.6 Dynamically Binding Query Results
	20.6.1 Creating the Display Query Results GUI
	20.6.2 Coding the Display Query Results App

	20.7 Retrieving Data from Multiple Tables with LINQ
	20.8 Creating a Master/Detail View App
	20.8.1 Creating the Master/Detail GUI
	20.8.2 Coding the Master/Detail App

	20.9 Address Book Case Study
	20.9.1 Creating the Address Book App’s GUI
	20.9.2 Coding the Address Book App

	20.10 Tools and Web Resources
	20.11 Wrap-Up

	21 Asynchronous Programming with async and await
	21.1 Introduction
	21.2 Basics of async and await
	21.2.1 async Modifier
	21.2.2 await Expression
	21.2.3 async, await and Threads

	21.3 Executing an Asynchronous Task from a GUI App
	21.3.1 Performing a Task Asynchronously
	21.3.2 Method calculateButton_Click
	21.3.3 Task Method Run: Executing Asynchronously in a Separate Thread
	21.3.4 awaiting the Result
	21.3.5 Calculating the Next Fibonacci Value Synchronously

	21.4 Sequential Execution of Two Compute-Intensive Tasks
	21.5 Asynchronous Execution of Two Compute-Intensive Tasks
	21.5.1 awaiting Multiple Tasks with Task Method WhenAll
	21.5.2 Method StartFibonacci
	21.5.3 Modifying a GUI from a Separate Thread
	21.5.4 awaiting One of Several Tasks with Task Method WhenAny

	21.6 Invoking a Flickr Web Service Asynchronously with HttpClient
	21.6.1 Using Class HttpClient to Invoke a Web Service
	21.6.2 Invoking the Flickr Web Service’s flickr.photos.search Method
	21.6.3 Processing the XML Response
	21.6.4 Binding the Photo Titles to the ListBox
	21.6.5 Asynchronously Downloading an Image’s Bytes

	21.7 Displaying an Asynchronous Task’s Progress
	21.8 Wrap-Up

	A: Operator Precedence Chart
	B: Simple Types
	C: ASCII Character Set
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

