

[image: cover-image]

Essential C# 5.0

Mark Michaelis
with Eric Lippert

[image: Image]

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid
Capetown • Sydney • Tokyo • Singapore • Mexico City

The .NET logo is either a registered trademark or trademark of Microsoft Corporation in the United States and/or other countries and is used under license from Microsoft.

Microsoft, Windows, Visual Basic, Visual C#, and Visual C++ are either registered trademarks or trademarks of Microsoft Corporation in the U.S.A. and/or other countries/regions.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in this book, and the publisher was aware of a trademark claim, the designations have been printed with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no expressed or implied warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or consequential damages in connection with or arising out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or special sales, which may include electronic versions and/or custom covers and content particular to your business, training goals, marketing focus, and branding interests. For more information, please contact:

 U.S. Corporate and Government Sales
 (800) 382-3419
 corpsales@pearsontechgroup.com

For sales outside the United States, please contact:

 International Sales
 international@pearson.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data

Michaelis, Mark.
 Essential C# 5.0 / Mark Michaelis with Eric Lippert.
 pages cm
 Includes index.
 ISBN 0-321-87758-6 (pbk. : alk. paper)
1. C# (Computer program language) 2. Microsoft .NET Framework. I.
Lippert, Eric. II. Title.
 QA76.73.C154M5238 2013
 006.7’882—dc23 2012036148

Copyright © 2013 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and permission must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. To obtain permission to use material from this work, please submit a written request to Pearson Education, Inc., Permissions Department, One Lake Street, Upper Saddle River, New Jersey 07458, or you may fax your request to (201) 236-3290.

ISBN-13: 978-0-321-87758-1
ISBN-10: 0-321-87758-6

Text printed in the United States on recycled paper at Edwards Brothers Malloy in Anne Arbor, Michigan.
First printing, November 2012

[image: Image]

To my family: Elisabeth, Benjamin, Hanna, and Abigail,

You have sacrificed a husband and daddy for countless hours of writing, frequently at times when he was needed most.

Thanks!

Contents at a Glance

Contents

Figures

Tables

Foreword

Preface

Acknowledgments

About the Authors

1 Introducing C#

2 Data Types

3 Operators and Control Flow

4 Methods and Parameters

5 Classes

6 Inheritance

7 Interfaces

8 Value Types

9 Well-Formed Types

10 Exception Handling

11 Generics

12 Delegates and Lambda Expressions

13 Events

14 Collection Interfaces with Standard Query Operators

15 LINQ with Query Expressions

16 Building Custom Collections

17 Reflection, Attributes, and Dynamic Programming

18 Multithreading

19 Thread Synchronization

20 Platform Interoperability and Unsafe Code

21 The Common Language Infrastructure

A Downloading and Installing the C# Compiler and CLI Platform

B Tic-Tac-Toe Source Code Listing

C Interfacing with Mutithreading Patterns Prior to the TPL and C# 5.0

D Timers Prior to the Async/Await Pattern of C# 5.0

Index

Index of C# 5.0 Topics

Index of C# 4.0 Topics

Index of C# 3.0 Topics

Contents

Figures

Tables

Foreword

Preface

Acknowledgments

About the Authors

1 Introducing C#

Hello, World

C# Syntax Fundamentals

Console Input and Output

2 Data Types

Fundamental Numeric Types

More Fundamental Types

null and void

Categories of Types

Nullable Modifier

Conversions between Data Types

Arrays

3 Operators and Control Flow

Operators

Introducing Flow Control

Code Blocks ({})

Code Blocks, Scopes, and Declaration Spaces

Boolean Expressions

Bitwise Operators (<<, >>, |, &, ^, ~)

Control Flow Statements, Continued

Jump Statements

C# Preprocessor Directives

4 Methods and Parameters

Calling a Method

Declaring a Method

The using Directive

Returns and Parameters on Main()

Advanced Method Parameters

Recursion

Method Overloading

Optional Parameters

Basic Error Handling with Exceptions

5 Classes

Declaring and Instantiating a Class

Instance Fields

Instance Methods

Using the this Keyword

Access Modifiers

Properties

Constructors

Static Members

Extension Methods

Encapsulating the Data

Nested Classes

Partial Classes

6 Inheritance

Derivation

Overriding the Base Class

Abstract Classes

All Classes Derive from System.Object

Verifying the Underlying Type with the is Operator

Conversion Using the as Operator

7 Interfaces

Introducing Interfaces

Polymorphism through Interfaces

Interface Implementation

Converting between the Implementing Class and Its Interfaces

Interface Inheritance

Multiple Interface Inheritance

Extension Methods on Interfaces

Implementing Multiple Inheritance via Interfaces

Versioning

Interfaces Compared with Classes

Interfaces Compared with Attributes

8 Value Types

Structs

Boxing

Enums

9 Well-Formed Types

Overriding object Members

Operator Overloading

Referencing Other Assemblies

Defining Namespaces

XML Comments

Garbage Collection

Resource Cleanup

Lazy Initialization

10 Exception Handling

Multiple Exception Types

Catching Exceptions

General Catch Block

Guidelines for Exception Handling

Defining Custom Exceptions

Wrapping an Exception and Rethrowing

11 Generics

C# without Generics

Introducing Generic Types

Constraints

Generic Methods

Covariance and Contravariance

Generic Internals

12 Delegates and Lambda Expressions

Introducing Delegates

Lambda Expressions

Anonymous Methods

General-Purpose Delegates: System.Func and System.Action

13 Events

Coding the Observer Pattern with Multicast Delegates

Events

14 Collection Interfaces with Standard Query Operators

Anonymous Types and Implicitly Typed Local Variables

Collection Initializers

What Makes a Class a Collection: IEnumerable<T>

Standard Query Operators

15 LINQ with Query Expressions

Introducing Query Expressions

Query Expressions Are Just Method Invocations

16 Building Custom Collections

More Collection Interfaces

Primary Collection Classes

Providing an Indexer

Returning Null or an Empty Collection

Iterators

17 Reflection, Attributes, and Dynamic Programming

Reflection

Attributes

Programming with Dynamic Objects

18 Multithreading

Multithreading Basics

Working with System.Threading

Asynchronous Tasks

Canceling a Task

The Task-Based Asynchronous Pattern in C# 5.0

Executing Loop Iterations in Parallel

Running LINQ Queries in Parallel

19 Thread Synchronization

Why Synchronization?

Timers

20 Platform Interoperability and Unsafe Code

Using the Windows Runtime Libraries from C#

Platform Invoke

Pointers and Addresses

Executing Unsafe Code via a Delegate

21 The Common Language Infrastructure

Defining the Common Language Infrastructure (CLI)

CLI Implementations

C# Compilation to Machine Code

Runtime

Application Domains

Assemblies, Manifests, and Modules

Common Intermediate Language (CIL)

Common Type System (CTS)

Common Language Specification (CLS)

Base Class Library (BCL)

Metadata

A Downloading and Installing the C# Compiler and CLI Platform

Microsoft’s .NET

B Tic-Tac-Toe Source Code Listing

C Interfacing with Mutithreading Patterns Prior to the TPL and C# 5.0

Asynchronous Programming Model

Asynchronous Delegate Invocation

The Event-Based Asynchronous Pattern (EAP)

Background Worker Pattern

Dispatching to the Windows UI

D Timers Prior to the Async/Await Pattern of C# 5.0

Index

Index of C# 5.0 Topics

Index of C# 4.0 Topics

Index of C# 3.0 Topics

Figures

FIGURE 2.1: Value Types Contain the Data Directly

FIGURE 2.2: Reference Types Point to the Heap

FIGURE 3.1: Corresponding Placeholder Values

FIGURE 3.2: Calculating the Value of an Unsigned Byte

FIGURE 3.3: Calculating the Value of a Signed Byte

FIGURE 3.4: The Numbers 12 and 7 Represented in Binary

FIGURE 3.5: Collapsed Region in Microsoft Visual Studio .NET

FIGURE 4.1: Exception-Handling Control Flow

FIGURE 5.1: Class Hierarchy

FIGURE 6.1: Refactoring into a Base Class

FIGURE 6.2: Simulating Multiple Inheritance Using Aggregation

FIGURE 7.1: Working around Single Inheritances with Aggregation and Interfaces

FIGURE 8.1: Value Types Contain the Data Directly

FIGURE 8.2: Reference Types Point to the Heap

FIGURE 9.1: Identity

FIGURE 9.2: XML Comments As Tips in Visual Studio IDE

FIGURE 12.1: Delegate Types Object Model

FIGURE 12.2: Anonymous Function Terminology

FIGURE 12.3: The Lambda Expression Tree Type

FIGURE 12.4: Unary and Binary Expression Tree Types

FIGURE 13.1: Delegate Invocation Sequence Diagram

FIGURE 13.2: Multicast Delegates Chained Together

FIGURE 13.3: Delegate Invocation with Exception Sequence Diagram

FIGURE 14.1: IEnumerator<T> and IEnumerator Interfaces

FIGURE 14.2: Sequence of Operations Invoking Lambda Expressions

FIGURE 14.3: Venn Diagram of Inventor and Patent Collections

FIGURE 16.1: Generic Collection Interface Hierarchy

FIGURE 16.2: List<> Class Diagrams

FIGURE 16.3: Dictionary Class Diagrams

FIGURE 16.4: SortedList<> and SortedDictionary<> Class Diagrams

FIGURE 16.5: Stack<T> Class Diagram

FIGURE 16.6: Queue<T> Class Diagram

FIGURE 16.7: LinkedList<T> and LinkedListNode<T> Class Diagrams

FIGURE 16.8: Sequence Diagram with yield return

FIGURE 17.1: MemberInfo Derived Classes

FIGURE 17.2: BinaryFormatter Does Not Encrypt Data

FIGURE 18.1: Clock Speeds over Time

FIGURE 18.2: CancellationTokenSource and CancellationToken Class Diagrams

FIGURE 20.1: Pointers Contain the Address of the Data

FIGURE 21.1: Compiling C# to Machine Code

FIGURE 21.2: Assemblies with the Modules and Files They Reference

FIGURE C.1: APM Parameter Distribution

FIGURE C.2: Delegate Parameter Distribution to BeginInvoke() and EndInvoke()

Tables

TABLE 1.1: C# Keywords

TABLE 1.2: C# Comment Types

TABLE 1.3: C# and .NET Versions

TABLE 2.1: Integer Types

TABLE 2.2: Floating-Point Types

TABLE 2.3: decimal Type

TABLE 2.4: Escape Characters

TABLE 2.5: string Static Methods

TABLE 2.6: string Methods

TABLE 2.7: Array Highlights

TABLE 2.8: Common Array Coding Errors

TABLE 3.1: Control Flow Statements

TABLE 3.2: Relational and Equality Operators

TABLE 3.3: Conditional Values for the XOR Operator

TABLE 3.4: Preprocessor Directives

TABLE 3.5: Operator Order of Precedence

TABLE 4.1: Common Namespaces

TABLE 4.2: Common Exception Types

TABLE 6.1: Why the New Modifier?

TABLE 6.2: Members of System.Object

TABLE 7.1: Comparing Abstract Classes and Interfaces

TABLE 8.1: Boxing Code in CIL

TABLE 9.1: Accessibility Modifiers

TABLE 12.1: Lambda Expression Notes and Examples

TABLE 14.1: Simpler Standard Query Operators

TABLE 14.2: Aggregate Functions on System.Linq.Enumerable

TABLE 17.1: Deserialization of a New Version Throws an Exception

TABLE 18.1: List of Available TaskContinuationOptions Enums

TABLE 18.2: Control Flow within Each Task

TABLE 19.1: Sample Pseudocode Execution

TABLE 19.2: Interlocked’s Synchronization-Related Methods

TABLE 19.3: Execution Path with ManualResetEvent Synchronization

TABLE 19.4: Concurrent Collection Classes

TABLE 21.1: Primary C# Compilers

TABLE 21.2: Common C#-Related Acronyms

TABLE D.1: Overview of the Various Timer Characteristics

Foreword

Welcome to one of the greatest collaborations you could dream of in the world of C# books—and probably far beyond! Mark Michaelis’ Essential C# series is already a classic, and teaming up with famous C# blogger Eric Lippert on the new edition is another masterstroke!

You may think of Eric as writing blogs and Mark as writing books, but that is not how I first got to know them.

In 2005 when LINQ (Language Integrated Query) was disclosed, I had only just joined Microsoft, and I got to tag along to the PDC conference for the big reveal. Despite my almost total lack of contribution to the technology, I thoroughly enjoyed the hype. The talks were overflowing, the printed leaflets were flying like hotcakes: It was a big day for C# and .NET, and I was having a great time.

It was pretty quiet in the hands-on labs area, though, where people could try out the technology preview themselves with nice scripted walkthroughs. That’s where I ran into Mark. Needless to say, he wasn’t following the script. He was doing his own experiments, combing through the docs, talking to other folks, busily pulling together his own picture.

As a newcomer to the C# community, I think I may have met a lot of people for the first time at that conference—people that I have since formed great relationships with. But to be honest, I don’t remember it. The only one I remember is Mark. Here is why: When I asked him if he was liking the new stuff, he didn’t just join the rave. He was totally level-headed: “I don’t know yet. I haven’t made up my mind about it.” He wanted to absorb and understand the full package, and until then he wasn’t going to let anyone tell him what to think.

So instead of the quick sugar rush of affirmation I might have expected, I got to have a frank and wholesome conversation, the first of many over the years, about details, consequences, and concerns with this new technology. And so it remains: Mark is an incredibly valuable community member for us language designers to have, because he is super smart, insists on understanding everything to the core, and has phenomenal insight into how things affect real developers. But perhaps most of all because he is forthright and never afraid to speak his mind. If something passes the Mark Test then we know we can start feeling pretty good about it!

These are the same qualities that make Mark such a great writer. He goes right to the essence and communicates with great integrity, no sugarcoating, and a keen eye for practical value and real-world problems.

Eric is, of course, my colleague of seven years on the C# team. He’s been here much longer than I have, and the first I recall of him, he was explaining to the team how to untangle a bowl of spaghetti. More precisely, our C# compiler code base at the time was in need of some serious architectural TLC, and was exceedingly hard to add new features to—something we desperately needed to be able to do with LINQ. Eric had been investigating what kind of architecture we ought to have (Phases! We didn’t even really have those!), and more importantly, how to get from here to there, step by step. The remarkable thing was that as complex as this was, and as new as I was to the team and the code base, I immediately understood what he was saying!

You may recognize from his blogs the super-clear and well-structured untangling of the problem, the convincing clarity of enumerated solutions, and the occasional unmitigated hilarity. Well, you don’t know the half of it! Every time Eric is grappling with a complex issue and is sharing his thoughts about it with the team, his emails about it are just as meticulous and every bit as hilarious. You fundamentally can’t ignore an issue raised by Eric because you can’t wait to read his prose about it. They’re even purple, too! So I essentially get to enjoy a continuous supply of what amounts to unpublished installments of his blog, as well as, of course, his pleasant and insightful presence as a member of the C# compiler team and language design team.

In summary, I am truly grateful to get to work with these two amazing people on a regular basis: Eric to help keep my thinking straight and Mark to help keep me honest. They share a great gift of providing clarity and elucidation, and by combining their “inside” and “outside” perspective on C#, this book reaches a new level of completeness. No one will help you get C# 5.0 like these two gentlemen do.

Enjoy!

—Mads Torgersen, C# Program Manager, Microsoft

Preface

Throughout the history of software engineering, the methodology used to write computer programs has undergone several paradigm shifts, each building on the foundation of the former by increasing code organization and decreasing complexity. This book takes you through these same paradigm shifts.

The beginning chapters take you through sequential programming structure in which statements are executed in the order in which they are written. The problem with this model is that complexity increases exponentially as the requirements increase. To reduce this complexity, code blocks are moved into methods, creating a structured programming model. This allows you to call the same code block from multiple locations within a program, without duplicating code. Even with this construct, however, programs quickly become unwieldy and require further abstraction. Object-oriented programming, discussed in Chapter 5, was the response. In subsequent chapters, you will learn about additional methodologies, such as interface-based programming, LINQ (and the transformation it makes to the collection API), and eventually rudimentary forms of declarative programming (in Chapter 17) via attributes.

This book has three main functions.

• It provides comprehensive coverage of the C# language, going beyond a tutorial and offering a foundation upon which you can begin effective software development projects.

• For readers already familiar with C#, this book provides insight into some of the more complex programming paradigms and provides in-depth coverage of the features introduced in the latest version of the language, C# 5.0 and .NET Framework 4.5.

• It serves as a timeless reference, even after you gain proficiency with the language.

The key to successfully learning C# is to start coding as soon as possible. Don’t wait until you are an “expert” in theory; start writing software immediately. As a believer in iterative development, I hope this book enables even a novice programmer to begin writing basic C# code by the end of Chapter 2.

A number of topics are not covered in this book. You won’t find coverage of topics such as ASP.NET, ADO.NET, smart client development, distributed programming, and so on. Although these topics are relevant to the .NET Framework, to do them justice requires books of their own. Fortunately, Addison-Wesley’s Microsoft Windows Development Series provides a wealth of writing on these topics. Essential C# 5.0 focuses on C# and the types within the Base Class Library. Reading this book will prepare you to focus on and develop expertise in any of the areas covered by the rest of the series.

Target Audience for This Book

My challenge with this book was to keep advanced developers awake while not abandoning beginners by using words such as assembly, link, chain, thread, and fusion, as though the topic was more appropriate for blacksmiths than for programmers. This book’s primary audience is experienced developers looking to add another language to their quiver. However, I have carefully assembled this book to provide significant value to developers at all levels.

• Beginners: If you are new to programming, this book serves as a resource to help transition you from an entry-level programmer to a C# developer, comfortable with any C# programming task that’s thrown your way. This book not only teaches you syntax, but also trains you in good programming practices that will serve you throughout your programming career.

• Structured programmers: Just as it’s best to learn a foreign language through immersion, learning a computer language is most effective when you begin using it before you know all the intricacies. In this vein, this book begins with a tutorial that will be comfortable for those familiar with structured programming, and by the end of Chapter 4, developers in this category should feel at home writing basic control flow programs. However, the key to excellence for C# developers is not memorizing syntax. To transition from simple programs to enterprise development, the C# developer must think natively in terms of objects and their relationships. To this end, Chapter 5’s Beginner Topics introduce classes and object-oriented development. The role of historically structured programming languages such as C, COBOL, and FORTRAN is still significant but shrinking, so it behooves software engineers to become familiar with object-oriented development. C# is an ideal language for making this transition because it was designed with object-oriented development as one of its core tenets.

• Object-based and object-oriented developers: C++ and Java programmers, and many experienced Visual Basic programmers, fall into this category. Many of you are already completely comfortable with semicolons and curly braces. A brief glance at the code in Chapter 1 reveals that, at its core, C# is similar to the C and C++ style languages that you already know.

• C# professionals: For those already versed in C#, this book provides a convenient reference for less frequently encountered syntax. Furthermore, it provides answers to language details and subtleties that are seldom addressed. Most importantly, it presents the guidelines and patterns for programming robust and maintainable code. This book also aids in the task of teaching C# to others. With the emergence of C# 3.0, 4.0, and 5.0, some of the most prominent enhancements are

– Implicitly typed variables (see Chapter 2)

– Extension methods (see Chapter 5)

– Partial methods (see Chapter 5)

– Anonymous types (see Chapter 11)

– Generics (see Chapter 11)

– Lambda statements and expressions (see Chapter 12)

– Expression trees (see Chapter 12)

– Standard query operators (see Chapter 14)

– Query expressions (see Chapter 15)

– Dynamic programming (Chapter 17)

– Multithreaded programming with the Task Programming Library and async (Chapter 18)

– Parallel query processing with PLINQ (Chapter 18)

– Concurrent collections (Chapter 19)

These topics are covered in detail for those not already familiar with them. Also pertinent to advanced C# development is the subject of pointers, in Chapter 21. Even experienced C# developers often do not understand this topic well.

Features of This Book

Essential C# 5.0 is a language book that adheres to the core C# Language 5.0 Specification. To help you understand the various C# constructs, it provides numerous examples demonstrating each feature. Accompanying each concept are guidelines and best practices, ensuring that code compiles, avoids likely pitfalls, and achieves maximum maintainability.

To improve readability, code is specially formatted and chapters are outlined using mind maps.

C# Coding Guidelines

One of the more significant enhancements added to Essential C# 5.0, and not explicitly called out in previous editions, was the addition of C# coding guidelines, as shown in the following example taken from Chapter 16:

Guidelines

DO ensure that equal objects have equal hash codes.

DO ensure that the hash code of an object never changes while it is in a hash table.

DO ensure that the hashing algorithm quickly produces a well-distributed hash.

DO ensure that the hashing algorithm is robust in any possible object state.

These guidelines are the key to differentiating a programmer who knows the syntax from an expert who is able to discern the most effective code to write based on the circumstances. Such an expert not only gets the code to compile, but does so while following best practices that minimize bugs and enable maintenance well into the future. The coding guidelines highlight some of the key principles that readers will want to be sure to incorporate into their development.

Code Samples

The code snippets in most of this text can run on any implementation of the Common Language Infrastructure (CLI), including the Mono, Rotor, and Microsoft .NET platforms. Platform- or vendor-specific libraries are seldom used, except when communicating important concepts relevant only to those platforms (appropriately handling the single-threaded user interface of Windows, for example). Any code that specifically requires C# 3.0, 4.0, or 5.0 compliance is called out in the C# version indexes at the end of the book.

Here is a sample code listing.

Listing 1.9. Declaring and Assigning a Variable

[image: Image]

The formatting is as follows.

• Comments are shown in italics.

/* Display a greeting to the console
 using composite formatting. */

• Keywords are shown in bold.

static void Main()

• Highlighted code calls out specific code snippets that may have changed from an earlier listing, or demonstrates the concept described in the text.

 System.Console.Write /* No new line */ (

Highlighting can appear on an entire line or on just a few characters within a line.

System.Console.WriteLine(
 "Your full name is {0} {1}.",

• Incomplete listings contain an ellipsis to denote irrelevant code that has been omitted.

// ...

• Console output is the output from a particular listing that appears following the listing.

Output 1.4.

>HeyYou.exe
Hey you!
Enter your first name: Inigo
Enter your last name: Montoya

User input for the program appears in boldface.

Although it might have been convenient to provide full code samples that you could copy into your own programs, doing so would detract you from learning a particular topic. Therefore, you need to modify the code samples before you can incorporate them into your programs. The core omission is error checking, such as exception handling. Also, code samples do not explicitly include using System statements. You need to assume the statement throughout all samples.

You can find sample code at intellitect.com/essentialcsharp and at informit.com/mswinseries.

Mind Maps

Each chapter’s introduction includes a mind map, which serves as an outline that provides at-a-glance reference to each chapter’s content. Here is an example (taken from Chapter 5).

[image: Image]

The theme of each chapter appears in the mind map’s center. High-level topics spread out from the core. Mind maps allow you to absorb the flow from high-level to more detailed concepts easily, with less chance of encountering very specific knowledge that you might not be looking for.

Helpful Notes

Depending on your level of experience, special code blocks will help you navigate through the text.

• Beginner Topics provide definitions or explanations targeted specifically toward entry-level programmers.

• Advanced Topics enable experienced developers to focus on the material that is most relevant to them.

• Callout notes highlight key principles in callout boxes so that readers easily recognize their significance.

• Language Contrast sidebars identify key differences between C# and its predecessors to aid those familiar with other languages.

How This Book Is Organized

At a high level, software engineering is about managing complexity, and it is toward this end that I have organized Essential C# 5.0. Chapters 1–4 introduce structured programming, which enable you to start writing simple functioning code immediately. Chapters 5–9 present the object-oriented constructs of C#. Novice readers should focus on fully understanding this section before they proceed to the more advanced topics found in the remainder of this book. Chapters 11–13 introduce additional complexity-reducing constructs, handling common patterns needed by virtually all modern programs. This leads to dynamic programming with reflection and attributes, which is used extensively for threading and interoperability in the chapters that follow.

The book ends with a chapter on the Common Language Infrastructure, which describes C# within the context of the development platform in which it operates. This chapter appears at the end because it is not C# specific and it departs from the syntax and programming style in the rest of the book. However, this chapter is suitable for reading at any time, perhaps most appropriately immediately following Chapter 1.

Here is a description of each chapter (in this list, chapter numbers shown in bold indicate the presence of C# 3.0–5.0 material).

• Chapter 1—Introducing C#: After presenting the C# HelloWorld program, this chapter proceeds to dissect it. This should familiarize readers with the look and feel of a C# program and provide details on how to compile and debug their own programs. It also touches on the context of a C# program’s execution and its intermediate language.

• Chapter 2—Data Types: Functioning programs manipulate data, and this chapter introduces the primitive data types of C#. This includes coverage of two type categories, value types and reference types, along with conversion between types and support for arrays.

• Chapter 3—Operators and Control Flow: To take advantage of the iterative capabilities in a computer, you need to know how to include loops and conditional logic within your program. This chapter also covers the C# operators, data conversion, and preprocessor directives.

• Chapter 4—Methods and Parameters: This chapter investigates the details of methods and their parameters. It includes passing by value, passing by reference, and returning data via an out parameter. In C# 4.0 default parameter support was added and this chapter explains how to use them.

• Chapter 5—Classes: Given the basic building blocks of a class, this chapter combines these constructs together to form fully functional types. Classes form the core of object-oriented technology by defining the template for an object.

• Chapter 6—Inheritance: Although inheritance is a programming fundamental to many developers, C# provides some unique constructs, such as the new modifier. This chapter discusses the details of the inheritance syntax, including overriding.

• Chapter 7—Interfaces: This chapter demonstrates how interfaces are used to define the “versionable” interaction contract between classes. C# includes both explicit and implicit interface member implementation, enabling an additional encapsulation level not supported by most other languages.

• Chapter 8—Value Types: Although not as prevalent as defining reference types, it is sometimes necessary to define value types that behave in a fashion similar to the primitive types built into C#. This chapter describes how to define structures, while exposing the idiosyncrasies they may introduce.

• Chapter 9—Well-Formed Types: This chapter discusses more advanced type definition. It explains how to implement operators, such as + and casts, and describes how to encapsulate multiple classes into a single library. In addition, the chapter demonstrates defining namespaces and XML comments, and discusses how to design classes for garbage collection.

• Chapter 10—Exception Handling: This chapter expands on the exception-handling introduction from Chapter 4 and describes how exceptions follow a hierarchy that enables creating custom exceptions. It also includes some best practices on exception handling.

• Chapter 11—Generics: Generics is perhaps the core feature missing from C# 1.0. This chapter fully covers this 2.0 feature. In addition, C# 4.0 added support for covariance and contravariance—something covered in the context of generics in this chapter.

• Chapter 12—Delegates and Lambda Expressions: Delegates begin clearly distinguishing C# from its predecessors by defining patterns for handling events within code. This virtually eliminates the need for writing routines that poll. Lambda expressions are the key concept that make C# 3.0’s LINQ possible. This chapter explains how lambda expressions build on the delegate construct by providing a more elegant and succinct syntax. This chapter forms the foundation for the new collection API discussed next.

• Chapter 13—Events: Encapsulated delegates, known as events, are a core construct of the Common Language Runtime. Anonymous methods, another C# 2.0 feature, are also presented here.

• Chapter 14—Collection Interfaces with Standard Query Operators: The simple and yet elegantly powerful changes introduced in C# 3.0 begin to shine in this chapter as we take a look at the extension methods of the new Enumerable class. This class makes available an entirely new collection API known as the standard query operators and discussed in detail here.

• Chapter 15—LINQ with Query Expressions: Using standard query operators alone results in some long statements that are hard to decipher. However, query expressions provide an alternative syntax that matches closely with SQL, as described in this chapter.

• Chapter 16—Building Custom Collections: In building custom APIs that work against business objects, it is sometimes necessary to create custom collections. This chapter details how to do this, and in the process introduces contextual keywords that make custom collection building easier.

• Chapter 17—Reflection, Attributes, and Dynamic Programming: Object-oriented programming formed the basis for a paradigm shift in program structure in the late 1980s. In a similar way, attributes facilitate declarative programming and embedded metadata, ushering in a new paradigm. This chapter looks at attributes and discusses how to retrieve them via reflection. It also covers file input and output via the serialization framework within the Base Class Library. In C# 4.0 a new keyword, dynamic, was added to the language. This removed all type checking until runtime, a significant expansion of what can be done with C#.

• Chapter 18—Multithreading: Most modern programs require the use of threads to execute long-running tasks while ensuring active response to simultaneous events. As programs become more sophisticated, they must take additional precautions to protect data in these advanced environments. Programming multithreaded applications is complex. This chapter discusses how to work with threads and provides best practices to avoid the problems that plague multithreaded applications.

• Chapter 19—Thread Synchronization: Building on the preceding chapter, this one demonstrates some of the built-in threading pattern support that can simplify the explicit control of multithreaded code.

• Chapter 20—Platform Interoperability and Unsafe Code: Given that C# is a relatively young language, far more code is written in other languages than in C#. To take advantage of this preexisting code, C# supports interoperability—the calling of unmanaged code—through P/Invoke. In addition, C# provides for the use of pointers and direct memory manipulation. Although code with pointers requires special privileges to run, it provides the power to interoperate fully with traditional C-based application programming interfaces.

• Chapter 21—The Common Language Infrastructure: Fundamentally, C# is the syntax that was designed as the most effective programming language on top of the underlying Common Language Infrastructure. This chapter delves into how C# programs relate to the underlying runtime and its specifications.

• Appendix A—Downloading and Installing the C# Compiler and CLI Platform: This appendix provides instructions for setting up a C# compiler and the platform on which to run the code, Microsoft .NET or Mono.

• Appendix B—Tic-Tac-Toe Source Code Listing: This appendix provides a full listing of the source code displayed in parts within Chapter 3 and Chapter 4.

• Appendix C—Interfacing with Mulithreading Patterns prior to the TPL and C# 5.0: This appendix provides details on multithreading patterns for development prior to C# 5.0 and/or the Task Parallel Library.

• Appendix D—Timers prior to the Async/Await Pattern of C# 5.0: This appendix describes three different types of timers for use when .NET 4.5/C# 5.0 is not available.

• C# 3.0, 4.0, 5.0 Index: These indexes provide a quick reference for the features added in C# 3.0–5.0. They are specifically designed to help programmers quickly update their language skills to a more recent version.

I hope you find this book to be a great resource in establishing your C# expertise and that you continue to reference it for those areas that you use less frequently well after you are proficient in C#.

—Mark Michaelis
IntelliTect.com/mark
Twitter: @Intellitect, @MarkMichaelis

Acknowledgments

No book can be published by the author alone, and I am extremely grateful for the multitude of people who helped me with this one. The order in which I thank people is not significant, except for those that come first. By far, my family has made the biggest sacrifice to allow me to complete this. Benjamin, Hanna, and Abigail often had a Daddy distracted by this book, but Elisabeth suffered even more so. She was often left to take care of things, holding the family’s world together on her own. I would like to say it got easier with each edition but, alas, no; as the kids got older, life became more hectic, and without me Elisabeth was stretched to the breaking point virtually all the time. A huge sorry and ginormous “Thank You!”

Many technical editors reviewed each chapter in minute detail to ensure technical accuracy. I was often amazed by the subtle errors these folks still managed to catch: Paul Bramsman, Kody Brown, Ian Davis, Doug Dechow, Gerard Frantz, Thomas Heavey, Anson Horton, Brian Jones, Shane Kercheval, Angelika Langer, Eric Lippert, John Michaelis, Jason Morse, Nicholas Paldino, Jon Skeet, Michael Stokesbary, Robert Stokesbary, John Timney, and Stephen Toub. Thanks also to Mandy Frei who diligently kept notes of changes needed for reprints.

Eric is no less than amazing. His grasp of the C# vocabulary is truly astounding and I am very appreciative of his edits, especially when he pushed for perfection in terminology. His improvements to the C# 3.0 chapters were incredibly significant, and in the second edition my only regret was that I didn’t have him review all the chapters. However, that regret is no longer. Eric painstakingly reviewed every Essential C# 5.0 chapter with amazing detail and precision. I am extremely grateful for his contribution to making this book even better than the earlier editions. Thanks, Eric! I can’t imagine anyone better for the job. You deserve all the credit for raising the bar from good to great.

Like Eric and C#, there are fewer than a handful of people who know .NET multithreading as well as Stephen Toub. Accordingly, Stephen focused on the two rewritten (for a third time) multithreading chapters and their new focus on asynchronous support in C# 5.0. Thanks, Stephen!

Thanks to everyone at Addison-Wesley for their patience in working with me in spite of my frequent focus on everything else except the manuscript. Thanks to Elizabeth Ryan, Audrey Doyle, Vicki Rowland, Curt Johnson, and Joan Murray. Joan deserves a special medal of patience for the number of times I delayed not only with deliverables but even responding to emails.

About the Authors

Mark Michaelis is the founder of IntelliTect and serves as the Chief Technical Architect and Trainer. Since 1996, he has been a Microsoft MVP for C#, Visual Studio Team System, and the Windows SDK, and in 2007 he was recognized as a Microsoft Regional Director. He also serves on several Microsoft software design review teams, including C#, the Connected Systems, Office/SharePoint, and Visual Studio. He speaks at developer conferences and has written numerous articles and other books. He holds a bachelor of arts degree in philosophy from the University of Illinois and a master’s degree in computer science from the Illinois Institute of Technology. When not bonding with his computer, he is busy with his family or training for another triathlon (having completed his first Ironman in 2008). He lives in Spokane, Washington, with his wife Elisabeth and three children, Benjamin, Hanna, and Abigail.

Eric Lippert is a principal developer on the C# compiler team at Microsoft. He has worked on the design and implementation of the Visual Basic, VBScript, Jscript, and C# languages and on Visual Studio Tools For Office, and is a member of the C# language design team. When not writing or editing books about C#, he does his best to keep his tiny sailboat upright. He lives in Seattle with his wife, Leah.

1. Introducing C#

C# is now a well-established language that builds on features found in its predecessor C-style languages (C, C++, and Java), making it immediately familiar to many experienced programmers.1 Part of a larger, more complex execution platform called the Common Language Infrastructure (CLI), C# is a programming language for building software components and applications.

[image: Image]

This chapter introduces C# using the traditional HelloWorld program. The chapter focuses on C# syntax fundamentals, including defining an entry point into the C# program executable. This will familiarize you with the C# syntax style and structure, and it will enable you to produce the simplest of C# programs. Prior to the discussion of C# syntax fundamentals is a summary of managed execution context, which explains how a C# program executes at runtime. This chapter ends with a discussion of variable declaration, writing and retrieving data from the console, and the basics of commenting code in C#.

Hello, World

The best way to learn a new programming language is to write code. The first example is the classic HelloWorld program. In this program, you will display some text to the screen.

Listing 1.1 shows the complete HelloWorld program; in the following sections, you will compile the code.

Listing 1.1. HelloWorld in C#2

Click here to view code image

class HelloWorld
{
 static void Main()
 {
 System.Console.WriteLine("Hello. My name is Inigo Montoya.");
 }
}

Note

C# is a case-sensitive language: Incorrect case prevents the code from compiling successfully.

Those experienced in programming with Java, C, or C++ will immediately see similarities. Like Java, C# inherits its basic syntax from C and C++.3 Syntactic punctuation (such as semicolons and curly braces), features (such as case sensitivity), and keywords (such as class, public, and void) are familiar to programmers experienced in these languages. Beginners and programmers from other languages will quickly find these constructs intuitive.

Compiling and Running the Application

The C# compiler allows any file extension for files containing C# source code, but .cs is typically used. After saving the source code to a file, developers must compile it. (Appendix A provides instructions for installing the compiler.) Because the mechanics of the command are not part of the C# standard, the compilation command varies depending on the C# compiler implementation.

If you place Listing 1.1 into a file called HelloWorld.cs, the compilation command in Output 1.1 will work with the Microsoft .NET compiler (assuming appropriate paths to the compiler are set up).4

Output 1.1.

Click here to view code image

>csc.exe HelloWorld.cs
Microsoft (R) Visual C# Compiler version 4.0.30319.17626
for Microsoft (R) .NET Framework 4.5
Copyright (C) Microsoft Corporation. All rights reserved.

The exact output will vary depending on what version of the compiler you use.

Running the resultant program, HelloWorld.exe, displays the message shown in Output 1.2.

Output 1.2.

>HelloWorld.exe
Hello. My name is Inigo Montoya.

The program created by the C# compiler, HelloWorld.exe, is an assembly. Instead of creating an entire program that can be executed independently, developers can create a library of code that can be referenced by another, larger program. Libraries (or class libraries) use the filename extension .dll, which stands for Dynamic Link Library (DLL). A library is also an assembly. In other words, the output from a successful C# compile is an assembly regardless of whether it is a program or a library.

Language Contrast: Java—Filename Must Match Class Name

In Java, the filename must follow the name of the class. In C#, this convention is frequently followed but is not required. In C#, it is possible to have two classes in one file, and starting with C# 2.0, it’s possible to have a single class span multiple files.

C# Syntax Fundamentals

Once you successfully compile and run the HelloWorld program, you are ready to start dissecting the code to learn its individual parts. First, consider the C# keywords along with the identifiers that the developer chooses.

Beginner Topic: Keywords

In order for the compiler to interpret the code, certain words within C# have special status and meaning. Known as keywords, they provide the concrete syntax that the compiler uses to interpret the expressions the programmer writes. In the HelloWorld program, class, static, and void are examples of keywords.

The compiler uses the keywords to identify the structure and organization of the code. Because the compiler interprets these words with elevated significance, C# requires that developers place keywords only in certain locations. When programmers violate these rules, the compiler will issue errors.

C# Keywords

Table 1.1 shows the C# keywords.

Table 1.1. C# Keywords

[image: Image]

After C# 1.0, no new reserved keywords were introduced to C#. However, some constructs in later versions use contextual keywords, which are significant only in specific locations. Outside these designated locations, contextual keywords have no special significance.5 By this method, most C# 1.0 code is compatible with the later standards.6

Identifiers

Like other languages, C# includes identifiers to identify constructs that the programmer codes. In Listing 1.1, HelloWorld and Main are examples of identifiers. The identifiers assigned to a construct are used to refer back to the construct later, so it is important that the names the developer assigns are meaningful rather than arbitrary.

A keen ability to select succinct and indicative names is an important characteristic of a strong programmer because it means the resultant code will be easier to understand and reuse. Clarity coupled with consistency is important enough that the .NET Framework Guidelines advise against the use of abbreviations or contractions in identifier names and even recommend avoiding acronyms that are not widely accepted. If an acronym is sufficiently well established (HTML, for example) use it consistently: Avoid spelling out the accepted acronym at some times but not others. Generally, adding the constraint that all acronyms be included in a glossary of terms places enough overhead on the use of acronyms such that they are not used flippantly. Ultimately, select clear, possibly even verbose names—especially when working on a team or when developing a library against which others will program.

There are two basic casing formats for an identifier. Pascal case (henceforth PascalCase), as the CLI creators refer to it because of its popularity in the Pascal programming language, capitalizes the first letter of each word in an identifier name; examples include ComponentModel, Configuration, and HttpFileCollection. As HttpFileCollection demonstrates with HTTP, when using acronyms that are more than two letters long only the first letter is capitalized. The second format, camel case (henceforth camelCase), follows the same convention, except that the first letter is lowercase; examples include quotient, firstName, httpFileCollection, ioStream, and theDreadPirateRoberts.

Guidelines

DO favor clarity over brevity when naming identifiers.

DO NOT use abbreviations or contractions within identifier names.

DO NOT use any acronyms unless they are widely accepted, and even then, only when necessary.

Notice that although underscores are legal, generally there are no underscores, hyphens, or other nonalphanumeric characters in identifier names. Furthermore, C# doesn’t follow its predecessors in that Hungarian notation (prefixing a name with a data type abbreviation) is not used. This avoids the variable rename that is necessary when data types change, and the inconsistency in the data type prefix that is frequently encountered when using Hungarian notation.

In some rare cases, some identifiers, such as Main, can have a special meaning in the C# language.

Guidelines

DO capitalize both characters in two-character acronyms, except for the first word of a camelCased identifier.

DO capitalize only the first character in acronyms with three or more characters, except for the first word of a camelCased identifier.

DO NOT capitalize any of the characters in acronyms at the beginning of a camelCased identifier.

DO NOT use Hungarian notation (that is, do not encode the type of a variable in its name).

Advanced Topic: Keywords

Although it is rare, keywords may be used as identifiers if they include “@” as a prefix. For example, you could name a local variable @return. Similarly (although it doesn’t conform to the casing standards of C# coding standards), it is possible to name a method @throw().

There are also four undocumented reserved keywords in the Microsoft implementation: __arglist, __makeref, __reftype, and __refvalue. These are required only in rare interop scenarios and you can ignore them for all practical purposes. Note that these four special keywords begin with two underscores. The designers of C# reserve the right to make any identifier that begins with two underscores into a keyword in a future version; for safety, avoid ever creating such an identifier yourself.

Type Definition

All executable code in C# appears within a type definition, and the most common type definition begins with the keyword class. A class definition is the section of code that generally begins with class identifier { ... }, as shown in Listing 1.2.

Listing 1.2. Basic Class Declaration

class HelloWorld
{
 //...
}

The name used for the type (in this case, HelloWorld) can vary, but by convention, it must be PascalCased. For this particular example, therefore, other possible names are Greetings, HelloInigoMontoya, Hello, or simply Program. (Program is a good convention to follow when the class contains the Main() method, described next.)

Guidelines

DO name classes with nouns or noun phrases.

DO use PascalCasing for all class names.

Generally, programs contain multiple types, each containing multiple methods.

Main

Beginner Topic: What Is a Method?

Syntactically, a method in C# is a named block of code introduced by a method declaration (for example, static void Main()) and (usually) followed by zero or more statements within curly braces. Methods perform computations and/or actions. Similar to paragraphs in written languages, methods provide a means of structuring and organizing code so that it is more readable. More importantly, methods can be reused and called from multiple places, and so avoid the need to duplicate code. The method declaration introduces the method and defines the method name along with the data passed to and from the method. In Listing 1.3, Main() followed by { ... } is an example of a C# method.

The location where C# programs begin execution is the Main method, which begins with static void Main(). When you execute the program by typing HelloWorld.exe at the command console, the program starts up, resolves the location of Main, and begins executing the first statement within Listing 1.3.

Listing 1.3. Breaking Apart HelloWorld

[image: Image]

Although the Main method declaration can vary to some degree, static and the method name, Main, are always required for a program.

Advanced Topic: Declaration of the Main Method

C# requires that the Main method return either void or int, and that it take either no parameters, or a single array of strings. Listing 1.4 shows the full declaration of the Main method.

Listing 1.4. The Main Method, with Parameters and a Return

static int Main(string[] args)
{
 //...
}

The args parameter is an array of strings corresponding to the command-line arguments. However, the first element of the array is not the program name but the first command-line parameter to appear after the executable name, unlike in C and C++. To retrieve the full command used to execute the program use System.Environment.CommandLine.

The int returned from Main is the status code and it indicates the success of the program’s execution. A return of a nonzero value generally indicates an error.

Language Contrast: C++/Java—main() Is All Lowercase

Unlike its C-style predecessors, C# uses an uppercase M for the Main method in order to be consistent with the PascalCased naming conventions of C#.

The designation of the Main method as static indicates that other methods may call it directly off the class definition. Without the static designation, the command console that started the program would need to perform additional work (known as instantiation) before calling the method. (Chapter 5 contains an entire section devoted to the topic of static members.)

Placing void prior to Main() indicates that this method does not return any data. (This is explained further in Chapter 2.)

One distinctive C/C++ style characteristic followed by C# is the use of curly braces for the body of a construct, such as the class or the method. For example, the Main method contains curly braces that surround its implementation; in this case, only one statement appears in the method.

Statements and Statement Delimiters

The Main method includes a single statement, System.Console.WriteLine(), which is used to write a line of text to the console. C# generally uses a semicolon to indicate the end of a statement, where a statement comprises one or more actions that the code will perform. Declaring a variable, controlling the program flow, and calling a method are typical uses of statements.

Language Contrast: Visual Basic—Line-Based Statements

Some languages are line-based, meaning that without a special annotation, statements cannot span a line. Until Visual Basic 2010, Visual Basic was an example of a line-based language. It required an underscore at the end of a line to indicate that a statement spans multiple lines. Starting with Visual Basic 2010, many cases were introduced where the line continuation character was optional.

Advanced Topic: Statements without Semicolons

Many programming elements in C# end with a semicolon. One example that does not include the semicolon is a switch statement. Because curly braces are always included in a switch statement, C# does not require a semicolon following the statement. In fact, code blocks themselves are considered statements (they are also composed of statements) and they don’t require closure using a semicolon. Similarly, there are cases, such as the using declarative, in which a semicolon occurs at the end but it is not a statement.

Since creation of a newline does not separate statements, you can place multiple statements on the same line and the C# compiler will interpret the line to have multiple instructions. For example, Listing 1.5 contains two statements on a single line that, in combination, display Up and Down on two separate lines.

Listing 1.5. Multiple Statements on One Line

System.Console.WriteLine("Up");System.Console.WriteLine("Down");

C# also allows the splitting of a statement across multiple lines. Again, the C# compiler looks for a semicolon to indicate the end of a statement (see Listing 1.6).

Listing 1.6. Splitting a Single Statement across Multiple Lines

System.Console.WriteLine(
 "Hello. My name is Inigo Montoya.");

In Listing 1.6, the original WriteLine() statement from the HelloWorld program is split across multiple lines.

Beginner Topic: What Is Whitespace?

Whitespace is the combination of one or more consecutive formatting characters such as tab, space, and newline characters. Eliminating all whitespace between words is obviously significant, as is whitespace within a quoted string.

Whitespace

The semicolon makes it possible for the C# compiler to ignore whitespace in code. Apart from a few exceptions, C# allows developers to insert whitespace throughout the code without altering its semantic meaning. In Listing 1.5 and Listing 1.6, it didn’t matter whether a newline was inserted within a statement or between statements, and doing so had no effect on the resultant executable created by the compiler.

Frequently, programmers use whitespace to indent code for greater readability. Consider the two variations on HelloWorld shown in Listing 1.7 and Listing 1.8.

Listing 1.7. No Indentation Formatting

Click here to view code image

class HelloWorld
{
static void Main()
{
System.Console.WriteLine("Hello Inigo Montoya");
}
}

Listing 1.8. Removing Whitespace

Click here to view code image

class HelloWorld{static void Main()
{System.Console.WriteLine("Hello Inigo Montoya");}}

Although these two examples look significantly different from the original program, the C# compiler sees them as identical.

Beginner Topic: Formatting Code with Whitespace

Indenting the code using whitespace is important for greater readability. As you begin writing code, you need to follow established coding standards and conventions in order to enhance code readability.

The convention used in this book is to place curly braces on their own line and to indent the code contained between the curly brace pair. If another curly brace pair appears within the first pair, all the code within the second set of braces is also indented.

This is not a uniform C# standard, but a stylistic preference.

Working with Variables

Now that you’ve been introduced to the most basic C# program, it’s time to declare a local variable. Once a variable is declared, you can assign it a value, replace that value with a new value, and use it in calculations, output, and so on. However, you cannot change the data type of the variable. In Listing 1.9, string max is a variable declaration.

Listing 1.9. Declaring and Assigning a Variable

[image: Image]

Beginner Topic: Local Variables

A variable refers to a storage location by a name that the program can later assign and modify. Local indicates that the programmer declared the variable within a method.

To declare a variable is to define it, which you do by

1. Specifying the type of data which the variable will contain

2. Assigning it an identifier (name)

Data Types

Listing 1.9 declares a variable with the data type string. Other common data types used in this chapter are int and char.

• int is the C# designation of an integer type that is 32 bits in size.

• char is used for a character type. It is 16 bits, large enough for (nonsurrogate) Unicode characters.

The next chapter looks at these and other common data types in more detail.

Beginner Topic: What Is a Data Type?

The type of data that a variable declaration specifies is called a data type (or object type). A data type, or simply type, is a classification of things that share similar characteristics and behavior. For example, animal is a type. It classifies all things (monkeys, warthogs, and platypuses) that have animal characteristics (multicellular, capacity for locomotion, and so on). Similarly, in programming languages, a type is a definition for several items endowed with similar qualities.

Declaring a Variable

In Listing 1.9, string max is a variable declaration of a string type whose name is max. It is possible to declare multiple variables within the same statement by specifying the data type once and separating each identifier with a comma. Listing 1.10 demonstrates this.

Listing 1.10. Declaring Two Variables within One Statement

string message1, message2;

Because a multivariable declaration statement allows developers to provide the data type only once within a declaration, all variables will be of the same type.

In C#, the name of the variable may begin with any letter or an underscore (_), followed by any number of letters, numbers, and/or underscores. By convention, however, local variable names are camelCased (the first letter in each word is capitalized, except for the first word) and do not include underscores.

Guidelines

DO use camelCasing for local variables.

Assigning a Variable

After declaring a local variable, you must assign it a value before reading from it. One way to do this is to use the = operator, also known as the simple assignment operator. Operators are symbols used to identify the function the code is to perform. Listing 1.11 demonstrates how to use the assignment operator to designate the string values to which the variables max7 and valerie will point.

Listing 1.11. Changing the Value of a Variable

Click here to view code image

class MiracleMax
{
 static void Main()
 {
 string valerie;

 string max = "Have fun storming the castle!";

 valerie = "Think it will work?";

 System.Console.WriteLine(max);
 System.Console.WriteLine(valerie);
 max = "It would take a miracle.";

 System.Console.WriteLine(max);
 }
}

From this listing, observe that it is possible to assign a variable as part of the variable declaration (as it was for max), or afterward in a separate statement (as with the variable valerie). The value assigned must always be on the right side.

Running the compiled MiracleMax.exe program produces the code shown in Output 1.3.

Output 1.3.

>MiracleMax.exe
Have fun storming the castle!
Think it will work?
It would take a miracle.

C# requires that local variables be determined by the compiler to be “definitely assigned” before they are read. Additionally, an assignment returns a value. Therefore, C# allows two assignments within the same statement, as demonstrated in Listing 1.12.

Listing 1.12. Assignment Returning a Value That Can Be Assigned Again

Click here to view code image

class MiracleMax
{
 static void Main()
 {
 // ...
 string requirements, max;
 requirements = max = "It would take a miracle.";
 // ...
 }
}

Using a Variable

The result of the assignment, of course, is that you can then refer to the value using the variable identifier. Therefore, when you use the variable max within the System.Console.WriteLine(max) statement, the program displays Have fun storming the castle!, the value of max, on the console. Changing the value of max and executing the same System.Console.WriteLine(max) statement causes the new max value, It would take a miracle., to be displayed.

Advanced Topic: Strings Are Immutable

All data of type string, whether string literals or otherwise, is immutable (or unmodifiable). For example, it is not possible to change the string “Come As You Are” to “Come As You Age.” A change such as this requires that you reassign the variable to point to a new location in memory, instead of modifying the data to which the variable originally referred.

Console Input and Output

This chapter already used System.Console.WriteLine repeatedly for writing out text to the command console. In addition to being able to write out data, a program needs to be able to accept data that a user may enter.

Getting Input from the Console

One way to retrieve text that is entered at the console is to use System.Console.ReadLine(). This method stops the program execution so that the user can enter characters. When the user presses the Enter key, creating a newline, the program continues. The output, also known as the return, from the System.Console.ReadLine() method is the string of text that was entered. Consider Listing 1.13 and the corresponding output shown in Output 1.4.

Listing 1.13. Using System.Console.ReadLine()

Click here to view code image

class HeyYou
{
 static void Main()
 {
 string firstName;
 string lastName;

 System.Console.WriteLine("Hey you!");

 System.Console.Write("Enter your first name: ");
 firstName = System.Console.ReadLine();

 System.Console.Write("Enter your last name: ");
 lastName = System.Console.ReadLine();

 ...
 }
}

Output 1.4.

>HeyYou.exe
Hey you!
Enter your first name: Inigo
Enter your last name: Montoya

After each prompt, this program uses the System.Console.ReadLine() method to retrieve the text the user entered and assign it to an appropriate variable. By the time the second System.Console.ReadLine() assignment completes, firstName contains the value Inigo and lastName refers to the value Montoya.

Advanced Topic: System.Console.Read()

In addition to the System.Console.ReadLine() method, there is also a System.Console.Read() method. However, the data type returned by the System.Console.Read() method is an integer corresponding to the character value read, or –1 if no more characters are available. To retrieve the actual character, it is necessary to first cast the integer to a character, as shown in Listing 1.14.

Listing 1.14. Using System.Console.Read()

int readValue;
char character;
readValue = System.Console.Read();
character = (char) readValue;
System.Console.Write(character);

The System.Console.Read() method does not return the input until the user presses the Enter key; no processing of characters will begin, even if the user types multiple characters before pressing the Enter key.

In C# 2.0, there appears a new method called System.Console.ReadKey() which, in contrast to System.Console.Read(), returns the input after a single keystroke. It allows the developer to intercept the keystroke and perform actions such as key validation, restricting the characters to numerics.

Writing Output to the Console

In Listing 1.13, you prompt the user for his first and last names using the method System.Console.Write() rather than System.Console.WriteLine(). Instead of placing a newline character after displaying the text, the System.Console.Write() method leaves the current position on the same line. In this way, any text the user enters will be on the same line as the prompt for input. The output from Listing 1.13 demonstrates the effect of System.Console.Write().

The next step is to write the values retrieved using System.Console.ReadLine() back to the console. In the case of Listing 1.15, the program writes out the user’s full name. However, instead of using System.Console.WriteLine() as before, this code will use a slight variation. Output 1.5 shows the corresponding output.

Listing 1.15. Formatting Using System.Console.WriteLine()

Click here to view code image

class HeyYou
{
 static void Main()
 {
 string firstName;
 string lastName;

 System.Console.WriteLine("Hey you!");

 System.Console.Write("Enter your first name: ");
 firstName = System.Console.ReadLine();

 System.Console.Write("Enter your last name: ");
 lastName = System.Console.ReadLine();

 System.Console.WriteLine(
 "Your full name is {0} {1}.", firstName, lastName);

 }
}

Output 1.5.

Hey you!
Enter your first name: Inigo
Enter your last name: Montoya
Your full name is Inigo Montoya.

Instead of writing out Your full name is followed by another Write statement for firstName, a third Write statement for the space, and finally a WriteLine statement for lastName, Listing 1.15 writes out the entire output using composite formatting. With composite formatting, the code first supplies a format string to define the output format. In this example, the format string is "Your full name is {0} {1}.". It identifies two indexed placeholders for data insertion in the string.

Note that the index value begins at zero. Each inserted parameter (known as a format item) appears after the format string in the order corresponding to the index value. In this example, since firstName is the first parameter to follow immediately after the format string, it corresponds to index value 0. Similarly, lastName corresponds to index value 1.

Note that the placeholders within the format string need not appear in order. For example, Listing 1.16 switches the order of the indexed placeholders and adds a comma, which changes the way the name is displayed (see Output 1.6).

Listing 1.16. Swapping the Indexed Placeholders and Corresponding Variables

Click here to view code image

System.Console.WriteLine("Your full name is {1}, {0}",
 firstName, lastName);

Output 1.6.

Hey you!
Enter your first name: Inigo
Enter your last name: Montoya
Your full name is Montoya, Inigo

In addition to not having the placeholders appear consecutively within the format string, it is possible to use the same placeholder multiple times within a format string. Furthermore, it is possible to omit a placeholder. It is not possible, however, to have placeholders that do not have a corresponding parameter.

Comments

In this section, we modify the program in Listing 1.15 by adding comments. In no way does this vary the execution of the program; rather, providing comments within the code makes the code more understandable. Listing 1.17 shows the new code, and Output 1.7 shows the corresponding output.

Listing 1.17. Commenting Your Code

[image: Image]

Output 1.7.

Hey you!
Enter your first name: Inigo
Enter your last name: Montoya
Your full name is Inigo Montoya.

In spite of the inserted comments, compiling and executing the new program produces the same output as before.

Programmers use comments to describe and explain the code they are writing, especially where the syntax itself is difficult to understand, or perhaps a particular algorithm implementation is surprising. Since comments are pertinent only to the programmer reviewing the code, the compiler ignores comments and generates an assembly that is devoid of any trace that comments were part of the original source code.

Table 1.2 shows four different C# comment types. The program in Listing 1.17 includes two of these.

Table 1.2. C# Comment Types

[image: Image]

A more comprehensive discussion of the XML comments appears in Chapter 9, where we further discuss the various XML tags.

There was a period in programming history where a prolific set of comments implied a disciplined and experienced programmer. This is no longer the case. Instead, the code that is readable without comments is more valuable than that which requires comments in order to clarify what it does. If developers find it necessary to enter comments in order to clarify what a particular code block is doing, they should favor rewriting the code more clearly over commenting it. Writing comments that are simply a repeat of what the code clearly shows serves only to clutter, decrease readability, and increase the likelihood of the comments going out of date because the code changes without the comments getting updated.

Guidelines

DO NOT use comments unless they describe something that is not obvious to someone other than the developer who wrote the code.

DO favor writing clearer code over entering comments to clarify a complicated algorithm.

Beginner Topic: Extensible Markup Language (XML)

The Extensible Markup Language (XML) is a simple and flexible text format frequently used within Web applications and for exchanging data between applications. XML is extensible because included within an XML document is information that describes the data, known as metadata. Here is a sample XML file.

Click here to view code image

<?xml version="1.0" encoding="utf-8" ?>
<body>
 <book title="Essential C# 5.0">
 <chapters>
 <chapter title="Introducing C#"/>
 <chapter title="Operators and Control Flow"/>
 ...
 </chapters>
 </book>
</body>

The file starts with a header indicating the version and character encoding of the XML file. After that appears one main “book” element. Elements begin with a word in angle brackets, such as <body>. To end an element, place the same word in angle brackets and add a forward slash to prefix the word, as in </body>. In addition to elements, XML supports attributes. title="Essential C# 5.0" is an example of an XML attribute. Note that the metadata (book title, chapter, and so on) describing the data (“Essential C# 5.0”, “Operators and Control Flow”) is included in the XML file. This can result in rather bloated files, but it offers the advantage that the data includes a description to aid in interpreting the data.

Managed Execution and the Common Language Infrastructure

The processor cannot directly interpret an assembly. Assemblies consist mainly of a second language known as the Common Intermediate Language (CIL), or IL for short.8 The C# compiler transforms the C# source file into this intermediate language. An additional step, usually performed at execution time, is required to change the CIL code into machine code that the processor can understand. This involves an important element in the execution of a C# program: the Virtual Execution System (VES). The VES, also casually referred to as the runtime, compiles CIL code as needed (this process is known as just-in-time compilation or jitting). The code that executes under the context of an agent such as the runtime is managed code, and the process of executing under control of the runtime is managed execution. The code is “managed” because the runtime controls significant portions of the program’s behavior by managing aspects such as memory allocation, security, and just-in-time compilation. Code that does not require the runtime in order to execute is native code (or unmanaged code).

The specification for a VES is included in a broader specification known as the Common Language Infrastructure (CLI) specification.9 An international standard, the CLI includes specifications for the following:

• The VES or runtime

• The CIL

• A type system that supports language interoperability, known as the Common Type System (CTS)

• Guidance on how to write libraries that are accessible from CLI-compatible languages (available in the Common Language Specification [CLS])

• Metadata that enables many of the services identified by the CLI (including specifications for the layout or file format of assemblies)

• A common programming framework, the Base Class Library (BCL), which developers in all languages can utilize

Note

The term runtime can refer to either execution time or the Virtual Execution System. To help clarify, this book uses the term execution time to indicate when the program is executing, and it uses the term runtime when discussing the agent responsible for managing the execution of a C# program while it executes.

Running within the context of a CLI implementation enables support for a number of services and features that programmers do not need to code for directly, including the following.

• Language interoperability: interoperability between different source languages. This is possible because the language compilers translate each source language to the same intermediate language (CIL).

• Type safety: checks for conversion between types, ensuring that only conversions between compatible types will occur. This helps prevent the occurrence of buffer overruns, a leading cause of security vulnerabilities.

• Code access security: certification that the assembly developer’s code has permission to execute on the computer.

• Garbage collection: memory management that automatically de-allocates memory previously allocated by the runtime.

• Platform portability: support for potentially running the same assembly on a variety of operating systems. One obvious restriction is that no platform-dependent libraries are used; therefore, as with Java, there are potentially some platform dependencies idiosyncrasies that need to be worked out.

• BCL: provides a large foundation of code that developers can depend on (in all CLI implementations) so that they do not have to develop the code themselves.

Note

This section gives a brief synopsis of the CLI to familiarize you with the context in which a C# program executes. It also provides a summary of some of the terms that appear throughout this book. Chapter 21 is devoted to the topic of the CLI and its relevance to C# developers. Although the chapter appears last in the book, it does not depend on any earlier chapters, so if you want to become more familiar with the CLI, you can jump to it at any time.

C# and .NET Versioning

Readers will notice that Output 1.1 refers to the “.NET Framework version 4.5.” At the time of this writing, Microsoft had six major releases to the .NET Framework and only five C# compiler releases. .NET Framework version 3.0 was an additional set of API libraries released in between C# compiler releases (and Visual Studio 2005 and 2008 versions). As a result, the .NET Framework version that corresponded with C# 3.0 was 3.5. With the release of C# 4.0 and the .NET Framework 4.0, the version numbers were synchronized. However, the .NET version for C# 5.0 is .NET Framework 4.5, so version numbers in the current generation are no longer aligned. Table 1.3 is a brief overview of the C# and .NET releases.

Table 1.3. C# and .NET Versions

[image: Image]

The majority of all code within this text will work with platforms other than Microsoft’s as long as the compiler version corresponds to the version of code required. Although providing full details on each C# platform would be helpful for some, it proved to detract from the focus of learning C#, so the main body of the text is restricted to information on Microsoft’s platform, .NET. This is simply because Microsoft has the predominant (by far) implementation. Furthermore, translation to another platform is fairly trivial.

Perhaps the biggest feature added to .NET 4.5 was support for calling into components within the Windows Runtime (WinRT). Internally, WinRT is native code that provides an entirely new platform in which .NET can execute. However, in both the style of its API and the behavior of its runtime, it resembles .NET. For practical purposes, components in WinRT are a new set of APIs—with significant functionality overlap with the .NET Framework. The difference is that this new API is only available on Windows 8 and it has been designed from the ground up to provide a .NET-like programming experience for functionality that was previously only available in “Win32” APIs with .NET wrappers. Although significant, the addition of WinRT as a platform is mostly orthogonal to the learning of .NET and C#. Therefore, this book does not provide in-depth coverage of WinRT.

Common Intermediate Language and ILDASM

As mentioned in the preceding section, the C# compiler converts C# code to CIL code and not to machine code. The processor can directly understand machine code, but CIL code needs to be converted before the processor can execute it. Given an assembly (either a DLL or an executable), it is possible to view the CIL code using a CIL disassembler utility to deconstruct the assembly into its CIL representation. (The CIL disassembler is commonly referred to by its Microsoft-specific filename, ILDASM, which stands for IL Disassembler.) This program will disassemble a program or its class libraries, displaying the CIL generated by the C# compiler.

The exact command used for the CIL disassembler depends on which implementation of the CLI is used. You can execute the .NET CIL disassembler from the command line as shown in Output 1.8.

Output 1.8.

>ildasm /text HelloWorld.exe

The /text portion is used so that the output appears on the command console rather than in a new window. The stream of output that results by executing these commands is a dump of CIL code included in the HelloWorld.exe program. Note that CIL code is significantly easier to understand than machine code. For many developers, this may raise a concern because it is easier for programs to be decompiled and algorithms understood without explicitly redistributing the source code.

As with any program, CLI-based or not, the only foolproof way of preventing disassembly is to disallow access to the compiled program altogether (for example, only hosting a program on a web site instead of distributing it out to a user’s machine). However, if decreased accessibility to the source code is all that is required, there are several obfuscators available. These obfuscators open up the IL code and munge the code so that it does the same thing but in a way that is much more difficult to understand. This prevents the casual developer from accessing the code and instead creates assemblies that are much more difficult and tedious to decompile into comprehensible code. Unless a program requires a high degree of algorithm security, these obfuscators are generally sufficient.

Advanced Topic: CIL Output for HelloWorld.exe

Listing 1.18 shows the CIL code created by ILDASM.

Listing 1.18. Sample CIL Output

Click here to view code image

// Microsoft (R) .NET Framework IL Disassembler. Version 4.0.30319.17369
// Copyright (c) Microsoft Corporation. All rights reserved.

// Metadata version: v4.0.30319
.assembly extern mscorlib
{
 .publickeytoken = (B7 7A 5C 56 19 34 E0 89) // .z\V.4..
 .ver 4:0:0:0
}
.assembly HelloWorld
{
 .custom instance void [mscorlib]System.Runtime.CompilerServices.CompilationRelaxationsAttribute::.ctor(int32) = (01 00 08 00 00 00 00 00)
 .custom instance void [mscorlib]System.Runtime.CompilerServices.Runtime CompatibilityAttribute::.ctor() = (01 00 01 00 54 02 16 57 72 61 70 4E 6F 6E 45 78 //T..WrapNonEx 63 65 70 74 69 6F 6E 54 68 72 6F 77 73 01
) // ceptionThrows.
 .hash algorithm 0x00008004
 .ver 0:0:0:0
}
.module HelloWorld.exe
// MVID: {D229AC10-1DEC-47A1-AA62-3BA19389E37E}
.imagebase 0x00400000
.file alignment 0x00000200
.stackreserve 0x00100000
.subsystem 0x0003 // WINDOWS_CUI
.corflags 0x00000001 // ILONLY
// Image base: 0x00490000

// =============== CLASS MEMBERS DECLARATION ===================

.class private auto ansi beforefieldinit HelloWorld
 extends [mscorlib]System.Object
{
 .method private hidebysig static void Main() cil managed
 {
 .entrypoint
 // Code size 13 (0xd)
 .maxstack 8
 IL_0000: nop
 IL_0001: ldstr "Hello. My name is Inigo Montoya."
 IL_0006: call void [mscorlib]System.Console::WriteLine(string)
 IL_000b: nop
 IL_000c: ret
 } // end of method HelloWorld::Main

 .method public hidebysig specialname rtspecialname
 instance void .ctor() cil managed
 {
 // Code size 7 (0x7)
 .maxstack 8
 IL_0000: ldarg.0
 IL_0001: call instance void [mscorlib]System.Object::.ctor()
 IL_0006: ret
 } // end of method HelloWorld::.ctor

} // end of class HelloWorld

// ===

// *********** DISASSEMBLY COMPLETE ***********************

The beginning of the listing is the manifest information. It includes not only the full name of the disassembled module (HelloWorld.exe), but also all the modules and assemblies it depends on, along with their version information.

Perhaps the most interesting thing that you can glean from such a listing is how relatively easy it is to follow what the program is doing compared to trying to read and understand machine code (assembler). In the listing, an explicit reference to System.Console.WriteLine() appears. There is a lot of peripheral information to the CIL code listing, but if a developer wanted to understand the inner workings of a C# module (or any CLI-based program) without having access to the original source code, it would be relatively easy unless an obfuscator is used. In fact, several free tools are available (such as Red Gate’s Reflector, ILSpy, JustDecompile, dotPeek, and CodeReflect) that can decompile from CIL to C# automatically.

Summary

This chapter served as a rudimentary introduction to C#. It provided a means of familiarizing you with basic C# syntax. Because of C#’s similarity to C++ style languages, much of this might not have been new material to you. However, C# and managed code do have some distinct characteristics, such as compilation down to CIL. Although it is not unique, another key characteristic is that C# includes full support for object-oriented programming. Even tasks such as reading and writing data to the console are object-oriented. Object orientation is foundational to C#, and you will see this throughout this book.

The next chapter examines the fundamental data types that are part of the C# language, and discusses how you can use these data types with operands to form expressions.

2. Data Types

From Chapter 1’s HelloWorld program, you got a feel for the C# language, its structure, basic syntax characteristics, and how to write the simplest of programs. This chapter continues to discuss the C# basics by investigating the fundamental C# types.

[image: Image]

Until now, you have worked with only a few primitive data types, with little explanation. In C# thousands of types exist, and you can combine types to create new types. A few types in C#, however, are relatively simple and are considered the building blocks of all other types. These types are predefined types or primitives. The C# language’s primitive types include eight integer types, two binary floating-point types for scientific calculations and one decimal float for financial calculations, one Boolean type, and a character type. This chapter investigates these primitives, looks more closely at the string type, and introduces arrays.

Fundamental Numeric Types

The basic numeric types in C# have keywords associated with them. These types include integer types, floating-point types, and a special floating-point type called decimal to store large numbers with no representation error.

Integer Types

There are eight C# integer types. This variety allows you to select a data type large enough to hold its intended range of values without wasting resources. Table 2.1 lists each integer type.

Table 2.1. Integer Types

[image: Image]

Included in Table 2.1 (and in Tables 2.2 and 2.3) is a column for the full name of each type; we discuss the literal suffix later in the chapter. All the fundamental types in C# have a short name and a full name. The full name corresponds to the type as it is named in the Base Class Library (BCL). This name is the same across all languages and it uniquely identifies the type within an assembly. Because of the fundamental nature of primitive types C# also supplies keywords as short names or abbreviations to the full names of fundamental types. From the compiler’s perspective, both names are exactly the same, producing exactly the same code. In fact, an examination of the resultant CIL code would provide no indication of which name was used.

Table 2.2. Floating-Point Types

[image: Image]

Table 2.3. decimal Type

[image: Image]

Although C# supports using both the full BCL name and the keyword, as developers we are left with the choice of which to use when. Rather than switching back and forth, it is better to use one or the other consistently. For this reason, C# developers generally go with using the C# keyword form—choosing, for example, int rather than System.Int32 and string rather than System.String (or a possible shortcut of String).

Guidelines

DO use the C# keyword rather than the BCL name when specifying a data type (for example, string rather than String).

DO favor consistency rather than variety within your code.

The choice for consistency frequently may be at odds with other guidelines. For example, given the guideline to use the C# keyword in place of the BCL name, there may be occasions when you find yourself maintaining a file (or library of files) with the opposite style. In these cases it would better to stay consistent with the previous style than to inject a new style and inconsistencies in the conventions. Even so, if the “style” was in fact a bad coding practice that was likely to introduce bugs and obstruct successful maintenance, by all means correct the issue throughout.

Language Contrast: C++—short Data Type

In C/C++, the short data type is an abbreviation for short int. In C#, short on its own is the actual data type.

Floating-Point Types (float, double)

Floating-point numbers have varying degrees of precision, and binary floating-point types can only represent numbers exactly if they are a fraction with a power of two as the denominator. If you were to set the value of a floating-point variable to be 0.1, it could very easily be represented as 0.0999999999999999 or 0.10000000000000001 or some other number very close to 0.1. Similarly, setting a variable to a large number such as Avogadro’s number, 6.02 x 1023, could lead to a representation error of around 108, which after all is a tiny fraction of that number. The accuracy of a floating-point number is in proportion to the magnitude of the number it represents. A floating-point number is precise to a certain number of significant digits, not by a fixed value such as ±0.01.

C# supports the two binary floating-point number types listed in Table 2.2.

Binary numbers appear as base 10 (denary) numbers for human readability. The number of bits (binary digits) converts to 15 decimal digits, with a remainder that contributes to a sixteenth decimal digit as expressed in Table 2.2. Specifically, numbers between 1.7 * 10307 and less than 1 * 10308 have only 15 significant digits. However, numbers ranging from 1 * 10308 to 1.7 * 10308 will have 16 significant digits. A similar range of significant digits occurs with the decimal type as well.

Decimal Type

C# also provides a decimal floating-point type with 128-bit precision (see Table 2.3). This type is suitable for financial calculations.

Unlike binary floating-point numbers, the decimal type maintains exact accuracy for all denary numbers within its range. With the decimal type, therefore, a value of 0.1 is exactly 0.1. However, while the decimal type has greater precision than the floating-point types, it has a smaller range. Thus, conversions from floating-point types to the decimal type may result in overflow errors. Also, calculations with decimal are slightly (generally imperceptibly) slower.

Advanced Topic: Floating-Point Types Dissected

Denary numbers within the range and precision limits of the decimal type are represented exactly. In contrast, the binary floating-point representation of many denary numbers introduces a rounding error. Just as [image: Image] cannot be represented exactly in any finite number of decimal digits, so too [image: Image] cannot be represented exactly in any finite number of binary digits. In both cases, we end up with a rounding error of some kind.

A decimal is represented by ±N * 10k where the following is true.

• N, the mantissa, is a positive 96-bit integer.

• k, the exponent, is given by -28 <= k <= 0.

In contrast, a binary float is any number ±N * 2k where the following is true.

• N is a positive 24-bit (for float) or 53-bit (for double) integer.

• k is an integer ranging from -149 to +104 for float and -1075 to +970 for double.

Literal Values

A literal value is a representation of a constant value within source code. For example, if you want to have System.Console.WriteLine() print out the integer value 42 and the double value 1.618034, you could use the code shown in Listing 2.1.

Listing 2.1. Specifying Literal Values

System.Console.WriteLine(42);
System.Console.WriteLine(1.618034);

Output 2.1 shows the results of Listing 2.1.

Output 2.1.

42
1.618034

Beginner Topic: Use Caution When Hardcoding Values

The practice of placing a value directly into source code is called hardcoding, because changing the values means recompiling the code. Developers must carefully consider the choice between hardcoding values within their code and retrieving them from an external source, such as a configuration file, so that the values are modifiable without recompiling.

By default, when you specify a literal number with a decimal point, the compiler interprets it as a double type. Conversely, a literal value with no decimal point generally defaults to an int, assuming the value is not too large to be stored in an integer. If the value is too large, the compiler will interpret it as a long. Furthermore, the C# compiler allows assignment to a numeric type other than an int, assuming the literal value is appropriate for the target data type. short s = 42 and byte b = 77 are allowed, for example. However, this is appropriate only for constant values; b = s is not allowed without additional syntax, as discussed in the section Conversions between Data Types, later in this chapter.

As previously discussed in the section Fundamental Numeric Types, there are many different numeric types in C#. In Listing 2.2, a literal value is placed within C# code. Since numbers with a decimal point will default to the double data type, the output, shown in Output 2.2, is 1.61803398874989 (the last digit, 5, is missing), corresponding to the expected accuracy of a double.

Listing 2.2. Specifying a Literal double

System.Console.WriteLine(1.618033988749895);

Output 2.2.

1.61803398874989

To view the intended number with its full accuracy, you must declare explicitly the literal value as a decimal type by appending an M (or m) (see Listing 2.3 and Output 2.3).

Listing 2.3. Specifying a Literal decimal

System.Console.WriteLine(1.618033988749895M);

Output 2.3.

1.618033988749895

Now the output of Listing 2.3 is as expected: 1.618033988749895. Note that d is for double. To remember that m should be used to identify a decimal, remember that “m is for monetary calculations.”

You can also add a suffix to a value to explicitly declare a literal as float or double by using the F and D suffixes, respectively. For integer data types, the suffixes are U, L, LU, and UL. The type of an integer literal can be determined as follows.

• Numeric literals with no suffix resolve to the first data type that can store the value in this order: int, uint, long, and ulong.

• Numeric literals with the suffix U resolve to the first data type that can store the value in the order uint and then ulong.

• Numeric literals with the suffix L resolve to the first data type that can store the value in the order long and then ulong.

• If the numeric literal has the suffix UL or LU, it is of type ulong.

Note that suffixes for literals are case-insensitive. However, uppercase is generally preferred to avoid any ambiguity between the lowercase letter l and the digit 1.

In some situations, you may wish to use exponential notation instead of writing out several zeroes before or after the decimal point. To use exponential notation, supply the e or E infix, follow the infix character with a positive or negative integer number, and complete the literal with the appropriate data type suffix. For example, you could print out Avogadro’s number as a float, as shown in Listing 2.4 and Output 2.4.

Listing 2.4. Exponential Notation

System.Console.WriteLine(6.023E23F);

Output 2.4.

6.023E+23

Guidelines

DO use uppercase literal suffixes (for example, 1.618033988749895M).

Beginner Topic: Hexadecimal Notation

Usually you work with numbers that are represented with a base of 10, meaning there are ten symbols (0–9) for each digit in the number. If a number is displayed with hexadecimal notation, it is displayed with a base of 16 numbers, meaning 16 symbols are used: 0–9, A–F (lowercase can also be used). Therefore, 0x000A corresponds to the decimal value 10 and 0x002A corresponds to the decimal value 42, being 2 x 16 + 10. The actual number is the same. Switching from hexadecimal to decimal or vice versa does not change the number itself, just the representation of the number.

Each hex digit is four bits, so a byte can represent two hex digits.

In all discussions of literal numeric values so far, we have covered only base 10 type values. C# also supports the ability to specify hexadecimal values. To specify a hexadecimal value, prefix the value with 0x and then use any hexadecimal digit, as shown in Listing 2.5.

Listing 2.5. Hexadecimal Literal Value

Click here to view code image

// Display the value 42 using a hexadecimal literal.
System.Console.WriteLine(0x002A);

Output 2.5 shows the results of Listing 2.5.

Output 2.5.

42

Note that this code still displays 42, not 0x002A.

Advanced Topic: Formatting Numbers As Hexadecimal

To display a numeric value in its hexadecimal format, it is necessary to use the x or X numeric formatting specifier. The casing determines whether the hexadecimal letters appear in lowercase or uppercase. Listing 2.6 shows an example of how to do this.

Listing 2.6. Example of a Hexadecimal Format Specifier

// Displays "0x2A"
System.Console.WriteLine("0x{0:X}", 42);

Output 2.6 shows the results.

Output 2.6.

0x2A

Note that the numeric literal (42) can be in decimal or hexadecimal form. The result will be the same.

Advanced Topic: Round-Trip Formatting

By default, System.Console.WriteLine(1.618033988749895); displays 1.61803398874989, with the last digit missing. To more accurately identify the string representation of the double value it is possible to convert it using a format string and the round-trip format specifier, R (or r). string.Format("{0:R}", 1.618033988749895), for example, will return the result 1.6180339887498949.

The round-trip format specifier returns a string that, if converted back into a numeric value, will always result in the original value. Listing 2.7, therefore, will show the numbers are not equal without the round-trip format.

Listing 2.7. Formatting Using the R Format Specifier

Click here to view code image

// ...
const double number = 1.618033988749895;
double result;
string text;

text = string.Format("{0}", number);
result = double.Parse(text);
System.Console.WriteLine("{0}: result != number",
 result != number);

text = string.Format("{0:R}", number);
result = double.Parse(text);
System.Console.WriteLine("{0}: result == number",
 result == number);
// ...

Output 2.7 shows the resultant output.

Output 2.7.

True: result != number
True: result == number

When assigning text the first time, there is no round-trip format specifier and, as a result, the value returned by double.Parse(text) is not the same as the original number value. In contrast, when the round-trip format specifier is used, double.Parse(text) returns the original value.

For those unfamiliar with the == syntax from C-based languages, result == number returns true if result is equal to number, while result != number does the opposite. Both assignment and equality operators are discussed in the next chapter.

More Fundamental Types

The fundamental types discussed so far are numeric types. C# includes some additional types as well: bool, char, and string.

Boolean Type (bool)

Another C# primitive is a Boolean or conditional type, bool, which represents true or false in conditional statements and expressions. Allowable values are the keywords true and false. The BCL name for bool is System.Boolean. For example, in order to compare two strings in a case-insensitive manner, you call the string.Compare() method and pass a bool literal true (see Listing 2.8).

Listing 2.8. A Case-Insensitive Comparison of Two Strings

Click here to view code image

string option;
...
int comparison = string.Compare(option, "/Help", true);

In this case, you make a case-insensitive comparison of the contents of the variable option with the literal text /Help and assign the result to comparison.

Although theoretically a single bit could hold the value of a Boolean, the size of bool is 1 byte.

Character Type (char)

A char type represents 16-bit characters whose set of possible values are drawn from the Unicode character set’s UTF-16 encoding. A char is the same size as a 16-bit unsigned integer (ushort), which represents values between 0 and 65,535. However, char is a unique type in C# and code should treat it as such.

The BCL name for char is System.Char.

Beginner Topic: The Unicode Standard

Unicode is an international standard for representing characters found in the majority of human languages. It provides computer systems with functionality for building localized applications, applications that display the appropriate language and culture characteristics for different cultures.

Advanced Topic: 16 Bits Is Too Small for All Unicode Characters

Unfortunately, not all Unicode characters can be represented by just one 16-bit char. The original Unicode designers believed that 16 bits would be enough, but as more languages were supported, it was realized that this assumption was incorrect. As a result, some (rarely used) Unicode characters are composed of “surrogate pairs” of two char values.

To construct a literal char, place the character within single quotes, as in 'A'. Allowable characters comprise the full range of keyboard characters, including letters, numbers, and special symbols.

Some characters cannot be placed directly into the source code and instead require special handling. These characters are prefixed with a backslash (\) followed by a special character code. In combination, the backslash and special character code are an escape sequence. For example, \n represents a newline, and \t represents a tab. Since a backslash indicates the beginning of an escape sequence, it can no longer identify a simple backslash; instead, you need to use \\ to represent a single backslash character.

Listing 2.9 writes out one single quote because the character represented by \' corresponds to a single quote.

Listing 2.9. Displaying a Single Quote Using an Escape Sequence

class SingleQuote
{
 static void Main()
 {
 System.Console.WriteLine('\'');
 }
}

In addition to showing the escape sequence, Table 2.4 includes the Unicode representation of characters.

Table 2.4. Escape Characters

[image: Image]

You can represent any character using Unicode encoding. To do so, prefix the Unicode value with \u. You represent Unicode characters in hexadecimal notation. The letter A, for example, is the hexadecimal value 0x41. Listing 2.10 uses Unicode characters to display a smiley face (:)), and Output 2.8 shows the results.

Listing 2.10. Using Unicode Encoding to Display a Smiley Face

System.Console.Write('\u003A');
System.Console.WriteLine('\u0029');

Output 2.8.

:)

Strings

A finite sequence of zero or more characters is called a string. The string type in C# is string, whose BCL name is System.String. The string type includes some special characteristics that may be unexpected to developers familiar with other programming languages. The characteristics include a “verbatim string” prefix character, @, and the fact that strings are immutable.

Literals

You can enter a literal string into code by placing the text in double quotes ("), as you saw in the HelloWorld program. Strings are composed of characters, and because of this, character escape sequences can be embedded within a string.

In Listing 2.11, for example, two lines of text are displayed. However, instead of using System.Console.WriteLine(), the code listing shows System.Console.Write() with the newline character, \n. Output 2.9 shows the results.

Listing 2.11. Using the \n Character to Insert a Newline

Click here to view code image

class DuelOfWits
{
 static void Main()
 {
 System.Console.Write(
 "\"Truly, you have a dizzying intellect.\"");
 System.Console.Write("\n\"Wait 'til I get going!\"\n");
 }
}

Output 2.9.

"Truly, you have a dizzying intellect."
"Wait 'til I get going!"

The escape sequence for double quotes differentiates the printed double quotes from the double quotes that define the beginning and end of the string.

In C#, you can use the @ symbol in front of a string to signify that a backslash should not be interpreted as the beginning of an escape sequence. The resultant verbatim string literal does not reinterpret just the backslash character. Whitespace is also taken verbatim when using the @ string syntax. The triangle in Listing 2.12, for example, appears in the console exactly as typed, including the backslashes, newlines, and indentation. Output 2.10 shows the results.

Listing 2.12. Displaying a Triangle Using a Verbatim String Literal

class Triangle
{
 static void Main()
 {
 System.Console.Write(@"begin
 /\
 / \
 / \
 / \
 /________\
end");
 }
}

Output 2.10.

begin
 /\
 / \
 / \
 / \
 /________\
end

Without the @ character, this code would not even compile. In fact, even if you changed the shape to a square, eliminating the backslashes, the code still would not compile because a newline cannot be placed directly within a string that is not prefaced with the @ symbol.

The only escape sequence the verbatim string does support is "", which signifies double quotes and does not terminate the string.

Language Contrast: C++—String Concatenation at Compile Time

Unlike C++, C# does not automatically concatenate literal strings. You cannot, for example, specify a string literal as follows:

"Major Strasser has been shot. "
"Round up the usual suspects."

Rather, concatenation requires the use of the addition operator. (If the compiler can calculate the result at compile time, however, the resultant CIL code will be a single string.)

If the same literal string appears within an assembly multiple times, the compiler will define the string only once within the assembly and all variables will refer to the same string. That way, if the same string literal containing thousands of characters was placed multiple times into the code, the resultant assembly would reflect the size of only one of them.

String Methods

The string type, like the System.Console type, includes several methods. There are methods, for example, for formatting, concatenating, and comparing strings.

The Format() method in Table 2.5 behaves exactly like the Console.Write() and Console.WriteLine() methods, except that instead of displaying the result in the console window, string.Format() returns the result to the caller.

Table 2.5. string Static Methods

[image: Image]

All of the methods in Table 2.5 are static. This means that, to call the method, it is necessary to prefix the method name (for example, Concat) with the type that contains the method (for example, string). As illustrated below, however, some of the methods in the string class are instance methods. Instead of prefixing the method with the type, instance methods use the variable name (or some other reference to an instance). Table 2.6 shows a few of these methods, along with an example.

Table 2.6. string Methods

[image: Image]

New Line

When writing out a new line, the exact characters for the new line will depend on the operating system on which you are executing. On Microsoft Windows platforms, the new line is the combination of both the \r and \n characters, while a single \n is used on Unix. One way to overcome the discrepancy between platforms is simply to use System.Console.WriteLine() in order to output a blank line. Another approach, virtually essential when you are not outputting to the console yet still require execution on multiple platforms, is to use System.Environment.NewLine. In other words, System.Console.WriteLine("Hello World") and System.Console.Write("Hello World" + System.Environment.NewLine) are equivalent.

Advanced Topic: C# Properties

Technically, the Length member referred to in the following section is not actually a method, as indicated by the fact that there are no parentheses following its call. Length is a property of string, and C# syntax allows access to a property as though it were a member variable (known in C# as a field). In other words, a property has the behavior of special methods called setters and getters, but the syntax for accessing that behavior is that of a field.

Examining the underlying CIL implementation of a property reveals that it compiles into two methods: set_<PropertyName> and get_<PropertyName>. Neither of these, however, is directly accessible from C# code, except through the C# property constructs. See Chapter 5 for more detail on properties.

String Length

To determine the length of a string you use a string member called Length. This particular member is called a read-only property. As such, it can’t be set, nor does calling it require any parameters. Listing 2.13 demonstrates how to use the Length property, and Output 2.11 shows the results.

Listing 2.13. Using string’s Length Member

Click here to view code image

class PalindromeLength
{
 static void Main()
 {
 string palindrome;

 System.Console.Write("Enter a palindrome: ");
 palindrome = System.Console.ReadLine();

 System.Console.WriteLine(
 "The palindrome, \"{0}\" is {1} characters.",
 palindrome, palindrome.Length);
 }
}

Output 2.11.

Click here to view code image

Enter a palindrome: Never odd or even
The palindrome, "Never odd or even" is 17 characters.

The length for a string cannot be set directly; it is calculated from the number of characters in the string. Furthermore, the length of a string cannot change because a string is immutable.

Strings Are Immutable

A key characteristic of the string type is that it is immutable. A string variable can be assigned an entirely new value but there is no facility for modifying the contents of a string. It is not possible, therefore, to convert a string to all uppercase letters. It is trivial to create a new string that is composed of an uppercase version of the old string, but the old string is not modified in the process. Consider Listing 2.14 as an example.

Listing 2.14. Error; string Is Immutable

Click here to view code image

class Uppercase
{
 static void Main()
 {
 string text;

 System.Console.Write("Enter text: ");
 text = System.Console.ReadLine();

 // UNEXPECTED: Does not convert text to uppercase
 text.ToUpper();

 System.Console.WriteLine(text);
 }
}

Output 2.12 shows the results of Listing 2.14.

Output 2.12.

Click here to view code image

Enter text: This is a test of the emergency broadcast system.
This is a test of the emergency broadcast system.

At a glance, it would appear that text.ToUpper() should convert the characters within text to uppercase. However, strings are immutable and, therefore, text.ToUpper() will make no such modification. Instead, text.ToUpper() returns a new string that needs to be saved into a variable or passed to System.Console.WriteLine() directly. The corrected code is shown in Listing 2.15, and its output is shown in Output 2.13.

Listing 2.15. Working with Strings

Click here to view code image

class Uppercase
{
 static void Main()
 {
 string text, uppercase;

 System.Console.Write("Enter text: ");
 text = System.Console.ReadLine();

 // Return a new string in uppercase

 uppercase = text.ToUpper();

 System.Console.WriteLine(uppercase);
 }
}

Output 2.13.

Click here to view code image

Enter text: This is a test of the emergency broadcast system.
THIS IS A TEST OF THE EMERGENCY BROADCAST SYSTEM.

If the immutability of a string is ignored, mistakes similar to those shown in Listing 2.14 can occur with other string methods as well.

To actually change the value in text, assign the value from ToUpper() back into text, as in the following:

 text = text.ToUpper();

System.Text.StringBuilder

If considerable string modification is needed, such as when constructing a long string in multiple steps, you should use the data type System.Text.StringBuilder rather than string. The StringBuilder type includes methods such as Append(), AppendFormat(), Insert(), Remove(), and Replace(), some of which also appear on string. The key difference, however, is that on StringBuilder these methods will modify the data in the StringBuilder itself, and will not simply return a new string.

null and void

Two additional keywords relating to types are null and void. null is a value which indicates that the variable does not refer to any valid object. void is used to indicate the absence of a type or the absence of any value altogether.

null

null can also be used as a type of string “literal.” null indicates that a variable is set to nothing. Reference types, pointer types, and nullable value types can be assigned the value null. The only reference type covered so far in this book is string; Chapter 5 covers the topic of creating classes (which are reference types) in detail. For now, suffice it to say that a variable of reference type contains a reference to a location in memory that is different from that of the variable. Code that sets a variable to null explicitly assigns the reference to refer to no valid value. In fact, it is even possible to check whether a reference refers to nothing. Listing 2.16 demonstrates assigning null to a string variable.

Listing 2.16. Assigning null to a String

static void Main()
{
 string faxNumber;
 // ...

 // Clear the value of faxNumber.
 faxNumber = null;

 // ...
}

It is important to note that assigning the value null to a reference type is distinct from not assigning it at all. In other words, a variable that has been assigned null has still been set, and a variable with no assignment has not been set and, therefore, will often cause a compile error if used prior to assignment.

Assigning the value null to a string is distinctly different from assigning an empty string, "". null indicates that the variable has no value. "" indicates that there is a value: an empty string. This type of distinction can be quite useful. For example, the programming logic could interpret a faxNumber of null to mean that the fax number is unknown, while a faxNumber value of "" could indicate that there is no fax number.

The void “Type”

Sometimes the C# syntax requires a data type to be specified but no data is actually passed. For example, if no return from a method is needed, C# allows the use of void to be specified as the data type instead. The declaration of Main within the HelloWorld program is an example. The use of void as the return type indicates that the method is not returning any data and tells the compiler not to expect a value. void is not a data type per se, but rather an indication that there is no data being returned.

Language Contrast: C++

In both C++ and C#, void has two meanings: as a marker that a method does not return any data, and to represent a pointer to a storage location of unknown type. In C++ programs it is quite common to see pointer types like void**. C# can also represent pointers to storage locations of unknown type using the same syntax, but this usage is comparatively rare in C# and typically only encountered when writing programs that interoperate with unmanaged code libraries.

Language Contrast: Visual Basic—Returning void Is Like Defining a Subroutine

The Visual Basic equivalent of returning a void in C# is to define a subroutine (Sub/End Sub) rather than a function that returns a value.

Advanced Topic: Implicitly Typed Local Variables

C# 3.0 added a contextual keyword, var, for declaring an implicitly typed local variable. As long as the code initializes a variable at declaration time with an expression of unambiguous type, C# 3.0 and later allow for the variable data type to be implied rather than stated, as shown in Listing 2.17.

Listing 2.17. Working with Strings

Click here to view code image

class Uppercase
{
 static void Main()
 {
 System.Console.Write("Enter text: ");
 var text = System.Console.ReadLine();

 // Return a new string in uppercase
 var uppercase = text.ToUpper();

 System.Console.WriteLine(uppercase);
 }
}

This listing is different from Listing 2.15 in two ways. First, rather than using the explicit data type string for the declaration, Listing 2.17 uses var. The resultant CIL code is identical to using string explicitly. However, var indicates to the compiler that it should determine the data type from the value (System.Console.ReadLine()) that is assigned within the declaration.

Second, the variables text and uppercase are not declared without assignment at declaration time. To do so would result in an error at compile time. As mentioned earlier, via assignment the compiler retrieves the data type of the right-hand side expression and declares the variable accordingly, just as it would if the programmer specified the type explicitly.

Although using var rather than the explicit data type is allowed, consider avoiding such use when the data type is known—for example, use string for the declaration of text and uppercase. Not only does this make the code more understandable, but it also verifies that the data type returned by the right-hand side expression is the type expected. When using a var declared variable, the right-hand side data type should be obvious; if it isn’t, using the var declaration should be avoided.

var support was added to the language in C# 3.0 to support anonymous types. Anonymous types are data types that are declared “on the fly” within a method, rather than through explicit class definitions, as shown in Listing 2.18. (See Chapter 14 for more details on anonymous types.)

Listing 2.18. Implicit Local Variables with Anonymous Types

Click here to view code image

class Program
{
 static void Main()
 {
 var patent1 =
 new { Title = "Bifocals",
 YearOfPublication = "1784" };
 var patent2 =
 new { Title = "Phonograph",
 YearOfPublication = "1877" };

 System.Console.WriteLine("{0} ({1})",
 patent1.Title, patent1.YearOfPublication);
 System.Console.WriteLine("{0} ({1})",
 patent2.Title, patent1.YearOfPublication);
 }
}

The corresponding output is shown in Output 2.14.

Output 2.14.

Bifocals (1784)
Phonograph (1784)

Listing 2.18 demonstrates the anonymous type assignment to an implicitly typed (var) local variable. This type of operation provides critical functionality with C# 3.0 support for joining (associating) data types or reducing the size of a particular type down to fewer data elements.

Categories of Types

All types fall into two categories: value types and reference types. The differences between the types in each category stem from how they are copied: Value type data is always copied by value, while reference type data is always copied by reference.

Value Types

With the exception of string, all the predefined types in the book so far have been value types. Variables of value types contain the value directly. In other words, the variable refers to the same location in memory where the value is stored. Because of this, when a different variable is assigned the same value, a copy of the original variable’s value is made to the location of the new variable. A second variable of the same value type cannot refer to the same location in memory as the first variable. So changing the value of the first variable will not affect the value in the second. Figure 2.1 demonstrates this. number1 refers to a particular location in memory that contains the value 42. After assigning number1 to number2, both variables will contain the value 42. However, modifying either variable’s value will not affect the other.

[image: Image]

Figure 2.1. Value Types Contain the Data Directly

Similarly, passing a value type to a method such as Console.WriteLine() will also result in a memory copy, and any changes to the parameter inside the method will not affect the original value within the calling function. Since value types require a memory copy, they generally should be defined to consume a small amount of memory; value types should almost always be less than 16 bytes in size.

Reference Types

By contrast, the value of a variable of reference type is a reference to a storage location that contains data. Reference types store the reference where the data is located instead of storing the data directly, as value types do. Therefore, to access the data, the runtime will read the memory location out of the variable and then “jump” to the location in memory that contains the data. The memory area of the data a reference type points to is called the heap (see Figure 2.2).

[image: Image]

Figure 2.2. Reference Types Point to the Heap

A reference type does not require the same memory copy of the data that a value type does, which makes copying reference types far more efficient than copying large value types. When assigning the value of one reference type variable to another reference type variable, only the reference is copied, not the data referred to. In practice, a reference is always the same size as the “native size” of the processor: A 32-bit processor will copy a 32-bit reference and a 64-bit processor will copy a 64-bit reference, and so on. Obviously, copying the small reference to a large block of data is faster than copying the entire block, as a value type would.

Since reference types copy a reference to data, two different variables can refer to the same data. If two variables refer to the same object, changing a field of the object through one variable causes the effect to be seen when accessing the field via another variable. This happens both for assignment and for method calls. Therefore, a method can affect the data of a reference type, and that change can be observed when control returns to the caller. For this reason, a key factor when choosing between defining a reference type or a value type is whether the object is logically like an immutable value of fixed size (and therefore possibly a value type), or logically a mutable thing that can be referred to (and therefore likely to be a reference type).

Besides string and any custom classes such as Program, all types discussed so far are value types. However, most types are reference types. Although it is possible to define custom value types, it is relatively rare to do so in comparison to the number of custom reference types.

Nullable Modifier

Value types cannot usually be assigned null because, by definition, they can’t contain references, including references to nothing. However, this presents a problem because we frequently wish to represent values that are “missing.” When specifying a count, for example, what do you enter if the count is unknown? One possible solution is to designate a “magic” value, such as -1 or int.MaxValue, but these are valid integers. Rather, it is desirable to assign null to the value type because this is not a valid integer.

To declare variables of value type that can store null you use the nullable modifier, ?. This feature, which was introduced with C# 2.0, appears in Listing 2.19.

Listing 2.19. Using the Nullable Modifier

static void Main()
{
 int? count = null;
 do
 {
 // ...
 }
 while(count == null);
}

Assigning null to value types is especially attractive in database programming. Frequently, value type columns in database tables allow nulls. Retrieving such columns and assigning them to corresponding fields within C# code is problematic, unless the fields can contain null as well. Fortunately, the nullable modifier is designed to handle such a scenario specifically.

Conversions between Data Types

Given the thousands of types predefined in the various CLI implementations and the unlimited number of types that code can define, it is important that types support conversion from one to another where it makes sense. The most common operation that results in a conversion is casting.

Consider the conversion between two numerical types: converting from a variable of type long to a variable of type int. A long type can contain values as large as 9,223,372,036,854,775,808; however, the maximum size of an int is 2,147,483,647. As such, that conversion could result in a loss of data—for example, if the variable of type long contains a value greater than the maximum size of an int. Any conversion that could result in a loss of magnitude or an exception because the conversion failed requires an explicit cast. Conversely, a conversion operation that will not lose magnitude and will not throw an exception regardless of the operand types is an implicit conversion.

Explicit Cast

In C#, you cast using the cast operator. By specifying the type you would like the variable converted to within parentheses, you acknowledge that if an explicit cast is occurring, there may be a loss of precision and data, or an exception may result. The code in Listing 2.20 converts a long to an int and explicitly tells the system to attempt the operation.

Listing 2.20. Explicit Cast Example

[image: Image]

With the cast operator, the programmer essentially says to the compiler, “Trust me, I know what I am doing. I know that the value will fit into the target type.” Making such a choice will cause the compiler to allow the conversion. However, with an explicit conversion, there is still a chance that an error, in the form of an exception, might occur while executing if the data does not convert successfully. It is, therefore, the programmer’s responsibility to ensure the data will successfully convert, or else to provide the necessary error-handling code when it doesn’t.

Advanced Topic: Checked and Unchecked Conversions

C# provides special keywords for marking a code block to indicate what should happen if the target data type is too small to contain the assigned data. By default, if the target data type cannot contain the assigned data, the data will truncate during assignment. For an example, see Listing 2.21.

Listing 2.21. Overflowing an Integer Value

public class Program
{
 public static void Main()
 {
 // int.MaxValue equals 2147483647
 int n = int.MaxValue;
 n = n + 1 ;
 System.Console.WriteLine(n);
 }
}

Output 2.15 shows the results.

Output 2.15.

-2147483648

Listing 2.21 writes the value -2147483648 to the console. However, placing the code within a checked block, or using the checked option when running the compiler, will cause the runtime to throw an exception of type System.OverflowException. The syntax for a checked block uses the checked keyword, as shown in Listing 2.22.

Listing 2.22. A Checked Block Example

Click here to view code image

public class Program
{
 public static void Main()
 {

 checked
 {

 // int.MaxValue equals 2147483647
 int n = int.MaxValue;
 n = n + 1 ;
 System.Console.WriteLine(n);
 }

 }
}

Output 2.16 shows the results.

Output 2.16.

Click here to view code image

Unhandled Exception: System.OverflowException: Arithmetic operation
resulted in an overflow at Program.Main() in ...Program.cs:line 12

The result is that an exception is thrown if, within the checked block, an overflow assignment occurs at runtime.

The C# compiler provides a command-line option for changing the default checked behavior from unchecked to checked. C# also supports an unchecked block that overflows the data instead of throwing an exception for assignments within the block (see Listing 2.23).

Listing 2.23. An Unchecked Block Example

Click here to view code image

using System;

public class Program
{
 public static void Main()
 {
 unchecked
 {
 // int.MaxValue equals 2147483647
 int n = int.MaxValue;
 n = n + 1 ;
 System.Console.WriteLine(n);
 }
 }
}

Output 2.17 shows the results.

Output 2.17.

-2147483648

Even if the checked option is on during compilation, the unchecked keyword in the preceding code will prevent the runtime from throwing an exception during execution.

You cannot convert any type to any other type simply because you designate the conversion explicitly using the cast operator. The compiler will still check that the operation is valid. For example, you cannot convert a long to a bool. No such conversion is defined, and therefore, the compiler does not allow such a cast.

Language Contrast: Converting Numbers to Booleans

It may be surprising that there is no valid cast from a numeric type to a Boolean type, since this is common in many other languages. The reason no such conversion exists in C# is to avoid any ambiguity, such as whether –1 corresponds to true or false. More importantly, as you will see in the next chapter, this also reduces the chance of using the assignment operator in place of the equality operator (avoiding if(x=42){...} when if(x==42){...} was intended, for example).

Implicit Conversion

In other instances, such as going from an int type to a long type, there is no loss of precision and there will be no fundamental change in the value of the type. In these cases, code needs only to specify the assignment operator and the conversion is implicit. In other words, the compiler is able to determine that such a conversion will work correctly. The code in Listing 2.24 converts from an int to a long by simply using the assignment operator.

Listing 2.24. Not Using the Cast Operator for an Implicit Cast

int intNumber = 31416;
long longNumber = intNumber;

Even when no explicit cast operator is required (because an implicit conversion is allowed), it is still possible to include the cast operator (see Listing 2.25).

Listing 2.25. Using the Cast Operator for an Implicit Cast

int intNumber = 31416;
long longNumber = (long) intNumber;

Type Conversion without Casting

No conversion is defined from a string to a numeric type, so methods such as Parse() are required. Each numeric data type includes a Parse() function that enables conversion from a string to the corresponding numeric type. Listing 2.26 demonstrates this call.

Listing 2.26. Using int.Parse() to Convert a string to a Numeric Data Type

string text = "9.11E-31";
float kgElectronMass = float.Parse(text);

Another special type is available for converting one type to the next. The type is System.Convert and an example of its use appears in Listing 2.27.

Listing 2.27. Type Conversion Using System.Convert

Click here to view code image

string middleCText = "261.626";
double middleC = System.Convert.ToDouble(middleCText);
bool boolean = System.Convert.ToBoolean(middleC);

System.Convert supports only a predefined number of types and it is not extensible. It allows conversion from any primitive type (bool, char, sbyte, short, int, long, ushort, uint, ulong, float, double, decimal, DateTime, and string) to any other primitive type.

Furthermore, all types support a ToString() method that can be used to provide a string representation of a type. Listing 2.28 demonstrates how to use this method. The resultant output is shown in Output 2.18.

Listing 2.28. Using ToString() to Convert to a string

bool boolean = true;
string text = boolean.ToString();
// Display "True"
System.Console.WriteLine(text);

Output 2.18.

True

For the majority of types, the ToString() method will return the name of the data type rather than a string representation of the data. The string representation is returned only if the type has an explicit implementation of ToString(). One last point to make is that it is possible to code custom conversion methods, and many such methods are available for classes in the runtime.

Advanced Topic: TryParse()

Starting with C# 2.0 (.NET 2.0), all the numeric primitive types include a static TryParse() method. This method is very similar to the Parse() method, except that instead of throwing an exception if the conversion fails, the TryParse() method returns false, as demonstrated in Listing 2.29.

Listing 2.29. Using TryParse() in Place of an Invalid Cast Exception

Click here to view code image

double number;
string input;

System.Console.Write("Enter a number: ");
input = System.Console.ReadLine();

if (double.TryParse(input, out number))
{
 // Converted correctly, now use number
 // ...
}
else

{
 System.Console.WriteLine(
 "The text entered was not a valid number.");
}

Output 2.19 shows the results of Listing 2.27.

Output 2.19.

Enter a number: forty-two
The text entered was not a valid number.

The resultant value the code parses from the input string is returned via an out parameter—in this case, number.

The key difference between Parse() and TryParse() is the fact that TryParse() won’t throw an exception if it fails. Frequently, the conversion from a string to a numeric type depends on a user entering the text. It is expected, in such scenarios, that the user will enter invalid data that will not parse successfully. By using TryParse() rather than Parse(), you can avoid throwing exceptions in expected situations. (The expected situation in this case is that the user will enter invalid data and we try to avoid throwing exceptions for expected scenarios.)

Arrays

One particular aspect of variable declaration that Chapter 1 didn’t cover is array declaration. With array declaration, you can store multiple items of the same type using a single variable and still access them individually using the index when required. In C#, the array index starts at zero. Therefore, arrays in C# are zero-based.

Beginner Topic: Arrays

Arrays provide a means of declaring a collection of data items that are of the same type using a single variable. Each item within the array is uniquely designated using an integer value called the index. The first item in a C# array is accessed using index 0. Programmers should be careful to specify an index value that is less than the array size. Since C# arrays are zero-based, the index for the last element in an array is one less than the total number of items in the array.

For beginners, it is helpful sometimes to think of the index as an offset. The first item is zero away from the start of the array. The second item is one away from the start of the array—and so on.

Arrays are a fundamental part of nearly every programming language, so they are required learning for virtually all developers. Though arrays are frequently used in C# programming, and necessary for the beginner to understand, most programs now use generic collection types rather than arrays when storing collections of data. Therefore, readers should skim over the following section, Declaring an Array, simply to become familiar with their instantiation and assignment rather. Table 2.7 provides the highlights of what to note. Generic collections will be covered in detail in Chapter 14.

Table 2.7. Array Highlights

[image: Image]

In addition, the final section of the chapter, Common Array Errors, provides a review of some of the array idiosyncrasies.

Declaring an Array

In C#, you declare arrays using square brackets. First, you specify the element type of the array, followed by open and closed square brackets; then you enter the name of the variable. Listing 2.30 declares a variable called languages to be an array of strings.

Listing 2.30. Declaring an Array

string[] languages;

Obviously, the first part of the array identifies the data type of the elements within the array. The square brackets that are part of the declaration identify the rank, or the number of dimensions, for the array; in this case, it is an array of rank one. These two pieces form the data type for the variable languages.

Language Contrast: C++ and Java—Array Declaration

The square brackets for an array in C# appear immediately following the data type instead of after the variable declaration. This keeps all the type information together instead of splitting it up both before and after the identifier, as occurs in C++ and Java.

Listing 2.30 defines an array with a rank of one. Commas within the square brackets define additional dimensions. Listing 2.31, for example, defines a two-dimensional array of cells for a game of chess or tic-tac-toe.

Listing 2.31. Declaring a Two-Dimensional Array

// | |
// ---+---+---
// | |
// ---+---+---
// | |
int[,] cells;

In Listing 2.31, the array has a rank of two. The first dimension could correspond to cells going across and the second dimension represents cells going down. Additional dimensions are added, with additional commas, and the total rank is one more than the number of commas. Note that the number of items that occur for a particular dimension is not part of the variable declaration. This is specified when creating (instantiating) the array and allocating space for each element.

Instantiating and Assigning Arrays

Once an array is declared, you can immediately fill its values using a comma-delimited list of items enclosed within a pair of curly braces. Listing 2.32 declares an array of strings and then assigns the names of nine languages within curly braces.

Listing 2.32. Array Declaration with Assignment

Click here to view code image

string[] languages = { "C#", "COBOL", "Java",
 "C++", "Visual Basic", "Pascal",
 "Fortran", "Lisp", "J#"};

The first item in the comma-delimited list becomes the first item in the array; the second item in the list becomes the second item in the array, and so on. The curly brackets are the notation for defining an array literal.

The assignment syntax shown in Listing 2.32 is available only if you declare and assign the value within one statement. To assign the value after declaration requires the use of the keyword new as shown in Listing 2.33.

Listing 2.33. Array Assignment Following Declaration

Click here to view code image

string[] languages;
languages = new string[]{"C#", "COBOL", "Java",
 "C++", "Visual Basic", "Pascal",
 "Fortran", "Lisp", "J#" };

Starting in C# 3.0, specifying the data type of the array (string) following new is optional as long as the compiler is able to deduce the element type of the array from the types of the elements in the array initializer. The square brackets are still required.

C# also allows use of the new keyword as part of the declaration statement, so it allows the assignment and the declaration shown in Listing 2.34.

Listing 2.34. Array Assignment with new during Declaration

string[] languages = new string[]{
 "C#", "COBOL", "Java",
 "C++", "Visual Basic", "Pascal",
 "Fortran", "Lisp", "J#"};

The use of the new keyword tells the runtime to allocate memory for the data type. It instructs the runtime to instantiate the data type—in this case, an array.

Whenever you use the new keyword as part of an array assignment, you may also specify the size of the array within the square brackets. Listing 2.35 demonstrates this syntax.

Listing 2.35. Declaration and Assignment with the new Keyword

string[] languages = new string[9]{
 "C#", "COBOL", "Java",
 "C++", "Visual Basic", "Pascal",
 "Fortran", "Lisp", "J#"};

The array size in the initialization statement and the number of elements contained within the curly braces must match. Furthermore, it is possible to assign an array but not specify the initial values of the array, as demonstrated in Listing 2.36.

Listing 2.36. Assigning without Literal Values

string[] languages = new string[9];

Assigning an array but not initializing the initial values will still initialize each element. The runtime initializes elements to their default values, as follows.

• Reference types (such as string) are initialized to null.

• Numeric types are initialized to zero.

• bool is initialized to false.

• char is initialized to \0.

Nonprimitive value types are recursively initialized by initializing each of their fields to their default values. As a result, it is not necessary to individually assign each element of an array before using it.

In C# 2.0, it is possible to use the default() operator to produce the default value of a data type. default() takes a data type as a parameter. default(int), for example, produces 0 and default(bool) produces false.

Because the array size is not included as part of the variable declaration, it is possible to specify the size at runtime. For example, Listing 2.37 creates an array based on the size specified in the Console.ReadLine() call.

Listing 2.37. Defining the Array Size at Runtime

Click here to view code image

string[] groceryList;
System.Console.Write("How many items on the list? ");
int size = int.Parse(System.Console.ReadLine());

groceryList = new string[size];

// ...

C# initializes multidimensional arrays similarly. A comma separates the size of each rank. Listing 2.38 initializes a tic-tac-toe board with no moves.

Listing 2.38. Declaring a Two-Dimensional Array

int[,] cells = int[3,3];

Initializing a tic-tac-toe board with a specific position instead could be done as shown in Listing 2.39.

Listing 2.39. Initializing a Two-Dimensional Array of Integers

int[,] cells = {
 {1, 0, 2},
 {1, 2, 0},
 {1, 2, 1}
 };

The initialization follows the pattern in which there is an array of three elements of type int[], and each element has the same size; in this example, the size is 3. Note that the sizes of each int[] element must all be identical. The declaration shown in Listing 2.40, therefore, is not valid.

Listing 2.40. A Multidimensional Array with Inconsistent Size, Causing an Error

Click here to view code image

// ERROR: Each dimension must be consistently sized.
int[,] cells = {
 {1, 0, 2, 0},
 {1, 2, 0},
 {1, 2}
 {1}
 };

Representing tic-tac-toe does not require an integer in each position. One alternative is a separate virtual board for each player, and with each board containing a bool that indicates which positions the players selected. Listing 2.41 corresponds to a three-dimensional board.

Listing 2.41. Initializing a Three-Dimensional Array

Click here to view code image

bool[,,] cells;
cells = new bool[2,3,3]
 {
 // Player 1 moves // X | |
 { {true, false, false}, // ---+---+---
 {true, false, false}, // X | |
 {true, false, true} }, // ---+---+---
 // X | | X

 // Player 2 moves // | | O
 { {false, false, true}, // ---+---+---
 {false, true, false}, // | O |
 {false, true, true} } // ---+---+---
 // | O |
 };

In this example, the board is initialized and the size of each rank is explicitly identified. In addition to identifying the size as part of the new expression, the literal values for the array are provided. The literal values of type bool[,,] are broken into two arrays of type bool[,], size 3x3. Each two-dimensional array is composed of three bool arrays, size 3.

As already mentioned, each dimension in a multidimensional array must be consistently sized. However, it is also possible to define a jagged array, which is an array of arrays. Jagged array syntax is slightly different from that of a multidimensional array, and furthermore, jagged arrays do not need to be consistently sized. Therefore, it is possible to initialize a jagged array as shown in Listing 2.42.

Listing 2.42. Initializing a Jagged Array

int[][] cells = {
 new int[]{1, 0, 2, 0},
 new int[]{1, 2, 0},
 new int[]{1, 2},
 new int[]{1}
};

A jagged array doesn’t use a comma to identify a new dimension. Rather, a jagged array defines an array of arrays. In Listing 2.42, [] is placed after the data type int[], thereby declaring an array of type int[].

Notice that a jagged array requires an array instance (or null) for each internal array. In this example, you use new to instantiate the internal element of the jagged arrays. Leaving out the instantiation would cause a compile error.

Using an Array

You access a specific item in an array using the square bracket notation, known as the array accessor. To retrieve the first item from an array, you specify zero as the index. In Listing 2.43, the value of the fifth item (using the index 4 because the first item is index 0) in the languages variable is stored in the variable language.

Listing 2.43. Declaring and Accessing an Array

Click here to view code image

string[] languages = new string[9]{
 "C#", "COBOL", "Java",
 "C++", "Visual Basic", "Pascal",
 "Fortran", "Lisp", "J#"};
// Retrieve 3rd item in languages array (Java)
string language = languages[4];

The square bracket notation is also used to store data into an array. Listing 2.44 switches the order of "C++" and "Java".

Listing 2.44. Swapping Data between Positions in an Array

Click here to view code image

string[] languages = new string[9]{
 "C#", "COBOL", "Java",
 "C++", "Visual Basic", "Pascal",
 "Fortran", "Lisp", "J#"};
// Save "C++" to variable called language.
string language = languages[3];
// Assign "Java" to the C++ position.
languages[3] = languages[2];
// Assign language to location of "Java".
languages[2] = language;

For multidimensional arrays, an element is identified with an index for each dimension, as shown in Listing 2.45.

Listing 2.45. Initializing a Two-Dimensional Array of Integers

Click here to view code image

int[,] cells = {
 {1, 0, 2},
 {0, 2, 0},
 {1, 2, 1}
 };
// Set the winning tic-tac-toe move to be player 1.
cells[1,0] = 1;

Jagged array element assignment is slightly different because it is consistent with the jagged array declaration. The first element is an array within the array of arrays. The second index specifies the item within the selected array element (see Listing 2.46).

Listing 2.46. Declaring a Jagged Array

int[][] cells = {
 new int[]{1, 0, 2},
 new int[]{0, 2, 0},
 new int[]{1, 2, 1}
};

cells[1][0] = 1;
// ...

Length

You can obtain the length of an array, as shown in Listing 2.47.

Listing 2.47. Retrieving the Length of an Array

Click here to view code image

Console.WriteLine("There are {0} languages in the array.",
 languages.Length);

Arrays have a fixed length; they are bound such that the length cannot be changed without re-creating the array. Furthermore, overstepping the bounds (or length) of the array will cause the runtime to report an error. This can occur by accessing (either retrieving or assigning) the array with an index for which no element exists in the array. Such an error frequently occurs when you use the array length as an index into the array, as shown in Listing 2.48.

Listing 2.48. Accessing Outside the Bounds of an Array, Throwing an Exception

Click here to view code image

string languages = new string[9];
...
// RUNTIME ERROR: index out of bounds – should
// be 8 for the last element
languages[4] = languages[9];

Note

The Length member returns the number of items in the array, not the highest index. The Length member for the languages variable is 9, but the highest index for the languages variable is 8, because that is how far it is from the start.

Language Contrast: C++—Buffer Overflow Bugs

Unmanaged C++ does not always check whether you overstep the bounds on an array. Not only can this be difficult to debug, but making this mistake can also result in a potential security error called a buffer overrun. In contrast, the Common Language Runtime protects all C# (and Managed C++) code from overstepping array bounds, virtually eliminating the possibility of a buffer overrun issue in managed code.

It is a good practice to use Length in place of the hardcoded array size. To use Length as an index, for example, it is necessary to subtract 1 to avoid an out-of-bounds error (see Listing 2.49).

Listing 2.49. Using Length - 1 in the Array Index

Click here to view code image

string languages = new string[9];
...
languages[4] = languages[languages.Length - 1];

To avoid overstepping the bounds on an array use a length check to verify it has a length greater than 0 as well as using Length – 1 in place of a hardcoded value when accessing the last item in the array (see Listing 2.49).

Length returns the total number of elements in an array. Therefore, if you had a multidimensional array such as bool cells[,,] of size 2.3.3, Length would return the total number of elements, 18.

For a jagged array, Length returns the number of elements in the first array—a jagged array is an array of arrays, so Length evaluates only the outside, containing array and returns its element count, regardless of what is inside the internal arrays.

More Array Methods

Arrays include additional methods for manipulating the elements within the array. These include Sort(), BinarySearch(), Reverse(), and Clear() (see Listing 2.50).

Listing 2.50. Additional Array Methods

Click here to view code image

class ProgrammingLanguages
{
 static void Main()
 {
 string[] languages = new string[]{
 "C#", "COBOL", "Java",
 "C++", "Visual Basic", "Pascal",
 "Fortran", "Lisp", "J#"};

 System.Array.Sort(languages);

 string searchString = "COBOL";

 int index = System.Array.BinarySearch(
 languages, searchString);

 System.Console.WriteLine(
 "The wave of the future, {0}, is at index {1}.",
 searchString, index);

 System.Console.WriteLine();
 System.Console.WriteLine("{0,-20}\t{1,-20}",
 "First Element", "Last Element");
 System.Console.WriteLine("{0,-20}\t{1,-20}",
 "-------------", "------------");
 System.Console.WriteLine("{0,-20}\t{1,-20}",
 languages[0], languages[languages.Length-1]);

 System.Array.Reverse(languages);

 System.Console.WriteLine("{0,-20}\t{1,-20}",
 languages[0], languages[languages.Length-1]);

 // Note this does not remove all items from the array.
 // Rather it sets each item to the type's default value.

 System.Array.Clear(languages, 0, languages.Length);

 System.Console.WriteLine("{0,-20}\t{1,-20}",
 languages[0], languages[languages.Length-1]);
 System.Console.WriteLine(
 "After clearing, the array size is: {0}",
 languages.Length);
 }
}

The results of Listing 2.50 are shown in Output 2.20.

Output 2.20.

Click here to view code image

The wave of the future, COBOL, is at index 1.

First Element Last Element
------------- ------------
C# Visual Basic
Visual Basic C#

After clearing, the array size is: 9

Access to these methods is on the System.Array class. For the most part, using these methods is self-explanatory, except for two noteworthy items.

• Before using the BinarySearch() method, it is important to sort the array. If values are not sorted in increasing order, the incorrect index may be returned. If the search element does not exist, the value returned is negative. (Using the complement operator, ~index, returns the first index, if any, that is larger than the searched value.)

• The Clear() method does not remove elements of the array and does not set the length to zero. The array size is fixed and cannot be modified. Therefore, the Clear() method sets each element in the array to its default value (false, 0, or null). This explains why Console.WriteLine() creates a blank line when writing out the array after Clear() is called.

Language Contrast: Visual Basic—Redimensioning Arrays

Visual Basic includes a Redim statement for changing the number of items in an array. Although there is no equivalent C# specific keyword, there is a method available in .NET 2.0 that will re-create the array and then copy all the elements over to the new array. The method is called System.Array.Resize.

Array Instance Methods

Like strings, arrays have instance members that are accessed not from the data type, but directly from the variable. Length is an example of an instance member because access to Length is through the array variable, not the class. Other significant instance members are GetLength(), Rank, and Clone().

Retrieving the length of a particular dimension does not require the Length property. To retrieve the size of a particular rank, an array includes a GetLength() instance method. When calling this method, it is necessary to specify the rank whose length will be returned (see Listing 2.51).

Listing 2.51. Retrieving a Particular Dimension’s Size

Click here to view code image

bool[,,] cells;
cells = new bool[2,3,3];
System.Console.WriteLine(cells.GetLength(0)); // Displays 2

The results of Listing 2.51 appear in Output 2.21.

Output 2.21.

2

Listing 2.51 displays 2 because this is the number of elements in the first dimension.

It is also possible to retrieve the entire array’s rank by accessing the array’s Rank member. cells.Rank, for example, will return 3.

By default, assigning one array variable to another copies only the array reference, not the individual elements of the array. To make an entirely new copy of the array, use the array’s Clone() method. The Clone() method will return a copy of the array; changing any of the members of this new array will not affect the members of the original array.

Strings As Arrays

Variables of type string are accessible like an array of characters. For example, to retrieve the fourth character of a string called palindrome you can call palindrome[3]. Note, however, that because strings are immutable, it is not possible to assign particular characters within a string. C#, therefore, would not allow palindrome[3]='a', where palindrome is declared as a string. Listing 2.52 uses the array accessor to determine whether an argument on the command line is an option, where an option is identified by a dash as the first character.

Listing 2.52. Looking for Command-Line Options

string[] args;
...
if(args[0][0]=='-')
{
 //This parameter is an option
}

This snippet uses the if statement, which is covered in Chapter 3. In addition, it presents an interesting example because you use the array accessor to retrieve the first element in the array of strings, args. Following the first array accessor is a second one, this time to retrieve the first character of the string. The code, therefore, is equivalent to that shown in Listing 2.53.

Listing 2.53. Looking for Command-Line Options (Simplified)

string[] args;
...
string arg = args[0];
if(arg[0] == '-')
{
 //This parameter is an option
}

Not only can string characters be accessed individually using the array accessor, but it is also possible to retrieve the entire string as an array of characters using the string’s ToCharArray() method. Using this method, you could reverse the string using the System.Array.Reverse() method, as demonstrated in Listing 2.54, which determines whether a string is a palindrome.

Listing 2.54. Reversing a String

Click here to view code image

class Palindrome
{
 static void Main()
 {
 string reverse, palindrome;
 char[] temp;

 System.Console.Write("Enter a palindrome: ");
 palindrome = System.Console.ReadLine();

 // Remove spaces and convert to lowercase
 reverse = palindrome.Replace(" ", "");
 reverse = reverse.ToLower();

 // Convert to an array
 temp = reverse.ToCharArray();

 // Reverse the array
 System.Array.Reverse(temp);

 // Convert the array back to a string and
 // check if reverse string is the same.
 if(reverse == new string(temp))
 {
 System.Console.WriteLine("\"{0}\" is a palindrome.",
 palindrome);
 }
 else
 {
 System.Console.WriteLine(
 "\"{0}\" is NOT a palindrome.",
 palindrome);
 }
 }
}

The results of Listing 2.54 appear in Output 2.22.

Output 2.22.

Enter a palindrome: NeverOddOrEven
"NeverOddOrEven" is a palindrome.

This example uses the new keyword; this time, it creates a new string from the reversed array of characters.

Common Array Errors

This section introduced the three different types of arrays: single-dimension, multidimensional, and jagged arrays. Several rules and idiosyncrasies govern array declaration and use. Table 2.8 points out some of the most common errors and helps solidify the rules. Readers should consider reviewing the code in the Common Mistake column first (without looking at the Error Description and Corrected Code columns) as a way of verifying their understanding of arrays and their syntax.

Table 2.8. Common Array Coding Errors

[image: Image]

Summary

Even for experienced programmers, C# introduces several new programming constructs. For example, as part of the section on data types, this chapter covered the type decimal that can be used accurately for financial calculations. In addition, the chapter introduced the fact that the Boolean type, bool, does not convert implicitly to or from an integer, thereby preventing the mistaken use of the assignment operator in a conditional expression. Other unique characteristics of C# from many of its predecessors are the @ verbatim string qualifier that forces a string to ignore the escape character and the fact that the string data type is immutable.

C# permits both implicit and explicit conversions (that is, conversions that require a cast operation) to convert expressions to a given data type. In the following chapters, you will learn how to define customized conversion operators on your own types.

This chapter closed with coverage of C# syntax for arrays, along with the various means of manipulating arrays. For many developers, the syntax can become rather daunting at first, so the section included a list of the common errors associated with coding arrays.

The next chapter looks at expressions and control flow statements. The if statement, which appeared a few times toward the end of this chapter, is discussed as well.

3. Operators and Control Flow

In this chapter, you will learn about operators, control flow statements, and the C# preprocessor. Operators provide syntax for performing different calculations or actions appropriate for the operands within the calculation. Control flow statements provide the means for conditional logic within a program or looping over a section of code multiple times. After introducing the if control flow statement, the chapter looks at the concept of Boolean expressions, which are embedded within many control flow statements. Included is mention of how integers will not cast (even explicitly) to bool and the advantages of this restriction. The chapter ends with a discussion of the C# preprocessor directives.

[image: Image]

Operators

Now that you have been introduced to the predefined data types (refer to Chapter 2), you can begin to learn more about how to use these data types in combination with operators in order to perform calculations. For example, you can make calculations on variables that you have declared.

Beginner Topic: Operators

Operators are used to perform mathematical or logical operations on values (or variables) called operands to produce a new value, called the result. For example, in Listing 3.1 the subtraction operator, -, is used to subtract two operands, the numbers 4 and 2. The result of the subtraction is stored in the variable difference.

Listing 3.1. A Simple Operator Example

int difference = 4 – 2;

Operators are generally broken down into three categories: unary, binary, and ternary, corresponding to the number of operands 1, 2, and 3, respectively. This section covers some of the most basic unary and binary operators. Introduction to the ternary operator appears later in the chapter.

Plus and Minus Unary Operators (+, -)

Sometimes you may want to change the sign of a numerical value. In these cases, the unary minus operator (-) comes in handy. For example, Listing 3.2 changes the total current U.S. debt to a negative value to indicate that it is an amount owed.

Listing 3.2. Specifying Negative Values1

//National Debt to the Penny
decimal debt = -15236332233848.35M;

Using the minus operator is equivalent to subtracting the operand from zero.

The unary plus operator (+) rarely2 has any effect on a value. It is a superfluous addition to the C# language and was included for the sake of symmetry.

Arithmetic Binary Operators (+, -, *, /, %)

Binary operators require two operands. C# uses infix notation for binary operators: The operator appears between the left and right operands. The result of every binary operator other than assignment must be used somehow: for example, by using it as an operand in another expression such as an assignment.

Language Contrast: C++—Operator-Only Statements

In contrast to the rule mentioned above, C++ will allow a single binary expression to form the entirety of a statement, such as 4+5;, to compile. In C#, only call, increment, decrement, and object creation expressions are allowed to be the entirety of a statement.

The subtraction example in Listing 3.3 is an example of a binary operator—more specifically, an arithmetic binary operator. The operands appear on each side of the arithmetic operator and then the calculated value is assigned. The other arithmetic binary operators are addition (+), division (/), multiplication (*), and remainder (%)—sometimes called the mod operator.

Listing 3.3. Using Binary Operators

Click here to view code image

class Division
{
 static void Main()
 {
 int numerator;
 int denominator;
 int quotient;
 int remainder;

 System.Console.Write("Enter the numerator: ");
 numerator = int.Parse(System.Console.ReadLine());

 System.Console.Write("Enter the denominator: ");
 denominator = int.Parse(System.Console.ReadLine());

 quotient = numerator / denominator;
 remainder = numerator % denominator;

 System.Console.WriteLine(
 "{0} / {1} = {2} with remainder {3}",
 numerator, denominator, quotient, remainder);
 }
}

Output 3.1 shows the results of Listing 3.3.

Output 3.1.

Enter the numerator: 23
Enter the denominator: 3
23 / 3 = 7 with remainder 2

In the highlighted assignment statements above, the division and remainder operations are executed before the assignments. The order in which operators are executed is determined by their precedence and associativity. The precedence for the operators used so far is as follows.

1. *, /, and % have highest precedence.

2. + and - have lower precedence.

3. = has the lowest precedence of these six operators.

Therefore, you can assume that the statement behaves as expected, with the division and remainder operators executing before the assignment.

If you forget to assign the result of one of these binary operators, you will receive the compile error shown in Output 3.2.

Output 3.2.

Click here to view code image

... error CS0201: Only assignment, call, increment, decrement,
and new object expressions can be used as a statement

Beginner Topic: Parentheses, Associativity, Precedence, and Evaluation

When an expression contains multiple operators it can be unclear what precisely the operands of each operator are. For example, in the expression x+y*z clearly the expression x is an operand of the addition and z is an operand of the multiplication. But is y an operand of the addition or the multiplication?

Parentheses allow you to unambiguously associate an operand with its operator. If you wish y to be a summand, you can write the expression as (x+y)*z; if you want it to be a multiplicand, you can write x+(y*z).

However, C# does not require you to parenthesize every expression containing more than one operator; instead, the compiler can use associativity and precedence to figure out from the context what parentheses you have omitted. Associativity determines how similar operators are parenthesized; precedence determines how dissimilar operators are parenthesized.

A binary operator may be “left-associative” or “right-associative,” depending on whether the expression “in the middle” belongs to the operator on the left or the right. For example, a-b-c is assumed to mean (a-b)-c, and not a-(b-c); subtraction is therefore said to be “left-associative.” Most operators in C# are left-associative; the assignment operators are right-associative.

When the operators are dissimilar, the precedence for those operators is used to determine which side the operand in the middle belongs to. For example, multiplication has higher precedence than addition, and therefore, the expression x+y*z is evaluated as x+(y*z) rather than (x+y)*z.

It is often still a good practice to use parentheses to make the code more readable even when use of parentheses does not change the meaning of the expression. For example, when performing a Celsius-to-Fahrenheit temperature conversion, (c*9.0/5.0)+32.0 is easier to read than c*9.0/5.0+32.0, even though the parentheses are completely unnecessary.

Guidelines

DO use parentheses to make code more readable, particularly if the operator precedence is not clear to the casual reader.

Clearly, operators of higher precedence must execute before adjoining operators of lower precedence: in x+y*z the multiplication must be executed before the addition because the result of the multiplication is the left-hand operand of the addition. However, it is important to realize that precedence and associativity affect only the order in which the operators themselves are executed; they do not in any way affect the order in which the operands are evaluated.

Operands are always evaluated left-to-right in C#. In an expression with three method calls such as A()+B()*C(), first A() is evaluated, then B(), then C(), then the multiplication operator determines the product, and then the addition operator determines the sum. Just because C() is involved in a multiplication and A() is involved in a lower-precedence addition does not imply that method invocation C() happens before method invocation A().

Language Contrast: C++: Evaluation Order of Operands

In contrast to the rule mentioned above, the C++ specification allows an implementation broad latitude to decide the evaluation order of operands. When given an expression such as A()+B()*C(), a C++ compiler can choose to evaluate the function calls in any order, just so long as the product is one of the summands. For example, a legal compiler could evaluate B(), then A(), then C(), then the product, and then the sum.

Using the Addition Operator with Strings

Operators can also work with non-numeric operands. For example, it is possible to use the addition operator to concatenate two or more strings, as shown in Listing 3.4.

Listing 3.4. Using Binary Operators with Non-Numeric Types

Click here to view code image

class FortyTwo
{
 static void Main()
 {
 short windSpeed = 42;
 System.Console.WriteLine(
 "The original Tacoma Bridge in Washington\nwas "
 + "brought down by a "
 + windSpeed + " mile/hour wind.");
 }
}

Output 3.3 shows the results of Listing 3.4.

Output 3.3.

Click here to view code image

The original Tacoma Bridge in Washington
was brought down by a 42 mile/hour wind.

Because sentence structure varies among languages in different cultures, developers should be careful not to use the addition operator with strings that require localization. Composite formatting is preferred (refer to Chapter 1).

Guidelines

DO favor composite formatting over the addition operator for concatenating strings.

Using Characters in Arithmetic Operations

When introducing the char type in the preceding chapter, we mentioned that even though it stores characters and not numbers, the char type is an integral type (“integral” means it is based on an integer). It can participate in arithmetic operations with other integer types. However, interpretation of the value of the char type is not based on the character stored within it, but rather on its underlying value. The digit 3, for example, contains a Unicode value of 0x33 (hexadecimal), which in base 10 is 51. The digit 4, on the other hand, contains a Unicode value of 0x34, or 52 in base 10. Adding 3 and 4 in Listing 3.5 results in a hexadecimal value of 0x167, or 103 in base 10, which is equivalent to the letter g.

Listing 3.5. Using the Plus Operator with the char Data Type

Click here to view code image

int n = '3' + '4';
char c = (char)n;
System.Console.WriteLine(c); // Writes out g.

Output 3.4 shows the results of Listing 3.5.

Output 3.4.

g

You can use this trait of character types to determine how far two characters are from each other. For example, the letter f is three characters away from the letter c. You can determine this value by subtracting the letter c from the letter f, as Listing 3.6 demonstrates.

Listing 3.6. Determining the Character Difference between Two Characters

int distance = 'f' – 'c';
System.Console.WriteLine(distance);

Output 3.5 shows the results of Listing 3.6.

Output 3.5.

3

Special Floating-Point Characteristics

The binary floating-point types, float and double, have some special characteristics, such as the way they handle precision. This section looks at some specific examples, as well as some unique floating-point type characteristics.

A float, with seven decimal digits of precision, can hold the value 1,234,567 and the value 0.1234567. However, if you add these two floats together, the result will be rounded to 1234567, because the exact result requires more precision than the seven significant digits that a float can hold. The error introduced by rounding off to seven digits can become large compared to the value computed, especially with repeated calculations. (See also the upcoming Advanced Topic, Unexpected Inequality with Floating-Point Types.)

Note that internally the binary floating-point types actually store a binary fraction, not a decimal fraction. This means that “representation error” inaccuracies can occur with a simple assignment, such as double number = 140.6F. The exact value of 140.6 is the fraction 703/5, but the denominator of that fraction is not a power of two, and therefore, it cannot be represented exactly by a binary floating-point number. The value actually represented is the closest fraction with a power of two in the denominator that will fit into the 16 bits of a float.

Since the double can hold a more accurate value than the float can store, the C# compiler will actually evaluate this expression to double number = 140.600006103516 because 140.600006103516 is the closest binary fraction to 140.6 as a float. This fraction is slightly larger than 140.6 when represented as a double.

Guidelines

AVOID binary floating-point types when exact decimal arithmetic is required; use the decimal floating-point type instead.

Advanced Topic: Unexpected Inequality with Floating-Point Types

Because floating-point numbers can be unexpectedly rounded off to non-decimal fractions, comparing floating-point values for equality can be quite confusing. Consider Listing 3.7.

Listing 3.7. Unexpected Inequality Due to Floating-Point Inaccuracies

Click here to view code image

decimal decimalNumber = 4.2M;
double doubleNumber1 = 0.1F * 42F;
double doubleNumber2 = 0.1D * 42D;
float floatNumber = 0.1F * 42F;

Trace.Assert(decimalNumber != (decimal)doubleNumber1);
// Displays: 4.2 != 4.20000006258488
System.Console.WriteLine(
 "{0} != {1}", decimalNumber, (decimal)doubleNumber1);

Trace.Assert((double)decimalNumber != doubleNumber1);
// Displays: 4.2 != 4.20000006258488
System.Console.WriteLine(
 "{0} != {1}", (double)decimalNumber, doubleNumber1);

Trace.Assert((float)decimalNumber != floatNumber);
// Displays: (float)4.2M != 4.2F
System.Console.WriteLine(
 "(float){0}M != {1}F",
 (float)decimalNumber, floatNumber);

Trace.Assert(doubleNumber1 != (double)floatNumber);
// Displays: 4.20000006258488 != 4.20000028610229
System.Console.WriteLine(
 "{0} != {1}", doubleNumber1, (double)floatNumber);

Trace.Assert(doubleNumber1 != doubleNumber2);
// Displays: 4.20000006258488 != 4.2
System.Console.WriteLine(
 "{0} != {1}", doubleNumber1, doubleNumber2);

Trace.Assert(floatNumber != doubleNumber2);
// Displays: 4.2F != 4.2D
System.Console.WriteLine(
 "{0}F != {1}D", floatNumber, doubleNumber2);

Trace.Assert((double)4.2F != 4.2D);
// Display: 4.19999980926514 != 4.2
System.Console.WriteLine(
 "{0} != {1}", (double)4.2F, 4.2D);

Trace.Assert(4.2F != 4.2D);
// Display: 4.2F != 4.2D
System.Console.WriteLine(
 "{0}F != {1}D", 4.2F, 4.2D);

Output 3.6 shows the results of Listing 3.7.

Output 3.6.

4.2 != 4.20000006258488
4.2 != 4.20000006258488
(float)4.2M != 4.2F
4.20000006258488 != 4.20000028610229
4.20000006258488 != 4.2
4.2F != 4.2D
4.19999980926514 != 4.2
4.2F != 4.2D

The Assert() methods alert the developer whenever their argument evaluates to false. However, of all the Assert() calls in this code listing, only half have arguments that evaluate to true. In spite of the apparent equality of the values in the code listing, they are in fact not equivalent due to the inaccuracies of a float.

Guidelines

AVOID using equality conditionals with binary floating-point types. Either subtract the two values and see if their difference is less than a tolerance, or use the decimal type.

You should be aware of some additional unique floating-point characteristics as well. For instance, you would expect that dividing an integer by zero would result in an error, and it does with data types such as int and decimal. The float and double types instead allow for certain special values. Consider Listing 3.8, and its resultant output, Output 3.7.

Listing 3.8. Dividing a Float by Zero, Displaying NaN

float n=0f;
// Displays: NaN
System.Console.WriteLine(n / 0);

Output 3.7.

NaN

In mathematics, certain mathematical operations are undefined, including dividing zero by itself. In C#, the result of dividing the float zero by zero results in a special “Not a Number” value; all attempts to print the output of such a number will result in NaN. Similarly, taking the square root of a negative number with System.Math.Sqrt(-1) will result in NaN.

A floating-point number could overflow its bounds as well. For example, the upper bound of the float type is approximately 3.4 x 1038. Should the number overflow that bound, the result would be stored as “positive infinity” and the output of printing the number would be Infinity. Similarly, the lower bound of a float type is –3.4 x 1038, and computing a value below that bound would result in “negative infinity,” which would be represented by the string -Infinity. Listing 3.9 produces negative and positive infinity, respectively, and Output 3.8 shows the results.

Listing 3.9. Overflowing the Bounds of a float

Click here to view code image

// Displays: -Infinity
System.Console.WriteLine(-1f / 0);
// Displays: Infinity
System.Console.WriteLine(3.402823E+38f * 2f);

Output 3.8.

-Infinity
Infinity

Further examination of the floating-point number reveals that it can contain a value very close to zero, without actually containing zero. If the value exceeds the lower threshold for the float or double type, the value of the number can be represented as “negative zero” or “positive zero,” depending on whether the number is negative or positive, and is represented in output as -0 or 0.

Compound Assignment Operators (+=, -=, *=, /=, %=)

Chapter 1 discussed the simple assignment operator, which places the value of the right-hand side of the operator into the variable on the left-hand side. Compound assignment operators combine common binary operator calculations with the assignment operator. Take Listing 3.10, for example.

Listing 3.10. Common Increment Calculation

int x = 123;
x = x + 2;

In this assignment, first you calculate the value of x + 2 and then you assign the calculated value back to x. Since this type of operation is relatively frequent, an assignment operator exists to handle both the calculation and the assignment with one operator. The += operator increments the variable on the left-hand side of the operator with the value on the right-hand side of the operator, as shown in Listing 3.11.

Listing 3.11. Using the += Operator

int x = 123;
x += 2;

This code, therefore, is equivalent to Listing 3.10.

Numerous other combination assignment operators exist to provide similar functionality. You can also use the assignment operator with subtraction, multiplication, division and the remainder operators (Listing 3.12 demonstrates).

Listing 3.12. Other Assignment Operator Examples

x -= 2;
x /= 2;
x *= 2;
x %= 2;

Increment and Decrement Operators (++, --)

C# includes special unary operators for incrementing and decrementing counters. The increment operator, ++, increments a variable by one each time it is used. In other words, all of the code lines shown in Listing 3.13 are equivalent.

Listing 3.13. Increment Operator

spaceCount = spaceCount + 1;
spaceCount += 1;
spaceCount++;

Similarly, you can also decrement a variable by one using the decrement operator, --. Therefore, all of the code lines shown in Listing 3.14 are also equivalent.

Listing 3.14. Decrement Operator

lines = lines - 1;
lines -= 1;
lines--;

Beginner Topic: A Decrement Example in a Loop

The increment and decrement operators are especially prevalent in loops, such as the while loop described later in the chapter. For example, Listing 3.15 uses the decrement operator in order to iterate backward through each letter in the alphabet.

Listing 3.15. Displaying Each Character’s Unicode Value in Descending Order

Click here to view code image

char current;
int unicodeValue;

// Set the initial value of current.
current='z';

do
{
 // Retrieve the Unicode value of current.
 unicodeValue = current;
 System.Console.Write("{0}={1}\t", current, unicodeValue);

 // Proceed to the previous letter in the alphabet;

 current--;

}
while(current>='a');

Output 3.9 shows the results of Listing 3.15.

Output 3.9.

Click here to view code image

z=122 y=121 x=120 w=119 v=118 u=117 t=116 s=115 r=114
q=113 p=112 o=111 n=110 m=109 l=108 k=107 j=106 i=105
h=104 g=103 f=102 e=101 d=100 c=99 b=98 a=97

The increment and decrement operators are used to control how many times a particular operation is performed. Notice also that in this example, the increment operator is used on a character (char) data type. You can use increment and decrement operators on various data types as long as some meaning is assigned to the concept of the “next” or “previous” value for that data type.

We saw that the assignment operator first computes the value to be assigned, and then causes the assignment. The result of the assignment operator is the value that was assigned. The increment and decrement operators are similar: They compute the value to be assigned, perform the assignment, and result in a value. It is therefore possible to use the assignment operator with the increment or decrement operator, though doing so carelessly can be extremely confusing. See Listing 3.16 and Output 3.10 for an example.

Listing 3.16. Using the Post-Increment Operator

Click here to view code image

int count = 123;
int result;

result = count++;

System.Console.WriteLine(
 "result = {0} and count = {1}", result, count);

Output 3.10.

result = 123 and count = 124

You might be surprised that result was assigned the value that was count before count was incremented. Where you place the increment or decrement operator determines whether the assigned value should be the value of the operand before or after the calculation. If you want the value of result to be the value assigned to count, you need to place the operator before the variable being incremented, as shown in Listing 3.17.

Listing 3.17. Using the Pre-Increment Operator

Click here to view code image

int count = 123;
int result;

result = ++count;

System.Console.WriteLine(
 "result = {0} and count = {1}", result, count);

Output 3.11 shows the results of Listing 3.17.

Output 3.11.

result = 124 and count = 124

In this example, the increment operator appears before the operand, so the result of the expression is the value assigned to the variable after the increment. If count is 123, ++count will assign 124 to count and produce the result 124. By contrast, the postfix increment operator count++ assigns 124 to count and produces the value that count held before the increment: 123. Regardless of whether the operator is postfix or prefix, the variable count will be incremented before the value is produced; the only difference is which value is produced. The difference between prefix and postfix behavior appears in Listing 3.18. The resultant output is shown in Output 3.12.

Listing 3.18. Comparing the Prefix and Postfix Increment Operators

Click here to view code image

class IncrementExample
{
 public static void Main()
 {
 int x = 123;
 // Displays 123, 124, 125.
 System.Console.WriteLine("{0}, {1}, {2}", x++, x++, x);
 // x now contains the value 125.
 // Displays 126, 127, 128
 System.Console.WriteLine("{0}, {1}, {2}", ++x, ++x, x);
 // x now contains the value 128.
 }
}

Output 3.12.

123, 124, 125
126, 127, 128

As Listing 3.18 demonstrates, where the increment and decrement operators appear relative to the operand can affect the result produced by the expression. The result of the prefix operators is the value that the variable had before it was incremented or decremented. The result of the postfix operators is the value that the variable had after it was incremented or decremented. Use caution when embedding these operators in the middle of a statement. When in doubt as to what will happen, use these operators independently, placing them within their own statements. This way, the code is also more readable and there is no mistaking the intention.

Language Contrast: C++—Implementation-Defined Behavior

Earlier we discussed how in C++, the operands in an expression can be evaluated in any order, whereas in C# they are always evaluated left to right. Similarly, in C++ an implementation may legally perform the side effects of increments and decrements in any order. For example, in C++ a call of the form M(x++, x++) where x begins as 1 can legally call M(1,2) or M(2,1) at the whim of the compiler; C# will always call M(1,2) because C# makes two guarantees: first, that the arguments to a call are always computed left to right, and second, that the assignment of the incremented value to the variable always happens before the value of the expression is used. C++ makes neither guarantee.

Guidelines

AVOID confusing usages of the increment and decrement operators.

DO be cautious when porting code between C, C++, and C# that uses increment and decrement operators; C and C++ implementations need not follow the same rules as C#.

Advanced Topic: Thread-Safe Incrementing and Decrementing

In spite of the brevity of the increment and decrement operators, these operators are not atomic. A thread context switch can occur during the execution of the operator and can cause a race condition. You could use a lock statement to prevent the race condition. However, for simple increments and decrements, a less expensive alternative is to use the thread-safe Increment() and Decrement() methods from the System.Threading.Interlocked class. These methods rely on processor functions for performing fast thread-safe increments and decrements. See Chapter 19 for more details.

Constant Expressions and Constant Locals

The preceding chapter discussed literal values, or values embedded directly into the code. It is possible to combine multiple literal values in a constant expression using operators. By definition, a constant expression is one that the C# compiler can evaluate at compile time (instead of calculating it when the program runs) because it is composed entirely of constant operands. Constant expressions can then be used to initialize constant locals, which allow you to give a name to a constant value (similar to the way local variables allow you to give a name to a storage location). For example, the computation of the number of seconds in a day can be a constant expression that is then used in other expressions by name.

The const keyword in Listing 3.19 declares a constant local. Since a constant local is by definition the opposite of a variable—“constant” means “not able to vary”—any attempt to modify the value later in the code would result in a compile-time error.

Guidelines

DO NOT use a constant for any value that can possibly change over time. The value of pi and the number of protons in an atom of gold are constants; the price of gold, the name of your company, and the version number of your program can change.

Note that the expression assigned to secondsPerWeek is a constant expression because all the operands in the expression are also constants.

Listing 3.19. Declaring a Constant

[image: Image]

Introducing Flow Control

Later in this chapter is a code listing (Listing 3.43) that shows a simple way to view a number in its binary form. Even such a simple program, however, cannot be written without using control flow statements. Such statements control the execution path of the program. This section discusses how to change the order of statement execution based on conditional checks. Later on, you will learn how to execute statement groups repeatedly through loop constructs.

A summary of the control flow statements appears in Table 3.1. Note that the General Syntax Structure column indicates common statement use, not the complete lexical structure.

Table 3.1. Control Flow Statements

[image: Image]

[image: Image]

[image: Image]

An embedded-statement in Table 3.1 may be any statement other than a labeled statement or a declaration, but it is typically a block statement.

Each C# control flow statement in Table 3.1 appears in the tic-tac-toe3 program and is available in Appendix B and for download with the rest of the source code listings from the book. The program displays the tic-tac-toe board, prompts each player, and updates with each move.

The remainder of this chapter looks at each statement in more detail. After covering the if statement, it introduces code blocks, scope, Boolean expressions, and bitwise operators before continuing with the remaining control flow statements. Readers who find the table familiar because of C#’s similarities to other languages can jump ahead to the section titled C# Preprocessor Directives or skip to the Summary section at the end of the chapter.

The remainder of this chapter looks at each statement in more detail. After covering the if statement, it introduces code blocks, scope, Boolean expressions, and bitwise operators before continuing with the remaining control flow statements. Readers who find the table familiar because of C#’s similarities to other languages can jump ahead to the section titled C# Preprocessor Directives or skip to the Summary section at the end of the chapter.

if Statement

The if statement is one of the most common statements in C#. It evaluates a Boolean expression (an expression that results in either true or false) called the condition. If the condition is true, the consequence statement is executed. An if statement may optionally have an else clause that contains an alternative statement to be executed if the condition is false. The general form is as follows:

if (condition)
 consequence-statement
else
 alternative-statement

Listing 3.20. if/else Statement Example

Click here to view code image

class TicTacToe // Declares the TicTacToe class.
{
 static void Main() // Declares the entry point of the program.
 {
 string input;

 // Prompt the user to select a 1- or 2-player game.
 System.Console.Write (
 "1 – Play against the computer\n" +
 "2 – Play against another player.\n" +
 "Choose:"
);
 input = System.Console.ReadLine();

 if(input=="1")
 // The user selected to play the computer.
 System.Console.WriteLine(
 "Play against computer selected.");
 else
 // Default to 2 players (even if user didn't enter 2).
 System.Console.WriteLine(
 "Play against another player.");

 }
}

In Listing 3.20, if the user enters 1, the program displays "Play against computer selected.". Otherwise, it displays "Play against another player.".

Nested if

Sometimes code requires multiple if statements. The code in Listing 3.21 first determines whether the user has chosen to exit by entering a number less than or equal to 0; if not, it checks whether the user knows the maximum number of turns in tic-tac-toe.

Listing 3.21. Nested if Statements

Click here to view code image

1. class TicTacToeTrivia
2. {
3. static void Main()
4. {
5. int input; // Declare a variable to store the input.
6.
7. System.Console.Write(
8. "What is the maximum number " +
9. "of turns in tic-tac-toe?" +
10. "(Enter 0 to exit.): ");
11.
12. // int.Parse() converts the ReadLine()
13. // return to an int data type.
14. input = int.Parse(System.Console.ReadLine());
15.
16. if (input <= 0)
17. // Input is less than or equal to 0.
18. System.Console.WriteLine("Exiting...");
19. else
20. if (input < 9)
21. // Input is less than 9.
22. System.Console.WriteLine(
23. "Tic-tac-toe has more than {0}" +
24. " maximum turns.", input);
25. else
26. if(input>9)
27. // Input is greater than 9.
28. System.Console.WriteLine(
29. "Tic-tac-toe has fewer than {0}" +
30. " maximum turns.", input);
31. else
32. // Input equals 9.
33. System.Console.WriteLine(
34. "Correct, tic-tac-toe " +
35. "has a max. of 9 turns.");
36. }
37. }

Output 3.13 shows the results of Listing 3.21.

Output 3.13.

Click here to view code image

What is the maximum number of turns in tic-tac-toe? (Enter 0 to exit.): 9
Correct, tic-tac-toe has a max. of 9 turns.

Assume the user enters 9 when prompted at line 14. Here is the execution path.

1. Line 16: Check if input is less than 0. Since it is not, jump to line 20.

2. Line 20: Check if input is less than 9. Since it is not, jump to line 26.

3. Line 26: Check if input is greater than 9. Since it is not, jump to line 33.

4. Line 33: Display that the answer was correct.

Listing 3.21 contains nested if statements. To clarify the nesting, the lines are indented. However, as you learned in Chapter 1, whitespace does not affect the execution path. Without indenting and without newlines, the execution would be the same. The code that appears in the nested if statement in Listing 3.22 is equivalent to Listing 3.21.

Listing 3.22. if/else Formatted Sequentially

Click here to view code image

if (input < 0)
 System.Console.WriteLine("Exiting...");
else if (input < 9)
 System.Console.WriteLine(
 "Tic-tac-toe has more than {0}" +
 " maximum turns.", input);
else if(input < 9)
 System.Console.WriteLine(
 "Tic-tac-toe has less than {0}" +
 " maximum turns.", input);
else
 System.Console.WriteLine(
 "Correct, tic-tac-toe has a maximum " +
 " of 9 turns.");

Although the latter format is more common, in each situation use the format that results in the clearest code.

Each if statement listing above omits the use of braces. However, as discussed next, this is not in accordance with the guidelines, which advocate the use of code blocks except, perhaps, in the simplest of single-line scenarios.

Code Blocks ({})

In the previous if statement examples, only one statement follows if and else: a single System.Console.WriteLine(), similar to Listing 3.23.

Listing 3.23. if Statement with No Code Block

if(input < 9)
 System.Console.WriteLine("Exiting");

With curly braces, however, we can combine statements into a single statement called a block statement or code block, allowing the grouping of multiple statements into a single statement that is the consequence. Take, for example, the highlighted code block in the radius calculation in Listing 3.24.

Listing 3.24. if Statement Followed by a Code Block

Click here to view code image

class CircleAreaCalculator
{
 static void Main()
 {
 double radius; // Declare a variable to store the radius.
 double area; // Declare a variable to store the area.

 System.Console.Write("Enter the radius of the circle: ");

 // double.Parse converts the ReadLine()
 // return to a double.
 radius = double.Parse(System.Console.ReadLine());

 if(radius>=0)

 {
 // Calculate the area of the circle.
 area = 3.14*radius*radius;
 System.Console.WriteLine(
 "The area of the circle is: {0}", area);
 }

 else
 {
 System.Console.WriteLine(
 "{0} is not a valid radius.", radius);
 }
 }
}

Output 3.14 shows the results of Listing 3.24.

Output 3.14.

Enter the radius of the circle: 3
The area of the circle is: 28.26

In this example, the if statement checks whether the radius is positive. If so, the area of the circle is calculated and displayed; otherwise, an invalid radius message is displayed.

Notice that in this example, two statements follow the first if. However, these two statements appear within curly braces. The curly braces combine the statements into a code block, which is itself a single statement.

If you omit the curly braces that create a code block in Listing 3.24, only the statement immediately following the Boolean expression executes conditionally. Subsequent statements will execute regardless of the if statement’s Boolean expression. The invalid code is shown in Listing 3.25.

Listing 3.25. Relying on Indentation, Resulting in Invalid Code

Click here to view code image

if(radius>=0)
 area = 3.14 * radius *radius;
 System.Console.WriteLine(
 "The area of the circle is: {0}", area);

In C#, indentation is for code readability only. The compiler ignores it, and therefore, the previous code is semantically equivalent to Listing 3.26.

Listing 3.26. Semantically Equivalent to Listing 3.25

Click here to view code image

if(radius>=0)
{
 area = 3.14*radius*radius;
}
System.Console.WriteLine(
 "The area of the circle is: {0}", area);

Programmers should take great care to avoid subtle bugs such as this, perhaps even going so far as to always include a code block after a control flow statement, even if there is only one statement. In fact, the guideline is to avoid omitting braces, except possibly for the simplest of single-line if statements.

Although unusual, it is possible to have a code block that is not lexically a direct part of a control flow statement. In other words, placing curly braces on their own (without a conditional or loop, for example) is legal syntax.

Guidelines

AVOID omitting braces, except for the simplest of single-line if statements.

Advanced Topic: Math Constants

In Listing 3.25 and Listing 3.26, the value of pi as 3.14 was hardcoded—a crude approximation at best. There are much more accurate definitions for pi and E in the System.Math class. Instead of hardcoding a value, code should use System.Math.PI and System.Math.E.

Code Blocks, Scopes, and Declaration Spaces

Code blocks are often referred to as “scopes,” but the two terms are not exactly interchangeable. The scope of a named thing is the region of source code in which it is legal to refer to the thing by its unqualified name. The scope of a local variable is exactly the text of the code block that encloses it, which explains why it is common to refer to code blocks as “scopes.”

Scopes are often confused with declaration spaces. A declaration space is a logical container of named things in which two things may not have the same name. A code block not only defines a scope, it also defines a local variable declaration space; it is illegal for two local variable declarations with the same name to appear in the same declaration space. Similarly, it is not possible to declare two methods with the signature of Main() within the same class. (Though the rule is relaxed somewhat for methods; two methods may have the same name in a declaration space provided that they have different signatures.) A code block not only defines a scope, it also defines a local variable declaration space. That is to say, within a block a local can be mentioned by name and must be the unique thing that is declared with that name in the block. Outside the declaring block there is no way to refer to a local by its name; the local is said to be “out of scope” outside the block.

In short: A scope is used to determine what thing a name refers to; a declaration space determines when two things declared with the same name conflict with each other. In Listing 3.27, declaring the local variable message inside the block statement embedded in the if statement restricts its scope to the block statement only; the local is “out of scope” when its name is used later on in the method. To avoid the error, you must declare the variable outside the if statement.

Listing 3.27. Variables Inaccessible outside Their Scope

Click here to view code image

class Program
{
 static void Main(string[] args)
 {
 int playerCount;
 System.Console.Write(
 "Enter the number of players (1 or 2):");
 playerCount = int.Parse(System.Console.ReadLine());
 if (playerCount != 1 && playerCount != 2)
 {

 string message =
 "You entered an invalid number of players.";

 }
 else
 {
 // ...
 }

 // Error: message is not in scope.
 System.Console.WriteLine(message);

 }
}

Output 3.15 shows the results of Listing 3.27.

Output 3.15.

Click here to view code image

...

...\Program.cs(18,26): error CS0103: The name 'message' does not exist
in the current context

The declaration space throughout which a local’s name must be unique includes all the child code blocks textually enclosed within the block that originally declared the local. The C# compiler prevents the name of a local variable declared immediately within a method code block (or as a parameter) from being reused within a child code block. In Listing 3.27, because args and playerCount are declared within the method code block, they cannot be declared again anywhere within the method.

The name message refers to this local variable throughout the scope of the local variable: that is, the block immediately enclosing the declaration. Similarly, playerCount refers to the same variable throughout the block containing the declaration, including within both of the child blocks that are the consequence and alternative of the if statement.

Language Contrast: C++—Local Variable Scope

In C++, a local variable declared in a block is in scope from the point of the declaration statement through the end of the block; an attempt to refer to the local variable before its declaration will fail to find the local because the local is not in scope. If there is another thing with that name “in scope,” the C++ language will resolve the name to that thing, which might not be what you intended. In C#, the rule is subtly different; a local is in scope throughout the entire block in which it is declared, but it is illegal to refer to the local before its declaration. That is, the attempt to find the local succeeds and the usage is then treated as an error. This is just one of C#’s many rules that attempt to prevent errors common in C++ programs.

Boolean Expressions

The parenthesized condition of the if statement is a Boolean expression. In Listing 3.28, the condition is highlighted.

Listing 3.28. Boolean Expression

if(input < 9)
{
 // Input is less than 9.
 System.Console.WriteLine(
 "Tic-tac-toe has more than {0}" +
 " maximum turns.", input);
}
// ...

Boolean expressions appear within many control flow statements. Their key characteristic is that they always evaluate to true or false. For input<9 to be allowed as a Boolean expression, it must result in a bool. The compiler disallows x=42, for example, because it assigns x and results in the value that was assigned, instead of checking whether the value of the variable is 42.

Language Contrast: C++—Mistakenly Using = in Place of ==

C# eliminates a coding error common in C and C++. In C++, Listing 3.29 is allowed.

Listing 3.29. C++, But Not C#, Allows Assignment As a Condition

Click here to view code image

if(input=9) // Allowed in C++, not in C#.
 System.Console.WriteLine(
 "Correct, tic-tac-toe has a maximum of 9 turns.");

Although at a glance this appears to check whether input equals 9, Chapter 1 showed that = represents the assignment operator, not a check for equality. The return from the assignment operator is the value assigned to the variable—in this case, 9. However, 9 is an int, and as such it does not qualify as a Boolean expression and is not allowed by the C# compiler. The C and C++ languages treat integers that are nonzero as true, and integers that are zero as false. C#, by contrast, requires that the condition actually be of a Boolean type; integers are not allowed.

Relational and Equality Operators

Relational and equality operators determine whether a value is greater than, less than, or equal to another value. Table 3.2 lists all the relational and equality operators. All are binary operators.

Table 3.2. Relational and Equality Operators

[image: Image]

The C# syntax for equality uses ==, just as many other programming languages do. For example, to determine whether input equals 9 you use input==9. The equality operator uses two equal signs to distinguish it from the assignment operator, =. The exclamation point signifies NOT in C#, so to test for inequality you use the inequality operator, !=.

Relational and equality operators always produce a bool value, as shown in Listing 3.30.

Listing 3.30. Assigning the Result of a Relational Operator to a bool Variable

bool result = 70 > 7;

In the tic-tac-toe program (see Appendix B), you use the equality operator to determine whether a user has quit. The Boolean expression of Listing 3.31 includes an OR (||) logical operator, which the next section discusses in detail.

Listing 3.31. Using the Equality Operator in a Boolean Expression

Click here to view code image

if (input == "" || input == "quit")
{
 System.Console.WriteLine("Player {0} quit!!", currentPlayer);
 break;
}

Logical Boolean Operators

The logical operators have Boolean operands and produce a Boolean result. Logical operators allow you to combine multiple Boolean expressions to form more complex Boolean expressions. The logical operators are |, ||, &, &&, and ^, corresponding to OR, AND, and exclusive OR. The | and & versions of OR and AND are only rarely used for Boolean logic, for reasons which we discuss below.

OR Operator (||)

In Listing 3.31, if the user enters quit or presses the Enter key without typing in a value, it is assumed that she wants to exit the program. To enable two ways for the user to resign, you use the logical OR operator, ||.

The || operator evaluates Boolean expressions and results in a true value if either operand is true (see Listing 3.32).

Listing 3.32. Using the OR Operator

Click here to view code image

if((hourOfTheDay > 23) || (hourOfTheDay < 0))
 System.Console.WriteLine("The time you entered is invalid.");

It is not necessary to evaluate both sides of an OR expression because if either operand is true, the result is known to be true regardless of the value of the other operand. Like all operators in C#, the left operand is evaluated before the right one, so if the left portion of the expression evaluates to true, the right portion is ignored. In the example above, if hourOfTheDay has the value 33, (hourOfTheDay > 23) will evaluate to true and the OR operator will ignore the second half of the expression, short-circuiting it. Short-circuiting an expression also occurs with the Boolean AND operator. (Note that the parentheses are not necessary here; the logical operators are of higher precedence than the relational operators. However, it is clearer to the novice reader to parenthesize the subexpressions for clarity.)

AND Operator (&&)

The Boolean AND operator, &&, evaluates to true only if both operands evaluate to true. If either operand is false, the result will be false. Listing 3.33 writes a message if the given variable is both greater than 10 and less than 24.4 Similarly to the OR operator, the AND operator will not always evaluate the right side of the expression. If the left operand is determined to be false, the overall result will be false regardless of the value of the right operand, so the runtime skips evaluating the right operand.

Listing 3.33. Using the AND Operator

Click here to view code image

if ((10 < hourOfTheDay) && (hourOfTheDay < 24))
 System.Console.WriteLine(
 "Hi-Ho, Hi-Ho, it's off to work we go.");

Exclusive OR Operator (^)

The caret symbol, ^, is the “exclusive OR” (XOR) operator. When applied to two Boolean operands, the XOR operator returns true only if exactly one of the operands is true, as shown in Table 3.3.

Table 3.3. Conditional Values for the XOR Operator

[image: Image]

Unlike the Boolean AND and Boolean OR operators, the Boolean XOR operator does not short-circuit: It always checks both operands, because the result cannot be determined unless the values of both operands are known. Note that the XOR operator is exactly the same as the Boolean inequality operator.

Logical Negation Operator (!)

The logical negation operator, or NOT operator, !, inverts a bool value. This operator is a unary operator, meaning it requires only one operand. Listing 3.34 demonstrates how it works, and Output 3.16 shows the results.

Listing 3.34. Using the Logical Negation Operator

Click here to view code image

bool valid = false;

bool result = !valid;

// Displays "result = True".
System.Console.WriteLine("result = {0}", result);

Output 3.16.

result = True

To begin, valid is set to false. You then use the negation operator on valid and assign the value to result.

Conditional Operator (?:)

In place of an if-else statement used to select one of two values, you can use the conditional operator. The conditional operator uses both a question mark and a colon; the general format is as follows:

condition ? consequence : alternative

The conditional operator is a “ternary” operator because it has three operands: condition, consequence, and alternative. (As it is the only ternary operator in C#, it is often called “the ternary operator,” but it is clearer to refer to it by its name than by the number of operands it takes.) Like the logical operators, the conditional operator uses a form of short-circuiting. If the condition evaluates to true, the conditional operator evaluates only consequence. If the conditional evaluates to false, it evaluates only alternative. The result of the operator is the evaluated expression.

Listing 3.35 is an example of how to use the conditional operator. The full listing of this program appears in Appendix B.

Listing 3.35. Conditional Operator

Click here to view code image

public class TicTacToe
{
 public static string Main()
 {
 // Initially set the currentPlayer to Player 1;
 int currentPlayer = 1;

 // ...

 for (int turn = 1; turn <= 10; turn++)
 {
 // ...

 // Switch players

 currentPlayer = (currentPlayer == 2) ? 1 : 2;

 }
 }
}

The program swaps the current player. To do this, it checks whether the current value is 2. This is the conditional portion of the conditional expression. If the result of the condition is true, the conditional operator results in the “consequence” value 1. Otherwise, it results in the “alternative” value 2. Unlike an if statement, the result of the conditional operator must be assigned (or passed as a parameter). It cannot appear as an entire statement on its own.

Guidelines

CONSIDER using an if/else statement instead of an overly complicated conditional expression.

The C# language requires that the consequence and alternative expressions in a conditional operator be consistently typed, and that the consistent type be determined without examination of the surrounding context of the expression. For example, f ? "abc" : 123 is not a legal conditional expression because the consequence and alternative are a string and a number, neither of which is convertible to the other. Even if you say object result = f ? "abc" : 123; the C# compiler will still flag this expression as illegal because the type that is consistent with both expressions (that is, object) is found outside the conditional expression.

Null Coalescing Operator (??)

The null coalescing operator is a concise way to express “if this value is null then use this other value.” Its form is:

expression1 ?? expression2;

The null coalescing operator also uses a form of short-circuiting. If expression1 is not null, its value is the result of the operation and the other expression is not evaluated. If expression1 does evaluate to null, the value of expression2 is the result of the operator. Unlike the conditional operator, the null coalescing operator is a binary operator.

Listing 3.36 is an example of how to use the null coalescing operator.

Listing 3.36. Null Coalescing Operator

Click here to view code image

string fileName = GetFileName();
// ...

string fullName = fileName ?? "default.txt";

// ...

In this listing, we use the null coalescing operator to set fullName to "default.txt" if fileName is null. If fileName is not null, fullName is simply assigned the value of fileName.

The coalescing operator “chains” nicely; an expression of the form x ?? y ?? z results in x if x is not null; otherwise, it results in y if y is not null; otherwise, it results in z. That is, it goes from left to right and picks out the first non-null expression, or uses the last expression if all the previous expressions were null.

The null coalescing operator was added to C# in version 2.0 along with nullable value types; the null coalescing operator works on both operands of nullable value types and reference types.

Bitwise Operators (<<, >>, |, &, ^, ~)

An additional set of operators that is common to virtually all programming languages is the set of operators for manipulating values in their binary formats: the bit operators.

Beginner Topic: Bits and Bytes

All values within a computer are represented in a binary format of 1s and 0s, called binary digits (bits). Bits are grouped together in sets of eight, called bytes. In a byte, each successive bit corresponds to a value of 2 raised to a power, starting from 20 on the right, to 27 on the left, as shown in Figure 3.1.

[image: Image]

Figure 3.1. Corresponding Placeholder Values

In many scenarios, particularly when dealing with low-level or system services, information is retrieved as binary data. In order to manipulate these devices and services, you need to perform manipulations of binary data.

As shown in Figure 3.2, each box corresponds to a value of 2 raised to the power shown. The value of the byte (8-bit number) is the sum of the powers of 2 of all of the eight bits that are set to 1.

[image: Image]

Figure 3.2. Calculating the Value of an Unsigned Byte

The binary translation just described is significantly different for signed numbers. Signed numbers (long, short, int) are represented using a “twos complement” notation. This is so that addition continues to work when adding a negative number to a positive number as though both were positive operands. With this notation, negative numbers behave differently than positive numbers. Negative numbers are identified by a 1 in the leftmost location. If the leftmost location contains a 1, you add the locations with 0s rather than the locations with 1s. Each location corresponds to the negative power of 2 value. Furthermore, from the result, it is also necessary to subtract 1. This is demonstrated in Figure 3.3.

[image: Image]

Figure 3.3. Calculating the Value of a Signed Byte

Therefore, 1111 1111 1111 1111 corresponds to –1 and 1111 1111 1111 1001 holds the value –7. 1000 0000 0000 0000 corresponds to the lowest negative value that a 16-bit integer can hold.

Shift Operators (<<, >>, <<=, >>=)

Sometimes you want to shift the binary value of a number to the right or left. In executing a left shift, all bits in a number’s binary representation are shifted to the left by the number of locations specified by the operand on the right of the shift operator. Zeroes are then used to backfill the locations on the right side of the binary number. A right-shift operator does almost the same thing in the opposite direction. However, if the number is a negative value of a signed type, the values used to backfill the left side of the binary number are ones and not zeroes. The shift operators are >> and <<, the right-shift and left-shift operators, respectively. In addition, there are combined shift and assignment operators, <<= and >>=.

Consider the following example. Suppose you had the int value -7, which would have a binary representation of 1111 1111 1111 1111 1111 1111 1111 1001. In Listing 3.37, you right-shift the binary representation of the number –7 by two locations.

Listing 3.37. Using the Right-Shift Operator

Click here to view code image

int x;
x = (-7 >> 2); // 11111111111111111111111111111001 becomes
 // 11111111111111111111111111111110
// Write out "x is -2."
System.Console.WriteLine("x = {0}.", x);

Output 3.17 shows the results of Listing 3.37.

Output 3.17.

x = -2.

Because of the right shift, the value of the bit in the rightmost location has “dropped off” the edge and the negative bit indicator on the left shifts by two locations to be replaced with 1s. The result is -2.

Although legend has it that x << 2 is faster than x * 4, do not use bit shift operators for multiplication or division. This might have been true in certain C compilers in the 1970s, but modern compilers and modern microprocessors are perfectly capable of optimizing arithmetic. Using shifting for multiplication or division is confusing and frequently leads to errors when code maintainers forget that the shift operators are lower precedence than the arithmetic operators.

Bitwise Operators (&, |, ^)

In some instances, you might need to perform logical operations, such as AND, OR, and XOR, on a bit-by-bit basis for two operands. You do this via the &, |, and ^ operators, respectively.

Beginner Topic: Logical Operators Explained

If you have two numbers, as shown in Figure 3.4, the bitwise operations will compare the values of the locations beginning at the leftmost significant value and continuing right until the end. The value of “1” in a location is treated as “true,” and the value of “0” in a location is treated as “false.”

[image: Image]

Figure 3.4. The Numbers 12 and 7 Represented in Binary

Therefore, the bitwise AND of the two values in Figure 3.4 would be the bit-by-bit comparison of bits in the first operand (12) with the bits in the second operand (7), resulting in the binary value 000000100, which is 4. Alternatively, a bitwise OR of the two values would produce 00001111, the binary equivalent of 15. The XOR result would be 00001011, or decimal 11.

Listing 3.38 demonstrates how to use these bitwise operators. The results of Listing 3.38 appear in Output 3.18.

Listing 3.38. Using Bitwise Operators

byte and, or, xor;
and = 12 & 7; // and = 4
or = 12 | 7; // or = 15
xor = 12 ^ 7; // xor = 11
System.Console.WriteLine(
 "and = {0} \nor = {1}\nxor = {2}",
 and, or, xor);

Output 3.18.

and = 4
or = 15
xor = 11

In Listing 3.38, the value 7 is the mask; it is used to expose or eliminate specific bits within the first operand using the particular operator expression. Note that, unlike the AND (&&) operator, the & operator always evaluates both sides even if the left portion is false. Similarly, the | version of the OR operator is not “short-circuiting.” It always evaluates both operands even if the left operand is true. The bit versions of the AND and OR operators, therefore, are not short-circuiting.

In order to convert a number to its binary representation, you need to iterate across each bit in a number. Listing 3.39 is an example of a program that converts an integer to a string of its binary representation. The results of Listing 3.39 appear in Output 3.19.

Listing 3.39. Getting a String Representation of a Binary Display

Click here to view code image

public class BinaryConverter
{
 public static void Main()
 {
 const int size = 64;
 ulong value;
 char bit;

 System.Console.Write ("Enter an integer: ");
 // Use long.Parse() so as to support negative numbers
 // Assumes unchecked assignment to ulong.
 value = (ulong)long.Parse(System.Console.ReadLine());

 // Set initial mask to 100....
 ulong mask = 1UL << size - 1;
 for (int count = 0; count < size; count++)
 {
 bit = ((mask & value) != 0) ? '1': '0';
 System.Console.Write(bit);
 // Shift mask one location over to the right
 mask >>= 1;
 }
 System.Console.WriteLine();
 }
}

Output 3.19.

Click here to view code image

Enter an integer: 42
00101010

Notice that within each iteration of the for loop (discussed later in this chapter), you use the right-shift assignment operator to create a mask corresponding to each bit position in value. By using the & bit operator to mask a particular bit, you can determine whether the bit is set. If the mask test produces a nonzero result, you write 1 to the console; otherwise, 0 is written. In this way, you create output describing the binary value of an unsigned long.

Note also that the parentheses in (mask & value) != 0 are necessary because inequality is higher precedence than the AND operator; without the explicit parentheses this would be equivalent to mask & (value != 0), which does not make any sense; the left side of the & is a ulong and the right side is a bool.

Bitwise Compound Assignment Operators (&=, |=, ^=)

Not surprisingly, you can combine these bitwise operators with assignment operators as follows: &=, |=, and ^=. As a result, you could take a variable, OR it with a number, and assign the result back to the original variable, which Listing 3.40 demonstrates.

Listing 3.40. Using Logical Assignment Operators

byte and = 12, or = 12, xor = 12;
and &= 7; // and = 4
or |= 7; // or = 15
xor ^= 7; // xor = 11
System.Console.WriteLine(
 "and = {0} \nor = {1}\nxor = {2}",
 and, or, xor);

The results of Listing 3.40 appear in Output 3.20.

Output 3.20.

and = 4
or = 15
xor = 11

Combining a bitmap with a mask using something like fields &= mask clears the bits in fields that are not set in the mask. The opposite, fields &= ~mask, clears out the bits in fields that are set in mask.

Bitwise Complement Operator (~)

The bitwise complement operator takes the complement of each bit in the operand, where the operand can be an int, uint, long, or ulong. ~1, therefore, returns the value with binary notation 1111 1111 1111 1111 1111 1111 1111 1110, and ~(1<<31) returns the number with binary notation 0111 1111 1111 1111 1111 1111 1111 1111.

Control Flow Statements, Continued

Now that we’ve described Boolean expressions in more detail we can more clearly describe the control flow statements supported by C#. Many of these statements will be familiar to experienced programmers, so you can skim this section looking for details specific to C#. Note in particular the foreach loop, as this may be new to many programmers.

The while and do/while Loops

Thus far you have learned how to write programs that do something only once. However, computers can easily perform similar operations multiple times. In order to do this, you need to create an instruction loop. The first instruction loop we will discuss is the while loop, because it is the simplest conditional loop. The general form of the while statement is as follows:

while (condition)
 statement

The computer will repeatedly execute the statement that is the “body” of the loop as long as the condition (which must be a Boolean expression) evaluates to true. If the condition evaluates to false, code execution skips the body and executes the code following the loop statement. Note that statement will continue to execute even if it causes the condition to become false. It isn’t until the condition is reevaluated “at the top of the loop” that the loop exits. The Fibonacci calculator shown in Listing 3.41 demonstrates the while loop.

Listing 3.41. while Loop Example

Click here to view code image

class FibonacciCalculator
{
 static void Main()
 {
 decimal current;
 decimal previous;
 decimal temp;
 decimal input;

 System.Console.Write("Enter a positive integer:");

 // decimal.Parse convert the ReadLine to a decimal.
 input = decimal.Parse(System.Console.ReadLine());

 // Initialize current and previous to 1, the first
 // two numbers in the Fibonacci series.
 current = previous = 1;

 // While the current Fibonacci number in the series is
 // less than the value input by the user.

 while(current <= input)
 {
 temp = current;
 current = previous + current;
 previous = temp; // Executes even if previous
 // statement caused current to exceed input
 }

 System.Console.WriteLine(
 "The Fibonacci number following this is {0}",
 current);
 }
}

A Fibonacci number is a member of the Fibonacci series, which includes all numbers that are the sum of the previous two numbers in the series, beginning with 1 and 1. In Listing 3.41, you prompt the user for an integer. Then you use a while loop to find the first Fibonacci number that is greater than the number the user entered.

Beginner Topic: When to Use a while Loop

The remainder of this chapter considers other statements that cause a block of code to execute repeatedly. The term loop body refers to the statement (frequently a code block) that is to be executed within the while statement, since the code is executed in a “loop” until the exit condition is achieved. It is important to understand which loop construct to select. You use a while construct to iterate while the condition evaluates to true. A for loop is used most appropriately whenever the number of repetitions is known, such as counting from 0 to n. A do/while is similar to a while loop, except that it will always execute the loop body at least once.

The do/while loop is very similar to the while loop except that a do/while loop is preferred when the number of repetitions is from 1 to n and n is not known when iterating begins. This pattern frequently occurs when prompting a user for input. Listing 3.42 is taken from the tic-tac-toe program.

Listing 3.42. do/while Loop Example

Click here to view code image

// Repeatedly request player to move until he
// enter a valid position on the board.
bool valid;
do
{
 valid = false;

 // Request a move from the current player.
 System.Console.Write(
 "\nPlayer {0}: Enter move:", currentPlayer);
 input = System.Console.ReadLine();

 // Check the current player's input.
 // ...

} while (!valid);

In Listing 3.42, you always initialize valid to false at the beginning of each iteration, or loop repetition. Next, you prompt and retrieve the number the user input. Although not shown here, you then check whether the input was correct, and if it was, you assign valid equal to true. Since the code uses a do/while statement rather than a while statement, the user will be prompted for input at least once.

The general form of the do/while loop is as follows:

do
 statement
while (condition);

As with all the control flow statements, a code block is generally used as the single statement in order to allow multiple statements to be executed as the loop body. However, any single statement except for a labeled statement or a local variable declaration can be used.

The for Loop

The for loop iterates a code block until a specified condition is reached. In that way, it is very similar to the while loop. The difference is that the for loop has built-in syntax for initializing, incrementing, and testing the value of a counter, known as the loop variable. Because there is a specific location in the loop syntax for an increment operation, the increment and decrement operators are frequently used as part of a for loop.

Listing 3.43 shows the for loop used to display an integer in binary form. The results of this listing appear in Output 3.21.

Listing 3.43. Using the for Loop

Click here to view code image

public class BinaryConverter
{
 public static void Main()
 {
 const int size = 64;
 ulong value;
 char bit;

 System.Console.Write ("Enter an integer: ");
 // Use long.Parse() so as to support negative numbers
 // Assumes unchecked assignment to ulong.
 value = (ulong)long.Parse(System.Console.ReadLine());

 // Set initial mask to 100....
 ulong mask = 1UL << size - 1;
 for (int count = 0; count < size; count++)
 {
 bit = ((mask & value) > 0) ? '1': '0';
 System.Console.Write(bit);
 // Shift mask one location over to the right
 mask >>= 1;
 }
 }
}

Output 3.21.

Click here to view code image

Enter an integer: -42
11010110

Listing 3.43 performs a bit mask 64 times, once for each bit in the number. The three parts of the for loop header first declare and initialize the variable count, then describe the condition that must be met for the loop body to be executed, and finally describe the operation that updates the loop variable. The general form of the for loop is as follows:

for (initial ; condition ; loop)
 statement

Here is a breakdown of the for loop.

• The initial section performs operations that precede the first iteration. In Listing 3.43, it declares and initializes the variable count. The initial expression does not have to be a declaration of a new variable (though it frequently is). It is possible, for example, to declare the variable beforehand and simply initialize it in the for loop, or to skip the initialization section entirely by leaving it blank. Variables declared here are in scope throughout the header and body of the for statement.

• The condition portion of the for loop specifies an end condition. The loop exits when this condition is false exactly like the while loop does. The for loop will execute the body only as long as the condition evaluates to true. In the preceding example, the loop exits when count is greater than or equal to 64.

• The loop expression executes after each iteration. In the preceding example, count++ executes after the right shift of the mask (mask >>= 1), but before the condition is evaluated. During the sixty-fourth iteration, count is incremented to 64, causing the condition to become false, and therefore terminating the loop.

• The statement portion of the for loop is the “loop body” code that executes while the conditional expression remains true.

If you wrote out each for loop execution step in pseudocode without using a for loop expression, it would look like this.

1. Declare and initialize count to 0.

2. If count is less than 64, continue to step 3; otherwise, go to step 7.

3. Calculate bit and display it.

4. Shift the mask.

5. Increment count by one.

6. Jump back to line 2.

7. Continue the execution of the program after the loop.

The for statement doesn’t require any of the elements in its header. for(;;){ ... } is perfectly valid; although there still needs to be a means to escape from the loop to avoid executing infinitely. (If the condition is missing, it is assumed to be the constant true.)

The initial and loop expressions have an unusual syntax to support loops that require multiple loop variables, as shown in Listing 3.44.

Listing 3.44. for Loop Using Multiple Expressions

Click here to view code image

for(int x=0, y=5; ((x<=5) && (y>=0)); y--, x++)
{
 System.Console.Write("{0}{1}{2}\t",
 x, (x>y? '>' : '<'), y);
}

The results of Listing 3.44 appear in Output 3.22.

Output 3.22.

0<5 1<4 2<3 3>2 4>1 5>0

Here the initialization clause contains a complex declaration that declares and initializes two loop variables, but this is at least similar to a declaration statement that declares multiple local variables. The loop clause is quite unusual, as it can consist of a comma-separated list of expressions, not just a single expression.

Guidelines

CONSIDER refactoring the method to make the control flow easier to understand if you find yourself writing for loops with complex conditionals and multiple loop variables.

The for loop is little more than a more convenient way to write a while loop; you can always rewrite a for loop like this:

{
 initial;
 while(condition)
 {
 statement;
 loop;
 }
}

Guidelines

DO use the for loop when the number of loop iterations is known in advance and the “counter” that gives the number of iterations executed is needed in the loop.

DO use the while loop when the number of loop iterations is not known in advance and a counter is not needed.

The foreach Loop

The last loop statement in the C# language is foreach. The foreach loop iterates through a collection of items, setting a loop variable to represent each item in turn. In the body of the loop, operations may be performed on the item. A nice property of the foreach loop is that every item is iterated over exactly once; it is not possible to accidentally miscount and iterate past the end of the collection as can happen with other loops.

The general form of the foreach statement is as follows:

foreach(type variable in collection)
 statement

Here is a breakdown of the foreach statement.

• type is used to declare the data type of the variable for each item within the collection. It may be var, in which case the compiler infers the type of the item from the type of the collection.

• variable is a read-only variable into which the foreach loop will automatically assign the next item within the collection. The scope of the variable is limited to the body of the loop.

• collection is an expression, such as an array, representing any number of items.

• statement is the loop body that executes for each iteration of the loop.

Consider the foreach loop in the context of the simple example shown in Listing 3.45.

Listing 3.45. Determining Remaining Moves Using the foreach Loop

Click here to view code image

class TicTacToe // Declares the TicTacToe class.
{
 static void Main() // Declares the entry point of the program.
 {
 // Hardcode initial board as follows
 // ---+---+---
 // 1 | 2 | 3
 // ---+---+---
 // 4 | 5 | 6
 // ---+---+---
 // 7 | 8 | 9
 // ---+---+---
 char[] cells = {
 '1', '2', '3', '4', '5', '6', '7', '8', '9'
 };

 System.Console.Write(
 "The available moves are as follows: ");

 // Write out the initial available moves

 foreach (char cell in cells)
 {
 if (cell != 'O' && cell != 'X')
 {
 System.Console.Write("{0} ", cell);
 }
 }

 }
}

Output 3.23 shows the results of Listing 3.45.

Output 3.23.

The available moves are as follows: 1 2 3 4 5 6 7 8 9

When the execution engine reaches the foreach statement, it assigns to the variable cell the first item in the cells array—in this case, the value '1'. It then executes the code within the block that makes up the foreach loop body. The if statement determines whether the value of cell is 'O' or 'X'. If it is neither, the value of cell is written out to the console. The next iteration then assigns the next array value to cell, and so on.

It is important to note that the compiler prevents modification of the variable (cell) during the execution of a foreach loop. Also, the loop variable has a subtly different behavior in C# 5 than it did in previous versions; the difference is only apparent when the loop body contains a lambda expression or anonymous method that uses the loop variable. See Chapter 12 for details.

Beginner Topic: Where the switch Statement Is More Appropriate

Sometimes you might compare the same value in several continuous if statements, as shown with the input variable in Listing 3.46.

Listing 3.46. Checking the Player’s Input with an if Statement

Click here to view code image

// ...

bool valid = false;

// Check the current player's input.
if((input == "1") ||
 (input == "2") ||
 (input == "3") ||
 (input == "4") ||
 (input == "5") ||
 (input == "6") ||
 (input == "7") ||
 (input == "8") ||
 (input == "9"))
{
 // Save/move as the player directed.
 // ...

 valid = true;
}
else if((input == "") || (input == "quit"))
{
 valid = true;
}
else
{
 System.Console.WriteLine(
 "\nERROR: Enter a value from 1-9. "
 + "Push ENTER to quit");
}

// ...

This code validates the text entered to ensure that it is a valid tic-tac-toe move. If the value of input were 9, for example, the program would have to perform nine different evaluations. It would be preferable to jump to the correct code after only one evaluation. To enable this, you use a switch statement.

The switch Statement

A switch statement is simpler to understand than a complex if statement when you have a value that must be compared against may different constant values. The switch statement looks like this:

switch(expression)
{
 case constant:
 statements
 default:
 statements
}

Here is a breakdown of the switch statement.

• expression is the value that is being compared against the different constants. The type of this expression determines the “governing type” of the switch. Allowable governing data types are bool, sbyte, byte, short, ushort, int, uint, long, ulong, char, any enum type (covered in Chapter 8), the corresponding nullable types of each of those value types, and string.

• constant is any constant expression compatible with the governing type.

• A group of one or more case labels (or the default label) followed by a group of one or more statements is called a switch section. The pattern above has two switch sections; Listing 3.47 shows a switch statement with three switch sections.

• statements is one or more statements to be executed when the expression equals one of the constant values mentioned in a label in the switch section. The end point of the group of statements must not be reachable. Typically the last statement is a jump statement such as a break, return, or goto statement.

Guidelines

DO NOT use continue as the jump statement that exits a switch section. This is legal when the switch is inside a loop, but it is easy to become confused about the meaning of break in a later switch section.

A switch statement should have at least one switch section; switch(x){} is legal but will generate a warning. Also, earlier the guideline was to avoid omitting braces in general. One exception is to omit braces for case and break statements because they serve to indicate the beginning and end of a block.

Listing 3.47, with a switch statement, is semantically equivalent to the series of if statements in Listing 3.46.

Listing 3.47. Replacing the if Statement with a switch Statement

Click here to view code image

static bool ValidateAndMove(
 int[] playerPositions, int currentPlayer, string input)
{
 bool valid = false;

 // Check the current player's input.
 switch (input)
 {
 case "1" :
 case "2" :
 case "3" :
 case "4" :
 case "5" :
 case "6" :
 case "7" :
 case "8" :
 case "9" :
 // Save/move as the player directed.
 ...
 valid = true;
 break;

 case "" :
 case "quit" :
 valid = true;
 break;
 default :
 // If none of the other case statements
 // is encountered then the text is invalid.
 System.Console.WriteLine(
 "\nERROR: Enter a value from 1-9. "
 + "Push ENTER to quit");
 break;
 }

 return valid;
}

In Listing 3.47, input is the test expression. Since input is a string, the governing type is string . If the value of input is one of the strings 1, 2, 3, 4, 5, 6, 7, 8, or 9, the move is valid and you change the appropriate cell to match that of the current user’s token (X or O). Once execution encounters a break statement, control leaves the switch statement.

The next switch section describes how to handle the empty string or the string quit; it sets valid to true if input equals either value. The default switch section is executed if no other switch section had a case label that matched the test expression.

Language Contrast: C++—switch Statement Fall-Through

In C++, if a switch section does not end with a jump statement, control “falls through” to the next switch section, executing its code. Because unintended fall-through is a common error in C++, C# does not allow control to accidentally fall through from one switch section to the next. The C# designers believed it was better to prevent this common source of bugs and encourage better code readability than to match the potentially confusing C++ behavior. If you do want one switch section to execute the statements of another switch section, you may do so explicitly with a goto statement, as demonstrated later in this chapter.

There are several things to note about the switch statement.

• A switch statement with no switch sections will generate a compiler warning, but the statement will still compile.

• Switch sections can appear in any order; the default section does not have to appear last. In fact, the default switch section does not have to appear at all; it is optional.

• The C# language requires that the end point of every switch section, including the last section, be unreachable. This means that switch sections usually end with a break, return, or goto.

Jump Statements

It is possible to alter the execution path of a loop. In fact, with jump statements, it is possible to escape out of the loop or to skip the remaining portion of an iteration and begin with the next iteration, even when the loop condition remains true. This section considers some of the ways to jump the execution path from one location to another.

The break Statement

To escape out of a loop or a switch statement, C# uses a break statement. Whenever the break statement is encountered, control immediately leaves the loop or switch. Listing 3.48 examines the foreach loop from the tic-tac-toe program.

Listing 3.48. Using break to Escape Once a Winner Is Found

Click here to view code image

class TicTacToe // Declares the TicTacToe class.
{
 static void Main() // Declares the entry point of the program.
 {
 int winner=0;
 // Stores locations each player has moved.
 int[] playerPositions = {0,0};

 // Hardcoded board position
 // X | 2 | O
 // ---+---+---
 // O | O | 6
 // ---+---+---
 // X | X | X
 playerPositions[0] = 449;
 playerPositions[1] = 28;

 // Determine if there is a winner
 int[] winningMasks = {
 7, 56, 448, 73, 146, 292, 84, 273 };

 // Iterate through each winning mask to determine
 // if there is a winner.

 foreach (int mask in winningMasks)
 {

 if ((mask & playerPositions[0]) == mask)
 {
 winner = 1;

 break;

 }
 else if ((mask & playerPositions[1]) == mask)
 {
 winner = 2;

 break;

 }

 }

 System.Console.WriteLine(
 "Player {0} was the winner", winner);
 }
}

Output 3.24 shows the results of Listing 3.48.

Output 3.24.

Player 1 was the winner

Listing 3.48 uses a break statement when a player holds a winning position. The break statement forces its enclosing loop (or a switch statement) to cease execution, and control moves to the next line outside the loop. For this listing, if the bit comparison returns true (if the board holds a winning position), the break statement causes control to jump and display the winner.

Beginner Topic: Bitwise Operators for Positions

The tic-tac-toe example (the full listing is available in Appendix B) uses the bitwise operators to determine which player wins the game. First, the code saves the positions of each player into a bitmap called playerPositions. (It uses an array so that the positions for both players can be saved.)

To begin, both playerPositions are 0. As each player moves, the bit corresponding to the move is set. If, for example, the player selects cell 3, shifter is set to 3 – 1. The code subtracts 1 because C# is zero-based and you need to adjust for 0 as the first position instead of 1. Next, the code sets position, the bit corresponding to cell 3, using the shift operator 000000000000001 << shifter, where shifter now has a value of 2. Lastly, it sets playerPositions for the current player (subtracting 1 again to shift to zero-based) to 0000000000000100. Listing 3.49 uses |= so that previous moves are combined with the current move.

Listing 3.49. Setting the Bit That Corresponds to Each Player’s Move

Click here to view code image

int shifter; // The number of places to shift
 // over in order to set a bit.
int position; // The bit which is to be set.

// int.Parse() converts "input" to an integer.
// "int.Parse(input) – 1" because arrays
// are zero-based.
shifter = int.Parse(input) - 1;

// Shift mask of 00000000000000000000000000000001
// over by cellLocations.
position = 1 << shifter;

// Take the current player cells and OR them to set the
// new position as well.
// Since currentPlayer is either 1 or 2,
// subtract one to use currentPlayer as an
// index in a 0-based array.
playerPositions[currentPlayer-1] |= position;

Later in the program, you can iterate over each mask corresponding to winning positions on the board to determine whether the current player has a winning position, as shown in Listing 3.48.

The continue Statement

You might have a block containing a series of statements within a loop. If you determine that some conditions warrant executing only a portion of these statements for some iterations, you can use the continue statement to jump to the end of the current iteration and begin the next iteration. The continue statement exits the current iteration (regardless of whether additional statements remain) and jumps to the loop condition. At that point, if the loop conditional is still true, the loop will continue execution.

Listing 3.50 uses the continue statement so that only the letters of the domain portion of an email are displayed. Output 3.25 shows the results of Listing 3.50.

Listing 3.50. Determining the Domain of an Email Address

Click here to view code image

class EmailDomain
{
 static void Main()
 {
 string email;
 bool insideDomain = false;
 System.Console.WriteLine("Enter an email address: ");

 email = System.Console.ReadLine();

 System.Console.Write("The email domain is: ");

 // Iterate through each letter in the email address.
 foreach (char letter in email)
 {
 if (!insideDomain)
 {
 if (letter == '@')
 {
 insideDomain = true;
 }
 continue;
 }

 System.Console.Write(letter);
 }
 }
}

Output 3.25.

Click here to view code image

Enter an email address:
mark@dotnetprogramming.com
The email domain is: dotnetprogramming.com

In Listing 3.50, if you are not yet inside the domain portion of the email address, you can use a continue statement to move control to the end of the loop, and process the next character in the email address.

You can almost always use an if statement in place of a continue statement, and this is usually more readable. The problem with the continue statement is that it provides multiple flows of control within a single iteration, and this compromises readability. In Listing 3.51, the sample has been rewritten, replacing the continue statement with the if/else construct to demonstrate a more readable version that does not use the continue statement.

Listing 3.51. Replacing a continue with an if Statement

foreach (char letter in email)
{
 if (insideDomain)
 {
 System.Console.Write(letter);
 }
 else
 {
 if (letter == '@')
 {
 insideDomain = true;
 }
 }
}

The goto Statement

Early programming languages lacked the relatively sophisticated “structured” control flows that modern languages such as C# have as a matter of course, and instead relied upon simple conditional branching (if) and unconditional branching (goto) statements for most of their control flow needs. The resultant programs were often hard to understand. The continued existence of a goto statement within C# seems like an anachronism to many experienced programmers. However, C# supports goto, and it is the only method for supporting fall-through within a switch statement. In Listing 3.52, if the /out option is set, code execution jumps to the default case using the goto statement; similarly for /f.

Listing 3.52. Demonstrating a switch with goto Statements

Click here to view code image

// ...
static void Main(string[] args)
{
 bool isOutputSet = false;
 bool isFiltered = false;

 foreach (string option in args)
 {
 switch (option)
 {
 case "/out":
 isOutputSet = true;
 isFiltered = false;

 goto default;

 case "/f":
 isFiltered = true;
 isRecursive = false;

 goto default;

 default:
 if (isRecursive)
 {
 // Recurse down the hierarchy
 // ...

 }
 else if (isFiltered)
 {
 // Add option to list of filters.
 // ...
 }
 break;
 }

 }

 // ...

}

Output 3.26 shows how to execute the code shown in Listing 3.52.

Output 3.26.

C:\SAMPLES>Generate /out fizbottle.bin /f "*.xml" "*.wsdl"

To branch to a switch section label other than the default label, you can use the syntax goto case constant; where constant is the constant associated with the case label you wish to branch to. To branch to a statement that is not associated with a switch section, precede the target statement with any identifier followed by a colon; you can then use that identifier with the goto statement. For example, you could have a labeled statement myLabel : Console.WriteLine(); and then the statement goto myLabel; would branch to the labeled statement. Fortunately, C# prevents using goto to branch into a code block; it may only be used to branch within a code block or to an enclosing code block. By making these restrictions, C# avoids most of the serious goto abuses possible in other languages.

In spite of the improvements, using goto is generally considered to be inelegant, difficult to understand, and symptomatic of poorly structured code. If you need to execute a section of code multiple times or under different circumstances, either use a loop or extract code to a method of its own.

Guidelines

AVOID using goto.

C# Preprocessor Directives

Control flow statements evaluate expressions at runtime. In contrast, the C# preprocessor is invoked during compilation. The preprocessor commands are directives to the C# compiler, specifying the sections of code to compile or identifying how to handle specific errors and warnings within the code. C# preprocessor commands can also provide directives to C# editors regarding the organization of code.

Language Contrast: C++—Preprocessing

Languages such as C and C++ use a preprocessor to perform actions on the code based on special tokens. Preprocessor directives generally tell the compiler how to compile the code in a file and do not participate in the compilation process itself. In contrast, the C# compiler handles “preprocessor” directives as part of the regular lexical analysis of the source code. As a result, C# does not support preprocessor macros beyond defining a constant. In fact, the term preprocessor is generally a misnomer for C#.

Each preprocessor directive begins with a hash symbol (#), and all preprocessor directives must appear on one line. A newline rather than a semicolon indicates the end of the directive.

A list of each preprocessor directive appears in Table 3.4.

Table 3.4. Preprocessor Directives

[image: Image]

[image: Image]

Excluding and Including Code (#if, #elif, #else, #endif)

Perhaps the most common use of preprocessor directives is in controlling when and how code is included. For example, to write code that could be compiled by both C# 2.0 and later compilers and the prior version 1.2 compilers, you use a preprocessor directive to exclude C# 2.0-specific code when compiling with a 1.2 compiler. You can see this in the tic-tac-toe example and in Listing 3.53.

Listing 3.53. Excluding C# 2.0 Code from a C# 1.x Compiler

#if CSHARP2
System.Console.Clear();
#endif

In this case, you call the System.Console.Clear() method, which is available only in 2.0 CLI and later versions. Using the #if and #endif preprocessor directives, this line of code will be compiled only if the preprocessor symbol CSHARP2 is defined.

Another use of the preprocessor directive would be to handle differences among platforms, such as surrounding Windows- and Linux-specific APIs with WINDOWS and LINUX #if directives. Developers often use these directives in place of multiline comments (/*...*/) because they are easier to remove by defining the appropriate symbol or via a search and replace. A final common use of the directives is for debugging. If you surround code with an #if DEBUG, you will remove the code from a release build on most IDEs. The IDEs define the DEBUG symbol by default in a debug compile and RELEASE by default for release builds.

To handle an else-if condition, you can use the #elif directive within the #if directive, instead of creating two entirely separate #if blocks, as shown in Listing 3.54.

Listing 3.54. Using #if, #elif, and #endif Directives

#if LINUX
...
#elif WINDOWS
...
#endif

Defining Preprocessor Symbols (#define, #undef)

You can define a preprocessor symbol in two ways. The first is with the #define directive, as shown in Listing 3.55.

Listing 3.55. A #define Example

#define CSHARP2

The second method uses the define option when compiling for .NET, as shown in Output 3.27.

Output 3.27.

>csc.exe /define:CSHARP2 TicTacToe.cs

Output 3.28 shows the same functionality using the Mono compiler.

Output 3.28.

>mcs.exe -define:CSHARP2 TicTacToe.cs

To add multiple definitions, separate them with a semicolon. The advantage of the define complier option is that no source code changes are required, so you may use the same source files to produce two different binaries.

To undefine a symbol you use the #undef directive in the same way you use #define.

Emitting Errors and Warnings (#error, #warning)

Sometimes you may want to flag a potential problem with your code. You do this by inserting #error and #warning directives to emit an error or warning, respectively. Listing 3.56 uses the tic-tac-toe sample to warn that the code does not yet prevent players from entering the same move multiple times. The results of Listing 3.56 appear in Output 3.29.

Listing 3.56. Defining a Warning with #warning

#warning "Same move allowed multiple times."

Output 3.29.

Performing main compilation...
...\tictactoe.cs(471,16): warning CS1030: #warning: '"Same move allowed
multiple times."'

Build complete -- 0 errors, 1 warnings

By including the #warning directive, you ensure that the compiler will report a warning, as shown in Output 3.29. This particular warning is a way of flagging the fact that there is a potential enhancement or bug within the code. It could be a simple way of reminding the developer of a pending task.

Turning Off Warning Messages (#pragma)

Warnings are helpful because they point to code that could potentially be troublesome. However, sometimes it is preferred to turn off particular warnings explicitly because they can be ignored legitimately. C# 2.0 and later compilers provide the preprocessor #pragma directive for just this purpose (see Listing 3.57).

Listing 3.57. Using the Preprocessor #pragma Directive to Disable the #warning Directive

#pragma warning disable 1030

Note that warning numbers are prefixed with the letters CS in the compiler output. However, this prefix is not used in the #pragma warning directive. The number corresponds to the warning error number emitted by the compiler when there is no preprocessor command.

To reenable the warning, #pragma supports the restore option following the warning, as shown in Listing 3.58.

Listing 3.58. Using the Preprocessor #pragma Directive to Restore a Warning

#pragma warning restore 1030

In combination, these two directives can surround a particular block of code where the warning is explicitly determined to be irrelevant.

Perhaps one of the most common warnings to disable is CS1591, as this appears when you elect to generate XML documentation using the /doc compiler option, but you neglect to document all of the public items within your program.

nowarn:<warn list> Option

In addition to the #pragma directive, C# compilers generally support the nowarn:<warn list> option. This achieves the same result as #pragma, except that instead of adding it to the source code, you can insert the command as a compiler option. In addition, the nowarn option affects the entire compilation, and the #pragma option affects only the file in which it appears. Turning off the CS1591 warning, for example, would appear on the command line as shown in Output 3.30.

Output 3.30.

> csc /doc:generate.xml /nowarn:1591 /out:generate.exe Program.cs

Specifying Line Numbers (#line)

The #line directive controls on which line number the C# compiler reports an error or warning. It is used predominantly by utilities and designers that emit C# code. In Listing 3.59, the actual line numbers within the file appear on the left.

Listing 3.59. The #line Preprocessor Directive

Click here to view code image

124 #line 113 "TicTacToe.cs"
125 #warning "Same move allowed multiple times."
126 #line default

Including the #line directive causes the compiler to report the warning found on line 125 as though it was on line 113, as shown in the compiler error message shown in Output 3.31.

Output 3.31.

Click here to view code image

Performing main compilation...
...\tictactoe.cs(113,18): warning CS1030: #warning: '"Same move allowed
multiple times."'

Build complete -- 0 errors, 1 warnings

Following the #line directive with default reverses the effect of all prior #line directives and instructs the compiler to report true line numbers rather than the ones designated by previous uses of the #line directive.

Hints for Visual Editors (#region, #endregion)

C# contains two preprocessor directives, #region and #endregion, that are useful only within the context of visual code editors. Code editors, such as the one in the Microsoft Visual Studio .NET IDE, can search through source code and find these directives to provide editor features when writing code. C# allows you to declare a region of code using the #region directive. You must pair the #region directive with a matching #endregion directive, both of which may optionally include a descriptive string following the directive. In addition, you may nest regions within one another.

Again, Listing 3.60 shows the tic-tac-toe program as an example.

Listing 3.60. A #region and #endregion Preprocessor Directive

Click here to view code image

...
#region Display Tic-tac-toe Board

#if CSHARP2
 System.Console.Clear();
#endif

// Display the current board;
border = 0; // set the first border (border[0] = "|")

// Display the top line of dashes.
// ("\n---+---+---\n")
System.Console.Write(borders[2]);
foreach (char cell in cells)
{
 // Write out a cell value and the border that comes after it.
 System.Console.Write(" {0} {1}", cell, borders[border]);

 // Increment to the next border;
 border++;

 // Reset border to 0 if it is 3.
 if (border == 3)
 {
 border = 0;
 }
}
#endregion Display Tic-tac-toe Board
...

One example of how these preprocessor directives are used is with Microsoft Visual Studio .NET. Visual Studio .NET examines the code and provides a tree control to open and collapse the code (on the left-hand side of the code editor window) that matches the region demarcated by the #region directives (see Figure 3.5).

[image: Image]

Figure 3.5. Collapsed Region in Microsoft Visual Studio .NET

Summary

This chapter began with an introduction to the C# operators related to assignment and arithmetic. Next, you used the operators along with the const keyword to declare constants. Coverage of all the C# operators was not sequential, however. Before discussing the relational and logical comparison operators, the chapter introduced the if statement and the important concepts of code blocks and scope. To close out the coverage of operators we discussed the bitwise operators, especially regarding masks. We also discussed other control flow statements such as loops, switch, and goto, and ended the chapter with a discussion of the C# preprocessor directives.

Operator precedence was discussed earlier in the chapter; Table 3.5 summarizes the order of precedence across all operators, including several that are not yet covered.

Table 3.5. Operator Order of Precedence*

[image: Image]

* Rows appear in order of precedence from highest to lowest.

Perhaps one of the best ways to review all of the content covered in Chapters 1–3 is to look at the tic-tac-toe program found in Appendix B. By reviewing the program, you can see one way in which you can combine all that you have learned into a complete program.

4. Methods and Parameters

From what you have learned about C# programming so far you should be able to write straightforward programs consisting of a list of statements, similar to the way programs were created in the 1970s. Programming has come a long way since the 1970s; as programs became more complex, new paradigms were needed to manage that complexity. “Procedural” or “structured” programming provides constructs by which statements are grouped together to form units. Furthermore, with structured programming, it is possible to pass data to a group of statements and then have data returned once the statements have executed.

[image: Image]

Besides the basics of calling and defining methods, this chapter also covers some slightly more advanced concepts—namely, recursion, method overloading, optional parameters, and named arguments. All method calls discussed so far and through the end of this chapter are static (a concept which Chapter 5 explores in detail).

Even as early as the HelloWorld program in Chapter 1, you learned how to define a method. In that example, you defined the Main() method. In this chapter, you will learn about method creation in more detail, including the special C# syntaxes (ref and out) for parameters that pass variables rather than values to methods. Lastly, we will touch on some rudimentary error handling.

Calling a Method

Beginner Topic: What Is a Method?

Up to this point, all of the statements in the programs you have written have appeared together in one grouping called a Main() method. When programs become any more complex than those we have seen thus far, a single method implementation quickly becomes difficult to maintain and complex to read through and understand.

A method is a means of grouping together a sequence of statements to perform a particular action or compute a particular result. This provides greater structure and organization for the statements that comprise a program. Consider, for example, a Main() method that counts the lines of source code in a directory. Instead of having one large Main() method, you can provide a shorter version that allows you to hone in on the details of each method implementation as necessary. Listing 4.1 shows an example.

Listing 4.1. Grouping Statements into Methods

class LineCount
{
 static void Main()
 {
 int lineCount;
 string files;
 DisplayHelpText();
 files = GetFiles();
 lineCount = CountLines(files);
 DisplayLineCount(lineCount);
 }
 // ...
}

Instead of placing all of the statements into Main(), the listing breaks them into groups called methods. The System.Console.WriteLine() statements that display the help text have been moved to the DisplayHelpText() method. All of the statements used to determine which files to count appear in the GetFiles() method. To actually count the files, the code calls the CountLines() method before displaying the results using the DisplayLineCount() method. With a quick glance, it is easy to review the code and gain an overview, because the method name describes the purpose of the method.

Guidelines

DO give methods names that are verbs or verb phrases.

A method is always associated with a type—usually a class—that provides a means of grouping related methods together.

Methods can receive data via arguments that are supplied for by their parameters. Parameters are variables used for passing data from the caller (the code containing the method call) to the invoked method (Write(), WriteLine(), GetFiles(), CountLines(), and so on). In Listing 4.1, files and lineCount are examples of arguments passed to the CountLines() and DisplayLineCount() methods via their parameters. Methods can also return data back to the caller via a return value (in Listing 4.1, the GetFiles() method call has a return value that is assigned to files).

To begin, we will reexamine System.Console.Write(), System.Console.WriteLine(), and System.Console.ReadLine() from Chapter 1. This time we will look at them as examples of method calls in general, instead of looking at the specifics of printing and retrieving data from the console. Listing 4.2 shows each of the three methods in use.

Listing 4.2. A Simple Method Call

[image: Image]

The parts of the method call include the method name, argument list, and returned value. A fully qualified method name includes a namespace, type name, and method name; a period separates each part of a fully qualified method name. As we will see, methods are often called with only a part of their fully qualified name.

Namespaces

Namespaces are a categorization mechanism for grouping all types related to a particular area of functionality. Namespaces are hierarchical, and can have arbitrarily many levels in the hierarchy, though namespaces with more than half a dozen levels are rare. Typically the hierarchy begins with a company name, and then a product name, and then the functional area. For example, in Microsoft.Win32.Networking, the outermost namespace is Microsoft, which contains an inner namespace Win32, which in turn contains an even more deeply nested Networking namespace.

Namespaces are primarily used to organize types by area of functionality so that they can be more easily found and understood, but namespaces can also be used to avoid type name collisions. For example, the compiler can distinguish between two types with the name Button as long as each type has a different namespace. Thus you can disambiguate types System.Web.UI.WebControls.Button and System.Windows.Controls.Button.

In Listing 4.2, the Console type is found within the System namespace. The System namespace contains the types that enable the programmer to perform many fundamental programming activities. Virtually all C# programs use types within the System namespace. Table 4.1 provides a listing of other common namespaces.

Table 4.1. Common Namespaces

[image: Image]

[image: Image]

It is not always necessary to provide the namespace when calling a method. For example, if the call expression appears in a type in the same namespace as the called method, the compiler can infer the namespace to be the namespace which contains the type. Later in this chapter, you will see how the using directive eliminates the need for a namespace qualifier as well.

Guidelines

DO use PascalCasing for namespace names.

CONSIDER organizing the directory hierarchy for source code files to match the namespace hierarchy.

Type Name

Calls to static methods require the type name qualifier as long as the target method is not within the same type.1 For example, a call expression found in method HelloWorld.Main() to Console.WriteLine() requires the type, Console, to be stated. However, just as with the namespace, C# allows the omission of the type name from a method call whenever the method is a member of the type containing the call expression. (Examples of method calls such as this appear in Listing 4.4.) The type name is unnecessary in such cases because the compiler infers the type from the location of the call. If the compiler can make no such inference, the name must be provided as part of the method call.

At their core, types are a means of grouping together methods and their associated data. For example, Console is the type that contains the Write(), WriteLine(), and ReadLine() methods (among others). All of these methods are in the same “group” because they belong to the Console type.

Scope

In the previous chapter you learned that the “scope” of a program element is the region of text in which it can be referred to by its unqualified name. A call that appears inside a type declaration to a method declared in that type does not require the type qualifier because the method is “in scope” throughout its containing type. Similarly, a type is “in scope” throughout the namespace that declares it; therefore, a method call that appears in a type in a particular namespace need not specify that namespace in the method call name.

Method Name

Every method call contains a method name, which might or might not be qualified with a namespace and type name, as we have discussed. After the method name comes the argument list; the argument list is a parenthesized, comma-separated list of the values that correspond to the parameters of the method.

Parameters and Arguments

A method can take any number of parameters, and each parameter is of a specific data type. The values that the caller supplies for parameters are called the arguments; every argument must correspond to a particular parameter. For example, the following method call, used in Listing 4.2, has three arguments:

Click here to view code image

 System.Console.WriteLine(
 "Your full name is {1} {0}", lastName, firstName)

This method is declared to have three parameters, the first being of type string and the second and third being of type object. (Note that here the arguments are all strings; the compiler allows this because all strings are compatible with the data type object.)

Method Return Values

In contrast to System.Console.WriteLine(), the method call System.Console.ReadLine() in Listing 4.2 does not have any arguments because the method is declared to take no parameters. However, this method happens to have a method return value. The method return value is a means of transferring results from a called method back to the caller. Because System.Console.ReadLine() has a return value, it is possible to assign the return value to the variable firstName. In addition, it is possible to pass this method return value itself as an argument to another method call, as shown in Listing 4.3.

Listing 4.3. Passing a Method Return Value As an Argument to Another Method Call

Click here to view code image

class Program
{
 static void Main()
 {
 System.Console.Write("Enter your first name: ");
 System.Console.WriteLine("Hello {0}!",
 System.Console.ReadLine());
 }
}

Instead of assigning the returned value to a variable and then using that variable as an argument to the call to System.Console.WriteLine(), Listing 4.3 calls the System.Console.ReadLine() method within the call to System.Console.WriteLine(). At execution time, the System.Console.ReadLine() method executes first and its return value is passed directly into the System.Console.WriteLine() method, rather than into a variable.

Not all methods return data. Both versions of System.Console.Write() and System.Console.WriteLine() are examples of such methods. As you will see shortly, these methods specify a return type of void just as the HelloWorld declaration of Main returned void.

Statement versus Method Call

Listing 4.3 provides a demonstration of the difference between a statement and a method call. Although System.Console.WriteLine("Hello {0}!", System.Console.ReadLine()); is a single statement, it contains two method calls. A statement often contains one or more expressions, and in this example, two of those expressions are method calls. Therefore, method calls form parts of statements.

Although coding multiple method calls in a single statement often reduces the amount of code, it does not necessarily increase the readability and seldom offers a significant performance advantage. Developers should favor readability over brevity.

Note

In general, developers should favor readability over brevity. Readability is critical to writing code that is self-documenting and, therefore, more maintainable over time.

Declaring a Method

This section expands on the explanation of declaring a method to include parameters or a return type. Listing 4.4 contains examples of these concepts, and Output 4.1 shows the results.

Listing 4.4. Declaring a Method

Click here to view code image

class IntroducingMethods
{
 static void Main()
 {
 string firstName;
 string lastName;
 string fullName;

 System.Console.WriteLine("Hey you!");

 firstName = GetUserInput("Enter your first name: ");
 lastName = GetUserInput("Enter your last name: ");

 fullName = GetFullName(firstName, lastName);

 DisplayGreeting(fullName);
 }

 static string GetUserInput(string prompt)
 {
 System.Console.Write(prompt);
 return System.Console.ReadLine();
 }

 static string GetFullName(string firstName, string lastName)
 {
 return firstName + " " + lastName;
 }

 static void DisplayGreeting(string name)
 {
 System.Console.WriteLine("Your full name is {0}.", name);
 return;
 }
}

Output 4.1.

Hey you!
Enter your first name: Inigo
Enter your last name: Montoya
Your full name is Inigo Montoya.

Four methods are declared in Listing 4.4. From Main() the code calls GetUserInput(), followed by a call to GetFullName(). Both of these methods return a value and take arguments. In addition, the listing calls DisplayGreeting(), which doesn’t return any data. No method in C# can exist outside the confines of an enclosing type; in this case, the enclosing type is the IntroducingMethods class. Even the Main method examined in Chapter 1 must be within a type.

Language Contrast: C++/Visual Basic—Global Methods

C# provides no global method support; everything must appear within a type declaration. This is why the Main() method was marked as static—the C# equivalent of a C++ global and Visual Basic “shared” method.

Beginner Topic: Refactoring into Methods

Moving a set of statements into a method instead of leaving them inline within a larger method is a form of refactoring. Refactoring reduces code duplication, because you can call the method from multiple places instead of duplicating the code. Refactoring also increases code readability. As part of the coding process, it is a best practice to continually review your code and look for opportunities to refactor. This involves looking for blocks of code that are difficult to understand at a glance and moving them into a method with a name that clearly defines the code’s behavior. This practice is often preferred over commenting a block of code, because the method name serves to describe what the implementation does.

For example, the Main() method that is shown in Listing 4.4 results in the same behavior as does the Main() method that is shown in Listing 1.15 in Chapter 1. Perhaps even more noteworthy is that although both listings are trivial to follow, Listing 4.4 is easier to grasp at a glance by just viewing the Main() method and not worrying about the details of each called method’s implementation.

In Visual Studio you can select a group of statements, right-click on it, and then select the Extract Method refactoring from the Refactoring section of the context menu to automatically move a group of statements to a new method.

Formal Parameter Declaration

Consider the declaration of the DisplayGreeting() and GetFullName() methods. The text that appears between the parentheses of a method declaration is the formal parameter list. (As we will see when we discuss generics, methods may also have a type parameter list. When it is clear from context which kind of parameter we are discussing, we will simply refer to them as “parameters” in a “parameter list.”) Each parameter in the parameter list includes the type of the parameter along with the parameter name. A comma separates each parameter in the list.

Behaviorally, most parameters are virtually identical to local variables, and the naming convention of parameters follows accordingly. Therefore, parameter names are camelCase. Also, it is not possible to declare a local variable (a variable declared inside a method) with the same name as a parameter of the containing method, because this would create two “local variables” of the same name.

Guidelines

DO use “camelCasing” for parameter names.

Method Return Type Declaration

In addition to GetUserInput() and GetFullName() requiring parameters to be specified, both of these methods also include a method return type. You can tell that this method returns a value because a data type appears immediately before the method name of the method declaration. For both GetUserInput() and GetFullName(), the return type is string. Unlike parameters, of which there can be any number, only one method return type is allowable.

A method with a return type almost always contains one or more “return statements” that return control to the caller. A return statement consists of the return keyword followed by an expression that computes the value the method is returning. For example, the GetFullName() method’s return statement is return firstName + " " + lastName;. The expression following the return keyword must be compatible with the stated return type of the method.

If a method has a return type, the block of statements that makes up the body of the method must have an “unreachable endpoint.” That is, there must be no way for control to “fall off the end” of a method without it returning a value. Often the easiest way to ensure that this condition is met is to make the last statement of the method a return statement. However, return statements can appear in locations other than at the end of a method implementation. For example, an if or switch statement in a method implementation could include a return statement within it; see Listing 4.5 for an example.

Listing 4.5. A return Statement before the End of a Method

Click here to view code image

class Program
{
 static bool MyMethod()
 {
 string command = ObtainCommand();
 switch(command)
 {
 case "quit":
 return false;
 // ... omitted, other cases
 default:
 return true;
 }
 }
}

(Note that a return statement transfers control out of the switch, so no break statement is required to prevent illegal fall-through in a switch section that ends with a return statement.)

In Listing 4.5, the last statement in the method is not a return statement; it is a switch statement. However, the compiler can deduce that every possible code path through the method results in a return, and that therefore the end point of the method is not reachable. Thus this method is legal, even though it does not end with a return statement.

If particular code paths include unreachable statements following the return, the compiler will issue a warning that indicates that the additional statements will never execute.

In spite of the C# allowance for early returns, code is generally more readable and easier to maintain if there is a single exit location rather than multiple returns sprinkled through various code paths of the method.

Specifying void as a return type indicates that there is no return value from the method. As a result, the method does not support assignment to a variable or use as a parameter type at the call site. A void method may only be used as a statement. Furthermore, within the body of the method the return statement becomes optional, and when it is specified, there is no value following the return keyword. For example, the return of Main() in Listing 4.4 is void and there is no return statement within the method. However, DisplayGreeting() includes a return statement that is not followed by any returned result.

Language Contrast: C++—Header Files

Unlike C++, C# classes never separate the implementation from the declaration. In C# there is no header (.h) file or implementation (.cpp) file. Instead, declaration and implementation appear together in the same file. (C# does support an advanced feature called “partial methods” in which the method’s defining declaration is separate from its implementation, but for the purposes of this chapter we will consider only nonpartial methods.) The lack of separate declaration and implementation in C# removes the requirement to maintain redundant declaration information in two places found in languages such as C++ which have separate header and implementation files.

Beginner Topic: Namespaces

As we described above, namespaces are an organizational mechanism for categorizing and grouping together related types. Developers can discover related types by examining other types within the same namespace as a familiar type. Additionally, through namespaces, two or more types may have the same name as long as they are disambiguated by different namespaces.

The using Directive

As we’ve seen, fully qualified namespace names can become quite long and unwieldy. It is possible to “import” all the types from one or more namespaces into a file so that they can be used without full qualification. To achieve this, the C# programmer includes a using directive, generally at the top of the file. For example, in Listing 4.6, Console is not prefixed with System. The namespace may be omitted because of the using System; directive at the top of the listing.

Listing 4.6. using Directive Example

Click here to view code image

// The using directive imports all types from the
// specified namespace into the entire file.

using System;

class HelloWorld
{
 static void Main()
 {
 // No need to qualify Console with System
 // because of the using directive above.

 Console.WriteLine("Hello, my name is Inigo Montoya");

 }
}

The results of Listing 4.6 appear in Output 4.2.

Output 4.2.

Hello, my name is Inigo Montoya

A using directive such as using System does not enable the omission of System from a type declared within a child namespace of System. For example, if your code accessed the StringBuilder type from the System.Text namespace, you would have to either include an additional using System.Text; directive, or fully qualify the type as System.Text.StringBuilder, not just Text.StringBuilder. In short, a using directive does not “import” types from any nested namespaces. Nested namespaces, identified by the period in the namespace, always need to be imported explicitly.

Language Contrast: Java—Wildcards in import Directive

Java allows for importing namespaces using a wildcard such as the following:

 import javax.swing.*;

In contrast, C# does not support a wildcard using directive, and instead requires each namespace to be imported explicitly.

Language Contrast: Visual Basic .NET—Project Scope Imports Directive

Unlike C#, Visual Basic .NET supports the ability to specify the using directive equivalent, Imports, for an entire project, rather than just for a specific file. In other words, Visual Basic .NET provides a command-line means of the using directive that will span an entire compilation.

Frequent use of types within a particular namespace typically results in the addition of a using directive for that namespace, instead of fully qualifying all types within the namespace. Following this tendency, virtually all files include the using System directive at the top. Throughout the remainder of this book, code listings will often omit the using System directive. Other namespace directives will be included explicitly, however.

One interesting effect of the using System directive is that the string data type can be identified with varying case: String or string. The former version relies on the using System directive and the latter uses the string keyword. Both are valid C# references to the System.String data type, and the resultant CIL code is unaffected by which version is chosen.2

Advanced Topic: Nested using Directives

Not only can you have using directives at the top of a file, but you also can include them at the top of a namespace declaration. For example, if a new namespace, EssentialCSharp, were declared, it would be possible to add a using declarative at the top of the namespace declaration (see Listing 4.7).

Listing 4.7. Specifying the using Directive inside a Namespace Declaration

Click here to view code image

namespace EssentialCSharp
{

 using System;

 class HelloWorld
 {
 static void Main()
 {
 // No need to qualify Console with System
 // because of the using directive above.

 Console.WriteLine("Hello, my name is Inigo Montoya");

 }
 }
}

The results of Listing 4.7 appear in Output 4.3.

Output 4.3.

Hello, my name is Inigo Montoya

The difference between placing the using directive at the top of a file rather than at the top of a namespace declaration is that the directive is active only within the namespace declaration. If the code includes a new namespace declaration above or below the EssentialCSharp declaration, the using System directive within a different namespace would not be active. Code seldom is written this way, especially given the standard practice of a single type declaration per file.

Aliasing

The using directive also allows aliasing a namespace or type. An alias is an alternative name that you can use within the text to which the using directive applies. The two most common reasons for aliasing are to disambiguate two types that have the same name and to abbreviate a long name. In Listing 4.8, for example, the CountDownTimer alias is declared as a means of referring to the type System.Timers.Timer. Simply adding a using System.Timers directive will not sufficiently enable the code to avoid fully qualifying the Timer type. The reason is that System.Threading also includes a type called Timer, and therefore, just using Timer within the code will be ambiguous.

Listing 4.8. Declaring a Type Alias

Click here to view code image

using System;

using System.Threading;
using CountDownTimer = System.Timers.Timer;

class HelloWorld
{
 static void Main()
 {

 CountDownTimer timer;

 // ...
 }
}

Listing 4.8 uses an entirely new name, CountDownTimer, as the alias. It is possible, however, to specify the alias as Timer, as shown in Listing 4.9.

Listing 4.9. Declaring a Type Alias with the Same Name

Click here to view code image

using System;
using System.Threading;

// Declare alias Timer to refer to System.Timers.Timer to
// avoid code ambiguity with System.Threading.Timer
using Timer = System.Timers.Timer;

class HelloWorld
{
 static void Main()
 {

 Timer timer;

 // ...
 }
}

Because of the alias directive, “Timer” is not an ambiguous reference. Furthermore, to refer to the System.Threading.Timer type, you will have to either qualify the type or define a different alias.

Returns and Parameters on Main()

So far, declaration of an executable’s Main() method has been the simplest declaration possible. You have not included any parameters or nonvoid return type in your Main() method declarations. However, C# supports the ability to retrieve the command-line arguments when executing a program, and it is possible to return a status indicator from the Main() method.

The runtime passes the command-line arguments to Main() using a single string array parameter. All you need to do to retrieve the parameters is to access the array, as demonstrated in Listing 4.10. The purpose of this program is to download a file whose location is given by a URL. The first command-line argument identifies the URL, and the optional second argument is the filename to which to save the file. The listing begins with a switch statement that evaluates the number of parameters (args.Length) as follows.

1. If there are not two parameters, display an error indicating that it is necessary to provide the URL and filename.

2. The presence of two arguments indicates the user has provided both the URL of the resource and the download target filename.

Listing 4.10. Passing Command-Line Arguments to Main

Click here to view code image

using System;
using System.IO;
using System.Net;

class Program
{

 static int Main(string[] args)

 {

 int result;
 string targetFileName;
 string url;
 switch (args.Length)

 {
 default:
 // Exactly two arguments must be specified; give an error.
 Console.WriteLine(
 "ERROR: You must specify the "
 + "URL and the file name");
 targetFileName = null;
 url = null;
 break;
 case 2:

 url = args[0];
 targetFileName = args[1];

 break;
 }

 if (targetFileName != null && url != null)
 {
 WebClient webClient = new WebClient();
 webClient.DownloadFile(url, targetFileName);

 result = 0;
 }
 else
 {
 Console.WriteLine(
 "Usage: Downloader.exe <URL> <TargetFileName>");
 result = 1;
 }

 return result;

 }

}

The results of Listing 4.10 appear in Output 4.4.

Output 4.4.

Click here to view code image

>Downloader.exe
ERROR: You must specify the URL to be downloaded
Downloader.exe <URL> <TargetFileName>

If you were successful in calculating the target filename, you would use it to save the downloaded file. Otherwise, you would display the help text. The Main() method also returns an int rather than a void. This is optional for a Main() declaration, but if it is used, the program can return a status code to a caller, such as a script or a batch file. By convention, a return other than zero indicates an error.

Although all command-line arguments can be passed to Main() via an array of strings, sometimes it is convenient to access the arguments from inside a method other than Main(). The System.Environment.GetCommandLineArgs() method returns the command-line arguments array in the same form that Main(string[] args) passes the arguments into Main().

Advanced Topic: Disambiguate Multiple Main() Methods

If a program includes two classes with Main() methods, it is possible to specify on the command line which class to use for the Main() declaration. csc.exe includes an /m option to specify the fully qualified class name of Main().

Beginner Topic: Call Stack and Call Site

As code executes, methods call more methods that in turn call additional methods, and so on. In the simple case of Listing 4.4, Main() calls GetUserInput(), which in turn calls System.Console.ReadLine(), which in turn calls even more methods internally. Every time a new method is invoked, the runtime creates an “activation frame” that contains information about the arguments passed to the new call, the local variables of the new call, and information about where control should resume when the new method returns. The set of calls within calls within calls, and so on, produces a series of activation frames that is termed the call stack. As program complexity increases, the call stack generally gets larger and larger as each method calls another method. As calls complete, however, the call stack shrinks until another method is invoked. The term for describing the process of removing activation frames from the call stack is stack unwinding. Stack unwinding always occurs in the reverse order of the method calls. The result of method completion is that execution will return to the call site, which is the location from which the method was invoked.

Advanced Method Parameters

So far this chapter’s examples have returned data via the method return value. This section demonstrates how methods can return data via their method parameters and also shows how a method may take a variable number of arguments.

Value Parameters

Arguments to method calls are usually passed by value, which means the value of the argument expression is copied into the target parameter. For example, in Listing 4.11, the value of each variable that Main() uses when calling Combine() will be copied into the parameters of the Combine() method. Output 4.5 shows the results of this listing.

Listing 4.11. Passing Variables by Value

Click here to view code image

class Program
{
 static void Main()
 {
 // ...
 string fullName;
 string driveLetter = "C:";
 string folderPath = "Data";
 string fileName = "index.html";

 fullName = Combine(driveLetter, folderPath, fileName);

 Console.WriteLine(fullName);
 // ...
 }

 static string Combine(
 string driveLetter, string folderPath, string fileName)
 {
 string path;
 path = string.Format("{1}{0}{2}{0}{3}",
 System.IO.Path.DirectorySeparatorChar,
 driveLetter, folderPath, fileName);
 return path;
 }
}

Output 4.5.

C:\Data\index.html

Even if the Combine() method assigns null to driveLetter, folderPath, and fileName before returning, the corresponding variables within Main() will maintain their original values because the variables are copied when calling a method. When the call stack unwinds at the end of a call, the copied data is thrown away.

Beginner Topic: Matching Caller Variables with Parameter Names

In Listing 4.11, the variable names in the caller exactly matched the parameter names in the called method. This matching is simply for readability; whether names match or not is entirely irrelevant to the behavior of the method call. The parameters of the called method and the local variables of the calling method are in different declaration spaces and have nothing to do with each other.

Advanced Topic: Reference Types versus Value Types

For the purposes of this section, it is inconsequential whether the parameter passed is a value type or a reference type. The issue is whether the called method can write a value into the caller’s original variable. Since a copy of the caller variable’s value is made, the caller’s variable cannot be reassigned. Nevertheless, it is helpful to understand the difference between a variable that contains a value type and a variable that contains a reference type.

The value of a reference type variable is, as the name implies, a reference to the location where the data associated with the object is stored. How the runtime chooses to represent the value of a reference type variable is an implementation detail of the runtime; typically it is represented as the address of the memory location in which the object’s data is stored, but it need not be.

If a reference type variable is passed by value, the reference itself is copied from the caller to the method parameter. As a result, the target method cannot update the caller variable’s value but it may update the data referred to by the reference.

Alternatively, if the method parameter is a value type, the value itself is copied into the parameter, and changing the parameter in the called method will not affect the original caller’s variable.

Reference Parameters (ref)

Consider Listing 4.12, which calls a function to swap two values, and Output 4.6, which shows the results.

Listing 4.12. Passing Variables by Reference

Click here to view code image

class Program
{
 static void Main()
 {
 // ...
 string first = "hello";
 string second = "goodbye";

 Swap(ref first, ref second);

 System.Console.WriteLine(
 @"first = ""{0}"", second = ""{1}""",
 first, second);
 // ...
 }

 static void Swap(ref string x, ref string y)

 {
 string temp = x;
 x = y;
 y = temp;
 }
}

Output 4.6.

first = "goodbye", second = "hello"

The values assigned to first and second are successfully switched. To do this, the variables are passed by reference. The obvious difference between the call to Swap() and Listing 4.11’s call to Combine() is the use of the keyword ref in front of the parameter’s data type. This keyword changes the call such that the variables used as arguments are passed by reference, so the called method can update the original caller’s variables with new values.

When the called method specifies a parameter as ref, the caller is required to supply a variable, not a value, as an argument, and to place ref in front of the variables passed. In so doing, the caller explicitly recognizes that the target method could reassign the values of the variables associated with any ref parameters it receives. Furthermore, it is necessary to initialize any local variables passed as ref because target methods could read data from ref parameters without first assigning them. In Listing 4.12, for example, temp is assigned the value of first, assuming that the variable passed in first was initialized by the caller. Effectively, a ref parameter is an alias for the variable passed. In other words, it is essentially giving a parameter name to an existing variable, rather than creating a new variable and copying the value of the argument into it.

Output Parameters (out)

As mentioned above, a variable used as a ref parameter must be assigned before it is passed to the called method, because the called method might read from the variable. The “swap” example given above must read and write from both variables passed to it. However, it is often the case that a method that takes a reference to a variable intends to write to the variable, but not to read from it. In such cases, clearly it could be safe to pass an uninitialized local variable by reference.

To achieve this, code needs to decorate parameter types with the keyword out, as shown in the TryGetPhoneButton() method in Listing 4.13 that returns the phone button corresponding to a character.

Listing 4.13. Passing Variables Out Only

Click here to view code image

class ConvertToPhoneNumber
{
 static int Main(string[] args)
 {
 char button;

 if(args.Length == 0)
 {
 Console.WriteLine(
 "ConvertToPhoneNumber.exe <phrase>");
 Console.WriteLine(
 "'_' indicates no standard phone button");
 return 1;
 }
 foreach(string word in args)
 {
 foreach(char character in word)
 {

 if(TryGetPhoneButton(character, out button))

 {
 Console.Write(button);
 }
 else
 {
 Console.Write('_');
 }
 }
 }
 Console.WriteLine();
 return 0;
 }

 static bool TryGetPhoneButton(char character, out char button)

 {
 bool success = true;
 switch(char.ToLower(character))
 {
 case '1':
 button = '1';
 break;
 case '2': case 'a': case 'b': case 'c':
 button = '2';
 break;

 // ...

 case '-':
 button = '-';
 break;
 default:
 // Set the button to indicate an invalid value
 button = '_';
 success = false;
 break;
 }
 return success;
 }
}

Output 4.7 shows the results of Listing 4.13.

Output 4.7.

>ConvertToPhoneNumber.exe CSharpIsGood
274277474663

In this example, the TryGetPhoneButton() method returns true if it can successfully determine the character’s corresponding phone button. The function also returns the corresponding button by using the button parameter which is decorated with out.

An out parameter is functionally identical to a ref parameter; the only difference is what requirements the language enforces regarding how the aliased variable is read from and written to. Whenever a parameter is marked with out, the compiler will check that the parameter is set for all code paths within the method that return normally. If, for example, the code does not assign button a value in some code path, the compiler will issue an error indicating that the code didn’t initialize button. Listing 4.13 assigns button to the underscore character because even though it cannot determine the correct phone button, it is still necessary to assign a value.

The developer of a method may declare one or more out parameters in order to get around the restriction that a method may only have one return type; a method which needs to return two values can do so by returning one value normally, as the return value of the method, and a second value by writing it into an aliased variable passed as an out parameter. Though this pattern is both common and legal, there are usually better ways to achieve that aim. First off, if you are considering returning two or more values from a method, you might actually be better off writing two methods, one for each value. If the method must return two values, use of tuple types (to represent multiple values) or nullable value types (to represent a value that might not be “valid,” as in the example above) can eliminate the need to pass variables by reference.

Parameter Arrays (params)

In all the examples so far, the number of arguments that must be passed is fixed by the number of parameters declared in the target method declaration. However, sometimes it is convenient if the number of arguments may vary. Consider the Combine() method from Listing 4.11. In that method, you passed the drive letter, folder path, and filename. What if the path had more than one folder, and the caller wanted the method to join additional folders to form the full path? Perhaps the best option would be to pass an array of strings for the folders. However, this would make the calling code a little more complex, because it would be necessary to construct an array to pass as an argument.

To make it easier on the callers of such a method, C# provides a keyword that enables the number of arguments to vary in the calling code instead of being set by the target method. Before we discuss the method declaration, observe the calling code declared within Main(), as shown in Listing 4.14.

Listing 4.14. Passing a Variable Parameter List

Click here to view code image

using System.IO;

class PathEx
{
 static void Main()
 {
 string fullName;

 // ...

 // Call Combine() with four arguments
 fullName = Combine(
 Directory.GetCurrentDirectory(),
 "bin", "config", "index.html");

 Console.WriteLine(fullName);

 // ...

 // Call Combine() with only three arguments
 fullName = Combine(
 Environment.SystemDirectory,
 "Temp", "index.html");

 Console.WriteLine(fullName);

 // ...

 // Call Combine() with an array
 fullName = Combine(
 new string[] {
 "C:\\", "Data",
 "HomeDir", "index.html"});

 Console.WriteLine(fullName);
 // ...
 }

 static string Combine(params string[] paths)

 {
 string result = string.Empty;
 foreach (string path in paths)
 {
 result = System.IO.Path.Combine(result, path);
 }
 return result;
 }
}

Output 4.8 shows the results of Listing 4.14.

Output 4.8.

C:\Data\mark\bin\config\index.html
C:\WINDOWS\system32\Temp\index.html
C:\Data\HomeDir\index.html

In the first call to Combine(), four arguments are specified. The second call contains only three arguments. In the final call, a single argument is passed using an array. In other words, the Combine() method takes a variable number of arguments; either any number of string arguments separated by commas or as a single array of strings. The former syntax is called the “expanded” form of the method call, and the second form is called the “normal” form.

To allow this, the Combine() method does the following:

1. Places params immediately before the last parameter in the method declaration

2. Declares the last parameter as an array

With a parameter array declaration, it is possible to access each corresponding argument as a member of the params array. In the Combine() method implementation, you iterate over the elements of the paths array and call System.IO.Path.Combine(). This method automatically combines the parts of the path, appropriately using the platform-specific directory-separator-character. (PathEx.Combine() is identical to Path.Combine(), except that PathEx.Combine() handles a variable number of parameters rather than simply two.)

There are a few notable characteristics of the parameter array.

• The parameter array is not necessarily the only parameter on a method. However, the parameter array must be the last parameter in the method declaration. Since only the last parameter may be a parameter array, a method cannot have more than one parameter array.

• The caller can specify zero arguments that correspond to the parameter array parameter, which will result in an array of zero items being passed as the parameter array.

• Parameter arrays are type-safe—the arguments given must be compatible with the element type of the parameter array.

• The caller can use an explicit array rather than a comma-separated list of parameters. The resultant code is identical.

• If the target method implementation requires a minimum number of parameters, those parameters should appear explicitly within the method declaration, forcing a compile error instead of relying on runtime error handling if required parameters are missing. For example, if you have a method that requires one or more integer arguments, declare the method as int Max(int first, params int[] operands) rather than int Max(params int[] operands) so that at least one value is passed to Max().

Using a parameter array, you can pass a variable number of arguments of the same type into a method. The section Method Overloading, later in this chapter, discusses a means of supporting a variable number of arguments that are not necessarily of the same type.

Recursion

Calling a method recursively or implementing the method using recursion refers to a method that calls itself. Recursion is sometimes the simplest way to implement a particular algorithm. Listing 4.15 counts the lines of all the C# source files (*.cs) in a directory and its subdirectory.

Listing 4.15. Counting the Lines within *.cs Files, Given a Directory

Click here to view code image

using System.IO;

public static class LineCounter
{
 // Use the first argument as the directory
 // to search, or default to the current directory.
 public static void Main(string[] args)
 {
 int totalLineCount = 0;
 string directory;
 if (args.Length > 0)
 {
 directory = args[0];
 }
 else
 {
 directory = Directory.GetCurrentDirectory();
 }
 totalLineCount = DirectoryCountLines(directory);
 System.Console.WriteLine(totalLineCount);
 }

 static int DirectoryCountLines(string directory)

 {
 int lineCount = 0;
 foreach (string file in
 Directory.GetFiles(directory, "*.cs"))
 {
 lineCount += CountLines(file);
 }

 foreach (string subdirectory in
 Directory.GetDirectories(directory))
 {

 lineCount += DirectoryCountLines(subdirectory);

 }

 return lineCount;
 }

 private static int CountLines(string file)
 {
 string line;
 int lineCount = 0;
 FileStream stream =
 new FileStream(file, FileMode.Open);3
 StreamReader reader = new StreamReader(stream);
 line = reader.ReadLine();

 while(line != null)
 {
 if (line.Trim() != "")
 {
 lineCount++;
 }
 line = reader.ReadLine();
 }

 reader.Close(); // Automatically closes the stream
 return lineCount;
 }
}

Output 4.9 shows the results of Listing 4.15.

Output 4.9.

104

The program begins by passing the first command-line argument to DirectoryCountLines(), or by using the current directory if no argument was provided. This method first iterates through all the files in the current directory and totals the source code lines for each file. After each file in the directory, the code processes each subdirectory by passing the subdirectory back into the DirectoryCountLines() method, rerunning the method using the subdirectory. The same process is repeated recursively through each subdirectory until no more directories remain to process.

Readers unfamiliar with recursion may find it confusing at first. Regardless, it is often the simplest pattern to code, especially with hierarchical type data such as the filesystem. However, although it may be the most readable, it is generally not the fastest implementation. If performance becomes an issue, developers should seek an alternative solution in place of a recursive implementation. The choice generally hinges on balancing readability with performance.

Beginner Topic: Infinite Recursion Error

A common programming error in recursive method implementations appears in the form of a stack overflow during program execution. This usually happens because of infinite recursion, in which the method continually calls back on itself, never reaching a point that indicates the end of the recursion. It is a good practice for programmers to review any method that uses recursion and to verify that the recursion calls are finite.

A common pattern for recursion using pseudocode is as follows:

Click here to view code image

M(x)
{
 if x is trivial
 Return the result
 else
 a. Do some work to make the problem smaller
 b. Recursively call M to solve the smaller problem
 c. Compute the result based on a. and b.
 return the result
}

Things go wrong when this pattern is not followed. For example, if you don’t make the problem smaller or if you don’t handle all possible “smallest” cases, the recursion never terminates.

Method Overloading

Listing 4.15 called DirectoryCountLines(), which counted the lines of *.cs files. However, if you want to count code in *.h/*.cpp files or in *.vb files, DirectoryCountLines() will not work. Instead, you need a method that takes the file extension, but still keeps the existing method definition so that it handles *.cs files by default.

All methods within a class must have a unique signature, and C# defines uniqueness by variation in the method name, parameter data types, or number of parameters. This does not include method return data types; defining two methods that differ only in their return data types will cause a compile error. Method overloading occurs when a class has two or more methods with the same name and the parameter count and/or data types vary between the overloaded methods.

Method overloading is a type of operational polymorphism. Polymorphism occurs when the same logical operation takes on many (“poly”) forms (“morphs”) because the data varies. Calling WriteLine() and passing a format string along with some parameters is implemented differently than calling WriteLine() and specifying an integer. However, logically, to the caller, the method takes care of writing the data and it is somewhat irrelevant how the internal implementation occurs. Listing 4.16 provides an example, and Output 4.10 shows the results.

Listing 4.16. Counting the Lines within *.cs Files Using Overloading

Click here to view code image

using System.IO;

public static class LineCounter
{
 public static void Main(string[] args)
 {
 int totalLineCount;

 if (args.Length > 1)
 {

 totalLineCount =
 DirectoryCountLines(args[0], args[1]);

 }
 if (args.Length > 0)
 {

 totalLineCount = DirectoryCountLines(args[0]);

 }
 else
 {

 totalLineCount = DirectoryCountLines();

 }

 System.Console.WriteLine(totalLineCount);
 }

 static int DirectoryCountLines()

 {
 return DirectoryCountLines(
 Directory.GetCurrentDirectory());
 }

 static int DirectoryCountLines(string directory)

 {
 return DirectoryCountLines(directory, "*.cs");
 }

 static int DirectoryCountLines(

 string directory, string extension)
 {
 int lineCount = 0;
 foreach (string file in
 Directory.GetFiles(directory, extension))
 {
 lineCount += CountLines(file);
 }

 foreach (string subdirectory in
 Directory.GetDirectories(directory))
 {
 lineCount += DirectoryCountLines(subdirectory);
 }

 return lineCount;
 }

 private static int CountLines(string file)
 {
 int lineCount = 0;
 string line;
 FileStream stream =
 new FileStream(file, FileMode.Open);4
 StreamReader reader = new StreamReader(stream);
 line = reader.ReadLine();
 while(line != null)
 {
 if (line.Trim() != "")
 {
 lineCount++;
 }
 line = reader.ReadLine();
 }

 reader.Close(); // Automatically closes the stream
 return lineCount;
 }
}

Output 4.10.

>LineCounter.exe .\ *.cs
28

The effect of method overloading is to provide optional ways to call the method. As demonstrated inside Main(), you can call the DirectoryCountLines() method with or without passing the directory to search and the file extension.

Notice that the parameterless implementation of DirectoryCountLines() was changed to call the single-parameter version (int DirectoryCountLines(string directory)). This is a common pattern when implementing overloaded methods. The idea is that developers implement only the core logic in one method and all the other overloaded methods will call that single method. If the core implementation changes, it needs to be modified in only one location rather than within each implementation. This pattern is especially prevalent when using method overloading to enable optional parameters that do not have compile-time determined values and so they cannot be specified using optional parameters.

Optional Parameters

Starting with C# 4.0, the language designers added support for optional parameters. By allowing the association of a parameter with a constant value as part of the method declaration, it is possible to call a method without passing an argument for every parameter of the method (see Listing 4.17).

Listing 4.17. Methods with Optional Parameters

Click here to view code image

using System.IO;

public static class LineCounter
{
 public static void Main(string[] args)
 {
 int totalLineCount;

 if (args.Length > 1)
 {
 totalLineCount =
 DirectoryCountLines(args[0], args[1]);
 }
 if (args.Length > 0)
 {

 totalLineCount = DirectoryCountLines(args[0]);

 }
 else
 {
 totalLineCount = DirectoryCountLines();
 }

 System.Console.WriteLine(totalLineCount);
 }

 static int DirectoryCountLines()
 {
 // ...
 }

/*
 static int DirectoryCountLines(string directory)
 { ... }
*/

 static int DirectoryCountLines(
 string directory, string extension = "*.cs")

 {
 int lineCount = 0;
 foreach (string file in
 Directory.GetFiles(directory, extension))
 {
 lineCount += CountLines(file);
 }

 foreach (string subdirectory in
 Directory.GetDirectories(directory))
 {
 lineCount += DirectoryCountLines(subdirectory);
 }

 return lineCount;
 }

 private static int CountLines(string file)
 {
 // ...
 }
}

In Listing 4.17, for example, the DirectoryCountLines() method declaration with a single parameter has been removed (commented out), but the call from Main() (specifying one parameter) remains. When no extension parameter is specified in the call, the value assigned to extension within the declaration (*.cs in this case) is used. This allows the calling code to not specify a value if desired, and eliminates the additional overload that would be required in C# 3.0 and earlier. Note that optional parameters must appear after all required parameters (those that don’t have default values). Also, the fact that the default value needs to be a constant, compile-time-resolved value is fairly restrictive. You can’t, for example, declare a method like this:

Click here to view code image

DirectoryCountLines(
 string directory = Environment.CurrentDirectory,
 string extension = "*.cs")

because Environment.CurrentDirectory is not a constant. In contrast, since "*.cs" is a constant, C# does allow it for the default value of an optional parameter.

Guidelines

DO provide good defaults for all parameters where possible.

DO provide simple method overloads that have a small number of required parameters.

CONSIDER organizing overloads from the simplest to the most complex.

A second method call feature made available in C# 4.0 was the use of named arguments. With named arguments it is possible for the caller to explicitly identify the name of the parameter to be assigned a value, rather than relying only on parameter and argument order to correlate (see Listing 4.18).

Listing 4.18. Specifying Parameters by Name

Click here to view code image

class Program
{
 static void Main()
 {

 DisplayGreeting(
 firstName: "Inigo", lastName: "Montoya");

 }

 public void DisplayGreeting(
 string firstName,
 string middleName = default(string),
 string lastName = default(string))
 {
 // ...
 }
}

In Listing 4.18 the call to DisplayGreeting() from within Main() assigns a value to a parameter by name. Of the two optional parameters (middleName and lastName), only lastName is given as an argument. For cases where a method has lots of parameters and many of them are optional (a common occurrence when accessing Microsoft COM libraries), using the named argument syntax is certainly a convenience. However, notice that along with the convenience comes an impact on the flexibility of the method interface. In the past, parameter names could be changed without causing other calling C# code to no longer compile. With the addition of named parameters, the parameter name becomes part of the interface because changing the name would cause code that uses the named parameter to no longer compile.

Guidelines

DO treat parameter names as part of the API, and avoid changing the names if version compatibility between APIs is important.

For many experienced C# developers, this is a surprising restriction. However, the restriction has been imposed as part of the Common Language Specification ever since .NET 1.0. Moreover, Visual Basic has always supported calling methods with named arguments. Therefore, library developers should already be following the practice of not changing parameter names to successfully interoperate with other .NET languages from version to version. C# 4.0 now imposes the same restriction on changing parameter names that many other .NET languages already require.

Given the combination of method overloading, optional parameters, and named parameters, resolving which method to call becomes less obvious. A call is applicable (compatible) with a method if all parameters have exactly one corresponding argument (either by name or by position) that is type-compatible, unless the parameter is optional (or is a parameter array). Although this restricts the possible number of methods that will be called, it doesn’t identify a unique method. To further distinguish which method specifically will be called, the compiler uses only explicitly identified parameters in the caller, ignoring all optional parameters that were not specified at the caller. Therefore, if two methods are applicable because one of them has an optional parameter, the compiler will resolve to the method without the optional parameter.

Advanced Topic: Method Resolution

When the compiler must choose which of several applicable methods is the best one for a particular call, the one with the “most specific” parameter types is chosen. Assuming there are two applicable methods, each requiring an implicit conversion from an argument to a parameter type, the method whose parameter type is the more derived type will be used.

For example, a method that takes a double parameter will be chosen over a method that takes an object parameter if the caller passes an argument of type int. This is because double is more specific than object. There are objects that are not doubles, but there are no doubles that are not objects, so double must be more specific.

If more than one method is applicable and no unique best method can be determined, the compiler will issue an error indicating that the call is ambiguous.

For example, given the following methods:

static void Method(object thing){}
static void Method(double thing){}
static void Method(long thing){}
static void Method(int thing){}

a call of the form Method(42) will resolve as Method(int thing) because that is an exact match from the argument type to the parameter type. Were that method to be removed, overload resolution would choose the long version because long is more specific than either double or object.

The C# specification includes additional rules governing implicit conversion between byte, ushort, uint, ulong, and the other numeric types, but in general it is better to use a cast to make the intended target method more recognizable.

Basic Error Handling with Exceptions

This section examines how to handle error reporting via a mechanism known as exception handling.

With exception handling, a method is able to pass information about an error to a calling method without using a return value or explicitly providing any parameters to do so. Listing 4.19 contains a slight modification to the HeyYou program from Chapter 1. Instead of requesting the last name of the user, it prompts for the user’s age.

Listing 4.19. Converting a string to an int

Click here to view code image

using System;

class ExceptionHandling
{
 static void Main()
 {
 string firstName;
 string ageText;
 int age;

 Console.WriteLine("Hey you!");

 Console.Write("Enter your first name: ");
 firstName = System.Console.ReadLine();

 Console.Write("Enter your age: ");
 ageText = Console.ReadLine();
 age = int.Parse(ageText);

 Console.WriteLine(
 "Hi {0}! You are {1} months old.",
 firstName, age*12);

 }
}

Output 4.11 shows the results of Listing 4.19.

Output 4.11.

Hey you!
Enter your first name: Inigo
Enter your age: 42
Hi Inigo! You are 504 months old.

The return value from System.Console.ReadLine() is stored in a variable called ageText and is then passed to a method on the int data type, called Parse(). This method is responsible for taking a string value that represents a number and converting it to an int type.

Beginner Topic: 42 As a String versus 42 As an Integer

C# requires that every non-null value has a well-defined type associated with it. Therefore, not only is the data value important, but the type associated with the data is important as well. A string value of 42, therefore, is distinctly different from an integer value of 42. The string is composed of the two characters 4 and 2, whereas the int is the number 42.

Given the converted string, the final System.Console.WriteLine() statement will print the age in months by multiplying the age value by 12.

However, what happens if the user does not enter a valid integer string? For example, what happens if the user enters “forty-two”? The Parse() method cannot handle such a conversion. It expects the user to enter a string that contains only digits. If the Parse() method is sent an invalid value, it needs some way to report this fact back to the caller.

Trapping Errors

To indicate to the calling method that the parameter is invalid, int.Parse() will throw an exception. Throwing an exception will halt further execution in the current control flow and instead will jump into the first code block within the call stack that handles the exception.

Since you have not yet provided any such handling, the program reports the exception to the user as an unhandled exception. Assuming there is no registered debugger on the system, the error will appear on the console with a message such as that shown in Output 4.12.

Output 4.12.

Click here to view code image

Hey you!
Enter your first name: Inigo
Enter your age: forty-two

Unhandled Exception: System.FormatException: Input string was
 not in a correct format.
 at System.Number.ParseInt32(String s, NumberStyles style,
 NumberFormatInfo info)
 at ExceptionHandling.Main()

Obviously, such an error is not particularly helpful. To fix this, it is necessary to provide a mechanism that handles the error, perhaps reporting a more meaningful error message back to the user.

This is known as catching an exception. The syntax is demonstrated in Listing 4.20, and the output appears in Output 4.13.

Listing 4.20. Catching an Exception

Click here to view code image

using System;

class ExceptionHandling
{
 static int Main()
 {
 string firstName;
 string ageText;
 int age;
 int result = 0;

 Console.Write("Enter your first name: ");
 firstName = Console.ReadLine();

 Console.Write("Enter your age: ");
 ageText = Console.ReadLine();

 try
 {
 age = int.Parse(ageText);
 Console.WriteLine(
 "Hi {0}! You are {1} months old.",
 firstName, age*12);
 }
 catch (FormatException)
 {
 Console.WriteLine(
 "The age entered, {0}, is not valid.",
 ageText);
 result = 1;
 }
 catch(Exception exception)
 {
 Console.WriteLine(
 "Unexpected error: {0}", exception.Message);
 result = 1;
 }
 finally
 {
 Console.WriteLine("Goodbye {0}",
 firstName);
 }

 return result;
 }
}

Output 4.13.

Enter your first name: Inigo
Enter your age: forty-two
The age entered, forty-two, is not valid.
Goodbye Inigo

To begin, surround the code that could potentially throw an exception (age = int.Parse()) with a try block. This block begins with the try keyword. It is an indication to the compiler that the developer is aware of the possibility that the code within the block could potentially throw an exception, and if it does, one of the catch blocks will attempt to handle the exception.

One or more catch blocks (or the finally block) must appear immediately following a try block. The catch block header (see the Advanced Topic titled General catch, later in this chapter) optionally allows you to specify the data type of the exception, and as long as the data type matches the exception type, the catch block will execute. If, however, there is no appropriate catch block, the exception will fall through and go unhandled as though there were no exception handling.

The resultant control flow appears in Figure 4.1.

[image: Image]

Figure 4.1. Exception-Handling Control Flow

For example, assume the user enters “forty-two” for the age. In this case, int.Parse() will throw an exception of type System.FormatException, and control will jump to the set of catch blocks. (System.FormatException indicates that the string was not of the correct format to be parsed appropriately.) Since the first catch block matches the type of exception that int.Parse() threw, the code inside this block will execute. If a statement within the try block throws a different exception, the second catch block would execute because all exceptions are of type System.Exception.

If there were no System.FormatException catch block, the System.Exception catch block would execute even though int.Parse throws a System.FormatException. This is because a System.FormatException is also of type System.Exception. (System.FormatException is a more specific implementation of the generic exception, System.Exception.)

The order in which you handle exceptions is significant. Catch blocks must appear from most specific to least specific. The System.Exception data type is least specific, and therefore, it appears last. System.FormatException appears first because it is the most specific exception that Listing 4.20 handles.

Regardless of whether control leaves the try block normally or because the code in the try block throws an exception, the finally block of code will execute after control leaves the try-protected region. The purpose of the finally block is to provide a location to place code that will execute regardless of how the try/catch blocks exit—with or without an exception. Finally blocks are useful for cleaning up resources regardless of whether an exception is thrown. In fact, it is possible to have a try block with a finally block and no catch block. The finally block executes regardless of whether the try block throws an exception or whether a catch block is even written to handle the exception. Listing 4.21 demonstrates the try/finally block and Output 4.14 shows the results.

Listing 4.21. Finally Block without a Catch Block

Click here to view code image

using System;

class ExceptionHandling
{
 static int Main()
 {
 string firstName;
 string ageText;
 int age;
 int result = 0;

 Console.Write("Enter your first name: ");
 firstName = Console.ReadLine();

 Console.Write("Enter your age: ");
 ageText = Console.ReadLine();

 try
 {
 age = int.Parse(ageText);
 Console.WriteLine(
 "Hi {0}! You are {1} months old.",
 firstName, age*12);
 }
 finally
 {
 Console.WriteLine("Goodbye {0}",
 firstName);
 }

 return result;
 }
}

Output 4.14.

Click here to view code image

Enter your first name: Inigo
Enter your age: forty-two

Unhandled Exception: System.FormatException: Input string was not in a
correct format.
 at System.Number.StringToNumber(String str, NumberStyles options,
NumberBuffer& number, NumberFormatInfo info, Boolean parseDecimal)
 at System.Number.ParseInt32(String s, NumberStyles style,
NumberFormatInfo info)
 at ExceptionHandling.Main()
Goodbye Inigo

The attentive reader will have noticed something interesting here: The runtime first reported the unhandled exception, and then ran the finally block. What explains this unusual behavior?

First off, the behavior is legal because when an exception is unhandled, the behavior of the runtime is implementation-defined; any behavior is legal! The runtime chooses this particular behavior because it knows before it chooses to run the finally block that the exception is going to be unhandled; the runtime has already examined all of the activation frames on the call stack and determined that none of them are associated with a catch block that matches the thrown exception.

As soon as the runtime determines that the exception is going to be unhandled, it checks to see if there is a debugger installed on the machine, because you might be the software developer who is analyzing this failure. If there is, it offers the user the chance to attach the debugger to the process before the finally block runs. If there is no debugger installed, or if the user declines to debug the problem, the default behavior is to print the unhandled exception to the console, and then see if there are any finally blocks that could run. Note that due to the “implementation-defined” nature of the situation, the runtime is not required to run finally blocks in this situation; an implementation may choose to do so or not.

Guidelines

AVOID explicitly throwing exceptions from finally blocks. (Implicitly thrown exceptions resulting from method calls are acceptable.)

DO favor try/finally and avoid using try/catch for cleanup code.

DO throw exceptions that describe what exceptional circumstance occurred, and if possible, how to prevent it.

Advanced Topic: Exception Class Inheritance

Starting in C# 2.0, all objects thrown as exceptions derive from System.Exception. (Objects thrown from other languages which do not derive from System.Exception are automatically “wrapped” by an object which does.) Therefore, they can be handled by the catch(System.Exception exception) block. It is preferable, however, to include a catch block that is specific to the most derived type (System.FormatException, for example), because then it is possible to get the most information about an exception and handle it less generically. In so doing, the catch statement that uses the most derived type is able to handle the exception type specifically, accessing data related to the exception thrown, and avoiding conditional logic to determine what type of exception occurred.

This is why C# enforces that catch blocks appear from most derived to least derived. For example, a catch statement that catches System.Exception cannot appear before a statement that catches System.FormatException because System.FormatException derives from System.Exception.

A method could throw many exception types. Table 4.2 lists some of the more common ones within the framework.

Table 4.2. Common Exception Types

[image: Image]

[image: Image]

Advanced Topic: General catch

It is possible to specify a catch block that takes no parameters, as shown in Listing 4.22.

Listing 4.22. General Catch Blocks

Click here to view code image

...
try
{
 age = int.Parse(ageText);
 System.Console.WriteLine(
 "Hi {0}! You are {1} months old.",
 firstName, age*12);
}
catch (System.FormatException exception)
{
 System.Console.WriteLine(
 "The age entered ,{0}, is not valid.",
 ageText);
 result = 1;
}
catch(System.Exception exception)
{
 System.Console.WriteLine(
 "Unexpected error: {0}", exception.Message);
 result = 1;
}

catch
{
 System.Console.WriteLine(
 "Unexpected error!");
 result = 1;
}

finally
{
 System.Console.WriteLine("Goodbye {0}",
 firstName);
}
...

A catch block with no data type, called a general catch block, is equivalent to specifying a catch block that takes an object data type: for instance, catch(object exception){...}. And since all classes ultimately derive from object, a catch block with no data type must appear last.

General catch blocks are rarely used because there is no way to capture any information about the exception. In addition, C# doesn’t support the ability to throw an exception of type object. (Only libraries written in languages such as C++ allow exceptions of any type.)

The behavior starting in C# 2.0 varies slightly from the earlier C# behavior. In C# 2.0, if a language allows throwing non-System.Exceptions, the object of the thrown exception will be wrapped in a System.Runtime.CompilerServices.RuntimeWrappedException which does derive from System.Exception. Therefore, all exceptions, whether deriving from System.Exception or not, will propagate into C# assemblies as derived from System.Exception.

The result is that System.Exception catch blocks will catch all exceptions not caught by earlier blocks, and a general catch block, following a System.Exception catch block, will never be invoked. Because of this, following a System.Exception catch block with a general catch block in C# 2.0 or later will result in a compiler warning indicating that the general catch block will never execute.

Guidelines

AVOID general catch blocks and replace them with a catch of System.Exception.

AVOID catching exceptions for which the appropriate action is unknown. It is better to let an exception go unhandled than to handle it incorrectly.

AVOID catching and logging an exception before rethrowing. Rather allow the exception to escape until it can be handled appropriately.

Reporting Errors Using a throw Statement

C# allows developers to throw exceptions from their code, as demonstrated in Listing 4.23 and Output 4.15.

Listing 4.23. Throwing an Exception

[image: Image]

Output 4.15.

Begin executing
Throw exception...
Unexpected error: Arbitrary exception
Shutting down...

As the arrows in Listing 4.23 depict, throwing an exception jumps execution from where the exception is thrown into the first catch block within the stack that is compatible with the thrown exception type.5 In this case, the second catch block handles the exception and writes out an error message. In Listing 4.23, there is no finally block, so execution falls through to the System.Console.WriteLine() statement following the try/catch block.

In order to throw an exception, it is necessary to have an instance of an exception. Listing 4.23 creates an instance using the keyword new followed by the type of the exception. Most exception types allow a message as part of throwing the exception so that when the exception occurs, the message can be retrieved.

Sometimes a catch block will trap an exception but be unable to handle it appropriately or fully. In these circumstances, a catch block can rethrow the exception using the throw statement without specifying any exception, as shown in Listing 4.24.

Listing 4.24. Rethrowing an Exception

Click here to view code image

...
 catch(Exception exception)
 {
 Console.WriteLine(
 "Rethrowing unexpected error: {0}",
 exception.Message);
 throw;
 }
...

Notice that in Listing 4.24 the throw statement is “empty” rather than specifying that the exception referred to by the exception variable is to be thrown. This illustrates a subtle difference: throw; preserves the “call stack” information in the exception whereas throw exception; replaces that information with the current call stack information. For debugging purposes it is usually better to know the original call stack.

Guidelines

DO prefer using an empty throw when catching and rethrowing an exception so as to preserve the call stack.

DO report execution failures by throwing exceptions rather than returning error codes.

DO NOT have public members that return exceptions as return values or an out parameter. Throw exceptions to indicate errors; do not use them as return values to indicate errors.

Avoid Using Exception Handling to Deal with Expected Situations

Developers should make an effort to avoid throwing exceptions for expected conditions or normal control flow. For example, developers should not expect users to enter valid text when specifying their age.6 Therefore, instead of relying on an exception to validate data entered by the user, developers should provide a means of checking the data before attempting the conversion. (Better yet, you should prevent the user from entering invalid data in the first place.) Exceptions are designed specifically for tracking exceptional, unexpected, and potentially fatal situations. Using them for an unintended purpose such as expected situations will cause your code to be hard to read, understand, and maintain.

Additionally, (as with most languages) C# incurs a slight performance hit when throwing an exception—taking microseconds compared to the nanoseconds most operations take. This delay is generally not noticeable in human time—except when the exception goes unhandled. For example, when executing Listing 4.19 and entering an invalid age the exception is unhandled and there is a noticeable delay while the runtime searches the environment to see whether there is a debugger to load. Fortunately, slow performance when a program is shutting down isn’t generally a factor to be concerned with.

Guidelines

DO NOT use exceptions for handling normal, expected conditions; use them for exceptional, unexpected conditions.

Advanced Topic: Numeric Conversion with TryParse()

One of the problems with the Parse() method is that the only way to determine whether the conversion will be successful is to attempt the cast and then catch the exception if it doesn’t work. Because throwing an exception is a relatively expensive operation, it is better to attempt the conversion without exception handling. In the first release of C#, the only data type that enabled this was a double method called double.TryParse(). However, the CLI added this method to all numeric primitive types in the CLI 2.0 version. It requires the use of the out keyword because the return from the TryParse() function is a bool rather than the converted value. Here is a code snippet that demonstrates the conversion using int.TryParse().

Click here to view code image

...
if (int.TryParse(ageText, out age))
{
 System.Console.WriteLine(
 "Hi {0}! You are {1} months old.", firstName,
 age * 12);
}
else
{
 System.Console.WriteLine(
 "The age entered ,{0}, is not valid.", ageText);
}
...

With the .NET Framework 4, a TryParse() method was also added to enum types.

With the TryParse() method, it is no longer necessary to include a try/catch block simply for the purpose of handling the string-to-numeric conversion.

Summary

This chapter discussed the details of declaring and calling methods, including the use of the keywords out and ref to pass variables rather than their values. In addition to method declaration, this chapter introduced exception handling.

Methods are a fundamental construct that is a key to writing readable code. Instead of writing large methods with lots of statements, you should use methods for “paragraphs” within your code, whose lengths target roughly ten lines or less. The process of breaking large functions into smaller pieces is one of the ways you can refactor your code to make it more readable and maintainable.

The next chapter considers the class construct and how it encapsulates methods (behavior) and fields (data) into a single unit.

5. Classes

You briefly saw in Chapter 1 how to declare a new class called HelloWorld. In Chapter 2, you learned about the built-in primitive types included with C#. Since you have now also learned about control flow and how to declare methods, it is time to discuss defining your own types. This is the core construct of any C# program; this support for classes and the objects created from them is what makes C# an object-oriented language.

[image: Image]

This chapter introduces you to the basics of object-oriented programming using C#. A key focus is on how to define classes, which are the templates for objects themselves.

All of the constructs of structured programming from the previous chapters still apply within object-oriented programming. However, by wrapping those constructs within classes, you can create larger, more organized programs that are more maintainable. The transition from structured, control-flow-based programs to object-oriented programs revolutionized programming because it provided an extra level of organization. The result was that smaller programs were simplified somewhat; but more importantly, it was easier to create much larger programs because the code within those programs was better organized.

One of the key advantages of object-oriented programming is that instead of creating new programs entirely from scratch, you can assemble a collection of existing objects from prior work, extending the classes with new features, adding more classes, and thereby providing new functionality.

Readers unfamiliar with object-oriented programming should read the Beginner Topic blocks for an introduction. The general text outside the Beginner Topics focuses on using C# for object-oriented programming with the assumption that readers are already familiar with object-oriented concepts.

This chapter delves into how C# supports encapsulation through its support of constructs such as classes, properties, and access modifiers; we covered methods in the preceding chapter. The next chapter builds on this foundation with the introduction of inheritance and the polymorphism that object-oriented programming enables.

Beginner Topic: Object-Oriented Programming

The key to programming successfully today is in the ability to provide organization and structure to the implementation of the complex requirements of large applications. Object-oriented programming provides one of the key methodologies in accomplishing this, to the point that it is difficult for object-oriented programmers to envision transitioning back to structured programming, except for the most trivial programs.

The most fundamental construct to object-oriented programming is the class. A group of classes form a programming abstraction, model, or template of what is often a real-world concept. The class OpticalStorageMedia, for example, may have an Eject() method on it that causes a disk to eject from the player. The OpticalStorageMedia class is the programming abstraction of the real-world object of a CD or DVD player.

Classes exhibit the three principal characteristics of object-oriented programming: encapsulation, inheritance, and polymorphism.

Encapsulation

Encapsulation allows you to hide details. The details can still be accessed when necessary, but by intelligently encapsulating the details, large programs are made easier to understand, data is protected from inadvertent modification, and code becomes easier to maintain because the effects of a code change are limited to the scope of the encapsulation. Methods are examples of encapsulation. Although it is possible to take the code from a method and embed it directly inline with the caller’s code, refactoring of code into a method provides encapsulation benefits.

Inheritance

Consider the following example: A DVD drive is a type of optical media device. It has a specific storage capacity along with the ability to hold a digital movie. A CD drive is also a type of optical media device, but it has different characteristics. The copy protection on CDs is different from DVD copy protection, and the storage capacity is different as well. Both CD drives and DVD drives are different from hard drives, USB drives, and floppy drives (remember those?). All fit into the category of storage devices, but each has special characteristics, even for fundamental functions such as the supported filesystems and whether instances of the media are read-only or read/write.

Inheritance in object-oriented programming allows you to form “is a kind of” relationships between these similar but different items. It is reasonable to say that a DVD drive “is a kind of” storage media and that a CD drive “is a kind of” storage media, and as such, that each has storage capacity. We could also reasonably say that both have an “is a kind of” relationship with “optical storage media,” which in turn “is a kind of” storage media.

If you define classes corresponding to each type of storage device mentioned, you will have defined a class hierarchy, which is a series of “is a kind of” relationships. The base class, from which all storage devices derive, could be the class StorageMedia. As such, classes to represent CD drives, DVD drives, hard drives, USB drives, and floppy drives are derived from the class StorageMedia. However, the classes for CD and DVD drives don’t need to derive from StorageMedia directly. Instead, they can derive from an intermediate class, OpticalStorageMedia. You can view the class hierarchy graphically using a Unified Modeling Language (UML)-like class diagram, as shown in Figure 5.1.

[image: Image]

Figure 5.1. Class Hierarchy

The inheritance relationship involves a minimum of two classes such that one class is a more specific kind of the other; in Figure 5.1, HardDrive is a more specific kind of StorageMedia. Although the more specialized type, HardDrive, is a kind of StorageMedia, the reverse is not true; an instance of StorageMedia is not necessarily a HardDrive. As Figure 5.1 shows, inheritance can involve more than two classes.

The more specialized type is called the derived type or the subtype. The more general type is called the base type or the super type. The base type is also often called the “parent” type and its derived types are often called its “child” types. Though this usage is common, it can be confusing; after all, a child is not a kind of parent! In this book we will stick to “derived type” and “base type.”

To derive or inherit from another type is to specialize that type, which means to customize the base type so that it is more suitable for a specific purpose. The base type may contain those implementation details that are common to all of the derived types.

The key feature of inheritance is that all derived types inherit the members of the base type. Often, the implementation of the base members can be modified, but regardless, the derived type contains the base type’s members in addition to any other members that the derived type contains explicitly.

Derived types allow you to organize your classes into a coherent hierarchy where the derived types have greater specificity than their base types.

Polymorphism

Polymorphism is formed from “poly” meaning “many” and “morph” meaning “form.” In the context of objects, polymorphism means that a single method or type can have many forms of implementation. Suppose you have a media player that can play both CD music discs and DVDs containing MP3s. However, the exact implementation of the Play() method will vary depending on the media type. Calling Play() on an object representing a music CD or on an object representing a music DVD will play music in both cases, because each object’s type understands the intricacies of playing. All that the media player knows about is the common base type, OpticalStorageMedia, and the fact that it defines the Play() method. Polymorphism is the principle that a type can take care of the exact details of a method’s implementation because the method appears on multiple derived types that each share a common base type (or interface) that also contains the same method signature.

Declaring and Instantiating a Class

Defining a class involves first specifying the keyword class, followed by an identifier, as shown in Listing 5.1.

Listing 5.1. Defining a Class

class Employee
{
}

All code that belongs to the class will appear between the curly braces following the class declaration. Although not a requirement, generally you place each class into its own file. This makes it easier to find the code that defines a particular class, because the convention is to name the file using the class name.

Guidelines

DO NOT place more than one class in a single source file.

DO name the source file with the name of the public type it contains.

Once you have defined a new class, you can use that class as though it were built into the framework. In other words, you can declare a variable of that type or define a method that takes a parameter of the new class type. Listing 5.2 demonstrates.

Listing 5.2. Declaring Variables of the Class Type

Click here to view code image

class Program
{
 static void Main()
 {
 Employee employee1, employee2;
 // ...
 }

 static void IncreaseSalary(Employee employee)
 {
 // ...
 }
}

Beginner Topic: Objects and Classes Defined

In casual conversation, the terms class and object appear interchangeably. However, object and class have distinct meanings. A class is a template for what an object will look like at instantiation time. An object, therefore, is an instance of a class. Classes are like the mold for what a widget will look like. Objects correspond to widgets created by the mold. The process of creating an object from a class is instantiation because an object is an instance of a class.

Now that you have defined a new class type, it is time to instantiate an object of that type. Mimicking its predecessors, C# uses the new keyword to instantiate an object (see Listing 5.3).

Listing 5.3. Instantiating a Class

Click here to view code image

class Program
{
 static void Main()
 {

 Employee employee1 = new Employee();

 Employee employee2;

 employee2 = new Employee();

 IncreaseSalary(employee1);
 }
}

Not surprisingly, the assignment can occur in the same statement as the declaration, or in a separate statement.

Unlike the primitive types you have worked with so far, there is no literal way to specify an Employee. Instead, the new operator provides an instruction to the runtime to allocate memory for an Employee object, instantiate the object, and return a reference to the instance.

Though there is an explicit operator for allocating memory, there is no such operator for de-allocating the memory. Instead, the runtime automatically reclaims the memory sometime after the object becomes inaccessible. The garbage collector is responsible for the automatic de-allocation. It determines which objects are no longer referenced by other active objects and then de-allocates the memory for those objects. The result is that there is no compile-time-determined program location where the memory will be collected and restored to the system.

In this trivial example, no explicit data or methods are associated with an Employee, and this renders the object essentially useless. The next section focuses on adding data to an object.

Beginner Topic: Encapsulation Part 1: Objects Group Data with Methods

If you received a stack of index cards with employees’ first names, a stack of index cards with their last names, and a stack of index cards with their salaries, the cards would be of little value unless you knew that the cards were in the same order in each stack. Even so, the data would be difficult to work with because determining a person’s full name would require searching through two stacks. Worse, if you dropped one of the stacks, there would be no way to reassociate the first name with the last name and the salary. Instead, you would need one stack of employee cards in which all the data was grouped on one card. In this way, first names, last names, and salaries would be encapsulated together.

Outside the object-oriented programming context, to encapsulate a set of items is to enclose those items within a capsule. Similarly, object-oriented programming encapsulates methods and data together into an object. This provides a grouping of all of the class members (the data and methods within a class) so that they no longer need to be handled individually. Instead of passing first name, last name, and salary as three separate parameters to a method, objects enable a call to pass a reference to an employee object. Once the called method receives the object reference, it can send a message (it can call a method such as AdjustSalary(), for example) on the object to perform a particular operation.

Language Contrast: C++—delete Operator

C# programmers should view the new operator as a call to instantiate an object, not as a call to allocate memory. Both objects allocated on the heap and objects allocated on the stack support the new operator, emphasizing the point that new is not about memory allocation and whether de-allocation is necessary.

Thus C# does not need the delete operator found in C++. Memory allocation and de-allocation is a detail that the runtime manages, allowing the developer to focus more on domain logic. However, though memory is managed by the runtime, the runtime does not manage other resources such as database connections, network ports, and so on. Unlike C++, C# does not support implicit deterministic resource cleanup (the occurrence of implicit object destruction at a compile-time-defined location in the code). Fortunately, C# does support explicit deterministic resource cleanup via a using statement, and implicit nondeterministic resource cleanup using finalizers.

Instance Fields

One of the key aspects of object-oriented design is the grouping of data to provide structure. This section discusses how to add data to the Employee class. The general object-oriented term for a variable that stores data within a class is member variable. This term is well understood in C#, but the more standard term and the one used in the specification is field, which is a named unit of storage associated with the containing type. Instance fields are variables declared at the class level to store data associated with an object. Hence, association is the relationship between the field data type and the containing field.

Declaring an Instance Field

In Listing 5.4, the class Employee has been modified to include three fields: FirstName, LastName, and Salary.

Listing 5.4. Declaring Fields

class Employee
{
 public string FirstName;
 public string LastName;
 public string Salary;
}

With these fields added, it is possible to store some fundamental data with every Employee instance. In this case, you prefix the fields with an access modifier of public. public on a field indicates that the data within the field is accessible from classes other than Employee (see the section Access Modifiers, later in this chapter).

As with local variable declarations, a field declaration includes the data type to which the field refers. Furthermore, it is possible to assign fields an initial value at declaration time, as demonstrated with the Salary field in Listing 5.5.

Listing 5.5. Setting Initial Values of Fields at Declaration Time

class Employee
{
 public string FirstName;
 public string LastName;

 public string Salary = "Not enough";

}

We delay the guidelines of naming and coding fields until later in the chapter, after the C# properties topic has been introduced. Suffice it to say, Listing 5.5 does not follow the general convention.

Accessing an Instance Field

You can set and retrieve the data within fields. However, the fact that the field does not include a static modifier indicates that it is an instance field. You can access an instance field only from an instance of the containing class (an object). You cannot access it from the class directly (without first creating an instance, in other words).

Listing 5.6 shows an updated look at the Program class and its utilization of the Employee class, and Output 5.1 shows the results.

Listing 5.6. Accessing Fields

Click here to view code image

class Program
{
 static void Main()
 {
 Employee employee1 = new Employee();
 Employee employee2;
 employee2 = new Employee();

 employee1.FirstName = "Inigo";
 employee1.LastName = "Montoya";
 employee1.Salary = "Too Little";
 IncreaseSalary(employee1);
 Console.WriteLine(
 "{0} {1}: {2}",
 employee1.FirstName,
 employee1.LastName,
 employee1.Salary);

 // ...
 }

 static void IncreaseSalary(Employee employee)
 {

 employee.Salary = "Enough to survive on";

 }
}

Output 5.1.

Inigo Montoya: Enough to survive on

Listing 5.6 instantiates two Employee objects, as you saw before. Next, it sets each field, calls IncreaseSalary() to change the salary, and then displays each field associated with the object referenced by employee1.

Notice that you first have to specify which Employee instance you are working with. Therefore, the employee1 variable appears as a prefix to the field name when assigning and accessing the field.

Instance Methods

One alternative to formatting the names in the WriteLine() method call within Main() is to provide a method in the Employee class that takes care of the formatting. Changing the functionality to be within the Employee class rather than a member of Program is consistent with the encapsulation of a class. Why not group the methods relating to the employee’s full name with the class that contains the data that forms the name?

Listing 5.7 demonstrates the creation of such a method.

Listing 5.7. Accessing Fields from within the Containing Class

class Employee
{
 public string FirstName;
 public string LastName;
 public string Salary;

 public string GetName()
 {
 return FirstName + " " + LastName;
 }

}

There is nothing particularly special about this method compared to what you learned in Chapter 4, except that now the GetName() method accesses fields on the object instead of just local variables. In addition, the method declaration is not marked with static. As you will see later in this chapter, static methods cannot directly access instance fields within a class. Instead, it is necessary to obtain an instance of the class in order to call any instance member, whether a method or a field.

Given the addition of the GetName() method, you can update Program.Main() to use the method, as shown in Listing 5.8 and Output 5.2.

Listing 5.8. Accessing Fields from outside the Containing Class

Click here to view code image

class Program
{
 static void Main()
 {
 Employee employee1 = new Employee();
 Employee employee2;
 employee2 = new Employee();

 employee1.FirstName = "Inigo";
 employee1.LastName = "Montoya";
 employee1.Salary = "Too Little";
 IncreaseSalary(employee1);

 Console.WriteLine(
 "{0}: {1}",
 employee1.GetName(),
 employee1.Salary);

 // ...
 }
 // ...
}

Output 5.2.

Inigo Montoya: Enough to survive on

Using the this Keyword

You can obtain the reference to a class from within instance members that belong to the class. To indicate explicitly that the field or method accessed is an instance member of the containing class in C#, you use the keyword this. this is implicit when calling any instance member and it returns an instance of the object itself.

For example, consider the SetName() method shown in Listing 5.9.

Listing 5.9. Using this to Identify the Field’s Owner Explicitly

Click here to view code image

class Employee
{
 public string FirstName;
 public string LastName;
 public string Salary;

 public string GetName()
 {
 return FirstName + " " + LastName;
 }

 public void SetName(
 string newFirstName, string newLastName)
 {
 this.FirstName = newFirstName;
 this.LastName = newLastName;
 }

}

This example uses the keyword this to indicate that the fields FirstName and LastName are instance members of the class.

Although the this keyword can prefix any and all references to local class members, the general guideline is not to clutter code when there is no additional value. Therefore, avoid using the this keyword unless it is required. Listing 5.12 is an example of one of the few circumstances when such a requirement exists. Listings 5.9 and 5.10, however, are not good examples. In Listing 5.9, this can be dropped entirely without changing the meaning of the code. And in Listing 5.10, by changing the naming convention for fields, we can avoid any ambiguity between local variables and fields.

Beginner Topic: Relying on Coding Style to Avoid Ambiguity

In the SetName() method, you did not have to use the this keyword because FirstName is obviously different from newFirstName. Consider, however, if instead of calling the parameter “newFirstName” you called it “FirstName” (using Pascal case), as shown in Listing 5.10.

Listing 5.10. Using this to Avoid Ambiguity

Click here to view code image

class Employee
{
 public string FirstName;
 public string LastName;
 public string Salary;

 public string GetName()
 {
 return FirstName + " " + LastName;
 }

 // Caution: Parameter names use Pascal case
 public void SetName(string FirstName, string LastName)
 {
 this.FirstName = FirstName;
 this.LastName = LastName;
 }
}

In this example, it is not possible to refer to the FirstName field without explicitly indicating that the Employee object owns the variable. this acts just like the employee1 variable prefix used in the Program.Main() method (see Listing 5.8); it identifies the reference as the one on which SetName() was called.

Listing 5.10 does not follow the C# naming convention in which parameters are declared like local variables, using camel case. This can lead to subtle bugs because assigning FirstName (intending to refer to the field) to FirstName (the parameter) will still compile and even run. To avoid this problem it is a good practice to have a different naming convention for parameters and local variables than the naming convention for fields. We demonstrate one such convention later in this chapter.

Language Contrast: Visual Basic—Accessing a Class Instance with Me

The C# keyword this is identical to the Visual Basic keyword Me.

In Listing 5.9 and Listing 5.10, the this keyword is not used in the GetName() method—it is optional. However, if local variables or parameters exist with the same name as the field (see the SetName() method in Listing 5.10), leaving off this would result in accessing the local variable/parameter when the intention was the field, so this is required.

You also can use the keyword this to access a class’s methods explicitly. this.GetName() is allowed within the SetName() method, for example, permitting you to print out the newly assigned name (see Listing 5.11 and Output 5.3).

Listing 5.11. Using this with a Method

Click here to view code image

class Employee
{
 // ...

 public string GetName()
 {
 return FirstName + " " + LastName;
 }

 public void SetName(string newFirstName, string newLastName)
 {
 this.FirstName = newFirstName;
 this.LastName = newLastName;

 Console.WriteLine("Name changed to '{0}'",
 this.GetName());

 }
}

class Program
{
 static void Main()
 {
 Employee employee = new Employee();

 employee.SetName("Inigo", "Montoya");
 // ...
 }
 // ...
}

Output 5.3.

Name changed to 'Inigo Montoya'

Sometimes it may be necessary to use this in order to pass a reference to the currently executing object. Consider the Save() method in Listing 5.12.

Listing 5.12. Passing this in a Method Call

Click here to view code image

class Employee
{
 public string FirstName;
 public string LastName;
 public string Salary;

 public void Save()
 {

 DataStorage.Store(this);

 }
}

class DataStorage
{
 // Save an employee object to a file
 // named with the Employee name.
 public static void Store(Employee employee)
 {
 // ...
 }
}

The Save() method calls a method on the DataStorage class, called Store(). The Store() method, however, needs to be passed the Employee object that needs to be persisted. This is done using the keyword this, which passes the instance of the Employee object on which Save() was called.

Advanced Topic: Storing and Loading with Files

The actual implementation of the Store() method inside DataStorage involves classes within the System.IO namespace, as shown in Listing 5.13. Inside Store(), you begin by instantiating a FileStream object that you associate with a file corresponding to the employee’s full name. The FileMode.Create parameter indicates that you want a new file to be created if there isn’t already one with the <firstname><lastname>.dat name; if the file exists already, it will be overwritten. Next, you create a StreamWriter class. The StreamWriter class is responsible for writing text into the FileStream. You write the data using WriteLine() methods, just as though writing to the console.

Listing 5.13. Data Persistence to a File

Click here to view code image

using System;
// IO namespace
using System.IO;

class DataStorage
{
 // Save an employee object to a file
 // named with the Employee name.
 // Error handling not shown.
 public static void Store(Employee employee)
 {
 // Instantiate a FileStream using FirstNameLastName.dat
 // for the filename. FileMode.Create will force
 // a new file to be created or override an
 // existing file.
 FileStream stream = new FileStream(
 employee.FirstName + employee.LastName + ".dat",
 FileMode.Create);1

 // Create a StreamWriter object for writing text
 // into the FileStream
 StreamWriter writer = new StreamWriter(stream);

 // Write all the data associated with the employee.
 writer.WriteLine(employee.FirstName);
 writer.WriteLine(employee.LastName);
 writer.WriteLine(employee.Salary);

 // Close the StreamWriter and its Stream.
 writer.Close(); // Automatically closes the stream
 }
 // ...
}

Once the write operations are completed, both the FileStream and the StreamWriter need to be closed so that they are not left open indefinitely while waiting for the garbage collector to run. This listing does not include any error handling, so if an exception is thrown, neither Close() method will be called.

The load process is similar (see Listing 5.14).

Listing 5.14. Data Retrieval from a File

Click here to view code image

class Employee
{
 // ...
}

// IO namespace
using System;
using System.IO;

class DataStorage
{
 // ...

 public static Employee Load(string firstName, string lastName)
 {
 Employee employee = new Employee();

 // Instantiate a FileStream using FirstNameLastName.dat
 // for the filename. FileMode.Open will open
 // an existing file or else report an error.
 FileStream stream = new FileStream(
 firstName + lastName + ".dat", FileMode.Open);2

 // Create a SteamReader for reading text from the file.
 StreamReader reader = new StreamReader(stream);

 // Read each line from the file and place it into
 // the associated property.
 employee.FirstName = reader.ReadLine();
 employee.LastName = reader.ReadLine();
 employee.Salary = reader.ReadLine();

 // Close the StreamReader and its Stream.
 reader.Close(); // Automatically closes the stream

 return employee;
 }
}

class Program
{
 static void Main()
 {
 Employee employee1;

 Employee employee2 = new Employee();
 employee2.SetName("Inigo", "Montoya");
 employee2.Save();

 // Modify employee2 after saving.
 IncreaseSalary(employee2);

 // Load employee1 from the saved version of employee2
 employee1 = DataStorage.Load("Inigo", "Montoya");

 Console.WriteLine(
 "{0}: {1}",
 employee1.GetName(),
 employee1.Salary);

 // ...
 }
 // ...
}

Output 5.4 shows the results.

Output 5.4.

Name changed to 'Inigo Montoya'
Inigo Montoya:

The reverse of the save process appears in Listing 5.14, which uses a StreamReader rather than a StreamWriter. Again, Close() needs to be called on both FileStream and StreamReader once the data has been read.

Output 5.4 does not show any salary after Inigo Montoya: because Salary was not set to Enough to survive on by a call to IncreaseSalary() until after the call to Save().

Notice in Main() that we can call Save() from an instance of an employee, but to load a new employee we call DataStorage.Load(). To load an employee, we generally don’t already have an employee instance to load into, so an instance method on Employee would be less than ideal. An alternative to calling Load on DataStorage would be to add a static Load() method (see the section Static Members, later in this chapter) to Employee so that it would be possible to call Employee.Load() (using the Employee class, not an instance of Employee).

Observe the inclusion of the using System.IO directive at the top of the listing. This makes each IO class accessible without prefixing it with the full namespace.

Access Modifiers

When declaring a field earlier in the chapter, you prefixed the field declaration with the keyword public. public is an access modifier that identifies the level of encapsulation associated with the member it decorates. Five access modifiers are available: public, private, protected, internal, and protected internal. This section considers the first two.

Beginner Topic: Encapsulation Part 2: Information Hiding

Besides wrapping data and methods together into a single unit, encapsulation is also about hiding the internal details of an object’s data and behavior. To some degree, methods do this; from outside a method, all that is visible to a caller is the method declaration. None of the internal implementation is visible. Object-oriented programming enables this further, however, by providing facilities for controlling the extent to which members are visible from outside the class. Members that are not visible outside the class are private members.

In object-oriented programming, encapsulation is the term for not only grouping data and behavior, but also hiding data and behavior implementation details within a class (the capsule) so that the inner workings of a class are not exposed. This reduces the chances that callers will modify the data inappropriately or program according to the implementation, only to have it change in the future.

The purpose of an access modifier is to provide encapsulation. By using public, you explicitly indicated that it is acceptable that the modified fields are accessible from outside the Employee class—in other words, that they are accessible from the Program class, for example.

Consider an Employee class that includes a Password field, however. It should be possible to call an Employee object and verify the password using a Logon() method. It should not be possible, however, to access the Password field on an Employee object from outside the class.

To define a Password field as hidden and inaccessible from outside the containing class, you use the keyword private for the access modifier, in place of public (see Listing 5.15). As a result, the Password field is not intended for access from inside the Program class, for example.

Listing 5.15. Using the private Access Modifier

Click here to view code image

class Employee
{
 public string FirstName;
 public string LastName;
 public string Salary;

 private string Password;
 private bool IsAuthenticated;

 public bool Logon(string password)
 {
 if(Password == password)
 {
 IsAuthenticated = true;
 }
 return IsAuthenticated;
 }

 public bool GetIsAuthenticated()
 {
 return IsAuthenticated;
 }

 // ...
}

class Program
{
 static void Main()
 {
 Employee employee = new Employee();

 employee.FirstName = "Inigo";
 employee.LastName = "Montoya";

 // ...

 // Password is private, so it cannot be
 // accessed from outside the class.
 // Console.WriteLine(
 // ("Password = {0}", employee.Password);

 }
 // ...
}

Although not shown in Listing 5.15, it is possible to decorate a method with an access modifier of private as well.

Note that if no access modifier is placed on a class member, the declaration will default to private. In other words, members are private by default and programmers need to specify explicitly that a member is to be public.

Properties

The preceding section, Access Modifiers, demonstrated how you can use the private keyword to encapsulate a password, preventing access from outside the class. This type of encapsulation is often too thorough, however. For example, sometimes you might need to define fields that external classes can only read but whose values you can change internally. Alternatively, perhaps you want to allow access to write some data in a class but you need to be able to validate changes made to the data. Still one more example is the need to construct the data on the fly. Traditionally, languages enabled the features found in these examples by marking fields as private and then providing getter and setter methods for accessing and modifying the data. The code in Listing 5.16 changes both FirstName and LastName to private fields. Public getter and setter methods for each field allow their values to be accessed and changed.

Listing 5.16. Declaring Getter and Setter Methods

Click here to view code image

class Employee
{

 private string FirstName;
 // FirstName getter
 public string GetFirstName()
 {
 return FirstName;
 }
 // FirstName setter
 public void SetFirstName(string newFirstName)
 {
 if(newFirstName != null && newFirstName != "")
 {
 FirstName = newFirstName;
 }
 }

 private string LastName;
 // LastName getter
 public string GetLastName()
 {
 return LastName;
 }
 // LastName setter
 public void SetLastName(string newLastName)
 {
 if(newLastName != null && newLastName != "")
 {
 LastName = newLastName;
 }
 }
 // ...
}

Unfortunately, this change affects the programmability of the Employee class. No longer can you use the assignment operator to set data within the class, nor access data without calling a method.

Declaring a Property

Considering the frequency of this type of pattern, the C# designers decided to provide explicit syntax for it. This syntax is called a property (see Listing 5.17 and Output 5.5).

Listing 5.17. Defining Properties

Click here to view code image

class Program
{
 static void Main()
 {
 Employee employee = new Employee();

 // Call the FirstName property's setter.
 employee.FirstName = "Inigo";

 // Call the FirstName property's getter.
 System.Console.WriteLine(employee.FirstName);
 }
}

class Employee
{

 // FirstName property
 public string FirstName
 {
 get
 {
 return _FirstName;
 }
 set
 {
 _FirstName = value;
 }
 }
 private string _FirstName;

 // LastName property
 public string LastName
 {
 get
 {
 return _LastName;
 }
 set
 {
 _LastName = value;
 }
 }
 private string _LastName;

 // ...
}

Output 5.5.

Inigo

The first thing to notice in Listing 5.17 is not the property code itself, but the code within the Program class. Although you no longer have the fields with the FirstName and LastName identifiers, you cannot see this by looking at the Program class. The API for accessing an employee’s first and last names has not changed at all. It is still possible to assign the parts of the name using a simple assignment operator, for example (employee.FirstName = "Inigo").

The key feature is that properties provide an API that looks programmatically like a field. In actuality, however, no such fields exist. A property declaration looks exactly like a field declaration, but following it are curly braces in which to place the property implementation. Two optional parts make up the property implementation. The get part defines the getter portion of the property. It corresponds directly to the GetFirstName() and GetLastName() functions defined in Listing 5.16. To access the FirstName property you call employee.FirstName. Similarly, setters (the set portion of the implementation) enable the calling syntax of the field assignment:

employee.FirstName = "Inigo";

Property definition syntax uses three contextual keywords. You use the get and set keywords to identify either the retrieval or the assignment portion of the property, respectively. In addition, the setter uses the value keyword to refer to the right side of the assignment operation. When Program.Main() calls employee.FirstName = "Inigo", therefore, value is set to "Inigo" inside the setter and can be used to assign _FirstName. Listing 5.17’s property implementations are the most common. When the getter is called (such as in Console.WriteLine(employee.FirstName)), the value from the field (_FirstName) is obtained and written to the console.

Automatically Implemented Properties

In C# 3.0, property syntax includes a shorthand version. Since a property with a single backing field that is assigned and retrieved by the get and set accessors is so trivial and common (see the implementations of FirstName and LastName), the C# 3.0 compiler (and higher) allows the declaration of a property without any accessor implementation or backing field declaration. Listing 5.18 demonstrates the syntax, and Output 5.6 shows the results.

Listing 5.18. Automatically Implemented Properties

Click here to view code image

class Program
{
 static void Main()
 {
 Employee employee1 =
 new Employee();
 Employee employee2 =
 new Employee();

 // Call the FirstName property's setter.
 employee1.FirstName = "Inigo";

 // Call the FirstName property's getter.
 System.Console.WriteLine(employee1.FirstName);

 // Assign an auto-implemented property
 employee2.Title = "Computer Nerd";
 employee1.Manager = employee2;

 // Print employee1's manager's title.
 System.Console.WriteLine(employee1.Manager.Title);
 }
}

class Employee
{
 // FirstName property
 public string FirstName
 {
 get
 {
 return _FirstName;
 }
 set
 {
 _FirstName = value;
 }
 }
 private string _FirstName;

 // LastName property
 public string LastName
 {
 get
 {
 return _LastName;
 }
 set
 {
 _LastName = value;
 }
 }
 private string _LastName;
 // ...

 // Title property

 public string Title { get; set; }

 // Manager property

 public Employee Manager { get; set; }

}

Output 5.6.

Inigo
Computer Nerd

Auto-implemented properties provide for a simpler way of writing properties in addition to reading them. Furthermore, when it comes time to add something such as validation to the setter, any existing code that calls the property will not have to change even though the property declaration will have changed to include an implementation.

Throughout the remainder of the book, we will frequently use this C# 3.0 or later syntax without indicating that it is a C# 3.0 introduced feature.

Property and Field Guidelines

Given that it is possible to write explicit setter and getter methods rather than properties, on occasion a question may arise as to whether to use a property or a method. The general guideline is that methods should represent actions and properties should represent data. Properties are for simple access to simple data with a simple computation. The expectation is that invoking a property is not significantly more expensive than accessing a field.

With regard to naming, notice that in Listing 5.18 the property name is FirstName, and the field name changed from earlier listings to _FirstName—PascalCase with an underscore suffix. Other common naming conventions for the private field that backs a property are _firstName and m_FirstName (a holdover from C++ where the m stands for member variable), and on occasion the camelCase convention just like local variables.3 The camelCase convention should be avoided, however. Using camelCase for property names is the same as the naming convention for local variables and parameters, causing overlap to be highly probable. Also, to keep with the principles of encapsulation, fields should not be declared as public or protected.

Guidelines

DO use properties for simple access to simple data with simple computations.

AVOID throwing exceptions from property getters.

DO preserve the original property value if the property throws an exception.

Regardless of which naming pattern you use for private fields, the coding standard for properties is PascalCase. Therefore, properties should use the LastName and FirstName pattern with names that represent nouns, noun phrases, or adjectives. It is not uncommon, in fact, that the property name is the same as the type name. Consider an Address property of type Address on a Person object, for example.

Guidelines

CONSIDER using the same casing on a property’s backing field as what is used in the property, distinguishing the backing field with an “_” prefix. Do not, however, use two underscores; identifiers beginning with two underscores are reserved for the use of the C# compiler itself.

DO name properties using a noun, noun phrase, or adjective.

CONSIDER giving a property the same name as its type.

AVOID naming fields with camelCase.

DO favor prefixing Boolean properties with “Is,” “Can,” or “Has,” when it adds value.

DO NOT declare instance fields that are public or protected. (Instead, expose via a property.)

DO name properties with PascalCase.

DO favor automatically implemented properties over fields.

DO favor automatically implemented properties over using fully expanded ones if there is no additional implementation logic.

Using Properties with Validation

Notice in Listing 5.19 that the Initialize() method of Employee uses the property rather than the field for assignment as well. Although this is not required, the result is that any validation within the property setter will be invoked both inside and outside the class. Consider, for example, what would happen if you changed the LastName property so that it checked value for null or an empty string, before assigning it to _LastName.

Listing 5.19. Providing Property Validation

Click here to view code image

class Employee
{
 // ...
 public void Initialize(
 string newFirstName, string newLastName)
 {
 // Use property inside the Employee
 // class as well.
 FirstName = newFirstName;
 LastName = newLastName;
 }

 // LastName property
 public string LastName
 {
 get
 {
 return _LastName;
 }
 set
 {

 // Validate LastName assignment
 if(value == null)
 {
 // Report error
 throw new ArgumentNullException("value");
 }
 else
 {
 // Remove any whitespace around
 // the new last name.
 value = value.Trim();
 if(value == "")
 {
 throw new ArgumentException(
 "LastName cannot be blank.", "value");4
 }
 else
 _LastName = value;
 }

 }
 }
 private string _LastName;
 // ...
}

With this new implementation, the code throws an exception if LastName is assigned an invalid value, either from another member of the same class or via a direct assignment to LastName from inside Program.Main(). The ability to intercept an assignment and validate the parameters by providing a field-like API is one of the advantages of properties.

It is a good practice to only access a property-backing field from inside the property implementation. In other words, always use the property, rather than calling the field directly. In many cases, this is true even from code within the same class as the property. If following this practice, when code such as validation code is added, the entire class immediately takes advantage of it. (As described later in the chapter, one exception to this occurs when the field is marked as read-only because then the value cannot be set once class instantiation completes, even in a property setter.)

Although rare, it is possible to assign a value inside the setter, as Listing 5.19 does. In this case, the call to value.Trim() removes any whitespace surrounding the new last name value.

Guidelines

AVOID accessing the backing field of a property outside the property, even from within the containing class.

DO use “value” for the paramName argument when calling the ArgumentException() or ArgumentNullException() constructor (“value” is the implicit name of the parameter on property setters).

Read-Only and Write-Only Properties

By removing either the getter or the setter portion of a property, you can change a property’s accessibility. Properties with only a setter are write-only, which is a relatively rare occurrence. Similarly, providing only a getter will cause the property to be read-only; any attempts to assign a value will cause a compile error. To make Id read-only, for example, you would code it as shown in Listing 5.20.

Listing 5.20. Defining a Read-Only Property

Click here to view code image

class Program
{
 static void Main()
 {
 Employee employee1 = new Employee();
 employee1.Initialize(42);

 // ERROR: Property or indexer 'Employee.Id'
 // cannot be assigned to -- it is read-only
 employee1.Id = "490";

 }
}

class Employee
{
 public void Initialize(int id)
 {

 // Use field because Id property has no setter,
 // it is read-only.
 _Id = id.ToString();

 }

 // ...
 // Id property declaration
 public string Id
 {
 get
 {
 return _Id;
 }

 // No setter provided.

 }
 private string _Id;

}

Listing 5.20 assigns the field from within the Employee constructor rather than the property (_Id = id). Assigning via the property causes a compile error, as it does in Program.Main().

Guidelines

DO create get-only properties if the caller should not be able to change the value of the property.

Access Modifiers on Getters and Setters

As previously mentioned, it is a good practice not to access fields from outside their properties because doing so circumvents any validation or additional logic that may be inserted. Unfortunately, C# 1.0 did not allow different levels of encapsulation between the getter and setter portions of a property. It was not possible, therefore, to create a public getter and a private setter so that external classes would have read-only access to the property while code within the class could write to the property.

In C# 2.0, support was added for placing an access modifier on either the get or the set portion of the property implementation (not on both), thereby overriding the access modifier specified on the property declaration. Listing 5.21 demonstrates how to do this.

Listing 5.21. Placing Access Modifiers on the Setter

Click here to view code image

class Program
{
 static void Main()
 {
 Employee employee1 = new Employee();
 employee1.Initialize(42);

 // ERROR: The property or indexer 'Employee.Id'
 // cannot be used in this context because the set
 // accessor is inaccessible
 employee1.Id = "490";

 }
}

class Employee
{
 public void Initialize(int id)
 {

 // Set Id property
 Id = id.ToString();

 }

 // ...
 // Id property declaration
 public string Id
 {
 get
 {
 return _Id;
 }
 // Providing an access modifier is in C# 2.0
 // and higher only

 private set
 {
 _Id = value;
 }

 }
 private string _Id;

}

By using private on the setter, the property appears as read-only to classes other than Employee. From within Employee, the property appears as read/write, so you can assign the property within the constructor. When specifying an access modifier on the getter or setter, take care that the access modifier is more restrictive than the access modifier on the property as a whole. It is a compile error, for example, to declare the property as private and the setter as public.

Guidelines

DO apply appropriate accessibility modifiers on implementations of getters and setters on all properties.

DO NOT provide set-only properties or properties with the setter having broader accessibility than the getter.

Properties As Virtual Fields

As you have seen, properties behave like virtual fields. In some instances, you do not need a backing field at all. Instead, the property getter returns a calculated value while the setter parses the value and persists it to some other member fields (if it even exists). Consider, for example, the Name property implementation shown in Listing 5.22. Output 5.7 shows the results.

Listing 5.22. Defining Properties

Click here to view code image

class Program
{
 static void Main()
 {
 Employee employee1 = new Employee();

 employee1.Name = "Inigo Montoya";
 System.Console.WriteLine(employee1.Name);

 // ...
 }
}

class Employee
{
 // ...

 // FirstName property
 public string FirstName
 {
 get
 {
 return _FirstName;
 }
 set
 {
 _FirstName = value;
 }
 }
 private string _FirstName;

 // LastName property
 public string LastName
 {
 get
 {
 return _LastName;
 }
 set
 {
 _LastName = value;
 }
 }
 private string _LastName;
 // ...

 // Name property
 public string Name
 {
 get
 {
 return FirstName + " " + LastName;
 }
 set
 {
 // Split the assigned value into
 // first and last names.
 string[] names;
 names = value.Split(new char[]{' '});
 if(names.Length == 2)
 {
 FirstName = names[0];
 LastName = names[1];
 }
 else
 {
 // Throw an exception if the full
 // name was not assigned.
 throw new System. ArgumentException (
 string.Format(
 "Assigned value '{0}' is invalid", value));
 }
 }
 }

 // ...
}

Output 5.7.

Inigo Montoya

The getter for the Name property concatenates the values returned from the FirstName and LastName properties. In fact, the name value assigned is not actually stored. When the Name property is assigned, the value on the right side is parsed into its first and last name parts.

Properties and Method Calls Not Allowed As ref or out Parameter Values

C# allows properties to be used identically to fields, except when they are passed as ref or out parameter values. ref and out parameter values are internally implemented by passing the memory address to the target method. However, because properties can be virtual fields that have no backing field, or can be read-only or write-only, it is not possible to pass the address for the underlying storage. As a result, you cannot pass properties as ref or out parameter values. The same is true for method calls. Instead, when code needs to pass a property or method call as a ref or out parameter value, the code must first copy the value into a variable and then pass the variable. Once the method call has completed, the code must assign the variable back into the property.

Advanced Topic: Property Internals

Listing 5.23 shows that getters and setters are exposed as get_FirstName() and set_FirstName() in the CIL.

Listing 5.23. CIL Code Resulting from Properties

Click here to view code image

// ...

.field private string _FirstName
.method public hidebysig specialname instance string
 get_FirstName() cil managed
{
 // Code size 12 (0xc)
 .maxstack 1
 .locals init (string V_0)
 IL_0000: nop
 IL_0001: ldarg.0
 IL_0002: ldfld string Employee::_FirstName
 IL_0007: stloc.0
 IL_0008: br.s IL_000a

 IL_000a: ldloc.0
 IL_000b: ret
} // end of method Employee::get_FirstName

.method public hidebysig specialname instance void
 set_FirstName(string 'value') cil managed
{
 // Code size 9 (0x9)
 .maxstack 8
 IL_0000: nop
 IL_0001: ldarg.0
 IL_0002: ldarg.1
 IL_0003: stfld string Employee::_FirstName
 IL_0008: ret
} // end of method Employee::set_FirstName

.property instance string FirstName()
{
 .get instance string Employee::get_FirstName()
 .set instance void Employee::set_FirstName(string)
} // end of property Employee::FirstName

// ...

Just as important to their appearance as regular methods is the fact that properties are an explicit construct within the CIL, too. As Listing 5.24 shows, the getters and setters are called by CIL properties, which are an explicit construct within the CIL code. Because of this, languages and compilers are not restricted to always interpreting properties based on a naming convention. Instead, CIL properties provide a means for compilers and code editors to provide special syntax.

Listing 5.24. Properties Are an Explicit Construct in CIL

Click here to view code image

 .property instance string FirstName()
 {
 .get instance string Program::get_FirstName()
 .set instance void Program::set_FirstName(string)
 } // end of property Program::FirstName

Notice in Listing 5.23 that the getters and setters that are part of the property include the specialname metadata. This modifier is what IDEs, such as Visual Studio, use as a flag to hide the members from IntelliSense.

An automatically implemented property is virtually identical to one for which you define the backing field explicitly. In place of the manually defined backing field the C# compiler generates a field with the name <PropertyName>k_BackingField in IL. This generated field includes an attribute (see Chapter 17) called System.Runtime.CompilerServices.CompilerGeneratedAttribute. Both the getters and the setters are decorated with the same attribute because they too are generated—with the same implementation as in Listings 5.23 and 5.24.

Constructors

Now that you have added fields to a class and can store data, you need to consider the validity of that data. As you saw in Listing 5.3, it is possible to instantiate an object using the new operator. The result, however, is the ability to create an employee with invalid data. Immediately following the assignment of employee, you have an Employee object whose name and salary are not initialized. In this particular listing, you assigned the uninitialized fields immediately following the instantiation of an employee, but if you failed to do the initialization, you would not receive a warning from the compiler. As a result, you could end up with an Employee object with an invalid name.

Declaring a Constructor

To correct this, you need to provide a means of specifying the required data when the object is created. You do this using a constructor as demonstrated in Listing 5.25.

Listing 5.25. Defining a Constructor

Click here to view code image

class Employee
{

 // Employee constructor
 public Employee(string firstName, string lastName)
 {
 FirstName = firstName;
 LastName = lastName;
 }

 public string FirstName{ get; set; }
 public string LastName{ get; set; }
 public string Salary{ get; set; }

 // ...
}

To define a constructor you create a method with no return type, whose method name is identical to the class name.

The constructor is the method that the runtime calls to initialize an instance of the object. In this case, the constructor takes the first name and the last name as parameters, allowing the programmer to specify these names when instantiating the Employee object. Listing 5.26 is an example of how to call a constructor.

Listing 5.26. Calling a Constructor

Click here to view code image

class Program
{
 static void Main()
 {
 Employee employee;

 employee = new Employee("Inigo", "Montoya");

 employee.Salary = "Too Little";

 System.Console.WriteLine(
 "{0} {1}: {2}",
 employee.FirstName,
 employee.LastName,
 employee.Salary);
 }
 // ...
}

Notice that the new operator returns the type of the object being instantiated (even though no return type or return statement was specified explicitly in the constructor’s declaration or implementation). In addition, you have removed the initialization code for the first and last names because that occurs within the constructor. In this example, you don’t initialize Salary within the constructor, so the code assigning the salary still appears.

Developers should take care when using both assignment at declaration time and assignment within constructors. Assignments within the constructor will occur after any assignments are made when a field is declared (such as string Salary = "Not enough" in Listing 5.5). Therefore, assignment within a constructor will override any value assigned at declaration time. This subtlety can lead to a misinterpretation of the code by a casual reader who assumes the value after instantiation is the one assigned in the field declaration. Therefore, it is worth considering a coding style that does not mix both declaration assignment and constructor assignment within the same class.

Advanced Topic: Implementation Details of the new Operator

Internally, the interaction between the new operator and the constructor is as follows. The new operator retrieves “empty” memory from the memory manager and then calls the specified constructor, passing a reference to the empty memory to the constructor as the implicit this parameter. Next, the remainder of the constructor chain executes, passing around the reference between constructors. None of the constructors have a return type; behaviorally they all return void. When execution completes on the constructor chain, the new operator returns the memory reference, now referring to the memory in its initialized form.

Default Constructors

It is important to note that by adding a constructor explicitly, you can no longer instantiate an Employee from within Main() without specifying the first and last names. The code shown in Listing 5.27, therefore, will not compile.

Listing 5.27. Default Constructor No Longer Available

Click here to view code image

class Program
{
 static void Main()
 {
 Employee employee;

 // ERROR: No overload for method 'Employee'
 // takes '0' arguments.
 employee = new Employee();

 // ...
 }
}

If a class has no explicitly defined constructor, the C# compiler adds one during compilation. This constructor takes no parameters and is, therefore, the default constructor by definition. As soon as you add an explicit constructor to a class, the C# compiler no longer provides a default constructor. Therefore, with Employee(string firstName, string lastName) defined, the default constructor, Employee(), is not added by the compiler. You could manually add such a constructor, but then you would again be allowing construction of an Employee without specifying the employee name.

It is not necessary to rely on the default constructor defined by the compiler. It is also possible for programmers to define a default constructor explicitly, perhaps one that initializes some fields to particular values. Defining the default constructor simply involves declaring a constructor that takes no parameters.

Object Initializers

Starting with C# 3.0, the C# language team added functionality to initialize an object’s accessible fields and properties using an object initializer. The object initializer consists of a set of member initializers enclosed in curly braces following the constructor call to create the object. Each member initializer is the assignment of an accessible field or property name with a value (see Listing 5.28).

Listing 5.28. Calling an Object Initializer

Click here to view code image

class Program
{
 static void Main()
 {
 Employee employee1 = new Employee("Inigo", "Montoya")
 { Title = "Computer Nerd", Salary = "Not enough"};
 // ...
 }
}

Notice that the same constructor rules apply even when using an object initializer. In fact, the resultant CIL is exactly the same as it would be if the fields or properties were assigned within separate statements immediately following the constructor call. The order of member initializers in C# provides the sequence for property and field assignment in the statements following the constructor call within CIL.

In general, all properties should be initialized to reasonable default values by the time the constructor exits. And by using validation logic on the setter, it is possible to restrict the assignment of invalid data to a property. However, on occasion, the values on one or more properties may cause other properties on the same object to contain invalid values. When this occurs, exceptions from the invalid state should be postponed until the invalid interrelated property values become relevant.

Guidelines

DO provide sensible defaults for all properties, ensuring that defaults do not result in a security hole or significantly inefficient code. For automatically implemented properties, set the default via the constructor.

DO allow properties to be set in any order even if this results in a temporarily invalid object state.

Advanced Topic: Collection Initializers

Using a similar syntax to that of object initializers, collection initializers were added in C# 3.0. Collection initializers support a similar feature set as object initializers, only with collections. Specifically, a collection initializer allows the assignment of items within the collection at the time of the collection’s instantiation. Borrowing on the same syntax used for arrays, the collection initializer initializes each item within the collection as part of collection creation. Initializing a list of Employees, for example, involves specifying each item within curly braces following the constructor call, as Listing 5.29 shows.

Listing 5.29. Calling an Object Initializer

Click here to view code image

class Program
{
 static void Main()
 {
 List<Employee> employees = new List<Employee>()
 {
 new Employee("Inigo", "Montoya"),
 new Employee("Chuck", "McAtee")
 };
 // ...
 }
}

After the assignment of a new collection instance, the compiler-generated code instantiates each object in sequence and adds them to the collection via the Add() method.

Advanced Topic: Finalizers

Constructors define what happens during the instantiation process of a class. To define what happens when an object is destroyed, C# provides the finalizer construct. Unlike destructors in C++, finalizers do not run immediately after an object goes out of scope. Rather, the finalizer executes at some unspecified time after an object is determined to be “unreachable.” Specifically, the garbage collector identifies objects with finalizers during a garbage collection cycle, and instead of immediately de-allocating those objects, it adds them to a finalization queue. A separate thread runs through each object in the finalization queue and calls the object’s finalizer before removing it from the queue and making it available for the garbage collector again. Chapter 9 discusses this process, along with resource cleanup, in depth.

Overloading Constructors

Constructors can be overloaded—you can have more than one constructor as long as the number or types of the parameters vary. For example, as Listing 5.30 shows, you could provide a constructor that has an employee ID with first and last names, or even just the employee ID.

Listing 5.30. Overloading a Constructor

Click here to view code image

class Employee
{
 public Employee(string firstName, string lastName)
 {
 FirstName = firstName;
 LastName = lastName;
 }

 public Employee(
 int id, string firstName, string lastName)
 {
 Id = id;
 FirstName = firstName;
 LastName = lastName;
 }

 public Employee(int id)
 {
 Id = id;

 // Look up employee name...
 // ...
 }

 public int Id { get; set; }

 public string FirstName { get; set; }
 public string LastName { get; set; }
 public string Salary { get; set; }

 // ...
}

This enables Program.Main() to instantiate an employee from the first and last names either by passing in the employee ID only, or by passing both the names and the IDs. You would use the constructor with both the names and the IDs when creating a new employee in the system. You would use the constructor with only the ID to load up the employee from a file or a database.

As is the case with method overloading, multiple constructors are used to support simple scenarios using a small number of parameters and complex scenarios with additional parameters. Consider using optional parameters in favor of overloading so that the default values for “defaulted” properties are visible in the API. For example, a constructor signature of Person(string firstName, string lastName, int? age = null) provides signature documentation that if the Age of a Person is not specified it will default to null.

Guidelines

DO use the same name for constructor parameters (camelCase) and properties (PascalCase) if the constructor parameters are used to simply set the property.

DO provide constructor optional parameters and/or convenience constructor overloads that initialize properties with good defaults.

DO allow properties to be set in any order even if this results in a temporarily invalid object state.

Constructor Chaining: Calling Another Constructor Using this

Notice in Listing 5.30 that the initialization code for the Employee object is now duplicated in multiple places and, therefore, has to be maintained in multiple places. The amount of code is small, but there are ways to eliminate the duplication by calling one constructor from another—constructor chaining—using constructor initializers. Constructor initializers determine which constructor to call before executing the implementation of the current constructor (see Listing 5.31).

Listing 5.31. Calling One Constructor from Another

Click here to view code image

class Employee
{
 public Employee(string firstName, string lastName)
 {
 FirstName = firstName;
 LastName = lastName;
 }

 public Employee(
 int id, string firstName, string lastName)
 : this(firstName, lastName)

 {
 Id = id;
 }

 public Employee(int id)
 {
 Id = id;

 // Look up employee name...
 // ...

 // NOTE: Member constructors cannot be
 // called explicitly inline
 // this(id, firstName, lastName);

 }

 public int Id { get; set; }
 public string FirstName { get; set; }
 public string LastName { get; set; }
 public string Salary { get; set; }

 // ...
}

To call one constructor from another within the same class (for the same object instance) C# uses a colon followed by the this keyword followed by the parameter list on the callee constructor’s declaration. In this case, the constructor that takes all three parameters calls the constructor that takes two. Often, the calling pattern is reversed; the constructor with the fewest parameters calls the constructor with the most parameters, passing defaults for the parameters that are not known.

Beginner Topic: Centralizing Initialization

Notice that in the Employee(int id) constructor implementation from Listing 5.31, you cannot call this(firstName, LastName) because no such parameters exist on this constructor. To enable such a pattern in which all initialization code happens through one method you must create a separate method, as shown in Listing 5.32.

Listing 5.32. Providing an Initialization Method

Click here to view code image

class Employee
{
 public Employee(string firstName, string lastName)
 {
 int id;
 // Generate an employee ID...
 // ...

 Initialize(id, firstName, lastName);

 }

 public Employee(int id, string firstName, string lastName)
 {

 Initialize(id, firstName, lastName);

 }

 public Employee(int id)
 {
 string firstName;
 string lastName;
 Id = id;

 // Look up employee data
 // ...

 Initialize(id, firstName, lastName);

 }

 private void Initialize(
 int id, string firstName, string lastName)
 {
 Id = id;
 FirstName = firstName;
 LastName = lastName;
 }

 // ...
}

In this case, the method is called Initialize() and it takes both the names and the employee IDs. Note that you can continue to call one constructor from another, as shown in Listing 5.31.

Advanced Topic: Anonymous Types

C# 3.0 introduced support for anonymous types. These are data types that are generated by the compiler “on the fly” rather than through explicit class definitions. Listing 5.33 shows such a declaration.

Listing 5.33. Implicit Local Variables with Anonymous Types

Click here to view code image

using System;

class Program
{
 static void Main()
 {

 var patent1 =
 new
 {
 Title = "Bifocals",
 YearOfPublication = "1784"
 };
 var patent2 =
 new
 {
 Title = "Phonograph",
 YearOfPublication = "1877"
 };
 var patent3 =
 new
 {
 patent1.Title,
 Year = patent1.YearOfPublication
 };

 System.Console.WriteLine("{0} ({1})",
 patent1.Title, patent1.YearOfPublication);
 System.Console.WriteLine("{0} ({1})",
 patent2.Title, patent1.YearOfPublication);

 Console.WriteLine();
 Console.WriteLine(patent1);
 Console.WriteLine(patent2);

 Console.WriteLine();
 Console.WriteLine(patent3);
 }
}

The corresponding output is shown in Output 5.8.

Output 5.8.

Click here to view code image

Bifocals (1784)
Phonograph (1877)

{ Title = Bifocals, YearOfPublication = 1784 }
{ Title = Phonograph, YearOfPublication = 1877 }

{ Title = Bifocals, Year = 1784 }

Listing 5.33 demonstrates the assignment of an anonymous type to an implicitly typed (var) local variable.

When the compiler encounters the anonymous type syntax, it generates a class with properties corresponding to the named values and data types in the anonymous type declaration. Although there is no available name in C# for the generated type, it is still statically typed. For example, the properties of the type are fully accessible. In Listing 5.33, patent1.Title and patent2.YearOfPublication are called within the Console.WriteLine() statement. Any attempts to call nonexistent members will result in compile errors. Even IntelliSense in IDEs such as Visual Studio 2008 works with the anonymous type.

In Listing 5.33, member names on the anonymous types are explicitly identified using the assignment of the value to the name (see Title and YearOfPublication in patent1 and patent2 assignments). However, if the value assigned is a property or field, the name will default to the name of the field or property if not specified explicitly. patent3, for example, is defined using a property name “Title” rather than an assignment to an implicit name. As Output 5.8 shows, the resultant property name is determined by the compiler to match the property from where the value was retrieved.

Although the compiler allows anonymous type declarations such as the ones shown in Listing 5.33, you should generally avoid anonymous type declarations and even the associated implicit typing with var until you are working with lambda and query expressions that associate data from different types or you are horizontally projecting the data so that for a particular type, there is less data overall. Until frequent querying of data out of collections makes explicit type declaration burdensome, it is preferable to explicitly declare types as outlined in this chapter.

Static Members

The HelloWorld example in Chapter 1 briefly touched on the keyword static. This section defines the static keyword more fully.

To begin, consider an example. Assume that the employee Id value needs to be unique for each employee. One way to accomplish this is to store a counter to track each employee ID. If the value is stored as an instance field, however, every time you instantiate an object, a new NextId field will be created such that every instance of the Employee object would consume memory for that field. The biggest problem is that each time an Employee object instantiated, the NextId value on all of the previously instantiated Employee objects would need to be updated with the next ID value. What you need is a single field that all Employee object instances share.

Language Contrast: C++/Visual Basic—Global Variables and Functions

Unlike many of the languages that came before it, C# does not have global variables or global functions. All fields and methods in C# appear within the context of a class. The equivalent of a global field or function within the realm of C# is a static field or function. There is no functional difference between global variables/functions and C# static fields/methods, except that static fields/methods can include access modifiers, such as private, that can limit the access and provide better encapsulation.

Static Fields

To define data that is available across multiple instances, you use the static keyword, as demonstrated in Listing 5.34.

Listing 5.34. Declaring a Static Field

Click here to view code image

class Employee
{
 public Employee(string firstName, string lastName)
 {
 FirstName = firstName;
 LastName = lastName;

 Id = NextId;
 NextId++;

 }

 // ...

 public static int NextId;

 public int Id { get; set; }
 public string FirstName { get; set; }
 public string LastName { get; set; }
 public string Salary { get; set; }

 // ...
}

In this example, the NextId field declaration includes the static modifier, and therefore is called a static field. Unlike Id, a single storage location for NextId is shared across all instances of Employee. Inside the Employee constructor, you assign the new Employee object’s Id the value of NextId immediately before incrementing it. When another Employee class is created, NextId will be incremented and the new Employee object’s Id field will hold a different value.

Just as instance fields (nonstatic fields) can be initialized at declaration time, so can static fields, as demonstrated in Listing 5.35.

Listing 5.35. Assigning a Static Field at Declaration

class Employee
{
 // ...

 public static int NextId = 42;

 // ...
}

Unlike with instance fields, if no initialization for a static field is provided, the static field will automatically be assigned its default value (0, null, false, and so on)—the equivalent of default(T) where T is the name of the type. As a result, it will be possible to access the static field even if it has never been explicitly assigned in the C# code.

Nonstatic fields, or instance fields, have a new storage location for each object to which they belong. In contrast, static fields don’t belong to the instance, but rather to the class itself. As a result, you access a static field from outside a class via the class name. Consider the new Program class shown in Listing 5.36 (using the Employee class from Listing 5.34).

Listing 5.36. Accessing a Static Field

Click here to view code image

using System;

class Program
{
 static void Main()
 {

 Employee.NextId = 1000000;

 Employee employee1 = new Employee(
 "Inigo", "Montoya");
 Employee employee2 = new Employee(
 "Princess", "Buttercup");

 Console.WriteLine(
 "{0} {1} ({2})",
 employee1.FirstName,
 employee1.LastName,
 employee1.Id);
 Console.WriteLine(
 "{0} {1} ({2})",
 employee2.FirstName,
 employee2.LastName,
 employee2.Id);

 Console.WriteLine("NextId = {0}", Employee.NextId);

 }

 // ...
}

Output 5.9 shows the results of Listing 5.36.

Output 5.9.

Inigo Montoya (1000000)
Princess Buttercup (1000001)
NextId = 1000002

To set and retrieve the initial value of the NextId static field, you use the class name, Employee, rather than a reference to an instance of the type. The only place you can omit the class name is within the class itself (or a derived class). In other words, the Employee(...) constructor did not need to use Employee.NextId because the code appeared within the context of the Employee class itself, and therefore, the context was already understood. The scope of a variable is the program text in which the variable can be referred to by its unqualified name; the scope of a static field is the text of the class (and any derived classes).

Even though you refer to static fields slightly differently than instance fields, it is not possible to define a static and an instance field with the same name in the same class. The possibility of mistakenly referring to the wrong field is high, and therefore, the C# designers decided to prevent such code. As such, overlap in names will introduce conflict within the declaration space.

Beginner Topic: Data Can Be Associated with Both a Class and an Object

Both classes and objects can have associated data, just as can the molds and the widgets created from them.

For example, a mold could have data corresponding to the number of widgets it created, the serial number of the next widget, the current color of the plastic injected into the mold, and the number of widgets it produces per hour. Similarly, a widget has its own serial number, its own color, and perhaps the date and time when the widget was created. Although the color of the widget corresponds to the color of the plastic within the mold at the time the widget was created, it obviously does not contain data corresponding to the color of the plastic currently in the mold, or the serial number of the next widget to be produced.

In designing objects, programmers should take care to declare both fields and methods appropriately as static- or instance-based. In general, you should declare methods that don’t access any instance data as static methods, and methods that access instance data (where the instance is not passed in as a parameter) as instance methods. Static fields store data corresponding to the class, such as defaults for new instances or the number of instances that have been created. Instance fields store data associated with the object.

Static Methods

Just like static fields, you access static methods directly off the class name (Console.ReadLine(), for example). Furthermore, it is not necessary to have an instance in order to access the method.

Listing 5.37 provides another example of both declaring and calling a static method.

Listing 5.37. Defining a Static Method on DirectoryInfo

Click here to view code image

public static class DirectoryInfoExtension
{

 public static void CopyTo(
 DirectoryInfo sourceDirectory, string target,
 SearchOption option, string searchPattern)

 {
 if (target[target.Length - 1] !=
 Path.DirectorySeparatorChar)
 {
 target += Path.DirectorySeparatorChar;
 }
 if (!Directory.Exists(target))
 {
 Directory.CreateDirectory(target);
 }

 for (int i = 0; i < searchPattern.Length; i++)
 {
 foreach (string file in
 Directory.GetFiles(
 sourceDirectory.FullName, searchPattern))
 {
 File.Copy(file,
 target + Path.GetFileName(file), true);
 }
 }

 //Copy SubDirectories (recursively)
 if (option == SearchOption.AllDirectories)
 {
 foreach(string element in
 Directory.GetDirectories(
 sourceDirectory.FullName))
 {
 Copy(element,
 target + Path.GetFileName(element),
 searchPattern);
 }
 }
 }
}

 // ...
 DirectoryInfo directory = new DirectoryInfo(".\\Source");
 directory.MoveTo(".\\Root");

 DirectoryInfoExtension.CopyTo(
 directory, ".\\Target",
 SearchOption.AllDirectories, "*");

 // ...

The DirectoryInfoExtension.Copy() method takes a DirectoryInfo object and copies the underlying directory structure to a new location.

Because static methods are not referenced through a particular instance, the this keyword is invalid inside a static method. In addition, it is not possible to access either an instance field or an instance method directly from within a static method without a reference to the particular instance to which the field or method belongs. (Note that Main() is another example of a static method.)

One might have expected this method on the System.IO.Directory class or as an instance method on System.IO.DirectoryInfo. Since neither exists, Listing 5.37 defines such a method on an entirely new class. In the section Extension Methods, later in this chapter, we show how to make it appear as an instance method on DirectoryInfo.

Static Constructors

In addition to static fields and methods C# also supports static constructors. Static constructors are provided as a means to initialize the class itself, rather than the instances of a class. Static constructors are not called explicitly; instead, the runtime calls static constructors automatically upon first access to the class, whether via calling a regular constructor or accessing a static method or field on the class. Since the static constructor cannot be called explicitly, no parameters are allowed on static constructors.

You use static constructors to initialize the static data within the class to a particular value, mainly when the initial value involves more complexity than a simple assignment at declaration time. Consider Listing 5.38.

Listing 5.38. Declaring a Static Constructor

Click here to view code image

class Employee
{
 static Employee()
 {
 Random randomGenerator = new Random();
 NextId = randomGenerator.Next(101, 999);
 }

 // ...
 public static int NextId = 42;
 // ...
}

Listing 5.38 assigns the initial value of NextId to be a random integer between 100 and 1,000. Because the initial value involves a method call, the NextId initialization code appears within a static constructor and not as part of the declaration.

If assignment of NextId occurs within both the static constructor and the declaration, it is not obvious what the value will be when initialization concludes. The C# compiler generates CIL in which the declaration assignment is moved to be the first statement within the static constructor. Therefore, NextId will contain the value returned by randomGenerator.Next(101, 999) instead of a value assigned during NextId’s declaration. Assignments within the static constructor, therefore, will take precedence over assignments that occur as part of the field declaration, as was the case with instance fields. Note that there is no support for defining a static finalizer.

Be careful not to throw an exception from a static constructor, as this will render the type unusable for the remainder of the application’s lifetime.5

Advanced Topic: Favor Static Initialization during Declaration

Static constructors execute before the first access to any member of a class, whether it is a static field, another static member, or an instance constructor. In order to support this, the compiler injects a check into all type static members and constructors to ensure that the static constructor runs first.

Without the static constructor, the compiler instead initializes all static members to their default value and avoids adding the static constructor check. The result is for static assignment initialization to be called before accessing any static fields but not necessarily before all static methods or any instance constructor is invoked. This might provide a performance improvement if initialization of static members is expensive and is not needed before accessing a static field. As a result, consider initializing static fields inline rather than using a static constructor, or initializing them at declaration time.

Guidelines

CONSIDER initializing static fields inline rather than explicitly using static constructors or declaration assigned values.

Static Properties

You also can declare properties as static. For example, Listing 5.39 wraps the data for the next ID into a property.

Listing 5.39. Declaring a Static Property

class Employee
{
 // ...

 public static int NextId
 {
 get
 {
 return _NextId;
 }
 private set
 {
 _NextId = value;
 }
 }
 public static int _NextId = 42;

 // ...
}

It is almost always better to use a static property rather than a public static field, because public static fields are callable from anywhere whereas a static property offers at least some level of encapsulation.

Static Classes

Some classes do not contain any instance fields. Consider, for example, a Math class that has functions corresponding to the mathematical operations Max() and Min(), as shown in Listing 5.40.

Listing 5.40. Declaring a Static Class

Click here to view code image

// Static class introduced in C# 2.0

public static class SimpleMath

{
 // params allows the number of parameters to vary.
 static int Max(params int[] numbers)
 {
 // Check that there is a least one item in numbers.
 if(numbers.Length == 0)
 {
 throw new ArgumentException(
 "numbers cannot be empty");
 }

 int result;
 result = numbers[0];
 foreach (int number in numbers)
 {
 if(number > result)
 {
 result = number;
 }
 }
 return result;
 }

 // params allows the number of parameters to vary.
 static int Min(params int[] numbers)
 {
 // Check that there is a least one item in numbers.
 if(numbers.Length == 0)
 {
 throw new ArgumentException(
 "numbers cannot be empty");
 }

 int result;
 result = numbers[0];
 foreach (int number in numbers)
 {
 if(number < result)
 {
 result = number;
 }
 }
 return result;
 }
}

This class does not have any instance fields (or methods), and therefore, creation of such a class would be pointless. Because of this, the class is decorated with the static keyword. The static keyword on a class provides two facilities. First, it prevents a programmer from writing code that instantiates the SimpleMath class. Second, it prevents the declaration of any instance fields or methods within the class. Since the class cannot be instantiated, instance members would be pointless. The Program class in prior listings is another good candidate for a static class since it only contains static members.

One more distinguishing characteristic of the static class is that the C# compiler automatically marks it as abstract and sealed within the CIL. This designates the class as inextensible; in other words, no class can be derived from it or instantiate it.

Extension Methods

Consider the System.IO.DirectoryInfo class that is used to manipulate filesystem directories. The class supports functionality to list the files and subdirectories (DirectoryInfo.GetFiles()) as well as the capability to move the directory (DirectoryInfo.Move()). One feature it doesn’t support directly is the copy feature. If you needed such a method you would have to implement it, as shown earlier in Listing 5.37.

The DirectoryInfoExtension.Copy() method is a standard static method declaration. However, notice that calling this Copy() method is different from calling the DirectoryInfo.Move() method. This is unfortunate. Ideally, we want to add a method to DirectoryInfo so that, given an instance, we could call Copy() as an instance method—directory.Copy().

C# 3.0 simulates the creation of an instance method on a different class via extension methods. To do this we simply change the signature of our static method so that the first parameter, the data type we are extending, is prefixed with the this keyword (see Listing 5.41).

Listing 5.41. Static Copy Method for DirectoryInfo

Click here to view code image

public static class DirectoryInfoExtension
{
 public static void CopyTo(
 this DirectoryInfo sourceDirectory, string target,
 SearchOption option, string searchPattern)
 {
 // ...
 }
}

 // ...
 DirectoryInfo directory = new DirectoryInfo(".\\Source");

 directory.CopyTo(".\\Target",
 SearchOption.AllDirectories, "*");

 // ...

Via this simple addition to C# 3.0, it is now possible to add “instance methods” to any class, even classes that are not within the same assembly. The resultant CIL code, however, is identical to what the compiler creates when calling the extension method as a normal static method.

Extension method requirements are as follows.

• The first parameter corresponds to the type on which the method extends or operates.

• To designate the extension method, prefix the extended type with the this modifier.

• To access the method as an extension method, import the extending type’s namespace via a using directive (or place the extending class in the same namespace as the calling code).

If the extension method signature matches a signature on the extended type already (that is, if CopyTo() already existed on DirectoryInfo), the extension method will never be called except as a normal static method.

Note that specializing a type via inheritance (covered in detail in Chapter 6) is preferable to using an extension method. Extension methods do not provide a clean versioning mechanism since the addition of a matching signature to the extended type will take precedence over the extension method without warning of the change. The subtlety of this is more pronounced for extended classes whose source code you don’t control. Another minor point is that, although development IDEs support IntelliSense for extension methods, it is not obvious that a method is an extension method by simply reading through the calling code.

In general, use extension methods sparingly. Do not, for example, define them on type object. Chapter 6 discusses how to use extension methods in association with an interface. Without such an association, defining extension methods is rare.

Guidelines

AVOID frivolously defining extension methods, especially on types you don’t own.

Encapsulating the Data

In addition to properties and the access modifiers we looked at earlier in the chapter, there are several other specialized ways of encapsulating the data within a class. For instance, there are two more field modifiers. The first is the const modifier, which you already encountered when declaring local variables. The second is the capability of fields to be defined as read-only.

const

Just as with const values, a const field contains a compile-time-determined value that cannot be changed at runtime. Values such as pi make good candidates for constant field declarations. Listing 5.42 shows an example of declaring a const field.

Listing 5.42. Declaring a Constant Field

Click here to view code image

class ConvertUnits
{
 public const float CentimetersPerInch = 2.54F;
 public const int CupsPerGallon = 16;
 // ...
}

Constant fields are static automatically, since no new field instance is required for each object instance. Declaring a constant field as static explicitly will cause a compile error. Also, constant fields are usually only declared for types that have literal values (string, int, and double, for example). Types such as Program or System.Guid cannot be used for constant fields.

It is important that the types of values used in public constant expressions are permanent in time. Values such as pi, Avogadro’s number, and the circumference of the Earth are good examples. However, values that could potentially change over time are not. Build numbers, population counts, and exchange rates would be poor choices for constants.

Guidelines

DO use constant field for values that will never change.

DO NOT use constant field for values that will change over time.

Advanced Topic: Public Constants Should Be Permanent Values

Publicly accessible constants should be permanent, because changing the value of a constant will not necessarily take effect in the assemblies that use it. If an assembly references a constant from a different assembly, the value of the constant is compiled directly into the referencing assembly. Therefore, if the value in the referenced assembly is changed but the referencing assembly is not recompiled, the referencing assembly will still use the original value, not the new value. Values that could potentially change in the future should be specified as readonly instead.

readonly

Unlike const, the readonly modifier is available only for fields (not for local variables) and it declares that the field value is modifiable only from inside the constructor or directly during declaration. Listing 5.43 demonstrates how to declare a readonly field.

Listing 5.43. Declaring a Field As readonly

Click here to view code image

class Employee
{
 public Employee(int id)
 {

 Id = id;

 }

 // ...

 public readonly int Id;

 public void SetId(int newId)
 {

 // ERROR: read-only fields cannot be set
 // outside the constructor.
 // Id = newId;

 }

 // ...
}

Unlike constant fields, readonly fields can vary from one instance to the next. In fact, a readonly field’s value can change within the constructor. Furthermore, readonly fields occur as either instance or static fields. Another key distinction is that you can assign the value of a readonly field at execution time rather than just at compile time. Given that readonly fields must be set in the constructor, such fields are the one case where the compiler requires the fields be accessed from code outside their corresponding property. Besides this one exception, avoid accessing a backing field from anywhere other than its wrapping property.

Another important feature of readonly fields over const fields is that readonly fields are not limited to types with literal values. It is possible, for example, to declare a readonly System.Guid instance field but not a similar constant field, as shown in Listing 5.44.

Listing 5.44. Declaring a readonly Field of a Type with no Literal Values

Click here to view code image

class CommonGuid
{
 public static readonly Guid ComIUnknownGuid =
 new Guid("00000000-0000-0000-C000-000000000046");
 public static readonly Guid ComIClassFactoryGuid =
 new Guid("00000001-0000-0000-C000-000000000046");
 public static readonly Guid ComIDispatchGuid =
 new Guid("00020400-0000-0000-C000-000000000046");
 public static readonly Guid ComITypeInfoGuid =
 new Guid("00020401-0000-0000-C000-000000000046");
 // ...
}

Using readonly with an array does not freeze the contents of the array. It freezes the number of elements in the array because it is not possible to reassign the readonly field to a new instance. However, the elements of the array are still writeable.

Guidelines

DO use public static readonly fields for predefined object instances.

Nested Classes

In addition to defining methods and fields within a class, it is also possible to define a class within a class. Such classes are nested classes. You use a nested class when the class makes little sense outside the context of its containing class.

Consider a class that handles the command-line options of a program. Such a class is generally unique to each program and there is no reason to make a CommandLine class accessible from outside the class that contains Main(). Listing 5.45 demonstrates such a nested class.

Listing 5.45. Defining a Nested Class

Click here to view code image

// CommandLine is nested within Program

class Program
{
 // Define a nested class for processing the command line.
 private class CommandLine
 {

 public CommandLine(string[] arguments)
 {
 for(int argumentCounter=0;
 argumentCounter<arguments.Length;
 argumentCounter++)
 {
 switch (argumentCounter)
 {
 case 0:
 Action = arguments[0].ToLower();
 break;
 case 1:
 Id = arguments[1];
 break;
 case 2:
 FirstName = arguments[2];
 break;
 case 3:
 LastName = arguments[3];
 break;
 }
 }
 }
 public string Action;
 public string Id;
 public string FirstName;
 public string LastName;
 }

 static void Main(string[] args)
 {

 CommandLine commandLine = new CommandLine(args);

 switch (commandLine.Action)
 {
 case "new":
 // Create a new employee
 // ...
 break;
 case "update":
 // Update an existing employee's data
 // ...
 break;
 case "delete":
 // Remove an existing employee's file.
 // ...
 break;
 default:
 Console.WriteLine(
 "Employee.exe " +
 "new|update|delete <id> [firstname] [lastname]");
 break;
 }
 }
}

The nested class in this example is Program.CommandLine. As with all class members, no containing class identifier is needed from inside the containing class, so you can simply refer to it as CommandLine.

One unique characteristic of nested classes is the ability to specify private as an access modifier for the class itself. Because the purpose of this class is to parse the command line and place each argument into a separate field, Program.CommandLine is relevant only to the Program class in this application. The use of the private access modifier defines the intended accessibility of the class and prevents access from outside the class. You can do this only if the class is nested.

The this member within a nested class refers to an instance of the nested class, not the containing class. One way for a nested class to access an instance of the containing class is if the containing class instance is explicitly passed, such as via a constructor or method parameter.

Another interesting characteristic of nested classes is that they can access any member on the containing class, including private members. The converse is not true, however: It is not possible for the containing class to access a private member of the nested class.

Nested classes are rare. They should not be defined if they are likely to be referenced outside the containing type. Furthermore, treat public nested classes suspiciously; they indicate potentially poor code that is likely to be confusing and hard to discover.

Guidelines

AVOID publicly exposed nested types. The only exception is if the declaration of such a type is unlikely or pertains to an advanced customization scenario.

Language Contrast: Java—Inner Classes

Java includes not only the concept of a nested class, but also the concept of an inner class. Inner classes correspond to objects that are associated with the containing class instance rather than just a syntactic relationship. In C#, you can achieve the same structure by including an instance field of a nested type within the outer class. A factory method or constructor can ensure a reference to the corresponding instance of the outer class is set within the inner class instance as well.

Partial Classes

Another language feature added in C# 2.0 is partial classes. Partial classes are portions of a class that the compiler can combine to form a complete class. Although you could define two or more partial classes within the same file, the general purpose of a partial class is to allow the splitting of a class definition across multiple files. Primarily this is useful for tools that are generating or modifying code. With partial classes, the tools can work on a file separate from the one the developer is manually coding.

Defining a Partial Class

C# 2.0 (and later) allows declaration of a partial class by prepending a contextual keyword, partial, immediately before class, as Listing 5.46 shows.

Listing 5.46. Defining a Partial Class

// File: Program1.cs
partial class Program
{
}

// File: Program2.cs
partial class Program
{
}

In this case, each portion of Program is placed into a separate file, as identified by the comment.

Besides their use with code generators, another common use of partial classes is to place any nested classes into their own files. This is in accordance with the coding convention that places each class definition within its own file. For example, Listing 5.47 places the Program.CommandLine class into a file separate from the core Program members.

Listing 5.47. Defining a Nested Class in a Separate Partial Class

Click here to view code image

// File: Program.cs
partial class Program
{
 static void Main(string[] args)
 {
 CommandLine commandLine = new CommandLine(args);

 switch (commandLine.Action)
 {
 // ...
 }
 }
}

// File: Program+CommandLine.cs
partial class Program
{
 // Define a nested class for processing the command line.
 private class CommandLine
 {
 // ...
 }
}

Partial classes do not allow extending compiled classes, or classes in other assemblies. They are only a means of splitting a class implementation across multiple files within the same assembly.

Partial Methods

Beginning with C# 3.0, the language designers added the concept of partial methods, extending the partial class concept of C# 2.0. Partial methods are allowed only within partial classes, and like partial classes, the primary purpose is to accommodate code generation.

Consider a code generation tool that generates the Person.Designer.cs file for the Person class based on a Person table within a database. The tool will examine the table and create properties for each column in the table. The problem, however, is that frequently the tool cannot generate any validation logic that may be required because this logic is based on business rules that are not embedded into the database table definition. Instead, the developer of the Person class needs to add the validation logic. It is undesirable to modify Person.Designer.cs directly because if the file is regenerated (to accommodate an additional column in the database, for example), the changes would be lost. Instead, the structure of the code for Person needs to be separated out so that the generated code appears in one file and the custom code (with business rules) is placed into a separate file unaffected by any regeneration. As we saw in the preceding section, partial classes are well suited for the task of splitting a class across multiple files. However, they are not sufficient. Frequently, we also need partial methods.

Partial methods allow for a declaration of a method without requiring an implementation. However, when the optional implementation is included, it can be located in one of the sister partial class definitions, likely in a separate file. Listing 5.48 shows the partial method declaration and the implementation for the Person class.

Listing 5.48. Defining a Nested Class in a Separate Partial Class

Click here to view code image

// File: Person.Designer.cs
public partial class Person
{
 #region Extensibility Method Definitions

 partial void OnLastNameChanging(string value);
 partial void OnFirstNameChanging(string value);

 #endregion

 // ...
 public System.Guid PersonId
 {
 // ...
 }
 private System.Guid _PersonId;

 // ...
 public string LastName
 {
 get
 {
 return _LastName;
 }
 set
 {
 if ((_LastName != value))
 {

 OnLastNameChanging(value);

 _LastName = value;
 }
 }
 }
 private string _LastName;

 // ...
 public string FirstName
 {
 get
 {
 return _FirstName;
 }
 set
 {
 if ((_FirstName != value))
 {

 OnFirstNameChanging(value);

 _FirstName = value;
 }
 }
 }
 private string _FirstName;

}

// File: Person.cs
partial class Person
{
 partial void OnLastNameChanging(string value)
 {
 if (value == null)
 {
 throw new ArgumentNullException("LastName");
 }
 if(value.Trim().Length == 0)
 {
 throw new ArgumentException(
 "LastName cannot be empty.");
 }
 }
}

In the listing of Person.Designer.cs are declarations for the OnLastNameChanging() and OnFirstNameChanging() methods. Furthermore, the properties for the last and first names make calls to their corresponding changing methods. Even though the declarations of the changing methods contain no implementation, this code will successfully compile. The key is that the method declarations are prefixed with the contextual keyword partial in addition to the class that contains such methods.

In Listing 5.48, only the OnLastNameChanging() method is implemented. In this case, the implementation checks the suggested new LastName value and throws an exception if it is not valid. Notice that the signatures for OnLastNameChanging() between the two locations match.

It is important to note that a partial method must return void. If the method didn’t return void and the implementation was not provided, what would the expected return be from a call to a nonimplemented method? To avoid any invalid assumptions about the return, the C# designers decided to prohibit methods with returns other than void. Similarly, out parameters are not allowed on partial methods. If a return value is required, ref parameters may be used.

In summary, partial methods allow generated code to call methods that have not necessarily been implemented. Furthermore, if there is no implementation provided for a partial method, no trace of the partial method appears in the CIL. This helps keep code size small while keeping flexibility high.

Summary

This chapter explained C# constructs for classes and object orientation in C#. This included a discussion of fields, and a discussion of how to access them on a class instance.

This chapter also discussed the key concept of whether to store data on a per-instance basis or across all instances of a type. Static data is associated with the class and instance data is stored on each object.

In addition, the chapter explored encapsulation in the context of access modifiers for methods and data. The C# construct of properties was introduced, and you saw how to use it to encapsulate private fields.

The next chapter focuses on how to associate classes with each other via inheritance, and the benefits derived from this object-oriented construct.

6. Inheritance

The preceding chapter discussed how one class can reference other classes via fields and properties. This chapter discusses how to use the inheritance relationship between classes to build class hierarchies that form an “is a” relationship.

[image: Image]

Beginner Topic: Inheritance Definitions

The preceding chapter provided an overview of inheritance. Here’s a review of the defined terms.

• Derive/inherit: Specialize a base class to include additional members or customization of the base class members.

• Derived/sub/child type: The specialized type that inherits the members of the more general type.

• Base/super/parent type: The general type whose members a derived type inherits.

Inheritance forms an “is a kind of” relationship. The derived type is always implicitly also of the base type. Just as a hard drive is a kind of storage device, any other type derived from the storage device type is a kind of storage device. Notice that the converse is not necessarily true. A storage device is not necessarily a hard drive.

Note

Inheritance within code is used to define an “is a kind of” relationship between two classes where the derived class is a specialization of the base class.

Derivation

It is common to want to extend a given type to add features, such as behavior and data. The purpose of inheritance is to do exactly that. Given a Person class, you create an Employee class that additionally contains EmployeeId and Department properties. The reverse approach may also occur. Given, for example, a Contact class within a Personal Digital Assistant (PDA), you decide you also can add calendaring support. Toward this effort, you create an Appointment class. However, instead of redefining the methods and properties that are common to both classes, you refactor the Contact class. Specifically, you move the common methods and properties on Contact into a base class called PdaItem from which both Contact and Appointment derive, as shown in Figure 6.1.

[image: Image]

Figure 6.1. Refactoring into a Base Class

The common items in this case are Created, LastUpdated, Name, ObjectKey, and the like. Through derivation, the methods defined on the base class, PdaItem, are accessible from all classes derived from PdaItem.

When declaring a derived class, follow the class identifier with a colon and then the base class, as Listing 6.1 demonstrates.

Listing 6.1. Deriving One Class from Another

Click here to view code image

public class PdaItem
{
 public string Name { get; set; }

 public DateTime LastUpdated { get; set; }
}

// Define the Contact class as inheriting the PdaItem class

public class Contact : PdaItem

{
 public string Address { get; set; }
 public string Phone { get; set; }
}

Listing 6.2 shows how to access the properties defined in Contact.

Listing 6.2. Using Inherited Methods

public class Program
{
 public static void Main()
 {
 Contact contact = new Contact();

 contact.Name = "Inigo Montoya";

 // ...
 }
}

Even though Contact does not directly have a property called Name, all instances of Contact can still access the Name property from PdaItem and use it as though it was part of Contact. Furthermore, any additional classes that derive from Contact will also inherit the members of PdaItem, or any class from which PdaItem was derived. The inheritance chain has no practical limit and each derived class will have all the members of its base class inheritance chain combined (see Listing 6.3).

Note

Via inheritance, each member of a base class will also appear within the chain of derived classes.

Listing 6.3. Classes Deriving from Each Other to Form an Inheritance Chain

public class PdaItem : object
{
 // ...
}

public class Appointment : PdaItem
{
 // ...
}

public class Contact : PdaItem
{
 // ...
}

public class Customer : Contact
{
 // ...
}

In other words, although Customer doesn’t derive from PdaItem directly, it still inherits the members of PdaItem.

In Listing 6.3, PdaItem is shown explicitly to derive from object. Although C# allows such syntax, it is unnecessary because all classes that don’t have some other derivation will derive from object, regardless of whether it is specified.

Note

Unless an alternate base class is specified, all classes will derive from object by default.

Casting between Base and Derived Types

As Listing 6.4 shows, because derivation forms an “is a” relationship, a derived type value can always be directly assigned to a base type variable.

Listing 6.4. Implicit Base Type Casting

Click here to view code image

public class Program
{
 public static void Main()
 {
 // Derived types can be implicitly converted to
 // base types
 Contact contact = new Contact();

 PdaItem item = contact;

 // ...

 // Base types must be cast explicitly to derived types

 contact = (Contact)item;

 // ...
 }
}

The derived type, Contact, is a PdaItem and can be assigned directly to a variable of type PdaItem. This is known as an implicit conversion because no cast operator is required and the conversion will, on principle, always succeed; it will not throw an exception.

The reverse, however, is not true. A PdaItem is not necessarily a Contact; it could be an Appointment or some other derived type. Therefore, casting from the base type to the derived type requires an explicit cast, which at runtime could fail. To perform an explicit cast, identify the target type within parentheses prior to the original reference, as Listing 6.4 demonstrates.

With the explicit cast, the programmer essentially communicates to the compiler to trust her—she knows what she is doing—and the C# compiler allows the conversion as long as the target type is derived from the originating type. Although the C# compiler allows an explicit conversion at compile time between potentially compatible types, the CLR will still verify the explicit cast at execution time, throwing an exception if in fact the object instance is not of the targeted type.

The C# compiler allows the cast operator even when the type hierarchy allows an implicit cast. For example, the assignment from contact to item could use a cast operator as follows:

item = (PdaItem)contact;

or even when no cast is necessary:

contact = (Contact)contact;

Note

A derived object can be implicitly converted to its base class. In contrast, converting from the base class to the derived class requires an explicit cast operator, as the conversion could fail. Although the compiler will allow an explicit cast if it is potentially valid, the runtime will still prevent an invalid cast at execution time by throwing an exception.

Beginner Topic: Casting within the Inheritance Chain

An implicit conversion to a base class does not instantiate a new instance. Instead, the same instance is simply referred to as the base type and the capabilities (the accessible members) are those of the base type. It is just like referring to a CD-ROM drive as a “storage device.” Since not all storage devices support an eject operation, a CD-ROM drive that is viewed as a storage device cannot be ejected either, and a call to storageDevice.Eject() would not compile even though the instantiated object may have been a CDROM object that supported the Eject() method.

Similarly, casting down from the base class to the derived class simply begins referring to the type more specifically, expanding the available operations. The restriction is that the actual instantiated type must be an instance of the targeted type (or something derived from it).

Advanced Topic: Defining Custom Conversions

Conversion between types is not limited to types within a single inheritance chain. It is possible to convert between entirely unrelated types as well. The key is the provision of a conversion operator between the two types. C# allows types to include either explicit or implicit conversion operators. If the operation could possibly fail, such as in a cast from long to int, developers should choose to define an explicit conversion operator. This warns developers performing the conversion to do so only when they are certain the conversion will succeed, or else to be prepared to catch the exception if it doesn’t. They should also use an explicit conversion over an implicit conversion when the conversion is lossy. Converting from a float to an int, for example, truncates the decimal, which a return cast (from int back to float) would not recover.

Listing 6.5 shows implicit and explicit conversion operators for Address to string and vice versa.

Listing 6.5. Defining Cast Operators

Click here to view code image

class GPSCoordinates
{
 // ...

 public static implicit operator UTMCoordinates(
 GPSCoordinates coordinates)
 {
 // ...
 }
}

In this case, you have an implicit conversion from GPSCoordinates to UTMCoordinates. A similar conversion could be written to reverse the process. Note that an explicit conversion could also be written by replacing implicit with explicit.

private Access Modifier

All members of a base class, except for constructors and destructors, are inherited by the derived class. However, just because a member is inherited does not mean it is accessible. For example, in Listing 6.6, the private field, _Name, is not available on Contact because private members are only accessible at code locations inside the type that declares them.

Listing 6.6. Private Members Are Inherited But Not Accessible

Click here to view code image

public class PdaItem
{
 private string _Name;
 // ...
}

public class Contact : PdaItem
{
 // ...
}

public class Program
{
 public static void Main()
 {
 Contact contact = new Contact();

 // ERROR: 'PdaItem. _Name' is inaccessible
 // due to its protection level
 //contact._Name = "Inigo Montoya";

 }
}

As part of keeping with the principle of encapsulation, derived classes cannot access members declared as private.1 This forces the base class developer to make an explicit choice as to whether a derived class gains access to a member. In this case, the base class is defining an API in which _Name can be changed only via the Name property. That way, if validation is added, the derived class will gain the validation benefit automatically because it was unable to access _Name directly from the start.

Note

Non-nested derived classes cannot access members declared as private in a base class.

protected Access Modifier

Encapsulation is finer-grained than just public or private, however. It is possible to define members in base classes that only derived classes can access. Consider the ObjectKey property shown in Listing 6.7, for example.

Listing 6.7. protected Members Are Accessible Only from Derived Classes

Click here to view code image

public class Program
{
 public static void Main()
 {
 Contact contact = new Contact();
 contact.Name = "Inigo Montoya";

 // ERROR: 'PdaItem.ObjectKey' is inaccessible
 // due to its protection level
 // contact.ObjectKey = Guid.NewGuid();

 }
}

public class PdaItem
{

 protected Guid ObjectKey

 {
 get { return _ObjectKey; }
 set { _ObjectKey = value; }
 }
 private Guid _ObjectKey;

 // ...
}

public class Contact : PdaItem
{
 void Save()
 {
 // Instantiate a FileStream using <ObjectKey>.dat
 // for the filename.
 FileStream stream = System.IO.File.OpenWrite(
 ObjectKey + ".dat");
 }

 void Load(PdaItem pdaItem)
 {

 // ERROR: 'pdaItem.ObjectKey' is inaccessible
 // due to its protection level
 // pdaItem.ObjectKey = ...;

 Contact contact = pdaItem as Contact;
 if(contact != null)
 {
 contact.ObjectKey = ...;
 }

 // ...
 }
}

ObjectKey is defined using the protected access modifier. The result is that it is accessible outside of PdaItem only from classes that derive from PdaItem. Contact derives from PdaItem, and, therefore all members of Contact have access to ObjectKey. Since Program does not derive from PdaItem, using the ObjectKey property within Program results in a compile error.

Note

Protected members in the base class are only accessible from the base class and other classes within the derivation chain.

A subtlety shown in the Contact.Load() method is worth noting. Developers are often surprised that from code within Contact it is not possible to access the protected ObjectKey of an explicit PdaItem, even though Contact derives from PdaItem. The reason is that a PdaItem could potentially be an Address, and Contact should not be able to access protected members of Address. Therefore, encapsulation prevents Contact from potentially modifying the ObjectKey of an Address. A successful cast to Contact will bypass the restriction as shown. The governing rule is that accessing a protected member from a derived class requires compile-time determination that the protected member is an instance of the derived class (or a class further derived from it).

Extension Methods

Extension methods are technically not members of a type, and therefore are not inherited. But because every derived class may be used as an instance of any of its base classes, an extension method on one type also extends every derived type. If we extend a base class such as PdaItem, all the extension methods will also be available in the derived classes. However, as with all extension methods, priority is given to instance methods. If a compatible signature appears anywhere within the inheritance chain, this will take precedence over an extension method.

Requiring extension methods on base types is rare. As with extension methods in general, if the base type’s code is available, it is preferable to modify the base type directly. Even in cases where the base type’s code is unavailable, programmers should consider whether to add extension methods to an interface that the base type or individual derived types implement. We cover interfaces and how to use them with extension methods in the next chapter.

Single Inheritance

In theory, you can place an unlimited number of classes in an inheritance tree. For example, Customer derives from Contact, which derives from PdaItem, which derives from object. However, C# is a single-inheritance programming language (as is the CIL language to which C# compiles). This means that a class cannot derive from two classes directly. It is not possible, for example, to have Contact derive from both PdaItem and Person.

Language Contrast: C++—Multiple Inheritance

C#’s single inheritance is one of its major differences from C++. It makes for a significant migration path from programming libraries such as Active Template Library (ATL), whose entire approach relies on multiple inheritance.

For the rare cases that require a multiple-inheritance class structure, one solution is to use aggregation; instead of one class inheriting from another, one class contains an instance of the other. Figure 6.2 shows an example of this class structure. Aggregation occurs when the association relationship defines a core part of the containing object. For multiple inheritance, this involves picking one class as the primary base class (PdaItem) and deriving a new class (Contact) from that. The second desired base class (Person) is added as a field in the derived class (Contact). Next, all the nonprivate members on the field (Person) are redefined on the derived class (Contact) which then delegates the calls out to the field (Person). Some code duplication occurs because methods are redeclared; however, this is minimal, since the real method body is implemented only within the aggregated class (Person).

[image: Image]

Figure 6.2. Simulating Multiple Inheritance Using Aggregation

In Figure 6.2, Contact contains a private property called InternalPerson that is drawn as an association to the Person class. Contact also contains the FirstName and LastName properties but with no corresponding fields. Instead, the FirstName and LastName properties simply delegate their calls out to InternalPerson.FirstName and InternalPerson.LastName, respectively. Listing 6.8 shows the resultant code.

Listing 6.8. Working around Single Inheritance Using Aggregation

Click here to view code image

public class PdaItem
{
 // ...
}

public class Person
{
 // ...
}

public class Contact : PdaItem
{

 private Person InternalPerson { get; set; }

 public string FirstName
 {
 get { return InternalPerson.FirstName; }
 set { InternalPerson.FirstName = value; }
 }

 public string LastName
 {
 get { return InternalPerson.LastName; }
 set { InternalPerson.LastName = value; }
 }

 // ...
}

Besides the added complexity of delegation, another drawback is that any methods added to the field class (Person) will require manual addition to the derived class (Contact); otherwise, Contact will not expose the added functionality.

Sealed Classes

To design a class correctly that others can extend via derivation can be a tricky task that requires testing with examples to verify the derivation will work successfully. Listing 6.9 shows how to avoid unexpected derivation scenarios and problems by marking classes as sealed.

Listing 6.9. Preventing Derivation with Sealed Classes

Click here to view code image

public sealed class CommandLineParser
{
 // ...
}

// ERROR: Sealed classes cannot be derived from
public sealed class DerivedCommandLineParser :
 CommandLineParser
{
 // ...
}

Sealed classes include the sealed modifier, and the result is that they cannot be derived from. The string type is an example of a type that uses the sealed modifier to prevent derivation.

Overriding the Base Class

All members of a base class are inherited in the derived class, except for constructors and destructors. However, sometimes the base class does not have the optimal implementation of a particular member. Consider the Name property on PdaItem, for example. The implementation is probably acceptable when inherited by the Appointment class. For the Contact class, however, the Name property should return the FirstName and LastName properties combined. Similarly, when Name is assigned, it should be split across FirstName and LastName. In other words, the base class property declaration is appropriate for the derived class, but the implementation is not always valid. There needs to be a mechanism for overriding the base class implementation with a custom implementation in the derived class.

virtual Modifier

C# supports overriding on instance methods and properties, but not on fields or on any static members. It requires an explicit action within both the base class and the derived class. The base class must mark each member for which it allows overriding as virtual. If public or protected members do not include the virtual modifier, subclasses will not be able to override those members.

Language Contrast: Java—Virtual Methods by Default

By default, methods in Java are virtual, and they must be explicitly sealed if nonvirtual behavior is preferred. In contrast, C# defaults to nonvirtual.

Listing 6.10 shows an example of property overriding.

Listing 6.10. Overriding a Property

Click here to view code image

public class PdaItem
{

 public virtual string Name { get; set; }

 // ...
}

public class Contact : PdaItem
{

 public override string Name

 {
 get
 {
 return FirstName + " " + LastName;
 }

 set
 {
 string[] names = value.Split(' ');
 // Error handling not shown.
 FirstName = names[0];
 LastName = names[1];
 }
 }

 public string FirstName { get; set; }
 public string LastName { get; set; }

 // ...
}

Not only does PdaItem include the virtual modifier on the Name property, but also, Contact’s Name property is decorated with the keyword override. Eliminating virtual would result in an error and omitting override would cause a warning, as you will see shortly. C# requires the overriding methods to use the override keyword explicitly.

In other words, virtual identifies a method or property as available for replacement (overriding) in the derived type.

Language Contrast: Java and C++—Implicit Overriding

Unlike with Java and C++, the override keyword is required on the derived class. C# does not allow implicit overriding. In order to override a method, both the base class and the derived class members must match and have corresponding virtual and override keywords. Furthermore, if specifying the override keyword, the derived implementation is assumed to replace the base class implementation.

Overloading a member causes the runtime to call the most derived implementation (see Listing 6.11).

Listing 6.11. Runtime Calling the Most Derived Implementation of a Virtual Method

Click here to view code image

public class Program
{
 public static void Main()
 {
 Contact contact;
 PdaItem item;

 contact = new Contact();
 item = contact;

 // Set the name via PdaItem variable
 item.Name = "Inigo Montoya";

 // Display that FirstName & LastName
 // properties were set.
 Console.WriteLine("{0} {1}",
 contact.FirstName, contact.LastName);
}

Output 6.1 shows the results of Listing 6.11.

Output 6.1.

Inigo Montoya

In Listing 6.11, item.Name is called, where item is declared as a PdaItem. However, the contact’s FirstName and LastName are still set. The rule is that whenever the runtime encounters a virtual method, it calls the most derived and overriding implementation of the virtual member. In this case, the code instantiates a Contact and calls Contact.Name because Contact contains the most derived implementation of Name.

In creating a class, programmers should be careful when choosing to allow overriding a method, since they cannot control the derived implementation. Virtual methods should not include critical code because such methods may never be called if the derived class overrides them. Furthermore, converting a method from a virtual method to a nonvirtual method could break derived classes that override the method. This is a code-breaking change and you should avoid it, especially for assemblies intended for use by third parties.

Listing 6.12 includes a virtual Run() method. If the Controller programmer calls Run() with the expectation that the critical Start() and Stop() methods will be called, he will run into a problem.

Listing 6.12. Carelessly Relying on a Virtual Method Implementation

public class Controller
{
 public void Start()
 {
 // Critical code
 }
 public virtual void Run()
 {
 Start();
 Stop();
 }
 public void Stop()
 {
 // Critical code
 }
}

In overriding Run(), a developer could perhaps not call the critical Start() and Stop() methods. To force the Start()/Stop() expectation, the Controller programmer should define the class, as shown in Listing 6.13.

Listing 6.13. Forcing the Desirable Run() Semantics

public class Controller
{
 public void Start()
 {
 // Critical code
 }

 private void Run()
 {
 Start();
 InternalRun();
 Stop();
 }

 protected virtual void InternalRun()
 {
 // Default implementation
 }

 public void Stop()
 {
 // Critical code
 }
}

With this new listing, the Controller programmer prevents users from mistakenly calling InternalRun(), because it is protected. On the other hand, declaring Run() as public ensures that Start() and Stop() are invoked appropriately. It is still possible for users to modify the default implementation of how the Controller executes by overriding the protected InternalRun() member from within the derived class.

Virtual methods provide default implementations only, implementations that derived classes could override entirely. However, because of the complexities of inheritance design, it is important to consider (and preferably to implement) a specific scenario that requires the virtual method definition rather than declaring members as virtual by default.

Language Contrast: C++—Dispatch Method Calls during Construction

In C++, methods called during construction will not dispatch the virtual method. Instead, during construction, the type is associated with the base type rather than the derived type, and virtual methods call the base implementation. In contrast, C# dispatches virtual method calls to the most derived type. This is consistent with the principle of calling the most derived virtual member, even if the derived constructor has not completely executed. Regardless, in C# the situation should be avoided.

Finally, only instance members can be virtual. The CLR uses the concrete type, specified at instantiation time, to determine where to dispatch a virtual method call, so static virtual methods are meaningless and the compiler prohibits them.

new Modifier

When an overriding method does not use override, the compiler issues a warning similar to that shown in Output 6.2 or Output 6.3.

Output 6.2.

Click here to view code image

warning CS0114: '<derived method name>' hides inherited member
'<base method name>'. To make the current member override that
implementation, add the override keyword. Otherwise add the new
keyword.

Output 6.3.

Click here to view code image

warning CS0108: The keyword new is required on '<derived property
name>' because it hides inherited member '<base property name>'

The obvious solution is to add the override modifier (assuming the base member is virtual). However, as the warnings point out, the new modifier is also an option. Consider the scenario shown in Table 6.1—a specific example of the more general problem known as the brittle base class or fragile base class problem.

Table 6.1. Why the New Modifier?

[image: Image]

[image: Image]

Because Person.Name is not virtual, Programmer A will expect Display() to use the Person implementation, even if a Person-derived data type, Contact, is passed in. However, Programmer B would expect Contact.Name to be used in all cases where the variable data type is a Contact. (Programmer B would have no code where Person.Name was used, since no Person.Name property existed initially.) To allow the addition of Person.Name without breaking either programmer’s expected behavior, you cannot assume virtual was intended. Furthermore, since C# requires an override member to explicitly use the override modifier, some other semantic must be assumed, instead of allowing the addition of a member in the base class to cause the derived class to no longer compile.

The semantic is the new modifier, and it hides a redeclared member of the derived class from the base class. Instead of calling the most derived member, a member of the base class calls the most derived member in the inheritance chain prior to the member with the new modifier. If the inheritance chain contains only two classes, a member in the base class will behave as though no method was declared on the derived class (if the derived implementation overrides the base class member). Although the compiler will report the warning shown in either Output 6.2 or Output 6.3, if neither override nor new is specified, new will be assumed, thereby maintaining the desired version safety.

Consider Listing 6.14, for example. Its output appears in Output 6.4.

Listing 6.14. override versus new Modifier

Click here to view code image

public class Program
{
 public class BaseClass
 {
 public void DisplayName()
 {
 Console.WriteLine("BaseClass");
 }
 }

 public class DerivedClass : BaseClass
 {
 // Compiler WARNING: DisplayName() hides inherited
 // member. Use the new keyword if hiding was intended.
 public virtual void DisplayName()
 {
 Console.WriteLine("DerivedClass");
 }
 }

 public class SubDerivedClass : DerivedClass
 {
 public override void DisplayName()
 {
 Console.WriteLine("SubDerivedClass");
 }
 }

 public class SuperSubDerivedClass : SubDerivedClass
 {
 public new void DisplayName()
 {
 Console.WriteLine("SuperSubDerivedClass");
 }
 }

 public static void Main()
 {
 SuperSubDerivedClass superSubDerivedClass
 = new SuperSubDerivedClass();

 SubDerivedClass subDerivedClass = superSubDerivedClass;
 DerivedClass derivedClass = superSubDerivedClass;
 BaseClass baseClass = superSubDerivedClass;

 superSubDerivedClass.DisplayName();
 subDerivedClass.DisplayName();
 derivedClass.DisplayName();
 baseClass.DisplayName();
 }
}

Output 6.4.

SuperSubDerivedClass
SubDerivedClass
SubDerivedClass
BaseClass

These results occur for the following reasons.

• SuperSubDerivedClass: SuperSubDerivedClass.DisplayName() displays SuperSubDerivedClass because there is no derived class and hence, no overload.

• SubDerivedClass: SubDerivedClass.DisplayName() is the most derived member to override a base class’s virtual member. SuperSubDerivedClass.DisplayName() is hidden because of its new modifier.

• SubDerivedClass: DerivedClass.DisplayName() is virtual and SubDerivedClass.DisplayName() is the most derived member to override it. As before, SuperSubDerivedClass.DisplayName() is hidden because of the new modifier.

• BaseClass: BaseClass.DisplayName() does not redeclare any base class member and it is not virtual; therefore, it is called directly.

When it comes to the CIL, the new modifier has no effect on what statements the compiler generates. However, a “new” method results in the generation of the newslot metadata attribute on the method. From the C# perspective, its only effect is to remove the compiler warning that would appear otherwise.

sealed Modifier

Just as you can prevent inheritance using the sealed modifier on a class, virtual members may be sealed, too (see Listing 6.15). This prevents a subclass from overriding a base class member that was originally declared as virtual higher in the inheritance chain. The situation arises when a subclass B overrides a base class A’s member and then needs to prevent any further overriding below subclass B.

Listing 6.15. Sealing Members

Click here to view code image

class A
{
 public virtual void Method()
 {
 }
}
class B : A
{
 public override sealed void Method()
 {
 }
}

class C : B
{
 // ERROR: Cannot override sealed members
 // public override void Method()
 // {
 // }
}

In this example, the use of the sealed modifier on class B’s Method() declaration prevents C’s overriding of Method().

In general, marking a class as sealed is rare and should be reserved only if there are strong reasons in favor of such a restriction. In fact, leaving types unsealed is increasingly desirable, as unit testing has become prominent because of the need to support mock (test double) object creation in place of real implementations. One possible scenario is when the cost of sealing individual virtual members outweighs the benefits of leaving the class unsealed. However, a more targeted sealing of individual members—perhaps because there are dependencies in the base implementation for correct behavior—is likely to be preferable.

base Member

In choosing to override a member, developers often want to invoke the member on the base class (see Listing 6.16).

Listing 6.16. Accessing a Base Member

Click here to view code image

public class Address
{
 public string StreetAddress;
 public string City;
 public string State;
 public string Zip;

 public override string ToString()
 {
 return string.Format("{0}" + Environment.NewLine +
 "{1}, {2} {3}",
 StreetAddress, City, State, Zip);
 }
}

public class InternationalAddress : Address
{
 public string Country;

 public override string ToString()
 {
 return base.ToString() + Environment.NewLine +
 Country;
 }
}

In Listing 6.16, InternationalAddress inherits from Address and implements ToString(). To call the parent class’s implementation you use the base keyword. The syntax is virtually identical to this, including support for using base as part of the constructor (discussed shortly).

Parenthetically, in the Address.ToString() implementation, you are required to override because ToString() is also a member of object. Any members that are decorated with override are automatically designated as virtual, so additional child classes may further specialize the implementation.

Note

Any methods decorated with override are automatically virtual. A base class method can only be overridden if it is virtual, and the overriding method is therefore virtual as well.

Constructors

When instantiating a derived class, the runtime first invokes the base class’s constructor so that the base class initialization is not circumvented. However, if there is no accessible (nonprivate) default constructor on the base class, it is not clear how to construct the base class and the C# compiler reports an error.

To avoid the error caused by no accessible default constructor, programmers need to designate explicitly, in the derived class constructor header, which base constructor to run (see Listing 6.17).

Listing 6.17. Specifying Which Base Constructor to Invoke

public class PdaItem
{
 public PdaItem(string name)
 {
 Name = name;
 }

 // ...
}

public class Contact : PdaItem
{

 public Contact(string name) :
 base(name)

 {
 Name = name;
 }

 public string Name { get; set; }
 // ...
}

By identifying the base constructor in the code, you let the runtime know which base constructor to invoke before invoking the derived class constructor.

Abstract Classes

Many of the inheritance examples so far have defined a class called PdaItem that defines the methods and properties common to Contact, Appointment, and so on, which are type objects that derive from PdaItem. PdaItem is not intended to be instantiated itself, however. A PdaItem instance has no meaning by itself; it has meaning only when it is used as a base class—to share default method implementations across the set of data types that derive from it. These characteristics are indicative of the need for PdaItem to be an abstract class rather than a concrete class. Abstract classes are designed for derivation only. It is not possible to instantiate an abstract class, except in the context of instantiating a class that derives from it. Classes that are not abstract and can instead be instantiated directly are concrete classes.

Beginner Topic: Abstract Classes

Abstract classes represent abstract entities. Their abstract members define what an object derived from an abstract entity should contain, but they don’t include the implementation. Often, much of the functionality within an abstract class is unimplemented, and before a class can successfully derive from an abstract class, it needs to provide the implementation for the abstract methods in its abstract base class.

To define an abstract class, C# requires the abstract modifier to the class definition, as shown in Listing 6.18.

Listing 6.18. Defining an Abstract Class

Click here to view code image

// Define an abstract class

public abstract class PdaItem

{
 public PdaItem(string name)
 {
 Name = name;
 }

 public virtual string Name { get; set; }
}

public class Program
{
 public static void Main()
 {
 PdaItem item;
 // ERROR: Cannot create an instance of the abstract class
 // item = new PdaItem("Inigo Montoya");
 }
}

Although abstract classes cannot be instantiated, this restriction is a minor characteristic of an abstract class. Their primary significance is achieved when abstract classes include abstract members. An abstract member is a method or property that has no implementation. Its purpose is to force all derived classes to provide the implementation.

Consider Listing 6.19.

Listing 6.19. Defining Abstract Members

Click here to view code image

// Define an abstract class
public abstract class PdaItem
{
 public PdaItem(string name)
 {
 Name = name;
 }

 public virtual string Name { get; set; }

 public abstract string GetSummary();

}

public class Contact : PdaItem
{
 public override string Name
 {
 get
 {
 return FirstName + " " + LastName;
 }

 set
 {
 string[] names = value.Split(' ');
 // Error handling not shown.
 FirstName = names[0];
 LastName = names[1];
 }
 }

 public string FirstName { get; set; }
 public string LastName { get; set; }
 public string Address { get; set; }

 public override string GetSummary()
 {
 return string.Format(
 "FirstName: {0}\n"
 + "LastName: {1}\n"
 + "Address: {2}", FirstName, LastName, Address);
 }

 // ...
}

public class Appointment : PdaItem
{
 public Appointment(string name) :
 base(name)
 {
 Name = name;
 }

 public DateTime StartDateTime { get; set; }
 public DateTime EndDateTime { get; set; }
 public string Location { get; set; }

 // ...

 public override string GetSummary()
 {
 return string.Format(
 "Subject: {0}" + Environment.NewLine
 + "Start: {1}" + Environment.NewLine
 + "End: {2}" + Environment.NewLine
 + "Location: {3}",
 Name, StartDateTime, EndDateTime, Location);
 }
}

Listing 6.19 defines the GetSummary() member as abstract, and therefore, it doesn’t include any implementation. Then, the code overrides it within Contact and provides the implementation. Because abstract members are supposed to be overridden, such members are automatically virtual and cannot be declared so explicitly. In addition, abstract members cannot be private because derived classes would not be able to see them.

It is surprisingly difficult to develop a well-designed object hierarchy. For this reason, when programming abstract types, be sure to implement at least one (preferably more) concrete type that derives from the abstract type in order to validate the design.

Note

Abstract members must be overridden, and therefore are automatically virtual and cannot be declared so explicitly.

Language Contrast: C++—Pure Virtual Functions

C++ allows for the definition of abstract functions using the cryptic notation =0. These functions are called pure virtual functions in C++. In contrast with C#, however, C++ does not require the class itself to have any special declaration. Unlike C#’s abstract class modifier, C++ has no class declaration change when the class includes pure virtual functions.

If you provide no GetSummary() implementation in Contact, the compiler will report an error.

Note

By declaring an abstract member, the abstract class programmer states that in order to form an “is a” relationship between a concrete class and an abstract base class (that is, a PdaItem), it is necessary to implement the abstract members, the members for which the abstract class could not provide an appropriate default implementation.

Beginner Topic: Polymorphism

When the implementation for the same member signature varies between two or more classes, you have a key object-oriented principle: polymorphism. “Poly” meaning “many” and “morph” meaning “form,” polymorphism refers to the fact that there are multiple implementations of the same signature. And since the same signature cannot be used multiple times within a single class, each implementation of the member signature occurs on a different class.

The idea behind polymorphism is that the object itself knows best how to perform a particular operation, and by enforcing common ways to invoke those operations, polymorphism is also a technique for encouraging code reuse when taking advantage of the commonalities. Given multiple types of documents, each document type class knows best how to perform a Print() method for its corresponding document type. Therefore, instead of defining a single print method that includes a switch statement with the special logic to print each document type, with polymorphism you call the Print() method corresponding to the specific type of document you wish to print. For example, calling Print() on a word processing document class behaves according to word processing specifics, and calling the same method on a graphics document class will result in print behavior specific to the graphic. Given the document types, however, all you have to do to print a document is to call Print(), regardless of the type.

Moving the custom print implementation out of a switch statement offers a number of maintenance advantages. First, the implementation appears in the context of each document type’s class rather than in a location far removed; this is in keeping with encapsulation. Second, adding a new document type doesn’t require a change to the switch statement. Instead, all that is necessary is for the new document type class to implement the Print() signature.

Abstract members are intended to be a way to enable polymorphism. The base class specifies the signature of the method and the derived class provides implementation (see Listing 6.20).

Listing 6.20. Using Polymorphism to List the PdaItems

Click here to view code image

public class Program
{
 public static void Main()
 {
 PdaItem[] pda = new PdaItem[3];

 Contact contact = new Contact("Sherlock Holmes");
 contact.Address = "221B Baker Street, London, England";
 pda[0] = contact;

 Appointment appointment =
 new Appointment("Soccer tournament");
 appointment.StartDateTime = new DateTime(2008, 7, 18);
 appointment.EndDateTime = new DateTime(2008, 7, 19);
 appointment.Location = "Estádio da Machava";
 pda[1] = appointment;

 contact = new Contact("Hercule Poirot");
 contact.Address =
 "Apt 56B, Whitehaven Mansions, Sandhurst Sq, London";
 pda[2] = contact;

 List(pda);
 }

 public static void List(PdaItem[] items)
 {
 // Implemented using polymorphism. The derived
 // type knows the specifics of implementing
 // GetSummary().
 foreach (PdaItem item in items)
 {
 Console.WriteLine("________");
 Console.WriteLine(item.GetSummary());
 }
 }
}

The results of Listing 6.20 appear in Output 6.5.

Output 6.5.

Click here to view code image

FirstName: Sherlock
LastName: Holmes
Address: 221B Baker Street, London, England

Subject: Soccer tournament
Start: 7/18/2008 12:00:00 AM
End: 7/19/2008 12:00:00 AM
Location: Estádio da Machava

FirstName: Hercule
LastName: Poirot
Address: Apt 56B, Whitehaven Mansions, Sandhurst Sq, London

In this way, you can call the method on the base class but the implementation is specific to the derived class.

All Classes Derive from System.Object

Given any class, whether a custom class or one built into the system, the methods shown in Table 6.2 will be defined.

Table 6.2. Members of System.Object

[image: Image]

All of these methods appear on all objects through inheritance; all classes derive (either directly or via an inheritance chain) from object. Even literals include these methods, enabling somewhat peculiar-looking code such as this:

Console.WriteLine(42.ToString());

Even class definitions that don’t have any explicit derivation from object derive from object anyway. The two declarations for PdaItem in Listing 6.21, therefore, result in identical CIL.

Listing 6.21. System.Object Derivation Implied When No Derivation Is Specified Explicitly

public class PdaItem
{
 // ...
}

public class PdaItem : object
{
 // ...
}

When the object’s default implementation isn’t sufficient, programmers can override one or more of the three virtual methods. Chapter 9 describes the details for doing this.

Verifying the Underlying Type with the is Operator

Because C# allows casting down the inheritance chain, it is sometimes desirable to determine what the underlying type is before attempting a conversion. Also, checking the type may be necessary for type-specific actions where polymorphism was not implemented. To determine the underlying type, C# provides the is operator (see Listing 6.22).

Listing 6.22. is Operator Determining the Underlying Type

Click here to view code image

public static void Save(object data)
{
 if (data is string)
 {
 data = Encrypt((string) data);
 }

 // ...
}

Listing 6.22 encrypts the data if the underlying type is a string. This is significantly different from encrypting, simply because it successfully casts to a string since many types support casting to a string, and yet their underlying type is not a string.

Although this capability is important, you should consider polymorphism prior to using the is operator. Polymorphism enables support for expanding a behavior to other data types without modifying the implementation that defines the behavior. For example, deriving from a common base type and then using that type as the parameter to the Save() method avoids having to check for string explicitly and enables other data types to support encryption during the save by deriving from the same base type.

Conversion Using the as Operator

The advantage of the is operator is that it enables verification that a data item is of a particular type. The as operator goes one step further: It attempts a conversion to a particular data type and assigns null if the source type is not inherently (within the inheritance chain) of the target type. This is significant because it avoids the exception that could result from casting. Listing 6.23 demonstrates using the as operator.

Listing 6.23. Data Conversion Using the as Operator

object Print(IDocument document)
{
 if(thing != null)
 {
 // Print document...
 }
 else
 {
 }
}

static void Main()
{
 object data;

 // ...

 Print(data as Document);
}

By using the as operator, you are able to avoid additional try/catch handling code if the conversion is invalid, because the as operator provides a way to attempt a cast without throwing an exception if the cast fails.

One advantage of the is operator over the as operator is that the latter cannot successfully determine the underlying type. The latter potentially casts up or down an inheritance chain, as well as across to types supporting the cast operator. Therefore, unlike the as operator, the is operator can determine the underlying type.

Summary

This chapter discussed how to specialize a class by deriving from it and adding additional methods and properties. This included a discussion of the private and protected access modifiers that control the level of encapsulation.

This chapter also investigated the details of overriding the base class implementation, and alternatively hiding it using the new modifier. To control overriding, C# provides the virtual modifier, which identifies to the deriving class developer which members she intends for derivation. For preventing any derivation altogether you learned about the sealed modifier on the class. Similarly, the sealed modifier on a member prevents further overriding from subclasses.

This chapter ended with a brief discussion of how all types derive from object. Chapter 9 discusses this derivation further, with a look at how object includes three virtual methods with specific rules and guidelines that govern overloading. Before you get there, however, you need to consider another programming paradigm that builds on object-oriented programming: interfaces. This is the subject of Chapter 7.

7. Interfaces

Polymorphism is available not only via inheritance (as discussed in the preceding chapter), but also via interfaces. Unlike abstract classes, interfaces cannot include any implementation. Like abstract classes, however, interfaces define a set of members that callers can rely on being implemented.

By implementing an interface, a type defines its capabilities. The interface implementation relationship is a “can do” relationship: The type can do what the interface requires an implementing type to do. The interface defines the contract between the types that implement the interface and the code that uses the interface. Types that implement interfaces must declare methods with the same signatures as the methods declared by the implemented interfaces. This chapter discusses implementing and using interfaces.

[image: Image]

Introducing Interfaces

Beginner Topic: Why Interfaces?

Interfaces are useful because—unlike abstract classes—they enable the complete separation of implementation details from services provided. For a real-world example, consider the “interface” that is an electrical wall socket. How the electrical power gets to the socket is an implementation detail: It might be generated by chemical, nuclear, or solar energy, the generator might be in the next room or far away, and so on. The socket provides a “contract”: It will supply a particular voltage at a specific frequency, and requires that the appliance using that interface provide a compatible plug. The appliance need not care anything about the implementation details that get power to the socket; all it needs to worry about is that it provides a compatible plug.

Consider the following example: A huge number of file compression formats are available (.zip, .7-zip, .cab, .lha, .tar, .tar.gz, .tar.bz2, .bh, .rar, .arj, .arc, .ace, .zoo, .gz, .bzip2, .xxe, .mime, .uue, and .yenc, just to name a few). If you created classes for each compression format, you could end up with different method signatures for each compression implementation and no ability for a standard calling convention across them. The desired method could be declared as abstract in the base class. However, deriving from a common base class uses up a class’s one and only opportunity for inheritance. It is unlikely that there is any code common to various compression implementations that can be put in the base class, thereby making the potential of a base class implementation useless. The key point is that base classes let you share implementation along with the member signatures, whereas interfaces allow you to share the member signatures without the implementation.

Instead of sharing a common base class, each compression class needs to implement a common interface. Interfaces define the contract that a class supports in order to interact with the other classes that expect the interface. If all the classes implemented the IFileCompression interface and its Compress() and Uncompress() methods, the code for calling the algorithm on any particular compression class would simply involve a conversion to the IFileCompression interface and a call to the members. The result is polymorphism because each compression class has the same method signature but individual implementations of that signature.

The IFileCompression interface shown in Listing 7.1 is an example of an interface implementation.

Listing 7.1. Defining an Interface

Click here to view code image

interface IFileCompression
{
 void Compress(string targetFileName, string[] fileList);
 void Uncompress(
 string compressedFileName, string expandDirectoryName);
}

IFileCompression defines the methods a type must implement to be used in the same manner as other compression-related classes. The power of interfaces is that they grant the ability to callers to switch among implementations without modifying the calling code.

One key characteristic of an interface is that it has no implementation and no data. Method declarations in an interface have a single semicolon in place of curly braces after the header. Fields (data) cannot appear in an interface declaration. When an interface requires the derived class to have certain data, it declares a property rather than a field. Since the property does not contain any implementation as part of the interface declaration, it doesn’t reference a backing field.

The declared members of an interface describe the members that must be accessible on an implementing type. The purpose of nonpublic members is to make those members inaccessible to other code. Therefore, C# does not allow access modifiers on interface members; instead, it automatically defines them as public.

Guidelines

DO use Pascal casing for interface names, with an “I” prefix.

Polymorphism through Interfaces

Consider another example (see Listing 7.2): IListable defines the members a class needs to support in order for the ConsoleListControl class to display it. As such, any class that implements IListable can use the ConsoleListControl to display itself. The IListable interface requires a read-only property, ColumnValues.

Listing 7.2. Implementing and Using Interfaces

Click here to view code image

interface IListable
{
 // Return the value of each column in the row.

 string[] ColumnValues
 {
 get;
 }

}

public abstract class PdaItem
{
 public PdaItem(string name)
 {
 Name = name;
 }

 public virtual string Name{get;set;}
}

class Contact : PdaItem, IListable
{
 public Contact(string firstName, string lastName,
 string address, string phone) : base(null)
 {
 FirstName = firstName;
 LastName = lastName;
 Address = address;
 Phone = phone;
 }

 public string FirstName { get; set; }
 public string LastName { get; set; }
 public string Address { get; set; }
 public string Phone { get; set; }

 public string[] ColumnValues
 {
 get
 {
 return new string[]
 {
 FirstName,
 LastName,
 Phone,
 Address
 };
 }
 }

 public static string[] Headers
 {
 get
 {
 return new string[] {
 "First Name", "Last Name ",
 "Phone ",
 "Address " };
 }
 }

 // ...
}

class Publication : IListable
{
 public Publication(string title, string author, int year)
 {
 Title = title;
 Author = author;
 Year = year;
 }

 public string Title { get; set; }
 public string Author { get; set; }
 public int Year { get; set; }

 public string[] ColumnValues
 {
 get
 {
 return new string[]
 {
 Title,
 Author,
 Year.ToString()
 };
 }
 }

 public static string[] Headers
 {
 get
 {
 return new string[] {
 "Title ",
 "Author ",
 "Year" };
 }
 }

 // ...
}

class Program
{
 public static void Main()
 {
 Contact[] contacts = new Contact[6];
 contacts[0] = new Contact(
 "Dick", "Traci",
 "123 Main St., Spokane, WA 99037",
 "123-123-1234");
 contacts[1] = new Contact(
 "Andrew", "Littman",
 "1417 Palmary St., Dallas, TX 55555",
 "555-123-4567");
 contacts[2] = new Contact(
 "Mary", "Hartfelt",
 "1520 Thunder Way, Elizabethton, PA 44444",
 "444-123-4567");
 contacts[3] = new Contact(
 "John", "Lindherst",
 "1 Aerial Way Dr., Monteray, NH 88888",
 "222-987-6543");
 contacts[4] = new Contact(
 "Pat", "Wilson",
 "565 Irving Dr., Parksdale, FL 22222",
 "123-456-7890");
 contacts[5] = new Contact(
 "Jane", "Doe",
 "123 Main St., Aurora, IL 66666",
 "333-345-6789");

 // Classes are cast implicitly to
 // their supported interfaces
 ConsoleListControl.List(Contact.Headers, contacts);

 Console.WriteLine();

 Publication[] publications = new Publication[3] {
 new Publication("Celebration of Discipline",
 "Richard Foster", 1978),
 new Publication("Orthodoxy",
 "G.K. Chesterton", 1908),
 new Publication(
 "The Hitchhiker's Guide to the Galaxy",
 "Douglas Adams", 1979)
 };
 ConsoleListControl.List(
 Publication.Headers, publications);
 }
}

class ConsoleListControl
{
 public static void List(string[] headers, IListable[] items)
 {
 int[] columnWidths = DisplayHeaders(headers);

 for (int count = 0; count < items.Length; count++)
 {

 string[] values = items[count].ColumnValues;

 DisplayItemRow(columnWidths, values);
 }
 }

 /// <summary>Displays the column headers</summary>
 /// <returns>Returns an array of column widths</returns>
 private static int[] DisplayHeaders(string[] headers)
 {
 // ...
 }

 private static void DisplayItemRow(
 int[] columnWidths, string[] values)
 {
 // ...
 }
}

The results of Listing 7.2 appear in Output 7.1.

Output 7.1.

Click here to view code image

First Name Last Name Phone Address
Dick Traci 123-123-1234 123 Main St., Spokane, WA 99037
Andrew Littman 555-123-4567 1417 Palmary St., Dallas, TX 55555
Mary Hartfelt 444-123-4567 1520 Thunder Way, Elizabethton, PA 44444
John Lindherst 222-987-6543 1 Aerial Way Dr., Monteray, NH 88888
Pat Wilson 123-456-7890 565 Irving Dr., Parksdale, FL 22222
Jane Doe 333-345-6789 123 Main St., Aurora, IL 66666

Title Author Year
Celebration of Discipline Richard Foster 1978
Orthodoxy G.K. Chesterton 1908
The Hitchhiker's Guide to the Galaxy Douglas Adams 1979

In Listing 7.2, the ConsoleListControl can display seemingly unrelated classes (Contact and Publication). Any class can be displayed provided that it implements the required interface. As a result, the ConsoleListControl.List() method relies on polymorphism to appropriately display whichever set of objects it is passed. Each class has its own implementation of ColumnValues, and converting a class to IListable still allows the particular class’s implementation to be invoked.

Interface Implementation

Declaring a class to implement an interface is similar to deriving from a base class: The implemented interfaces appear in a comma-separated list along with the base class. The base class specifier (if there is one) must come first, but otherwise order is not significant. Classes can implement multiple interfaces, but may only derive directly from one base class. An example appears in Listing 7.3.

Listing 7.3. Implementing an Interface

Click here to view code image

public class Contact : PdaItem, IListable, IComparable
{
 // ...

 #region IComparable Members
 /// <summary>
 ///
 /// </summary>
 /// <param name="obj"></param>
 /// <returns>
 /// Less than zero: This instance is less than obj.
 /// Zero This instance is equal to obj.
 /// Greater than zero This instance is greater than obj.
 /// </returns>

 public int CompareTo(object obj)

 {
 int result;
 Contact contact = obj as Contact;

 if (obj == null)
 {
 // This instance is greater than obj.
 result = 1;
 }
 else if (obj != typeof(Contact))
 {
 throw new ArgumentException("obj is not a Contact");
 }
 else if(Contact.ReferenceEquals(this, obj))
 {
 result = 0;
 }
 else
 {
 result = LastName.CompareTo(contact.LastName);
 if (result == 0)
 {
 result = FirstName.CompareTo(contact.FirstName);
 }
 }
 return result;
 }
 #endregion

 #region IListable Members

 string[] IListable.ColumnValues

 {
 get
 {
 return new string[]
 {
 FirstName,
 LastName,
 Phone,
 Address
 };
 }
 }
 #endregion
}

Once a class declares that it implements an interface, all members of the interface must be implemented. An abstract class is permitted to supply an abstract implementation of an interface member. A nonabstract implementation may throw a NotImplementedException type exception in the method body, but somehow, an implementation of the member must be supplied.

One important characteristic of interfaces is that they can never be instantiated; you cannot use new to create an interface, and therefore, interfaces do not have constructors or finalizers. Interface instances are available only by instantiating a type that implements the interface. Furthermore, interfaces cannot include static members. One key interface purpose is polymorphism, and polymorphism without an instance of the implementing type is of little value.

Each interface member behaves like an abstract method, forcing the derived class to implement the member. Therefore, it is not possible to use the abstract modifier on interface members explicitly.

When implementing an interface member in a type there are two ways to do so: explicitly or implicitly. So far we’ve seen only implicit implementations, where the type member that implements the interface member is a public member of the implementing type.

Explicit Member Implementation

Explicitly implemented methods are available only by calling through the interface itself; this is typically achieved by casting an object to the interface. For example, to call IListable.ColumnValues in Listing 7.4, you must first cast the contact to IListable because of ColumnValues’ explicit implementation.

Listing 7.4. Calling Explicit Interface Member Implementations

Click here to view code image

string[] values;
Contact contact1, contact2;

// ...

// ERROR: Unable to call ColumnValues() directly
// on a contact.
// values = contact1.ColumnValues;

// First cast to IListable.

values = ((IListable)contact2).ColumnValues;

// ...

The cast and the call to ColumnValues occur within the same statement in this case. Alternatively, you could assign contact2 to an IListable variable before calling ColumnValues.

To declare an explicit interface member implementation, prefix the member name with the interface name (see Listing 7.5).

Listing 7.5. Explicit Interface Implementation

Click here to view code image

public class Contact : PdaItem, IListable, IComparable
{
 // ...

 public int CompareTo(object obj)
 {
 // ...
 }

 #region IListable Members

 string[] IListable.ColumnValues

 {
 get
 {
 return new string[]
 {
 FirstName,
 LastName,
 Phone,
 Address
 };
 }
 }
 #endregion
}

Listing 7.5 implements ColumnValues explicitly by prefixing the property name with IListable. Furthermore, since explicit interface implementations are directly associated with the interface, there is no need to modify them with virtual, override, or public, and, in fact, these modifiers are not allowed. The method is not treated as a public member of the class, so marking it as public would be misleading.

Implicit Member Implementation

Notice that CompareTo() in Listing 7.5 does not include the IComparable prefix; it is implemented implicitly. With implicit member implementation, it is only necessary for the member to be public and for the member’s signature to match the interface member’s signature. Interface member implementation does not require the override keyword or any indication that this member is tied to the interface. Furthermore, since the member is declared just as any other class member, code that calls implicitly implemented members can do so directly, just as it would any other class member:

 result = contact1.CompareTo(contact2);

In other words, implicit member implementation does not require a cast because the member is not hidden from direct invocation on the implementing class.

Many of the modifiers disallowed on an explicit member implementation are required or are optional on an implicit implementation. For example, implicit member implementations must be public. Furthermore, virtual is optional depending on whether derived classes may override the implementation. Eliminating virtual will cause the member to behave as though it is sealed.

Explicit versus Implicit Interface Implementation

The key difference between implicit and explicit member interface implementation is not in the syntax of the method declaration, but in the ability to access the method by name through an instance of the type rather than via the interface.

When building a class hierarchy, it’s desirable to model real-world “is a” relationships—a giraffe is a mammal, for example. These are “semantic” relationships. Interfaces are often used to model “mechanism” relationships. A PdaItem “is not a” “comparable,” but it might well be IComparable. This interface has nothing to do with the semantic model; it’s a detail of the implementation mechanism. Explicit interface implementation is a technique for enabling the separation of mechanism concerns from model concerns. Forcing the caller to convert the object to an interface such as IComparable before treating the object as “comparable” explicitly separates out in the code when you are talking to the model and when you are dealing with its implementation mechanisms.

In general, it is preferable to limit the public surface area of a class to be “all model” with as little extraneous mechanism as possible. (Unfortunately, some mechanisms are unavoidable in .NET. You cannot get a giraffe’s hash code or convert a giraffe to a string. However, you can get a Giraffe’s hash code [GetHashCode()] and convert it to a string [ToString()]. By using object as a common base class, .NET mixes model code with mechanism code even if only to a limited extent.)

Here are several guidelines that will help you choose between an explicit and an implicit implementation.

• Is the member a core part of the class functionality?

Consider the ColumnValues property implementation on the Contact class. This member is not an integral part of a Contact type but a peripheral member probably accessed only by the ConsoleListControl class. As such, it doesn’t make sense for the member to be immediately visible on a Contact object, cluttering up what could potentially already be a large list of members.

Alternatively, consider the IFileCompression.Compress() member. Including an implicit Compress() implementation on a ZipCompression class is a perfectly reasonable choice, since Compress() is a core part of the ZipCompression class’s behavior, so it should be directly accessible from the ZipCompression class.

• Is the interface member name appropriate as a class member?

Consider an ITrace interface with a member called Dump() that writes out a class’s data to a trace log. Implementing Dump() implicitly on a Person or Truck class would result in confusion as to what operation the method performs. Instead, it is preferable to implement the member explicitly so that only from a data type of ITrace, where the meaning is clearer, can the Dump() method be called. Consider using an explicit implementation if a member’s purpose is unclear on the implementing class.

• Is there already a class member with the same signature?

Explicit interface member implementation does not add a named element to the type’s declaration space. Therefore, if there is already a potentially conflicting member of a type, a second one can be provided with the same name or signature as long as it is an explicit interface member.

Much of the decision regarding implicit versus explicit interface member implementation comes down to intuition. However, these questions provide suggestions about what to consider when making your choice. Since changing an implementation from implicit to explicit results in a version-breaking change, it is better to err on the side of defining interfaces explicitly, allowing them to be changed to implicit later on. Furthermore, since the decision between implicit and explicit does not have to be consistent across all interface members, defining some methods as explicit and others as implicit is fully supported.

Guidelines

AVOID implementing interface members explicitly without a good reason. However, if you’re unsure, favor explicit implementation.

Converting between the Implementing Class and Its Interfaces

Just as with a derived type and a base class, a conversion from an implementing type to its implemented interface is an implicit conversion. No cast operator is required because an instance of the implementing type will always provide all the members in the interface, and therefore, the object can always be converted successfully to the interface type.

Although the conversion will always be successful from the implementing type to the implemented interface, many different types could implement a particular interface, so you can never be certain that a “downward” cast from an interface to one of its implementing types will be successful. Therefore, converting from an interface to one of its implementing types requires an explicit cast.

Interface Inheritance

Interfaces can derive from each other, resulting in an interface that inherits all the members in its base interfaces. As shown in Listing 7.6, the interfaces directly derived from IReadableSettingsProvider are the explicit base interfaces.

Listing 7.6. Deriving One Interface from Another

Click here to view code image

interface IReadableSettingsProvider
{
 string GetSetting(string name, string defaultValue);
}

interface ISettingsProvider : IReadableSettingsProvider
{
 void SetSetting(string name, string value);
}

class FileSettingsProvider : ISettingsProvider
{
 #region ISettingsProvider Members
 public void SetSetting(string name, string value)
 {
 // ...
 }
 #endregion

 #region IReadableSettingsProvider Members
 public string GetSetting(string name, string defaultValue)
 {
 // ...
 }
 #endregion
}

In this case, ISettingsProvider derives from IReadableSettingsProvider, and therefore inherits its members. If IReadableSettingsProvider also had an explicit base interface, ISettingsProvider would inherit those members too, and the full set of interfaces in the derivation hierarchy would simply be the accumulation of base interfaces.

It is interesting to note that if GetSetting() is implemented explicitly, it must be done using IReadableSettingsProvider. The declaration with ISettingsProvider in Listing 7.7 will not compile.

Listing 7.7. Explicit Member Declaration without the Containing Interface (Failure)

Click here to view code image

// ERROR: GetSetting() not available on ISettingsProvider
string ISettingsProvider.GetSetting(
 string name, string defaultValue)
{
 // ...
}

The results of Listing 7.7 appear in Output 7.2.

Output 7.2.

Click here to view code image

'ISettingsProvider.GetSetting' in explicit interface declaration
is not a member of interface.

This output appears in addition to an error indicating that IReadableSettingsProvider.GetSetting() is not implemented. The fully qualified interface member name used for explicit interface member implementation must reference the interface name in which it was originally declared.

Even though a class implements an interface (ISettingsProvider) which is derived from a base interface (IReadableSettingsProvider), the class can still declare an implementation of both interfaces overtly, as Listing 7.8 demonstrates.

Listing 7.8. Using a Base Interface in the Class Declaration

Click here to view code image

class FileSettingsProvider : ISettingsProvider,

 IReadableSettingsProvider

{
 #region ISettingsProvider Members
 public void SetSetting(string name, string value)
 {
 // ...
 }
 #endregion

 #region IReadableSettingsProvider Members
 public string GetSetting(string name, string defaultValue)
 {
 // ...
 }
 #endregion
}

In this listing, there is no change to the interface’s implementations on the class, and although the additional interface implementation declaration on the class header is superfluous, it can provide better readability.

The decision to provide multiple interfaces rather than just one combined interface depends largely on what the interface designer wants to require of the implementing class. By providing an IReadableSettingsProvider interface, the designer communicates that implementers are required only to implement a settings provider that retrieves settings. They do not have to be able to write to those settings. This reduces the implementation burden by not imposing the complexities of writing settings as well.

In contrast, implementing ISettingsProvider assumes that there is never a reason to have a class that can write settings without reading them. The inheritance relationship between ISettingsProvider and IReadableSettingsProvider, therefore, forces the combined total of both interfaces on the ISettingsProvider class.

One final but important note: Although inheritance is the correct term, conceptually it is more accurate to realize that an interface represents a contract; and one contract is allowed to specify that the provisions of another contract must also be followed. So, the code ISettingsProvider : IReadableSettingsProvider conceptually states that the ISettingsProvider contract requires also respecting the IReadableSettingsProvider contract rather than that the ISettingsProvider “is a kind of” IReadableSettingsProvider. That being said, the remainder of the chapter will continue using the inheritance relationship terminology in accordance with the standard C# terminology.

Multiple Interface Inheritance

Just as classes can implement multiple interfaces, interfaces can inherit from multiple interfaces; the syntax is consistent with class derivation and implementation, as shown in Listing 7.9.

Listing 7.9. Multiple Interface Inheritance

Click here to view code image

interface IReadableSettingsProvider
{
 string GetSetting(string name, string defaultValue);
}

interface IWriteableSettingsProvider
{
 void SetSetting(string name, string value);
}

interface ISettingsProvider : IReadableSettingsProvider,

 IWriteableSettingsProvider

{
}

It is unusual to have an interface with no members, but if implementing both interfaces together is predominant, it is a reasonable choice for this case. The difference between Listing 7.9 and Listing 7.6 is that it is now possible to implement IWriteableSettingsProvider without supplying any read capability. Listing 7.6’s FileSettingsProvider is unaffected, but if it used explicit member implementation, specifying which interface a member belongs to changes slightly.

Extension Methods on Interfaces

Perhaps one of the most important features of extension methods is the fact that they work with interfaces in addition to classes. The syntax is identical to that of extension methods for classes. The extended type (the first parameter and the parameter prefixed with this) is the interface that we extend. Listing 7.10 shows an extension method for IListable(). It is declared on Listable.

Listing 7.10. Interface Extension Methods

Click here to view code image

class Program
{
 public static void Main()
 {
 Contact[] contacts = new Contact[6];
 contacts[0] = new Contact(
 "Dick", "Traci",
 "123 Main St., Spokane, WA 99037",
 "123-123-1234");
 // ...

 // Classes are implicitly converted to
 // their supported interfaces
 contacts.List(Contact.Headers);

 Console.WriteLine();

 Publication[] publications = new Publication[3] {
 new Publication("Celebration of Discipline",
 "Richard Foster", 1978),
 new Publication("Orthodoxy",
 "G.K. Chesterton", 1908),
 new Publication(
 "The Hitchhiker's Guide to the Galaxy",
 "Douglas Adams", 1979)
 };

 publications.List(Publication.Headers);

 }
}

static class Listable
{

 public static void List(
 this IListable[] items, string[] headers)

 {
 int[] columnWidths = DisplayHeaders(headers);

 for (int itemCount = 0; itemCount < items.Length; itemCount++)
 {
 string[] values = items[itemCount].ColumnValues;

 DisplayItemRow(columnWidths, values);
 }
 }
 // ...
}

Notice that in this example, the extension method is not on for an IListable parameter (although it could have been), but rather an IListable[] parameter. This demonstrates that C# allows extension methods not only on an instance of a particular type, but also on a collection of those objects. Support for extension methods is the foundation on which LINQ is implemented. IEnumerable is the fundamental interface that all collections implement. By defining extension methods for IEnumerable, LINQ support was added to all collections. This radically changed programming with collections; we will explore this topic in detail in Chapter 14.

Implementing Multiple Inheritance via Interfaces

As Listing 7.3 demonstrated, a single class can implement any number of interfaces in addition to deriving from a single class. This feature provides a possible workaround for the lack of multiple inheritance support in C# classes. The process uses aggregation as described in the preceding chapter, but you can vary the structure slightly by adding an interface to the mix, as shown in Listing 7.11.

Listing 7.11. Working around Single Inheritance Using Aggregation with Interfaces

Click here to view code image

public class PdaItem
{
 // ...
}

interface IPerson
{
 string FirstName
 {
 get;
 set;
 }

 string LastName
 {
 get;
 set;
 }
}

public class Person : IPerson
{
 // ...
}

public class Contact : PdaItem, IPerson
{
 private Person Person
 {

 get { return _Person; }
 set { _Person = value; }

 }
 private Person _Person;

 public string FirstName
 {

 get { return _Person.FirstName; }
 set { _Person.FirstName = value; }

 }

 public string LastName
 {
 get { return _Person.LastName; }
 set { _Person.LastName = value; }
 }

 // ...
}

IPerson ensures that the signatures between the Person members and the same members duplicated onto Contact are consistent. The implementation is still not synonymous with multiple inheritance, however, because new members added to Person will not be added to Contact.

One possible improvement that works if the implemented members are methods (not properties) is to define interface extension methods for the additional functionality “derived” from the second base class. An extension method on IPerson could provide a method called VerifyCredentials(), for example, and all classes that implement IPerson, even an IPerson interface that had no members but just extension methods, would have a default implementation of VerifyCredentials(). What makes this a viable approach is that polymorphism is still available, as is overriding. Overriding is supported because any instance implementation of a method will take priority over an extension method with the equivalent static signature.

Guidelines

CONSIDER defining interfaces to achieve a similar effect to that of multiple inheritance.

Beginner Topic: Interface Diagramming

Interfaces in a UML-like1 figure take two possible forms. First, you can show the interface as though it is an inheritance relationship similar to a class inheritance, as demonstrated in Figure 7.1 between IPerson and IContact. Alternatively, you can show the interface using a small circle, often referred to as a lollipop, exemplified by IPerson and IContact in Figure 7.1.

[image: Image]

Figure 7.1. Working around Single Inheritances with Aggregation and Interfaces

In Figure 7.1, Contact derives from PdaItem and implements IContact. In addition, it aggregates the Person class, which implements IPerson. Although the Visual Studio 2005 Class Designer does not support this, interfaces are sometimes shown as using a derivation-type arrow to a class. For example, Person could have an arrow to IPerson instead of a lollipop.

Versioning

When creating a new version of a component or application that other developers have programmed against, you should not change interfaces. Because interfaces define a contract between the implementing class and the class using the interface, changing the interface is changing the contract, which will possibly break any code written against the interface.

Changing or removing a particular interface member signature is obviously a code-breaking change, as any call to that member will no longer compile without modification. The same is true when changing public or protected member signatures on a class. However, unlike with classes, adding members to an interface could also prevent code from compiling without additional changes. The problem is that any class implementing the interface must do so entirely, and implementations for all members must be provided. With new interface members, the compiler will require that developers add new interface members to the class implementing the interface.

Guidelines

DO NOT add members to an interface that has already shipped.

The creation of IDistributedSettingsProvider in Listing 7.12 serves as a good example of extending an interface in a version-compatible way. Imagine that at first, only the ISettingsProvider interface is defined (as it was in Listing 7.6). In the next version, however, it is determined that per-machine settings are required. To enable this, the IDistributedSettingsProvider interface is created, and it derives from ISettingsProvider.

Listing 7.12. Deriving One Interface from Another

Click here to view code image

interface IDistributedSettingsProvider : ISettingsProvider
{
 /// <summary>
 /// Get the settings for a particular machine.
 /// </summary>
 /// <param name="machineName">
 /// The machine name the setting is related to</param>
 /// <param name="name">The name of the setting</param>
 /// <param name="defaultValue">
 /// The value returned if the setting is not found.</param>
 /// <returns>The specified setting</returns>
 string GetSetting(
 string machineName, string name, string defaultValue);

 /// <summary>
 /// Set the settings for a particular machine.
 /// </summary>
 /// <param name="machineName">
 /// The machine name the setting is related to.</param>
 /// <param name="name">The name of the setting.</param>
 /// <param name="value">The value to be persisted.</param>
 /// <returns>The specified setting</returns>
 void SetSetting(
 string machineName, string name, string value);
}

The important factor is that programmers with classes that implement ISettingsProvider can choose to upgrade the implementation to include IDistributedSettingsProvider, or they can ignore it.

If instead of creating a new interface, the machine-related methods are added to ISettingsProvider, classes implementing this interface will no longer successfully compile with the new interface definition, and instead a version-breaking change will occur.

Changing interfaces during the development phase is obviously acceptable, although perhaps laborious if implemented extensively. However, once an interface is released, it should not be changed. Instead, a second interface should be created, possibly deriving from the original interface.

(Listing 7.12 includes XML comments describing the interface members, as discussed further in Chapter 9.)

Interfaces Compared with Classes

Interfaces introduce another category of data types. (They are one of the few categories of types that don’t extend System.Object.2) Unlike classes, however, interfaces can never be instantiated. An interface instance is accessible only via a reference to an object that implements the interface. It is not possible to use the new operator with an interface; therefore, interfaces cannot contain any constructors or finalizers. Furthermore, static members are not allowed on interfaces.

Interfaces are closer to abstract classes, sharing such features as the lack of instantiation capability. Table 7.1 lists additional comparisons.

Table 7.1. Comparing Abstract Classes and Interfaces

[image: Image]

Given that abstract classes and interfaces have their own sets of advantages and disadvantages, you must make a cost-benefit decision based on the comparisons in Table 7.1 and the guidelines below in order to make the right choice.

Guidelines

DO generally favor classes over interfaces. Use abstract classes to decouple contracts (what the type does) from implementation details (how the type does it.)

CONSIDER defining an interface if you need to support its functionality on types that already inherit from some other type.

Interfaces Compared with Attributes

Interfaces with no members at all, inherited or otherwise, are sometimes used to represent information about a type. For example, you might create a marker IObsolete interface to indicate that a particular type has been replaced by another type. This is generally considered to be an abuse of the interface mechanism; interfaces should be used to represent what functions a type can perform, not to indicate facts about particular types. Instead of marker interfaces, use attributes. See Chapter 17 for more details.

Guidelines

AVOID using “marker” interfaces with no members; use attributes instead.

Summary

Interfaces are a key element of object-oriented programming in C#. They provide functionality similar to abstract classes but without using up the single-inheritance option, and also support implementation of multiple interfaces.

In C#, the implementation of interfaces can be either explicit or implicit, depending on whether the implementing class is to expose an interface member directly or only via a conversion to the interface. Furthermore, the granularity of whether the implementation is explicit or implicit is at the member level: One member may be implicitly implemented while another member of the same interface is explicitly implemented.

The next chapter looks at value types and discusses the importance of defining custom value types; at the same time, the chapter points out the subtle problems that they can introduce.

8. Value Types

You have used value types throughout this book; for example, int is a value type. This chapter discusses not only using value types, but also defining custom value types. There are two categories of custom value types. The first category is structs. This chapter discusses how structs enable programmers to define new value types that behave very similarly to most of the predefined types discussed in Chapter 2. The key is that any newly defined value types have their own custom data and methods. The second category of value types is enums. This chapter discusses how to use enums to define sets of constant values.

[image: Image]

Structs

Beginner Topic: Categories of Types

All types discussed so far fall into two categories: reference types and value types. The differences between the types in each category stem from differences in copying strategies, which, in turn, results in each type being stored differently in memory. To review, this Beginner Topic reintroduces the value type/reference type discussion to familiarize those who are unfamiliar with it.

Value Types

Variables of value types directly contain their values, as shown in Figure 8.1. The variable name is associated directly with the storage location in memory where the value is stored. Because of this, when a second variable is assigned the value of an original variable, a copy of the original variable’s value is made to the storage location associated with the second variable. Two variables never refer to the same storage location (unless one or both are an out or ref parameter, which are, by definition, aliases for another variable). So, changing the value of the original variable will not affect the value in the second variable, since each variable is associated with a different storage location. Consequently, changing the value of one value type variable cannot affect the value of any other value type variable.

[image: Image]

Figure 8.1. Value Types Contain the Data Directly

A value type variable is like a piece of paper that has a number written on it. If you want to change the number, you can erase it and replace it with a different number. If you have a second piece of paper, you can copy the number from the first piece of paper, but the two pieces of paper are then independent; erasing and replacing the number on one of them does not change the other.

Similarly, passing an instance of a value type to a method such as Console.WriteLine() will also result in a memory copy from the storage location associated with the argument to the storage location associated with the parameter, and any changes to the parameter variable inside the method will not affect the original value within the caller. Since value types require a memory copy, they generally should be defined to consume a small amount of memory (typically 16 bytes or less).

Guidelines

DO NOT create value types that consume more than 16 bytes of memory.

Values of value types are often short-lived; often a value is only needed for a portion of an expression or for the activation of a method. In these cases, variables and temporary values of value types can often be stored on the temporary storage pool, often called “the stack.” (Though this is a misnomer; there is no requirement that the temporary pool allocates its storage off the stack, and in fact, as an implementation detail, it frequently chooses to allocate storage out of available registers instead.)

The temporary pool is less costly to clean up than the garbage-collected heap; however, value types tend to be copied more than reference types, and that copying can impose a performance cost of its own. Do not fall into the trap of believing that “value types are faster because they can be allocated on the stack.”

Reference Types

In contrast, the value of a reference type variable is a reference to an instance of an object (see Figure 8.2). Variables of reference type store the reference (typically implemented as the memory address) where the data for the object instance is located, instead of storing the data directly, as a variable of value type does. Therefore, to access the data, the runtime will read the reference out of the variable and then dereference it to reach the location in memory that actually contains the data for the instance.

[image: Image]

Figure 8.2. Reference Types Point to the Heap

A reference type variable, therefore, has two storage locations associated with it: the storage location directly associated with the variable, and the storage location referred to by the reference that is the value stored in the variable.

A reference type variable is, again, like a piece of paper that always has something written on it. Imagine, for example, a piece of paper that has a house address written on it: say, “123 Sesame Street, New York City”. The piece of paper is a variable; the address is a reference to a building. Neither the paper nor the address written on it is the building, and the location of the paper need not have anything whatsoever to do with the location of the building its contents refer to. If you make a copy of that reference on another piece of paper, the contents of both pieces of paper refer to the same building. If you then paint that building green, the building referred to by both pieces of paper can be observed to be green, because the references refer to the same thing.

The storage location directly associated with the variable (or temporary value) is treated no differently than the storage location associated with a value type variable: If the variable is known to be short-lived it is allocated on the short-term storage pool. The value of a reference type variable is always a reference to a storage location in the garbage-collected heap, or null.

Compared to a variable of value type, which stores the data of the instance directly, accessing the data associated with a reference involves an extra “hop”: First the reference must be dereferenced to find the storage location of the actual data, and then the data can be read or written. Copying a reference type value only copies the reference, which is small. (A reference is guaranteed to be no larger than the “bit size” of the processor; a 32-bit machine has 4-byte references, a 64-bit machine has 8-byte references, and so on.) Copying the value of a value type copies all the data, which could be large. Therefore, there are circumstances in which reference types are more efficient to copy. This is why the guideline for value types is to ensure that they are never more than 16 bytes or thereabouts; if a value type is more than four times as expensive to copy as a reference, it probably should simply be a reference type.

Since reference types copy only a reference to the data, two different variables can refer to the same data. Thus, changing the data through one variable will be observed to change the data for the other variable as well. This happens both for assignment and for method calls.

To continue our previous analogy, if you pass the address of a building to a method, you make a copy of the paper containing the reference and hand the copy to the method. The method cannot change the contents of the original paper to refer to a different building. But if the method paints the referred-to building, when the method returns the caller can observe that the building the caller is still referring to is now a different color.

All of the C# “built-in” types, such as bool and decimal, are value types, with the exception of string and object, which are reference types. Numerous additional value types are provided within the framework. It also is possible for developers to define their own value types.

To define a custom value type, you use a similar syntax as you would to define class and interface types. The key difference in syntax is that value types use the keyword struct, as shown in Listing 8.1. Here we have a value type that describes a high-precision angle in terms of its degrees, minutes, and seconds. (A “minute” is one-sixtieth of a degree, and a second is one-sixtieth of a minute. This system is used in navigation because it has the nice property that an arc of one minute over the surface of the ocean at the equator is exactly one nautical mile.)

Listing 8.1. Declaring a struct

Click here to view code image

// Use keyword struct to declare a value type.

struct Angle

{
 public Angle(int degrees, int minutes, int seconds)
 {
 _Degrees = degrees;
 _Minutes = minutes;
 _Seconds = seconds;
 }

 public int Degrees
 {
 get { return _Degrees; }
 }
 private int _Degrees;

 public int Minutes
 {
 get { return _Minutes; }
 }
 private int _Minutes;

 public int Seconds
 {
 get { return _Seconds; }
 }
 private int _Seconds;

 public Angle Move(int degrees, int minutes, int seconds)
 {
 return new Angle(
 Degrees + degrees,
 Minutes + minutes,
 Seconds + seconds)
 }

}

// Declaring a class - a reference type
// (declaring it as a struct would create a value type
// larger than 16 bytes.)
class Coordinate
{
 public Angle Longitude
 {
 get { return _Longitude; }
 set { _Longitude = value; }
 }
 private Angle _Longitude;

 public Angle Latitude
 {
 get { return _Latitude; }
 set { _Latitude = value; }
 }
 private Angle _Latitude;
}

This listing defines Angle as a value type that stores the degrees, minutes, and seconds of an angle, either longitude or latitude. The resultant C# type is a struct.

Note

Although nothing in the language requires it, a good guideline is for value types to be immutable: Once you have instantiated a value type, you should not be able to modify the same instance. In scenarios where modification is desirable, you should create a new instance. Listing 8.1 supplies a Move() method that doesn’t modify the instance of Angle, but instead returns an entirely new instance.

There are two good reasons for this guideline. First, value types should represent values. One does not think of adding two integers together as mutating either of them; rather, the two addends are immutable and a third value is produced as the result.

Second, because value types are copied by value, not by reference, it is very easy to get confused and incorrectly believe that a mutation to one value type variable can be observed to cause a mutation in another, as it would with a reference type.

Guidelines

DO create value types that are immutable.

Initializing Structs

In addition to properties and fields, structs may contain methods and constructors. However, user-defined default (parameterless) constructors are not allowed. Instead, every struct automatically gets a parameterless constructor that initializes all the fields of the struct to their default values. Automatically initialized struct variables, such as the elements of an array of struct type, automatically initialize the variable as though this default constructor had been called. Because the compiler’s implementation of an instance field assignment at declaration time is to place the assignment into the type’s default constructor, C# prevents instance field assignment at declaration time as well (see Listing 8.2).

Listing 8.2. Initializing a struct Field within a Declaration, Resulting in an Error

Click here to view code image

struct Angle
{
 // ...
 // ERROR: Fields cannot be initialized at declaration time
 // int _Degrees = 42;
 // ...
}

This does not eliminate the need to initialize the field. A local variable of struct type cannot be used until it is known that all the fields of that struct are initialized.

Fortunately, C# supports constructors with parameters and they come with an interesting initialization requirement. To ensure that a local variable of value type can be fully initialized by a constructor, every constructor must initialize all fields within the struct. Failure to do so causes a compile error. The constructor in Listing 8.3 that initializes the property rather than the field, for example, produces a compile error.

Listing 8.3. Accessing Properties before Initializing All Fields

Click here to view code image

 // ERROR: The 'this' object cannot be used before
 // all of its fields are assigned to
 // public Angle(int degrees, int minutes, int seconds)
 // {
 // Degrees = degrees; // Shorthand for this.Hours = hours;
 // Minutes = minutes; // Shorthand for this.Minutes = ...;
 // Seconds = seconds; // Shorthand for this.Seconds = ...;
 // }

The error reports that methods and properties (Hours implies this.Hours) are accessed prior to the initialization of all fields. To resolve the issue, you need to initialize the fields directly, as demonstrated in Listing 8.1.

Guidelines

DO ensure that the default value of a struct is valid; it is always possible to obtain the default “all zero” value of a struct.

Advanced Topic: Using new with Value Types

Invoking the new operator with a reference type causes the runtime to create a new instance of the object on the garbage-collected heap, initialize all of its fields to their default values, and call the constructor, passing a reference to the instance as this. The result is the reference to the instance, which can then be copied to its final destination. In contrast, invoking the new operator with a value type causes the runtime to create a new instance of the object on the temporary storage pool, initialize all of its fields to their default values, call the constructor (passing the temporary storage location as a ref variable as this), and results in the value stored in the temporary storage location, which can then be copied to its final destination.

Unlike classes, structs do not support finalizers. Structs are copied by value; they do not have “referential identity” as reference types do. Therefore, it is hard to know when it would be safe to execute the finalizer and free an unmanaged resource owned by the struct. The garbage collector knows when there are no “live” references to an instance of reference type and can choose to run the finalizer for an instance of reference type at any time after there are no more live references. But no part of the runtime tracks how many copies of a given value type exist at any moment.

Language Contrast: C++—struct Defines Type with Public Members

In C++, the difference between a type declared with struct and one declared with class is whether the default accessibility is public or private. The contrast is far greater in C#, where the difference is whether instances of the type are copied by value or by reference.

Using the default Operator

As described earlier, all value types have an automatically defined parameterless constructor that initializes the storage of a value of value type to its default state. Therefore, it is always legal to use the syntax new S() for any value type. As an alternative syntax, you can also use the default operator to produce the default value for a struct. In Listing 8.4 we add a second constructor to the Angle struct that uses the default operator on int as an argument to the previously declared three-argument constructor. The expressions default(int), new int(), and 0 all produce the same value.

Listing 8.4. Using the default Operator to Obtain the Default Value of a Type

Click here to view code image

// Use keyword struct to declare a value type.

struct Angle

{
 public Angle(int degrees, int minutes)
 : this(degrees, minutes, default(int))
 {
 }

 // ...
}

Inheritance and Interfaces with Value Types

All value types are implicitly sealed. In addition, all non-enum value types derive from System.ValueType. This means that the inheritance chain for structs is always from object to System.ValueType to the struct.

Value types can implement interfaces, too. Many of those built into the framework implement interfaces such as IComparable and IFormattable.

System.ValueType brings with it the behavior of value types, but it does not include any additional members. The System.ValueType customizations are in the overriding of all of object’s virtual members. The rules for overriding base class methods in a struct are almost the same as those for classes (see Chapter 9). However, one difference is that with value types, the default implementation for GetHashCode() is to forward the call to the first non-null field within the struct. Also, Equals() makes significant use of reflection. Therefore, if a value type is frequently used inside collections, especially dictionary-type collections that use hash codes, the value type should include overrides for both Equals() and GetHashCode() to ensure good performance. See Chapter 9 for more details.

Guidelines

DO overload the equality operators (Equals(), ==, and !=) on value types, if equality is meaningful. (Also consider implementing the IEquatable<T> interface.)

Boxing

We know that variables of value type directly contain their data, but variables of reference type contain a reference to another storage location. What happens when a value type is converted to one of its implemented interfaces or to its root base class, object? The result of the conversion has to be a reference to a storage location that contains something that looks like an instance of a reference type, but the variable contains a value of value type. Such a conversion is known as a boxing conversion and it has special behavior. Converting a variable of value type that directly refers to its data to a reference type that refers to a location on the garbage-collected heap involves several steps.

1. First, memory is allocated on the heap that will contain the value type’s data and the other overhead necessary to make the object look like every other instance of a managed object of reference type (namely, a SyncBlockIndex and method table pointer).

2. Next, the value of the value type is copied from its current storage location into the newly allocated location on the heap.

3. Finally, the result of the conversion is a reference to the new storage location on the heap.

The reverse operation is unboxing. The unboxing conversion checks to ensure that the type of the boxed value is compatible with the type to which the value is being unboxed, and then results in a copy of the value stored in the heap location.

Boxing and unboxing are important to consider because boxing has some performance and behavioral implications. Besides learning how to recognize them within C# code, a developer can count the box/unbox instructions in a particular snippet of code by looking through the CIL. Each operation has specific instructions, as shown in Table 8.1.

Table 8.1. Boxing Code in CIL

[image: Image]

When boxing and unboxing occurs infrequently the performance concerns are irrelevant. However, boxing can occur in some unexpected situations, and frequent occurrences can have a significant impact on performance. Consider Listing 8.5 and Output 8.1. The ArrayList type maintains a list of references to objects, and therefore, adding an integer or floating-point number to the list will box the value so that a reference can be obtained.

Listing 8.5. Subtle Box and Unbox Instructions

Click here to view code image

class DisplayFibonacci
{
 static void Main()
 {

 int totalCount;
 System.Collections.ArrayList list =
 new System.Collections.ArrayList();

 Console.Write("Enter a number between 2 and 1000:");
 totalCount = int.Parse(Console.ReadLine());

 // Execution-time error:
 // list.Add(0); // Cast to double or 'D' suffix required
 // Whether cast or using 'D' suffix,
 // CIL is identical.
 list.Add((double)0);
 list.Add((double)1);
 for (int count = 2; count < totalCount; count++)
 {
 list.Add(
 ((double)list[count - 1] +
 (double)list[count - 2]));
 }

 foreach (double count in list)
 {
 Console.Write("{0}, ", count);
 }
 }
}

Output 8.1.

Click here to view code image

Enter a number between 2 and 1000:42
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597,
2584, 4181, 6765, 10946, 17711, 28657, 46368, 75025, 121393, 196418,
317811, 514229, 832040, 1346269, 2178309, 3524578, 5702887, 9227465,
14930352, 24157817, 39088169, 63245986, 102334155, 165580141,

The code shown in Listing 8.5, when compiled, produces five box and three unbox instructions in the resultant CIL.

1. The first two box instructions occur in the initial calls to list.Add(). The signature for the ArrayList method is int Add(object value). As such, any value type passed to this method is boxed.

2. Next are two unbox instructions in the call to Add() within the for loop. The return from an ArrayList’s index operator is always object because that is what ArrayList contains. In order to add the two values, however, you need to cast them back to doubles. This cast from a reference to an object to a value type is implemented as an unbox call.

3. Now you take the result of the addition and place it into the ArrayList instance, which again results in a box operation. Note that the first two unbox instructions and this box instruction occur within a loop.

4. In the foreach loop, you iterate through each item in ArrayList and assign them to count. However, as you already saw, the items within ArrayList are references to objects, so assigning them to a double is unboxing each of them.

5. The signature for Console.WriteLine() that is called within the foreach loop is void Console.Write(string format, object arg). As a result, each call to it boxes the double to object.

Every boxing operation involves both an allocation and a copy; every unboxing operation involves a type check and a copy. Doing the equivalent work using the unboxed type would eliminate the allocation and type check. Obviously, you can easily improve this code’s performance by eliminating many of the boxing operations. Using an object rather than double in the last foreach loop is one improvement you can make. Another would be to change the ArrayList data type to a generic collection (see Chapter 11). The point, however, is that boxing can be rather subtle, so developers need to pay special attention and notice situations where it could potentially occur repeatedly and affect performance.

There is another unfortunate runtime-boxing-related problem. If you wanted to change the initial two Add() calls so that they did not use a cast (or a double literal), you would have to insert integers into the array list. Since ints will implicitly be converted to doubles, this would appear to be an innocuous modification. However, the casts to double from within the for loop, and again in the assignment to count in the foreach loops, would fail. The problem is that immediately following the unbox operation is an attempt to perform a memory copy of the value of the boxed int into a double. You cannot do this without first casting to an int, because the code will throw an InvalidCastException at execution time. Listing 8.6 shows a similar error commented out and followed by the correct cast.

Listing 8.6. Unboxing Must Be to the Underlying Type

 // ...
 int number;
 object thing;
 double bigNumber;

 number = 42;
 thing = number;
 // ERROR: InvalidCastException
 // bigNumber = (double)thing;
 bigNumber = (double)(int)thing;
 // ...

Advanced Topic: Value Types in the lock Statement

C# supports a lock statement for synchronizing code. The statement compiles down to System.Threading.Monitor’s Enter() and Exit() methods. These two methods must be called in pairs. Enter() records the unique reference argument passed so that when Exit() is called with the same reference, the lock can be released. The trouble with using value types is the boxing. Therefore, each time Enter() or Exit() is called, a new value is created on the heap. Comparing the reference of one copy to the reference of a different copy will always return false, so you cannot hook up Enter() with the corresponding Exit(). Therefore, value types in the lock() statement are not allowed.

Listing 8.7 points out a few more runtime boxing idiosyncrasies and Output 8.2 shows the results.

Listing 8.7. Subtle Boxing Idiosyncrasies

Click here to view code image

interface IAngle
{
 void MoveTo(int degrees, int minutes, int seconds);
}

struct Angle : IAngle
{
 // ...

 // NOTE: This makes Angle mutable, against the general
 // guideline
 public void MoveTo(int degrees, int minutes, int seconds)
 {
 _Degrees = degrees;
 _Minutes = minutes;
 _Seconds = seconds;
 }
}

class Program
{
 static void Main()
 {
 // ...

 Angle angle = new Angle(25, 58, 23);
 object objectAngle = angle; // Box
 Console.Write(((Angle)objectAngle).Degrees);

 // Unbox, modify unboxed value, and discard value
 ((Angle)objectAngle).MoveTo(26, 58, 23);
 Console.Write(", " + ((Angle)objectAngle).Degrees);

 // Box, modify boxed value, and discard reference to box
 ((IAngle)angle).MoveTo(26, 58, 23);
 Console.Write(", " + ((Angle)angle).Degrees);

 // Modify boxed value directly
 ((IAngle)objectAngle).MoveTo(26, 58, 23);
 Console.WriteLine(", " + ((Angle)objectAngle).Degrees);

 // ...
 }
}

Output 8.2.

25, 25, 25, 26

Listing 8.7 uses the Angle struct and IAngle interface from Listing 8.1. Note also that the IAngle.MoveTo() interface changes Angle to be mutable. This brings out some of the idiosyncrasies of mutable value types and, in so doing, demonstrates the importance of the guideline to make structs immutable.

In the first two lines, you initialize angle and then box it into a variable called objectAngle. Next, you call move in order to change Hours to 26. However, as the output demonstrates, no change actually occurs the first time. The problem is that in order to call MoveTo(), the compiler unboxes objectAngle and (by definition) makes a copy of the value. Value types are copied by value; that is why they are called value types. Although the resultant value is successfully modified at execution time, this copy of the value is discarded and no change occurs on the heap location referenced by objectAngle.

Again, remember our analogy about variables of value type as being like pieces of paper with the value written on them. When you box a value, you make a photocopy of the paper and put the copy in a box. When you unbox the value, you make a photocopy of the paper in the box. Making an edit to this second copy does not change the copy that is in the box.

In the next example, labeled “box, modify boxed value and discard reference to box”, a similar problem occurs in reverse. Instead of calling MoveTo() directly, the value is cast to IAngle. The conversion to interface type boxes the value, so the runtime copies the data in angle to the heap and provides a reference to that box. Next, the method call modifies the value in the referenced box. The value stored in variable angle remains unmodified.

In the last case, the cast to IAngle is a reference conversion, not a boxing conversion; the value has already been boxed by the conversion to object. Therefore, no copy of the value occurs on this conversion. The call to MoveTo() updates the _Hours value stored in the box and the code behaves as desired.

As you can see from this example, mutable value types are quite confusing because it is often unclear when you are mutating a copy of the value, rather than the storage location you actually intend to be mutating. By avoiding mutable value types in the first place, these sorts of confusion can be eliminated.

Guidelines

AVOID mutable value types.

Advanced Topic: How Boxing Can Be Avoided during Method Calls

Anytime a method is called with a receiver of value type, the receiver (represented by this in the body of the method) must be a variable, not a value, because the method might be trying to mutate the receiver. Clearly, it must be mutating the receiver’s storage location, rather than mutating a copy of the receiver’s value and then discarding it. The second and fourth cases in Listing 8.7 above illustrate how this fact impacts the performance of a method invocation on a boxed value type.

In the second case, the unboxing conversion logically produces the boxed value, not a reference to the storage location on the heap that contains the boxed copy. What storage location, then, is passed as the this to the mutating method call? It cannot be the storage location from the box on the heap, because the unboxing conversion produces a copy of that value, not a reference to that storage location.

When this situation arises—a variable of value type is required but only a value is available—one of two things happens. Either the C# compiler generates code that makes a new, temporary storage location and copies the value from the box into the new location, resulting in the temporary storage location becoming the needed variable, or the compiler produces an error and disallows the operation. In this case, the former strategy is used. The new temporary storage location is then the receiver of the call; after it is mutated, the temporary storage location is discarded.

This process—performing a type check of the boxed value, unboxing to produce the storage location of the boxed value, allocating a temporary variable, copying the value from the box to the temporary variable, and then calling the method with the location of the temporary storage—happens every time you use the unbox-and-then-call pattern, regardless of whether the method actually mutates the variable. Clearly, if it does not mutate the variable, some of this work could be avoided, but the C# compiler does not know whether any particular method you call will try to mutate the receiver, so it must err on the side of caution.

These expenses are all eliminated when calling an interface method on a boxed value type. When calling the interface method, the expectation is that the receiver will be the storage location in the box; if the interface method mutates the storage location, it is the boxed location that should be mutated. Therefore, the expense of performing a type check, allocating new temporary storage, and making a copy is avoided. Rather, the runtime simply uses the storage location in the box as the receiver of the call to the struct’s method.

In Listing 8.8 we call the two-argument version of ToString() that is found on the IFormattable interface, which is implemented by the int value type. In this example, the receiver of the call is a boxed value type, but it is not unboxed to make the call to the interface method.

Listing 8.8. Avoiding Unboxing and Copying

Click here to view code image

 int number;
 object thing;
 number = 42;
 // Boxing
 thing = number;

 // No unboxing conversion.

 string text = ((IFormattable)thing).ToString(
 "X", null);
 Console.WriteLine(text);

You might now wonder: Suppose that instead we had called the virtual ToString() method declared by object with an instance of a value type as the receiver. What happens then? Is the instance boxed, unboxed, or what? There are a number of different scenarios here depending on the details:

• If the receiver is unboxed and the struct overrides ToString(), the overridden method is called directly. There is no need for a virtual call because the method cannot be overridden further by a more derived class; all value types are automatically sealed.

• If the receiver is unboxed and the struct does not override ToString(), the base class implementation must be called, and it expects a reference to an object as its receiver. Therefore, the receiver is boxed.

• If the receiver is boxed and the struct overrides ToString(), the storage location in the box is passed to the overriding method without unboxing it.

• If the receiver is boxed and the struct does not override ToString(), the reference to the box is passed to the base class’s implementation of the method, which is expecting a reference.

Enums

Compare the two code snippets shown in Listing 8.9.

Listing 8.9. Comparing an Integer Switch to an Enum Switch

Click here to view code image

 int connectionState;
 // ...
 switch (connectionState)
 {
 case 0:
 // ...
 break;
 case 1:
 // ...
 break;
 case 2:
 // ...
 break;
 case 3:
 // ...
 break;
 }

 ConnectionState connectionState;
 // ...
 switch (connectionState)
 {
 case ConnectionState.Connected:
 // ...
 break;
 case ConnectionState.Connecting:
 // ...
 break;
 case ConnectionState.Disconnected:
 // ...
 break;
 case ConnectionState.Disconnecting:
 // ...
 break;
 }

Obviously, the difference in terms of readability is tremendous because in the second snippet, the cases are self-documenting. However, the performance at runtime is identical. To achieve this, the second snippet uses enum values in each case.

An enum is a value type that the developer can declare. The key characteristic of an enum is that it declares at compile time a set of possible constant values that can be referred to by name, thereby making the code easier to read. The syntax for a typical enum declaration is show in Listing 8.10.

Listing 8.10. Defining an Enum

enum ConnectionState
{
 Disconnected,
 Connecting,
 Connected,
 Disconnecting
}

Note

An enum can be used as a more readable replacement for Boolean values as well. For example, a method call such as SetState(true) is less readable than SetState(DeviceState.On).

You use an enum value by prefixing it with the enum name; to use the Connected value, for example, use the syntax ConnectionState.Connected. Do not make the enum type name a part of the value’s name so as to avoid the redundancy of something such as ConnectionState.ConnectionStateConnected. By convention, the enum name itself should be singular (unless the enums are bit flags, as discussed shortly). That is, it should be ConnectionState, not ConnectionStates.

Enum values are actually implemented as nothing more than integer constants. By default, the first enum value is given the value 0, and each subsequent entry increases by one. However, you can assign explicit values to enums, as shown in Listing 8.11.

Listing 8.11. Defining an Enum Type

enum ConnectionState : short
{
 Disconnected,
 Connecting = 10,
 Connected,
 Joined = Connected,
 Disconnecting
}

Disconnected has a default value of 0, Connecting has been explicitly assigned 10, and consequently, Connected will be assigned 11. Joined is assigned 11, the value assigned to Connected. (In this case, you do not need to prefix Connected with the enum name, since it appears within its scope.) Disconnecting is 12.

An enum always has an underlying type, which may be any integral type other than char. In fact, the enum type’s performance is identical to that of the underlying type. By default, the underlying value type is int, but you can specify a different type using inheritance type syntax. Instead of int, for example, Listing 8.11 uses a short. For consistency, the syntax emulates that of inheritance, but this doesn’t actually make an inheritance relationship. The base class for all enums is System.Enum, which, in turn, is derived from System.ValueType. Furthermore, these classes are sealed; you can’t derive from an existing enum type to add additional members.

Guidelines

CONSIDER using the default 32-bit integer type as the underlying type of an enum. Only use a smaller type if you must do so for interoperability or performance reasons; only use a larger type if you are creating a flags enum (see below) with more than 32 flags.

An enum is really nothing more than a set of names thinly layered on top of the underlying type; there is no mechanism that restricts the value of a variable of enumerated type to just the values named in the declaration. For example, because it is possible to cast the integer 42 to short, it is also possible to cast the integer 42 to the ConnectionState type, even though there is no corresponding ConnectionState enum value. If the value can be converted to the underlying type, the conversion to the enum type will also be successful.

The advantage of this odd feature is that enums can have new values added in later API releases, without breaking earlier versions. Additionally, the enum values provide names for the known values while still allowing unknown values to be assigned at runtime. The burden is that developers must code defensively for the possibility of unnamed values. It would be unwise, for example, to replace case ConnectionState.Disconnecting with default and expect that the only possible value for the default case was ConnectionState.Disconnecting. Instead, you should handle the Disconnecting case explicitly and the default case should report an error or behave innocuously. As indicated before, however, conversion between the enum and the underlying type, and vice versa, requires an explicit cast; it is not an implicit conversion. For example, code cannot call ReportState(10) if the method’s signature is void ReportState(ConnectionState state). The only exception is passing 0 because there is an implicit conversion from 0 to any enum.

Although you can add additional values to an enum in a later version of your code, you should do this with care. Inserting an enum value in the middle of an enum will bump the values of all later enums (adding Flooded or Locked before Connected will change the Connected value, for example). This will affect the versions of all code that is recompiled against the new version. However, any code compiled against the old version will continue to use the old values, making the intended values entirely different. Besides inserting an enum value at the end of the list, one way to avoid changing enum values is to assign values explicitly.

Guidelines

CONSIDER adding new members to existing enums, but keep in mind the compatibility risk.

AVOID creating enums that represent an “incomplete” set of values, such as product version numbers.

AVOID creating “reserved for future use” values in an enum.

AVOID enums that contain a single value. DO provide a value of 0 (none) on simple enums, knowing that 0 will be the default value when no explicit initialization is provided.

Enums are slightly different from other value types because enums derive from System.Enum before deriving from System.ValueType.

Type Compatibility between Enums

C# also does not support a direct cast between arrays of two different enums. However, the CLR does, provided that both enums share the same underlying type. To work around this restriction of C#, the trick is to cast first to System.Array, as shown at the end of Listing 8.12.

Listing 8.12. Casting between Arrays of Enums

Click here to view code image

enum ConnectionState1
{
 Disconnected,
 Connecting,
 Connected,
 Disconnecting
}

enum ConnectionState2
{
 Disconnected,
 Connecting,
 Connected,
 Disconnecting
}

class Program
{
 static void Main()
 {
 ConnectionState1[] states =
 (ConnectionState1[])(Array)new ConnectionState2[42];
 }
}

This exploits the fact that the CLR’s notion of assignment compatibility is more lenient than C#’s. (The same trick is possible for other illegal conversions, such as int[] to uint[].) However, use this approach cautiously because there is no C# specification detailing that this should work across different CLR implementations.

Converting between Enums and Strings

One of the conveniences associated with enums is that the ToString() method, which is called by methods such as System.Console.WriteLine(), writes out the enum value identifier:

Click here to view code image

 System.Diagnostics.Trace.WriteLine(string.Format(
 "The connection is currently {0}.",
 ConnectionState.Disconnecting));

The preceding code will write the text in Output 8.3 to the trace buffer.

Output 8.3.

The connection is currently Disconnecting.

Conversion from a string to an enum is a little harder to find because it involves a static method on the System.Enum base class. Listing 8.13 provides an example of how to do it without generics (see Chapter 11), and Output 8.4 shows the results.

Listing 8.13. Converting a String to an Enum Using Enum.Parse()

Click here to view code image

ThreadPriorityLevel priority = (ThreadPriorityLevel)Enum.Parse(
 typeof(ThreadPriorityLevel), "Idle");
Console.WriteLine(priority);

Output 8.4.

Idle

The first parameter to Enum.Parse() is the type, which you specify using the keyword typeof(). This is a compile-time way of identifying the type, like a literal for the type value (see Chapter 17).

Until .NET Framework 4, there was no TryParse() method, so code written to target prior versions should include appropriate exception handling if there is a chance the string will not correspond to an enum value identifier. .NET Framework 4’s TryParse<T>() method uses generics, but the type parameters can be inferred, resulting in the to-enum conversion example shown in Listing 8.14.

Listing 8.14. Converting a String to an Enum Using Enum.TryParse<T>()

Click here to view code image

System.Diagnostics.ThreadPriorityLevel priority;
if(Enum.TryParse("Idle", out priority))
{
 Console.WriteLine(priority);
}

This technique eliminates the need to use exception handling if the string might not convert successfully. Instead, code can check the Boolean result returned from the call to TryParse<T>().

Regardless of whether code uses the “Parse” or “TryParse” approach, the key caution about converting from a string to an enum is that such a cast is not localizable. Therefore, developers should use this type of cast only for messages that are not exposed to users (assuming localization is a requirement).

Guidelines

AVOID direct enum/string conversions where the string must be localized into the user’s language.

Enums As Flags

Many times, developers not only want enum values to be unique, they also want to be able to represent a combination of values. For example, consider System.IO.FileAttributes. This enum, shown in Listing 8.15, indicates various attributes on a file: read-only, hidden, archive, and so on. Unlike the ConnectionState attribute, where each enum value was mutually exclusive, the FileAttributes enum values can and are intended for combination: A file can be both read-only and hidden. To support this, each enum value is a unique bit.

Listing 8.15. Using Enums As Flags

Click here to view code image

[Flags] public enum FileAttributes
{
 None = 0, // 000000000000000
 ReadOnly = 1<<0, // 000000000000001
 Hidden = 1<<1, // 000000000000010
 System = 1<<2, // 000000000000100
 Directory = 1<<4, // 000000000010000
 Archive = 1<<5, // 000000000100000
 Device = 1<<6, // 000000001000000
 Normal = 1<<7, // 000000010000000
 Temporary = 1<<8, // 000000100000000
 SparseFile = 1<<9, // 000001000000000
 ReparsePoint = 1<<10, // 000010000000000
 Compressed = 1<<11, // 000100000000000
 Offline = 1<<12, // 001000000000000
 NotContentIndexed = 1<<13, // 010000000000000
 Encrypted = 1<<14, // 100000000000000
}

Note that the name of a bit flags enum is usually pluralized, indicating that a value of the type represents a set of flags.

To join enum values you use a bitwise OR operator, and to test for the existence of a particular bit you use the bitwise AND operator, as shown in Listing 8.16.

Listing 8.16. Using Bitwise OR and AND with Flag Enums

Click here to view code image

using System;
using System.IO;

public class Program
{
 public static void Main()
 {
 // ...

 string fileName = @"enumtest.txt";

 System.IO.FileInfo file =
 new System.IO.FileInfo(fileName);

 file.Attributes = FileAttributes.Hidden |
 FileAttributes.ReadOnly;

 Console.WriteLine("{0} | {1} = {2}",
 FileAttributes.Hidden, FileAttributes.ReadOnly,
 (int)file.Attributes);

 if ((file.Attributes & FileAttributes.Hidden) !=
 FileAttributes.Hidden)
 {
 throw new Exception("File is not hidden.");
 }

 if ((file.Attributes & FileAttributes.ReadOnly) !=
 FileAttributes.ReadOnly)
 {
 throw new Exception("File is not read-only.");
 }

 // ...
}

The results of Listing 8.16 appear in Output 8.5.

Output 8.5.

Hidden | ReadOnly = 3

Using the bitwise OR operator allows you to set the file to both read-only and hidden. In addition, you can check for specific settings using the bitwise AND operator.

Each value within the enum does not need to correspond to only one flag. It is perfectly reasonable to define additional flags that correspond to frequent combinations of values. Listing 8.17 shows an example.

Listing 8.17. Defining Enum Values for Frequent Combinations

[Flags] enum DistributedChannel
{
 None = 0,
 Transacted = 1,
 Queued = 2,
 Encrypted = 4,
 Persisted = 16,

 FaultTolerant =
 Transacted | Queued | Persisted

}

It is a good practice to have a zero None member in a flags enum because the initial default value of a field of enum type or an element of an array of enum type is 0. Avoid enum values corresponding to things such as Maximum as the last enum, because Maximum could be interpreted as a valid enum value. To check whether a value is included within an enum use the System.Enum.IsDefined() method.

Guidelines

DO use the FlagsAttribute to mark enums that contain flags.

DO provide a None value equal to 0 for all flag enums.

AVOID creating flag enums where the zero value has a meaning other than “no flags are set”.

CONSIDER providing special values for commonly used combinations of flags.

DO NOT include “sentinel” values (such as a value called Maximum); such values can be confusing to the user.

DO use powers of two to ensure that all flag combinations are represented uniquely.

Advanced Topic: FlagsAttribute

If you decide to use bit flag enums, the declaration of the enum should be marked with FlagsAttribute. The attribute appears in square brackets (see Chapter 17), just prior to the enum declaration, as shown in Listing 8.18.

Listing 8.18. Using FlagsAttribute

Click here to view code image

// FileAttributes defined in System.IO.

[Flags] // Decorating an enum with FlagsAttribute.

public enum FileAttributes
{
 ReadOnly = 1<<0, // 000000000000001
 Hidden = 1<<1, // 000000000000010
 // ...
}

using System;
using System.Diagnostics;
using System.IO;

class Program
{
 public static void Main()
 {
 string fileName = @"enumtest.txt";
 FileInfo file = new FileInfo(fileName);
 file.Open(FileMode.Create).Close();

 FileAttributes startingAttributes =
 file.Attributes;

 file.Attributes = FileAttributes.Hidden |
 FileAttributes.ReadOnly;

 Console.WriteLine("\"{0}\" outputs as \"{1}\"",
 file.Attributes.ToString().Replace(",", " |"),
 file.Attributes);

 FileAttributes attributes =
 (FileAttributes) Enum.Parse(typeof(FileAttributes),
 file.Attributes.ToString());

 Console.WriteLine(attributes);

 File.SetAttributes(fileName,
 startingAttributes);
 file.Delete();
 }
}

The results of Listing 8.18 appear in Output 8.6.

Output 8.6.

Click here to view code image

"ReadOnly | Hidden" outputs as "ReadOnly, Hidden"
ReadOnly, Hidden

The attribute documents that the enum values can be combined. Furthermore, it changes the behavior of the ToString() and Parse() methods. For example, calling ToString() on an enum that is decorated with FlagsAttribute writes out the strings for each enum flag that is set. In Listing 8.18, file.Attributes.ToString() returns ReadOnly, Hidden rather than the 3 it would have returned without the FileAttributes flag. If two enum values are the same, the ToString() call would return the first value. As mentioned earlier, however, you should use this with caution because it is not localizable.

Parsing a value from a string to the enum also works. Each enum value identifier is separated by a comma.

It is important to note that FlagsAttribute does not automatically assign unique flag values or check that they have unique values. Doing this wouldn’t make sense, since duplicates and combinations are often desirable. Instead, you must assign the values of each enum item explicitly.

Summary

This chapter began with a discussion of how to define custom value types. Because it is easy to write confusing or buggy code when mutating value types, and because value types are usually used to model immutable values, it is a good idea to make value types immutable. We also described how value types are “boxed” when they must be treated polymorphically as reference types.

The idiosyncrasies introduced by boxing are subtle, and the vast majority of them lead to issues at execution time rather than at compile time. Although it is important to know about these in order to try to avoid them, in many ways, focused attention on the potential pitfalls overshadows the usefulness and performance advantages of value types. Programmers should not be overly concerned about using value types. Value types permeate virtually every chapter of this book, and yet the idiosyncrasies do not. We have staged the code surrounding each issue to demonstrate the concern, but in reality, these types of patterns rarely occur. The key to avoiding most of them is to follow the guideline of not creating mutable value types; this is why you don’t encounter them within the built-in value types.

Perhaps the only issue to occur with some frequency is repetitive boxing operations within loops. However, generics greatly reduce boxing, and even without them, performance is rarely affected enough to warrant avoidance until a particular algorithm with boxing is identified as a bottleneck.

Furthermore, custom-built structs are relatively rare. They obviously play an important role within C# development, but the number of custom-built structs declared by typical developers is usually tiny compared to the number of custom-built classes. Heavy use of custom-built structs is most common in code targeted at interoperating with unmanaged code.

Guidelines

DO NOT define a struct unless it logically represents a single value, consumes 16 bytes or less of storage, is immutable, and is infrequently boxed.

This chapter also introduced enums. Enumerated types are a standard construct available in many programming languages. They help improve API usability and code readability.

The next chapter presents more guidelines for creating well-formed types, both value types and reference types. It begins by looking at overriding the virtual members of objects and defining operator-overloading methods. These two topics apply to both structs and classes, but they are somewhat more important when completing a struct definition and making it well formed.

9. Well-Formed Types

The previous chapters covered most of the constructs for defining classes and structs. However, several details remain concerning rounding out the type definition with fit-and-finish-type functionality. This chapter introduces how to put the final touches on a type declaration.

[image: Image]

Overriding object Members

Chapter 6 discussed how all classes and structs derive from object. In addition, it reviewed each method available on object and discussed how some of them are virtual. This section discusses the details concerning overriding the virtual methods.

Overriding ToString()

By default, calling ToString() on any object will return the fully qualified name of the class. Calling ToString() on a System.IO.FileStream object will return the string System.IO.FileStream, for example. For some classes, however, ToString() can be more meaningful. On string, for example, ToString() returns the string value itself. Similarly, returning a Contact’s name would make more sense. Listing 9.1 overrides ToString() to return a string representation of Coordinate.

Listing 9.1. Overriding ToString()

Click here to view code image

public struct Coordinate
{
 public Coordinate(Longitude longitude, Latitude latitude)
 {
 _Longitude = longitude;
 _Latitude = latitude;
 }

 public Longitude Longitude { get { return _Longitude; } }
 private readonly Longitude _Longitude;

 public Latitude Latitude { get { return _Latitude; } }
 private readonly Latitude _Latitude;

 public override string ToString()
 {
 return string.Format("{0} {1}", Longitude, Latitude);
 }

 // ...
}

Write methods such as Console.WriteLine() and System.Diagnostics.Trace.Write() call an object’s ToString() method, so overloading the method often outputs more meaningful information than the default implementation. Therefore, consider overloading the ToString() method whenever relevant diagnostic information can be provided from the output—specifically, when the target audience is developers, since the default object.ToString() output is a type name and is not end-user-friendly. ToString() is useful for debugging from within a developer IDE or writing to a log file. For this reason, keep the strings relatively short (one screen length) so that they are not cut off. However, the lack of localization and other advanced formatting features makes it less suitable for general end-user text display.

Guidelines

DO override ToString() whenever useful developer-oriented diagnostic strings can be returned.

DO try to keep the string returned from ToString() short.

DO NOT return an empty string for null from ToString().

AVOID throwing exceptions or making observable side effects (changing the object state) from ToString().

DO provide an overloaded ToString(string format) or implement IFormattable if the return value is culture-sensitive or requires formatting for example, DateTime).

CONSIDER returning a unique string from ToString() so as to identify the object instance.

Overriding GetHashCode()

Overriding GetHashCode() is more complex than overriding ToString(). Regardless, you should override GetHashCode() when you are overriding Equals(), and there is a compiler warning to indicate this if you don’t. Overriding GetHashCode() is also a good practice when you are using it as a key into a hash table collection (System.Collections.Hashtable and System.Collections.Generic.Dictionary, for example).

The purpose of the hash code is to efficiently balance a hash table by generating a number that corresponds to the value of an object. Here are some implementation principles for a good GetHashCode() implementation.

• Required: Equal objects must have equal hash codes (if a.Equals(b), then a.GetHashCode() == b.GetHashCode()).

• Required: GetHashCode()’s returns over the life of a particular object should be constant (the same value), even if the object’s data changes. In many cases, you should cache the method return to enforce this.

• Required: GetHashCode() should not throw any exceptions; GetHashCode() must always successfully return a value.

• Performance: Hash codes should be unique whenever possible. However, since hash codes return only an int, there has to be an overlap in hash codes for objects that have potentially more values than an int can hold, which is virtually all types. (An obvious example is long, since there are more possible long values than an int could uniquely identify.)

• Performance: The possible hash code values should be distributed evenly over the range of an int. For example, creating a hash that doesn’t consider the fact that distribution of a string in Latin-based languages primarily centers on the initial 128 ASCII characters would result in a very uneven distribution of string values and would not be a strong GetHashCode() algorithm.

• Performance: GetHashCode() should be optimized for performance. GetHashCode() is generally used in Equals() implementations to short-circuit a full equals comparison if the hash codes are different. As a result, it is frequently called when the type is used as a key type in dictionary collections.

• Performance: Small differences between two objects should result in large differences between hash code values—ideally, a 1-bit difference in the object results in around 16 bits of the hash code changing, on average. This helps ensure that the hash table remains balanced no matter how it is “bucketing” the hash values.

• Security: It should be difficult for an attacker to craft an object that has a particular hash code. The attack is to flood a hash table with large amounts of data that all hash to the same value. The hash table implementation can become inefficient, resulting in a possible denial-of-service attack.

These guidelines and rules are, of course, contradictory: It is very difficult to come up with a hash algorithm that is fast and meets all of these guidelines. Like any design problem, you’ll have to use a combination of good judgment and realistic performance measurements to come up with a good solution.

Consider the GetHashCode() implementation for the Coordinate type shown in Listing 9.2.

Listing 9.2. Implementing GetHashCode()

Click here to view code image

public struct Coordinate
{
 public Coordinate(Longitude longitude, Latitude latitude)
 {
 _Longitude = longitude;
 _Latitude = latitude;
 }

 public Longitude Longitude { get { return _Longitude; } }
 private readonly Longitude _Longitude;

 public Latitude Latitude { get { return _Latitude; } }
 private readonly Latitude _Latitude;

 public override int GetHashCode()
 {
 int hashCode = Longitude.GetHashCode();
 // As long as the hash codes are not equal
 if(Longitude.GetHashCode() != Latitude.GetHashCode())
 {
 hashCode ^= Latitude.GetHashCode(); // eXclusive OR
 }
 return hashCode;
 }

 // ...
}

Generally, the key is to use the XOR operator over the hash codes from the relevant types, and to make sure the XOR operands are not likely to be close or equal—or else the result will be all zeroes. (In those cases where the operands are close or equal, consider using bitshifts and adds instead.) The alternative operands, AND and OR, have similar restrictions, but the restrictions occur more frequently. Applying AND multiple times tends toward all 0 bits, and applying OR tends toward all 1 bits.

For finer-grained control, split larger-than-int types using the shift operator. For example, GetHashCode() for a long called value is implemented as follows:

int GetHashCode() { return ((int)value ^ (int)(value >> 32)) };

Also, note that if the base class is not object, base.GetHashCode() should be included in the XOR assignment.

Finally, Coordinate does not cache the value of the hash code. Since each field in the hash code calculation is readonly, the value can’t change. However, implementations should cache the hash code if calculated values could change or if a cached value could offer a significant performance advantage.

Overriding Equals()

Overriding Equals() without overriding GetHashCode() results in a warning such as that shown in Output 9.1.

Output 9.1.

Click here to view code image

warning CS0659: '<Class Name>' overrides Object.Equals(object o) but
does not override Object.GetHashCode()

Generally, developers expect overriding Equals() to be trivial, but it includes a surprising number of subtleties that require careful thought and testing.

Object Identity versus Equal Object Values

Two references are identical if both refer to the same instance. object (and by inheritance, all derived types) includes a static method called ReferenceEquals() that explicitly checks for this object identity (see Figure 9.1).

[image: Image]

Figure 9.1. Identity

However, reference equality is not the only type of equality. Two object instances can also be called equal if the values of some or all of their members are equal. Consider the comparison of two ProductSerialNumbers shown in Listing 9.3.

Listing 9.3. Overriding the Equality Operator

Click here to view code image

public sealed class ProductSerialNumber
{
 public ProductSerialNumber(
 string productSeries, int model, long id)
 {
 ProductSeries = productSeries;
 Model = model;
 Id = id;
 }

 public readonly string ProductSeries;
 public readonly int Model;
 public readonly long Id;

 public override int GetHashCode()
 {
 int hashCode = ProductSeries.GetHashCode();
 hashCode ^= Model; // Xor (eXclusive OR)
 hashCode ^= Id.GetHashCode(); // Xor (eXclusive OR)
 return hashCode;
 }

 public override bool Equals(object obj)
 {
 if (obj == null)
 {
 return false;
 }
 if (ReferenceEquals(this, obj))
 {
 return true;
 }
 if (this.GetType() != obj.GetType())
 {
 return false;
 }
 return Equals((ProductSerialNumber)obj);
 }

 public bool Equals(ProductSerialNumber obj)
 {
 // STEP 3: Possibly check for equivalent hash codes
 // if (this.GetHashCode() != obj.GetHashCode())
 // {
 // return false;
 // }

 // STEP 4: Check base.Equals if base overrides Equals()
 // System.Diagnostics.Debug.Assert(
 // base.GetType() != typeof(object));
 // if (base.Equals(obj))
 // {
 // return false;
 // }

 // STEP 1: Check for null
 return ((obj != null)
 // STEP 5: Compare identifying fields for equality.
 && (ProductSeries == obj.ProductSeries) &&
 (Model == obj.Model) &&
 (Id == obj.Id));
 }

 public static bool operator ==(
 ProductSerialNumber leftHandSide,
 ProductSerialNumber rightHandSide)
 {

 // Check if leftHandSide is null.
 // (operator== would be recursive)
 if (ReferenceEquals(leftHandSide, null))
 {
 // Return true if rightHandSide is also null
 // but false otherwise.
 return ReferenceEquals(rightHandSide, null);
 }

 return (leftHandSide.Equals(rightHandSide));
 }

 public static bool operator !=(
 ProductSerialNumber leftHandSide,
 ProductSerialNumber rightHandSide)
 {
 return !(leftHandSide == rightHandSide);
 }
}

class Program
{
 static void Main()
 {
 ProductSerialNumber serialNumber1 =
 new ProductSerialNumber("PV", 1000, 09187234);
 ProductSerialNumber serialNumber2 = serialNumber1;
 ProductSerialNumber serialNumber3 =
 new ProductSerialNumber("PV", 1000, 09187234);

 // These serial numbers ARE the same object identity.
 if(!ProductSerialNumber.ReferenceEquals(serialNumber1,
 serialNumber2))
 {
 throw new Exception(
 "serialNumber1 does NOT " +
 "reference equal serialNumber2");
 }
 // and, therefore, they are equal
 else if(!serialNumber1.Equals(serialNumber2))
 {
 throw new Exception(
 "serialNumber1 does NOT equal serialNumber2");
 }
 else
 {
 Console.WriteLine(
 "serialNumber1 reference equals serialNumber2");
 Console.WriteLine(
 "serialNumber1 equals serialNumber2");
 }

 // These serial numbers are NOT the same object identity.
 if (ProductSerialNumber.ReferenceEquals(serialNumber1,
 serialNumber3))
 {
 throw new Exception(
 "serialNumber1 DOES reference " +
 "equal serialNumber3");
 }
 // but they are equal (assuming Equals is overloaded).
 else if(!serialNumber1.Equals(serialNumber3) ||
 serialNumber1 != serialNumber3)
 {
 throw new Exception(
 "serialNumber1 does NOT equal serialNumber3");
 }

 Console.WriteLine("serialNumber1 equals serialNumber3");
 }
}

The results of Listing 9.3 appear in Output 9.2.

Output 9.2.

Click here to view code image

serialNumber1 reference equals serialNumber2
serialNumber1 equals serialNumber3

As the last assertion demonstrates with ReferenceEquals(), serialNumber1 and serialNumber3 are not the same reference. However, the code constructs them with the same values and both logically associate with the same physical product. If one instance was created from data in the database and another was created from manually entered data, you would expect the instances would be equal, and therefore that the product would not be duplicated (reentered) in the database. Two identical references are obviously equal; however, two different objects could be equal but not reference equal. Such objects will not have identical object identities, but they may have key data that identifies them as being equal objects.

Only reference types can be reference equal, thereby supporting the concept of identity. Calling ReferenceEquals() on value types will always return false because value types are boxed when they are converted to object for the call. Even when ReferenceEquals() passes the same variable in both (value type) parameters to ReferenceEquals(), the result will still be false because the values are boxed independently. Listing 9.4 demonstrates this behavior. Since each argument is put into a “different box,” they are never reference equal.

Note

ReferenceEquals() on value types will always return false.

Listing 9.4. Value Types Never Reference Equal Themselves

Click here to view code image

public struct Coordinate
{
 public Coordinate(Longitude longitude, Latitude latitude)
 {
 _Longitude = longitude;
 _Latitude = latitude;
 }

 public Longitude Longitude { get { return _Longitude; } }
 private readonly Longitude _Longitude;

 public Latitude Latitude { get { return _Latitude; } }
 private readonly Latitude _Latitude;

 // ...
}

class Program
{
 public void Main()
 {
 //...

 Coordinate coordinate1 =
 new Coordinate(new Longitude(48, 52),
 new Latitude(-2, -20));

 // Value types will never be reference equal.
 if (Coordinate.ReferenceEquals(coordinate1,
 coordinate1))
 {
 throw new Exception(
 "coordinate1 reference equals coordinate1");
 }

 Console.WriteLine(
 "coordinate1 does NOT reference equal itself");
 }
}

In contrast to the definition of Coordinate as a reference type in Chapter 8, the definition going forward is that of a value type (struct) because the combination of Longitude and Latitude data is logically thought of as a value and the size is less than 16 bytes. (In Chapter 8, Coordinate aggregated Angle rather than Longitude and Latitude.) A contributing factor to declaring Coordinate as a value type is that it is a (complex) numeric value that has particular operations on it. In contrast, a reference type such as Employee is not a value that you manipulate numerically, but rather refers to an object in real life.

Implementing Equals()

To determine whether two objects are equal (they have the same identifying data), you use an object’s Equals() method. The implementation of this virtual method on object uses ReferenceEquals() to evaluate equality. Since this implementation is often inadequate, it is necessary to sometimes override Equals() with a more appropriate implementation.

Note

The implementation of object.Equals(), the default implementation on all objects before overloading, relies on ReferenceEquals() alone.

For objects to equal one another, the expectation is that the identifying data within them is equal. For ProductSerialNumbers, for example, the ProductSeries, Model, and Id must be the same; however, for an Employee object, perhaps comparing EmployeeIds would be sufficient for equality. To correct object.Equals() implementation, it is necessary to override it. Value types, for example, override the Equals() implementation to instead use the fields that the type includes.

The steps for overriding Equals() are as follows.

1. Check for null.

2. Check for reference equality if the type is a reference type.

3. Check for equivalent types.

4. Invoke a typed helper method that can treat the operand as the compared type rather than an object (see the Equals(Coordinate obj) method in Listing 9.5).

5. Possibly check for equivalent hash codes to short-circuit an extensive, field-by-field comparison. (Two objects that are equal cannot have different hash codes.)

6. Check base.Equals() if the base class overrides Equals().

7. Compare each identifying field for equality.

8. Override GetHashCode().

9. Override the == and != operators (see the next section).

Listing 9.5 shows a sample Equals() implementation.

Listing 9.5. Overriding Equals()

Click here to view code image

public struct Longitude
{
 // ...
}

public struct Latitude
{
 // ...
}

public struct Coordinate
{
 public Coordinate(Longitude longitude, Latitude latitude)
 {
 _Longitude = longitude;
 _Latitude = latitude;
 }

 public Longitude Longitude { get { return _Longitude; } }
 private readonly Longitude _Longitude;

 public Latitude Latitude { get { return _Latitude; } }
 private readonly Latitude _Latitude;

 public override bool Equals(object obj)
 {
 // STEP 1: Check for null
 if (obj == null)
 {
 return false;
 }
 // STEP 3: equivalent data types
 // Can be avoided if type is sealed.
 if (this.GetType() != obj.GetType())
 {
 return false;
 }
 return Equals((Coordinate)obj);
 }
 public bool Equals(Coordinate obj)
 {
 // STEP 1: Check for null if a reference type
 // (e.g., a reference type)
 // if (obj == null)
 // {
 // return false;
 // }

 // STEP 2: Check for ReferenceEquals if this
 // is a reference type
 // if (ReferenceEquals(this, obj))
 // {
 // return true;
 // }

 // STEP 4: Possibly check for equivalent hash codes
 // if (this.GetHashCode() != obj.GetHashCode())
 // {
 // return false;
 // }

 // STEP 5: Check base.Equals if base overrides Equals()
 // System.Diagnostics.Debug.Assert(
 // base.GetType() != typeof(object));
 // if (!base.Equals(obj))
 // {
 // return false;
 // }

 // STEP 6: Compare identifying fields for equality
 // using an overload of Equals on Longitude.
 return ((Longitude.Equals(obj.Longitude)) &&
 (Latitude.Equals(obj.Latitude)));
 }

 // STEP 7: Override GetHashCode.
 public override int GetHashCode()
 {
 int hashCode = Longitude.GetHashCode();
 hashCode ^= Latitude.GetHashCode(); // Xor (eXclusive OR)
 return hashCode;
 }

}

In this implementation, the first two checks are relatively obvious. However, it is interesting to point out that step 3 can be avoided if the type is sealed.

Steps 4–6 occur in an overload of Equals() that takes the Coordinate data type specifically. This way, a comparison of two Coordinates will avoid Equals(object obj) and its GetType() check altogether.

Since GetHashCode() is not cached and is no more efficient than step 5, the GetHashCode() comparison is commented out. Similarly, base.Equals() is not used since the base class is not overriding Equals(). (The assertion checks that base is not of type object, however it does not check that the base class overrides Equals(), which is required to appropriately call base.Equals().) Regardless, since GetHashCode() does not necessarily return a unique value (it only identifies when operands are different), on its own it does not conclusively identify equal objects.

Like GetHashCode(), Equals() should also never throw any exceptions. It is valid to compare any object with any other object, and doing so should never result in an exception.

Guidelines

DO implement GetHashCode(), Equals(), the == operator, and the != operator together, not one without the other three.

DO use the same algorithm when implementing Equals(), ==, and !=.

AVOID throwing exceptions from implementations of GetHashCode(), Equals(), ==, and !=.

AVOID overloading equality operators on mutable reference types or if the implementation would be significantly slower.

DO implement all the equality-related methods when implementing IComparable.

Operator Overloading

The preceding section looked at overriding Equals() and provided the guideline that the class should also implement == and !=. The term for implementing any operator is operator overloading, and this section describes how to do this, not only for == and !=, but also for other supported operators.

For example, string provides a + operator that concatenates two strings. This is perhaps not surprising, because string is a predefined type, so it could possibly have special compiler support. However, C# provides for adding + operator support to a class or struct. In fact, all operators are supported except x.y, f(x), new, typeof, default, checked, unchecked, delegate, is, as, =, and =>. One particularly noteworthy operator that cannot be implemented is the assignment operator; there is no way to change the behavior of the = operator.

Before going through the exercise of implementing an operator overload, consider the fact that such operators are not discoverable through IntelliSense. Unless the intent is for a type to act like a primitive type (a numeric type, for example), avoid overloading an operator.

Comparison Operators (==, !=, <, >, <=, >=)

Once Equals() is overridden, there is a possible inconsistency. Two objects could return true for Equals() but false for the == operator because == performs a reference equality check by default as well. To correct this it is important to overload the equals (==) and not equals (!=) operators as well.

For the most part, the implementation for these operators can delegate the logic to Equals(), or vice versa. However, some initial null checks are required first (see Listing 9.6).

Listing 9.6. Implementing the == and != Operators

Click here to view code image

public sealed class Coordinate
{

 // ...

 public static bool operator ==(
 Coordinate leftHandSide,
 Coordinate rightHandSide)
 {

 // Check if leftHandSide is null.
 // (operator== would be recursive)
 if (ReferenceEquals(leftHandSide, null))
 {
 // Return true if rightHandSide is also null
 // but false otherwise.
 return ReferenceEquals(rightHandSide, null);
 }

 return (leftHandSide.Equals(rightHandSide));
 }

 public static bool operator !=(
 Coordinate leftHandSide,
 Coordinate rightHandSide)
 {
 return !(leftHandSide == rightHandSide);
 }

}

Note that in this example, Coordinate is a class, not a struct. Also note that to perform the null checks, you cannot use an equality check for null (leftHandSide == null). Doing so would recursively call back into the method, resulting in a loop until the stack overflows. To avoid this you call ReferenceEquals() to check for null.

Binary Operators (+, -, *, /, %, &, |, ^, <<, >>)

You can add an Arc to a Coordinate. However, the code so far provides no support for the addition operator. Instead, you need to define such a method, as Listing 9.7 shows.

Listing 9.7. Adding an Operator

Click here to view code image

struct Arc
{
 public Arc(
 Longitude longitudeDifference,
 Latitude latitudeDifference)
 {
 _LongitudeDifference = longitudeDifference;
 _LatitudeDifference = latitudeDifference;
 }

 public Longitude LongitudeDifference
 {
 get
 {
 return _LongitudeDifference;
 }
 }
 private readonly Longitude _LongitudeDifference;

 public Latitude LatitudeDifference
 {
 get
 {
 return _LatitudeDifference;
 }
 }
 private readonly Latitude _LatitudeDifference;
}

 struct Coordinate
{
 // ...
 public static Coordinate operator +(
 Coordinate source, Arc arc)
 {
 Coordinate result = new Coordinate(
 new Longitude(
 source.Longitude + arc.LongitudeDifference),
 new Latitude(
 source.Latitude + arc.LatitudeDifference));
 return result;
 }
 }

The +, -, *, /, %, &, |, ^, <<, and >> operators are implemented as binary static methods where at least one parameter is of the containing type. The method name is the operator prefixed by the word operator as a keyword. As shown in Listing 9.8, given the definition of the - and + binary operators, you can add and subtract an Arc to and from the coordinate.

Note that Longitude and Latitude will also require implementations of the + operator because they are called by source.Longitude + arc.LongitudeDifference and source.Latitude + arc.LatitudeDifference.

Listing 9.8. Calling the – and + Binary Operators

Click here to view code image

public class Program
{
 public static void Main()
 {
 Coordinate coordinate1,coordinate2;
 coordinate1 = new Coordinate(
 new Longitude(48, 52), new Latitude(-2, -20));
 Arc arc = new Arc(new Longitude(3), new Latitude(1));

 coordinate2 = coordinate1 + arc;
 Console.WriteLine(coordinate2);

 coordinate2 = coordinate2 - arc;
 Console.WriteLine(coordinate2);

 coordinate2 += arc;
 Console.WriteLine(coordinate2);
 }
}

The results of Listing 9.8 appear in Output 9.3.

Output 9.3.

51° 52' 0 E -1° -20' 0 N
48° 52' 0 E -2° -20' 0 N
51° 52' 0 E -1° -20' 0 N

For Coordinate, implement the – and + operators to return coordinate locations after adding/subtracting Arc. This allows you to string multiple operators and operands together, as in result = ((coordinate1 + arc1) + arc2) + arc3. And, by supporting the same operators (+/-) on Arc (see Listing 9.9), you could eliminate the parenthesis.

This works because the result of the first operand (arc1 + arc2) is another Arc, which you can then add to the next operand of type Arc or Coordinate.

In contrast, consider if you provided a – operator that had two Coordinates as parameters and returned a double corresponding to the distance between the two coordinates. Adding a double to a Coordinate is undefined, and therefore, you could not string operators and operands. Caution is in order when defining operators that return a different type, because doing so is counterintuitive.

Combining Assignment with Binary Operators (+=, -=, *=, /=, %=, &=...)

As previously mentioned, there is no support for overloading the assignment operator. However, assignment operators in combination with binary operators (+=, -=, *=, /=, %=, &=, |=, ^=, <<=, and >>=) are effectively overloaded when overloading the binary operator. Given the definition of a binary operator without the assignment, C# automatically allows for assignment in combination with the operator. Using the definition of Coordinate in Listing 9.7, therefore, you can have code such as:

coordinate += arc;

which is equivalent to the following:

coordinate = coordinate + arc;

Conditional Logical Operators (&&, ||)

Like assignment operators, conditional logical operators cannot be overloaded explicitly. However, since the logical operators & and | can be overloaded, and the conditional operators comprise the logical operators, effectively it is possible to overload conditional operators. x && y is processed as x & y, where y must evaluate to true. Similarly, x || y is processed as x | y only if x is false. To enable support for evaluating a type to true or false—in an if statement, for example—it is necessary to override the true/false unary operators.

Unary Operators (+, -, !, ~, ++, --, true, false)

Overloading unary operators is very similar to overloading binary operators, except that they take only one parameter, also of the containing type. Listing 9.9 overloads the + and – operators for Longitude and Latitude and then uses these operators when overloading the same operators in Arc.

Listing 9.9. Overloading the – and + Unary Operators

Click here to view code image

public struct Latitude
{
 // ...

 public static Latitude operator -(Latitude latitude)
 {
 return new Latitude(-latitude.DecimalDegrees);
 }
 public static Latitude operator +(Latitude latitude)
 {
 return latitude;
 }

}

public struct Longitude
{
 // ...

 public static Longitude operator -(Longitude longitude)
 {
 return new Longitude(-longitude.DecimalDegrees);
 }
 public static Longitude operator +(Longitude longitude)
 {
 return longitude;
 }

}

public struct Arc
{
 // ...
 public static Arc operator -(Arc arc)
 {
 // Uses unary – operator defined on
 // Longitude and Latitude
 return new Arc(-arc.LongitudeDifference,
 -arc.LatitudeDifference);
 }
 public static Arc operator +(Arc arc)
 {
 return arc;
 }
}

Just as with numeric types, the + operator in this listing doesn’t have any effect and is provided for symmetry.

Overloading true and false has the additional requirement that they both be overloaded. The signatures are the same as other operator overloads; however, the return must be a bool, as demonstrated in Listing 9.10.

Listing 9.10. Overloading the true and false Operators

Click here to view code image

public static bool operator false(IsValid item)
{
 // ...
}
public static bool operator true(IsValid item)
{
 // ...
}

You can use types with overloaded true and false operators in if, do, while, and for controlling expressions.

Conversion Operators

Currently, there is no support in Longitude, Latitude, and Coordinate for casting to an alternate type. For example, there is no way to cast a double into a Longitude or Latitude instance. Similarly, there is no support for assigning a Coordinate using a string. Fortunately, C# provides for the definition of methods specifically to handle the converting of one type to another. Furthermore, the method declaration allows for specifying whether the conversion is implicit or explicit.

Advanced Topic: Cast Operator (())

Implementing the explicit and implicit conversion operators is not technically overloading the cast operator (()). However, this is effectively what takes place, so defining a cast operator is common terminology for implementing explicit or implicit conversion.

Defining a conversion operator is similar in style to defining any other operator, except that the “operator” is the resultant type of the conversion. Additionally, the operator keyword follows a keyword that indicates whether the conversion is implicit or explicit (see Listing 9.11).

Listing 9.11. Providing an Implicit Conversion between Latitude and double

Click here to view code image

public struct Latitude
{
 // ...

 public Latitude(double decimalDegrees)
 {
 _DecimalDegrees = Normalize(decimalDegrees);
 }

 public double DecimalDegrees
 {
 get { return _DecimalDegrees; }
 }
 private readonly double _DecimalDegrees;

 // ...

 public static implicit operator double(Latitude latitude)
 {
 return latitude.DecimalDegrees;
 }
 public static implicit operator Latitude(double degrees)
 {
 return new Latitude(degrees);
 }

 // ...
}

With these conversion operators, you now can convert doubles implicitly to and from Latitude objects. Assuming similar conversions exist for Longitude, you can simplify the creation of a Coordinate object by specifying the decimal degrees portion of each coordinate portion (for example, coordinate = new Coordinate(43, 172);).

Note

When implementing a conversion operator, either the return or the parameter must be of the enclosing type—in support of encapsulation. C# does not allow you to specify conversions outside the scope of the converted type.

Guidelines for Conversion Operators

The difference between defining an implicit and an explicit conversion operator centers on preventing an unintentional implicit conversion that results in undesirable behavior. You should be aware of two possible consequences of using the explicit conversion operator. First, conversion operators that throw exceptions should always be explicit. For example, it is highly likely that a string will not conform to the appropriate format that a conversion from string to Coordinate requires. Given the chance of a failed conversion, you should define the particular conversion operator as explicit, thereby requiring that you be intentional about the conversion and that you ensure that the format is correct, or that you provide code to handle the possible exception. Frequently, the pattern for conversion is that one direction (string to Coordinate) is explicit and the reverse (Coordinate to string) is implicit.

A second consideration is the fact that some conversions will be lossy. Converting from a float (4.2) to an int is entirely valid, assuming an awareness of the fact that the decimal portion of the float will be lost. Any conversions that will lose data and will not successfully convert back to the original type should be defined as explicit. If an explicit cast is unexpectedly lossy or invalid, consider throwing a System.InvalidCastException.

Guidelines

DO NOT provide an implicit conversion operator if the conversion is lossy.

DO NOT throw exceptions from implicit conversions.

Referencing Other Assemblies

Instead of placing all code into one monolithic binary file, C# and the underlying CLI platform allow you to spread code across multiple assemblies. This enables you to reuse assemblies across multiple executables.

Beginner Topic: Class Libraries

The HelloWorld.exe program is one of the most trivial programs you can write. Real-world programs are more complex, and as complexity increases, it helps to organize the complexity by breaking programs into multiple parts. To do this, developers move portions of a program into separate compiled units called class libraries or, simply, libraries. Programs then reference and rely on class libraries to provide parts of their functionality. The power of this concept is that two programs can rely on the same class library, thereby sharing the functionality of that class library across the two programs and reducing the total amount of code needed.

In other words, it is possible to write features once, place them into a class library, and allow multiple programs to include those features by referencing the same class library. Later on, when developers fix a bug or add functionality to the class library, all the programs will have access to the increased functionality, just because they continue to reference the now improved class library.

To reuse the code within a different assembly, it is necessary to reference the assembly when running the C# compiler. Generally, the referenced assembly is a class library, and creating a class library requires a different assembly target from the default console executable targets you created thus far.

Changing the Assembly Target

The compiler allows you to create four different assembly types via the /target option.

• Console executable: This is the default type of assembly, and all compilation thus far has been to a console executable. (Leaving off the /target option or specifying /target:exe creates a console executable.)

• Class library: Classes that are shared across multiple executables are generally defined in a class library (/target:library).

• Windows executable: Windows executables are designed to run in the Microsoft Windows family of operating systems and outside the command console (/target:winexe).

• Module: In order to facilitate multiple languages within the same assembly, code can be compiled to a module and multiple modules can be combined to form an assembly (/target:module).

Assemblies to be shared across multiple applications are generally compiled as class libraries. Consider, for example, a library dedicated to functionality around longitude and latitude coordinates. To compile the Coordinate, Longitude, and Latitude classes into their own library, you use the command line shown in Output 9.4.

Output 9.4.

Click here to view code image

>csc /target:library /out:Coordinates.dll Coordinate.cs IAngle.cs
Latitude.cs Longitude.cs Arc.cs
Microsoft (R) Visual C# 2010 Compiler version 4.0.20506.1
Copyright (C) Microsoft Corporation. All rights reserved.

Assuming you use .NET and the C# compiler is in the path, this builds an assembly library called Coordinates.dll.

Referencing an Assembly

To access code within a different assembly, the C# compiler allows the developer to reference the assembly on the command line. The option is /reference (/r is the abbreviation), followed by the list of references. The Program class listing from Listing 9.8 uses the Coordinate class, and if you place this into a separate executable, you reference Coordinates.dll using the .NET command line shown in Output 9.5.

Output 9.5.

csc.exe /R:Coordinates.dll Program.cs

The Mono command line appears in Output 9.6.

Output 9.6.

msc.exe /R:Coordinates.dll Program.cs

Encapsulation of Types

Just as classes serve as an encapsulation boundary for behavior and data, assemblies provide a similar boundary among groups of types. Developers can break a system into assemblies and then share those assemblies with multiple applications or integrate them with assemblies provided by third parties.

By default, a class without any access modifier is defined as internal.1 The result is that the class is inaccessible from outside the assembly. Even though another assembly references the assembly containing the class, all internal classes within the referenced assemblies will be inaccessible.

Just as private and protected provide levels of encapsulation to members within a class C# supports the use of access modifiers at the class level for control over the encapsulation of the classes within an assembly. The access modifiers available are public and internal, and in order to expose a class outside the assembly, the assembly must be marked as public. Therefore, before compiling the Coordinates.dll assembly, it is necessary to modify the type declarations as public (see Listing 9.12).

Listing 9.12. Making Types Available outside an Assembly

public struct Coordinate
{
 // ...
}

public struct Latitude
{
 // ...
}

public struct Longitude
{
 // ...
}

public struct Arc
{
 // ...
}

Similarly, declarations such as class and enum can also be either public or internal.

Advanced Topic: Additional Class Access Modifiers

You can decorate nested classes with any access modifier available to other class members (private, for example). However, outside the class scope, the only available access modifiers are public and internal.

The internal access modifier is not limited to type declarations. It is also available on type members. Therefore, you can designate a type as public but mark specific methods within the type as internal so that the members are available only from within the assembly. It is not possible for the members to have a greater accessibility than the type. If the class is declared as internal, public members on the type will be accessible only from within the assembly.

protected internal is another type member access modifier. Members with an accessibility modifier of protected internal will be accessible from all locations within the containing assembly and from classes that derive from the type, even if the derived class is not in the same assembly. The default state is private, so when you add an access modifier (other than public), the member becomes slightly more visible. Similarly, adding two modifiers compounds the effect.

Note

Members with an accessibility modifier of protected internal will be accessible from all locations within the containing assembly and from classes that derive from the type, even if the derived class is not in the same assembly.

Beginner Topic: Type Member Accessibility Modifiers

The full list of access modifiers appears in Table 9.1.

Table 9.1. Accessibility Modifiers

[image: Image]

Defining Namespaces

As mentioned in Chapter 2, all data types are identified by the combination of their namespace and their name. In fact, in the CLR there is no such thing as a “namespace.” The type’s name actually is the fully qualified type name. For the classes you defined earlier, there was no explicit namespace declaration. Classes such as these are automatically declared as members of the default global namespace. It is likely that such classes will experience a name collision, which occurs when you attempt to define two classes with the same name. Once you begin referencing other assemblies from third parties, the likelihood of a name collision increases even further.

More importantly, there are thousands of types in the .NET Framework and multiple orders of magnitude more outside the framework. Finding the right type for a particular problem, therefore, could potentially be a significant battle.

The resolution to both of these problems is to organize all the types, grouping them into logical related categories called namespaces. For example, classes outside the System namespace are generally placed into a namespace corresponding with the company, product name, or both. Classes from Addison-Wesley, for example, are placed into an Awl or AddisonWesley namespace, and classes from Microsoft (not System classes) are located in the Microsoft namespace. The second level of a namespace should be a stable product name that will not vary between versions. Stability, in fact, is key at all levels. Changing a namespace name is a version-incompatible change that should be avoided. For this reason, avoid using volatile names (organization hierarchy, fleeting brands, and so on) with a namespace name.

Namespaces should be PascalCased, but if your brand uses nontraditional casing, it is acceptable to use the brand casing. (Consistency is key, so if that will be problematic—with Pascal or brand-based casing—favor the use of whichever will produce the greater consistency.) You should use the namespace keyword to create a namespace and to assign a class to it, as shown in Listing 9.13.

Listing 9.13. Defining a Namespace

Click here to view code image

// Define the namespace AddisonWesley

namespace AddisonWesley
{

 class Program
 {
 // ...
 }

}

// End of AddisonWesley namespace declaration

All content between the namespace declaration’s curly braces will then belong within the specified namespace. In Listing 9.13, Program is placed into the namespace AddisonWesley, making its full name AddisonWesley.Program.

Note

In the CLR there is no such thing as a “namespace.” The type’s name actually is the fully qualified type name.

Like classes, namespaces support nesting. This provides for a hierarchical organization of classes. All the System classes relating to network APIs are in the namespace System.Net, for example, and those relating to the Web are in System.Web.

There are two ways to nest namespaces. The first way is to nest them within one another (similar to classes), as demonstrated in Listing 9.14.

Listing 9.14. Nesting Namespaces within One Another

Click here to view code image

// Define the namespace AddisonWesley
namespace AddisonWesley
{

 // Define the namespace AddisonWesley.Michaelis
 namespace Michaelis
 {
 // Define the namespace
 // AddisonWesley.Michaelis.EssentialCSharp
 namespace EssentialCSharp
 {
 // Declare the class
 // AddisonWesley.Michaelis.EssentialCSharp.Program

 class Program
 {
 // ...
 }

 }
 }

}
// End of AddisonWesley namespace declaration

Such a nesting will assign the Program class to the AddisonWesley.Michaelis.EssentialCSharp namespace.

The second way is to use the full namespace in a single namespace declaration in which a period separates each identifier, as shown in Listing 9.15.

Listing 9.15. Nesting Namespaces Using a Period to Separate Each Identifier

Click here to view code image

// Define the namespace AddisonWesley.Michaelis.EssentialCSharp

namespace AddisonWesley.Michaelis.EssentialCSharp
{

 class Program
 {
 // ...
 }

}

// End of AddisonWesley namespace declaration

Regardless of whether a namespace declaration follows Listing 9.14, Listing 9.15, or a combination of the two, the resultant CIL code will be identical. The same namespace may occur multiple times, in multiple files, and even across assemblies. For example, with the convention of one-to-one correlation between files and classes, you can define each class in its own file and surround it with the same namespace declaration.

Given that namespaces are key for organizing types, it is frequently helpful to use the namespace for organizing all the class files. For this reason, it is helpful to create a folder for each namespace, placing a class such as AddisonWesley.Fezzik.Services.Registration into a folder hierarchy corresponding to the name.

When using Visual Studio projects, if the project name is AddisonWesley.Fezzik, create one subfolder called Services into which RegistrationService.cs is placed; then create another subfolder—Data, for example—into which you place classes relating to entities within the program—RealestateProperty, Buyer, and Seller, for example.

Guidelines

DO prefix namespace names with a company name to prevent namespaces from different companies having the same name.

DO use a stable, version-independent product name at the second level of a namespace name.

DO NOT define types without placing them into a namespace.

CONSIDER creating a folder structure that matches the namespace hierarchy.

Namespace Alias Qualifier

Namespaces on their own deal with the vast majority of naming conflicts that might arise. However, sometimes (albeit rarely) conflict can arise because of an overlap in the namespace and class names. To account for this, the C# 2.0 compiler includes an option for providing an alias with the /reference option. For example, if the assemblies CoordinatesPlus.dll and Coordinates.dll have an overlapping type of Arc, you can reference both assemblies on the command line by assigning one or both references with a namespace alias qualifier that further distinguishes one class from the other. The results of such a reference appear in Output 9.7.

Output 9.7.

csc.exe /R:CoordPlus=CoordinatesPlus.dll /R:Coordinates.dll Program.cs

However, adding the alias during compilation is not sufficient on its own. In order to refer to classes in the aliased assembly, it is necessary to provide an extern directive that declares that the namespace alias qualifier is provided externally to the source code (see Listing 9.16).

Listing 9.16. Using the extern Alias Directive

Click here to view code image

// extern must precede all other namespace elements
extern alias CoordPlus;

using System;
using CoordPlus::AddisonWesley.Michaelis.EssentialCSharp
// Equivalent also allowed
// using CoordPlus.AddisonWesley.Michaelis.EssentialCSharp

using global::AddisonWesley.Michaelis.EssentialCSharp
// Equivalent NOT allowed
// using global.AddisonWesley.Michaelis.EssentialCSharp

public class Program
{
 // ...
}

Once the extern alias for CoordPlus appears, you can reference the namespace using CoordPlus, followed by either two colons or a period.

To ensure that the lookup for the type occurs in the global namespace, C# 2.0 allows items to have the global:: qualifier (but not global. because it could imaginably conflict with a real namespace of global).

XML Comments

Chapter 1 introduced comments. However, you can use XML comments for more than just notes to other developers reviewing the source code. XML-based comments follow a practice popularized with Java. Although the C# compiler ignores all comments as far as the resultant executable goes, the developer can use command-line options to instruct the compiler2 to extract the XML comments into a separate XML file. By taking advantage of the XML file generation, the developer can generate documentation of the API from the XML comments. In addition, C# editors can parse the XML comments in the code and display them to developers as distinct regions (for example, as a different color from the rest of the code), or parse the XML comment data elements and display them to the developer.

Figure 9.2 demonstrates how an IDE can take advantage of XML comments to assist the developer with a tip about the code he is trying to write.

[image: Image]

Figure 9.2. XML Comments As Tips in Visual Studio IDE

These coding tips offer significant assistance in large programs, especially when multiple developers share code. For this to work, however, the developer obviously must take the time to enter the XML comments within the code and then direct the compiler to create the XML file. The next section explains how to accomplish this.

Associating XML Comments with Programming Constructs

Consider the listing of the DataStorage class, as shown in Listing 9.17.

Listing 9.17. Commenting Code with XML Comments

[image: Image]

[image: Image]

Listing 9.17 uses both XML delimited comments that span multiple lines, and single-line XML comments where each line requires a separate three-forward-slash delimiter (///).

Since XML comments are designed to document the API, they are intended for use only in association with C# declarations, such as the class or method shown in Listing 9.17. Any attempt to place an XML comment inline with the code, unassociated with a declaration, will result in a warning by the compiler. The compile makes the association simply because the XML comment appears immediately before the declaration.

Although C# allows any XML tag in comments, the C# standard explicitly defines a set of tags to be used. <seealso cref="System.IO.StreamWriter"/> is an example of using the seealso tag. This tag creates a link between the text and the System.IO.StreamWriter class.

Generating an XML Documentation File

The compiler will check that the XML comments are well formed, and will issue a warning if they are not. To generate the XML file, you need to use the /doc option when compiling, as shown in Output 9.8.

Output 9.8.

>csc /doc:Comments.xml DataStorage.cs

The /doc option will create an XML file based on the name specified after the colon. Using the CommentSamples class listed earlier and the compiler options listed here, the resultant CommentSamples.XML file appears as shown in Listing 9.18.

Listing 9.18. Comments.xml

Click here to view code image

<?xml version="1.0"?>
<doc>
 <assembly>
 <name>DataStorage</name>
 </assembly>
 <members>
 <member name="T:DataStorage">
 <summary>
 DataStorage is used to persist and retrieve
 employee data from the files.
 </summary>
 </member>
 <member name="M:DataStorage.Store(Employee)">
 <summary>
 Save an employee object to a file
 named with the Employee name.
 </summary>
 <remarks>
 This method uses
 <seealso cref="T:System.IO.FileStream"/>
 in addition to
 <seealso cref="T:System.IO.StreamWriter"/>
 </remarks>
 <param name="employee">
 The employee to persist to a file</param>
 <date>January 1, 2000</date>
 </member>
 <member name="M:DataStorage.Load(
 System.String,System.String)">
 <summary>
 Loads up an employee object
 </summary>
 <remarks>
 This method uses
 <seealso cref="T:System.IO.FileStream"/>
 in addition to
 <seealso cref="T:System.IO.StreamReader"/>
 </remarks>
 <param name="firstName">
 The first name of the employee</param>
 <param name="lastName">
 The last name of the employee</param>
 <returns>
 The employee object corresponding to the names
 </returns>
 <date>January 1, 2000</date>*
 </member>
 </members>
</doc>

The resultant file includes only the amount of metadata that is necessary to associate an element back to its corresponding C# declaration. This is important to note, because in general, it is necessary to use the XML output in combination with the generated assembly in order to produce any meaningful documentation. Fortunately, tools such as the free GhostDoc3 and the open source project NDoc4 can generate documentation.

Guidelines

DO provide XML comments on public APIs when they provide more context than the API signature alone. This includes member descriptions, parameter descriptions, and examples for calling the API.

Garbage Collection

Garbage collection is obviously a core function of the runtime. Its purpose is to restore memory consumed by objects that are no longer referenced. The emphasis in this statement lies with memory and references. The garbage collector is only responsible for restoring memory; it does not handle other resources such as database connections, handles (files, windows, and so on), network ports, and hardware devices such as serial ports. Also, the garbage collector determines what to clean up based on whether any references remain. Implicitly, this means that the garbage collector works with reference objects and restores memory on the heap only. Additionally, it means that maintaining a reference to an object will delay the garbage collector from reusing the memory consumed by the object.

Advanced Topic: Garbage Collection in .NET

Many details about the garbage collector pertain to the specific CLI implementation, and therefore, they could vary. This section discusses the .NET implementation, since it is the most prevalent.

In .NET, the garbage collector uses a mark-and-compact algorithm. At the beginning of an iteration, it identifies all root references to objects. Root references are any references from static variables, CPU registers, and local variables or parameter instances (and f-reachable objects as described later in this section). Given this list, the garbage collector is able to walk the tree identified by each root reference and determine recursively all the objects to which the root references point. In this manner, the garbage collector identifies a graph of all reachable objects.

Instead of enumerating all the inaccessible objects, the garbage collector performs garbage collection by compacting all reachable objects next to one another, thereby overwriting any memory consumed by objects that are inaccessible (and therefore are garbage).

Locating and moving all reachable objects requires that the system maintain a consistent state while the garbage collector runs. To achieve this, all managed threads within the process halt during garbage collection. This obviously can result in brief pauses in an application, which is generally insignificant unless a particularly large garbage collection cycle is necessary. In order to reduce the likelihood of a garbage collection cycle at an inopportune time, however, the System.GC object includes a Collect() method, which can be called immediately before the critical performing code. This will not prevent the garbage collector from running, but it will reduce the likelihood that it will run, assuming no intense memory utilization occurs during the critical performance code.

One perhaps surprising aspect of .NET garbage collection behavior is that not all garbage is necessarily cleaned up during an iteration. Studies of object lifetimes reveal that recently created objects are more likely to need garbage collection than long-standing objects. Capitalizing on this behavior, the .NET garbage collector is generational, attempting to clean up short-lived objects more frequently than objects that have already survived a garbage collection iteration. Specifically, there are three generations of objects. Each time an object survives a garbage collection cycle it is moved to the next generation, until it ends up in generation two (counting starts from zero). The garbage collector then runs more frequently for objects in generation zero than it does for objects in generation two.

Ultimately, in spite of the trepidation that .NET faced during its early beta releases when compared with unmanaged code, time has shown that .NET’s garbage collection is extremely efficient. More importantly, the gains created in development productivity have far outweighed the costs in development for the few cases where managed code is dropped to optimize particular algorithms.

Weak References

All references discussed so far are strong references because they maintain an object’s accessibility and they prevent the garbage collector from cleaning up the memory consumed by the object. The framework also supports the concept of weak references, however. Weak references will not prevent garbage collection on an object, but they will maintain a reference so that if the garbage collector does not clean up the object, it can be reused.

Weak references are designed for objects that are expensive to create and are too expensive to keep around. Consider, for example, a large list of objects loaded from a database and displayed to the user. The loading of this list is potentially expensive, and once the user closes the list, it should be available for garbage collection. However, if the user requests the list multiple times, a second expensive load call will always be required. However, with weak references, it is possible to use code to check whether the list has not yet been cleaned up, and if not, to rereference the same list. In this way, weak references serve as a memory cache for objects. Objects within the cache are retrieved quickly, but if the garbage collector has recovered the memory of these objects, they will need to be re-created.

Once an object (or collection of objects) is recognized for potential weak reference consideration, it needs to be assigned to System.WeakReference (see Listing 9.19).

Listing 9.19. Using a Weak Reference

Click here to view code image

 // ...

 private WeakReference Data;

 public FileStream GetData()
 {

 FileStream data = (FileStream)Data.Target;
 if (data != null)

 {
 return data;
 }
 else
 {
 // Load data
 // ...

 // Create a weak reference
 // to data for use later.
 Data.Target = data;

 }
 return data;
 }

 // ...

Given the assignment of WeakReference (Data), you can check for garbage collection by seeing if the weak reference is set to null. The key in doing this, however, is to first assign the weak reference to a strong reference (FileStream data = Data) to avoid the possibility that between checking for null and accessing the data, the garbage collector runs and cleans up the weak reference. The strong reference obviously prevents the garbage collector from cleaning up the object, so it must be assigned first (instead of checking Target for null).

Resource Cleanup

Garbage collection is a key responsibility of the runtime. It is important to note, however, that the garbage collection relates to memory utilization. It is not about the cleaning up of file handles, database connection strings, ports, or other limited resources.

Finalizers

Finalizers allow developers to write code that will clean up a class’s resources. However, unlike constructors that are called explicitly using the new operator, finalizers cannot be called explicitly from within the code. There is no new equivalent such as a delete operator. Rather, the garbage collector is responsible for calling a finalizer on an object instance. Therefore, developers cannot determine at compile time exactly when the finalizer will execute. All they know is that the finalizer will run sometime between when an object was last used and before the application shuts down normally. (Finalizers might not execute if the process is terminated abnormally. For instance, events such as the computer being turned off or a forced termination of the process will prevent the finalizer from running.)

Note

It is nondeterministic at compile time exactly when the finalizer will execute.

The finalizer declaration is identical to the destructor syntax of C#’s predecessor—namely, C++. As shown in Listing 9.20, the finalizer declaration is prefixed with a tilde before the name of the class.

Listing 9.20. Defining a Finalizer

Click here to view code image

using System.IO;

class TemporaryFileStream
{
 public TemporaryFileStream()
 {
 _File = new FileInfo(Path.GetTempFileName());
 _Stream = new FileStream(
 File.FullName, FileMode.OpenOrCreate,
 FileAccess.ReadWrite);
 }

 // Finalizer
 ~TemporaryFileStream()
 {
 Close();
 }

 public FileStream Stream
 {
 get { return _Stream; }
 }
 readonly private FileStream _Stream;

 public FileInfo File
 {
 get { return _File; }
 }
 readonly private FileInfo _File =
 new FileInfo(Path.GetTempFileName());

 public void Close()
 {
 if(Stream != null)
 {
 Stream.Close();
 }
 if(File != null)
 {
 File.Delete();
 }
 }
}

Finalizers do not allow any parameters to be passed, and as a result, finalizers cannot be overloaded. Furthermore, finalizers cannot be called explicitly. Only the garbage collector can invoke a finalizer. Therefore, access modifiers on finalizers are meaningless, and as such, they are not supported. Finalizers in base classes will be invoked automatically as part of an object finalization call.

Note

Finalizers cannot be called explicitly; only the garbage collector can invoke a finalizer.

Because the garbage collector handles all memory management, finalizers are not responsible for de-allocating memory. Rather, they are responsible for freeing up resources such as database connections and file handles, resources that require an explicit activity that the garbage collector doesn’t know about.

Note that finalizers will execute on their own thread, making their execution even less deterministic. This indeterminacy makes an unhandled exception within a finalizer (outside of the debugger) difficult to diagnose because the circumstances that led to the exception are not clear. From the user’s perspective, the unhandled exception will be thrown relatively randomly and with little regard for any action the user was performing. For this reason, take care to avoid exceptions within finalizers. Use defensive programming techniques such as checking for nulls (refer to Listing 9.20).

Deterministic Finalization with the using Statement

The problem with finalizers on their own is that they don’t support deterministic finalization (the ability to know when a finalizer will run). Rather, finalizers serve the important role of a backup mechanism for cleaning up resources if a developer using a class neglects to call the requisite cleanup code explicitly.

For example, consider the TemporaryFileStream that includes not only a finalizer but also a Close() method. The class uses a file resource that could potentially consume a significant amount of disk space. The developer using TemporaryFileStream can explicitly call Close() in order to restore the disk space.

Providing a method for deterministic finalization is important because it eliminates a dependency on the indeterminate timing behavior of the finalizer. Even if the developer fails to call Close() explicitly, the finalizer will take care of the call. However, the finalizer will run later than if it was called explicitly—but it will be called.

Because of the importance of deterministic finalization, the Base Class Library includes a specific interface for the pattern and C# integrates the pattern into the language. The IDisposable interface defines the details of the pattern with a single method called Dispose(), which developers call on a resource class to “dispose” of the consumed resources. Listing 9.21 demonstrates the IDisposable interface and some code for calling it.

Listing 9.21. Resource Cleanup with IDisposable

Click here to view code image

using System;
using System.IO;

class Program
{
 // ...
 static void Search()
 {
 TemporaryFileStream fileStream =
 new TemporaryFileStream();

 // Use temporary file stream;
 // ...

 fileStream.Dispose();

 // ...
 }
}

class TemporaryFileStream : IDisposable
{
 public TemporaryFileStream()
 {
 _File = new FileInfo(Path.GetTempFileName());
 _Stream = new FileStream(
 File.FullName, FileMode.OpenOrCreate,
 FileAccess.ReadWrite);
 }

 ~TemporaryFileStream()
 {

 Dispose(false);

 }

 public FileStream Stream
 {
 get { return _Stream; }
 }
 readonly private FileStream _Stream;

 public FileInfo File
 {
 get { return _File; }
 }
 readonly private FileInfo _File;

 public void Close()
 {
 Dispose();
 }

 #region IDisposable Members
 public void Dispose()
 {
 Dispose(true);

 // Turn off calling the finalizer
 System.GC.SuppressFinalize(this);
 }
 #endregion
 public void Dispose(bool disposing)
 {
 // Do not dispose of an owned managed object (one with a
 // finalizer) if called by member finalize
 // as the owned managed objects finalize method
 // will be (or has been) called by finalization queue
 // processing already
 if (disposing)
 {
 if (Stream != null)
 {
 Stream.Close();
 }
 }
 if(File != null)
 {
 File.Delete();
 }
 }

}

From Program.Search() there is an explicit call to Dispose() after using the TemporaryFileStream. Dispose() is the method responsible for cleaning up the resources (in this case, a file) that are not related to memory, and therefore are subject to cleanup implicitly by the garbage collector. However, there is still a hole in the execution here that would prevent Dispose() from being executed. The issue is that there is a chance that an exception will occur between the time TemporaryFileStream is instantiated and when Dispose() is called. If this happens, Dispose() will not be invoked and the resource cleanup will have to rely on the finalizer. To avoid this, callers need to implement a try/finally block. Instead of coding such a block explicitly, C# provides a using statement expressly for the purpose. The resultant code appears in Listing 9.22.

Listing 9.22. Invoking the using Statement

Click here to view code image

class Program
{
 // ...

 static void Search()
 {

 using (TemporaryFileStream fileStream1 =
 new TemporaryFileStream(),
 fileStream2 = new TemporaryFileStream())

 {
 // Use temporary file stream;
 }
 }
}

The resultant CIL code is identical to the code that would be created if there was an explicit try/finally block, where fileStream.Dispose() is called in the finally block. The using statement, however, provides a syntax shortcut for the try/finally block.

Within a using statement, you can instantiate more than one variable by separating each variable with a comma. The key is that all variables are of the same type and that they implement IDisposable. To enforce the use of the same type, the data type is specified only once rather than before each variable declaration.

Garbage Collection, Finalization, and IDisposable

There are several additional noteworthy items to point out in Listing 9.21. First, the IDisposable.Dispose() method contains an important call to System.GC.SuppressFinalize(). Its purpose is to remove the TemporaryFileStream class instance from the finalization (f-reachable) queue. This is possible because all cleanup was done in the Dispose() method rather than waiting for the finalizer to execute.

Without the call to SuppressFinalize(), the instance of the object will be included in the f-reachable queue—a list of all the objects that are mostly ready for garbage collection except they also have finalization implementations. The runtime cannot garbage-collect objects with finalizers until after their finalization methods have been called. However, garbage collection itself does not call the finalization method. Rather, references to finalization objects are added to the f-reachable queue, and are processed by an additional thread at a time deemed appropriate based on the execution context. Ironically, this delays garbage collection for the managed resources—when it is mostly likely that these very resources should likely be cleaned up earlier. The reason for the delay is because the f-reachable queue is a list of “references,” and as such, the objects are not garbage until after their finalization methods are called and the object references are removed from the f-reachable queue.

Note

Objects with finalizers that are not explicitly disposed will end up with an extended object lifetime because even after all explicit references have gone out of scope, the f-reachable queue will have references, keeping the object alive until the f-reachable queue processing is complete.

It is for this reason that Dispose() invokes System.GC.SuppressFinalize. Invoking this method informs the runtime not to add this object to the finalization queue, but instead to allow the garbage collector to de-allocate the object when it no longer has any references (including any f-reachable references).

Second, Dispose() calls Dispose(bool disposing) with an argument of true. The result is that the Dispose() method on Stream is invoked (cleaning up its resources and suppressing its finalization). Next, the temporary file itself is deleted immediately upon calling Dispose(). This important call eliminates the need to wait for the finalization queue to be processed before cleaning up potentially expensive resources.

Third, rather than calling Close(), the finalizer now calls Dispose(bool disposing) with an argument of false. The result is that Stream is not closed (disposed) even though the file is deleted. The reason for the condition around closing Stream is that if Dispose(bool disposing) is called from the finalizer, the Stream instance itself will also be up for finalization processing (or possibly it would have already run depending on the order). Therefore, when executing the finalizer, objects owned by the managed resource should not be cleaned up as this will be the responsibility of the finalization queue.

Fourth, use caution when creating both a Close() type and a Dispose() method. It is not clear by looking at only the API that Close() calls Dispose(), so developers will be left wondering whether they need to explicitly call Close() and Dispose().

Guidelines

DO implement a finalizer method only on objects with resources that are scarce or expensive even though finalization delays garbage collection.

DO implement IDisposable to support deterministic finalization on classes with finalizers.

DO implement a finalizer method on classes that implement IDisposable in case Dispose() is not invoked explicitly.

DO refactor a finalization method to call the same code as IDisposable, perhaps simply calling the Dispose() method.

DO NOT throw exceptions from finalizer methods.

DO call System.GC.SuppressFinalize() from Dispose() to avoid repeating resource cleanup and delaying garbage collection on an object.

DO ensure that Dispose() is reentrant (it should be possible to call Dispose() multiple times).

DO keep Dispose() simple, focusing on resource cleanup required by finalization.

AVOID calling Dispose () on owned objects that have a finalizer. Instead, rely on the finalization queue to clean up the instance.

AVOID referencing other objects that are not being finalized during finalization.

DO invoke a base class’s dispose method when overriding Dispose().

CONSIDER setting object state to unusable after Dispose() is called. After an object has been disposed, methods other than Dispose() (which could potentially be called multiple times) should throw an ObjectDisposedException.

DO implement IDisposable on types that own disposable fields (or properties) and dispose said fields.

Language Contrast: C++—Deterministic Destruction

Although finalizers are similar to destructors in C++, the fact that their execution cannot be determined at compile time makes them distinctly different. The garbage collector calls C# finalizers sometime after they were last used, but before the program shuts down; C++ destructors are automatically called when the object (not a pointer) goes out of scope.

Although running the garbage collector can be a relatively expensive process, the fact that garbage collection is intelligent enough to delay running until process utilization is somewhat reduced offers an advantage over deterministic destructors, which will run at compile-time-defined locations, even when a processor is in high demand.

Advanced Topic: Exception Propagating from Constructors

Even when an exception propagates out of a constructor, the object is still instantiated, although no new instance is returned by the new operator. If the type defines a finalizer, the method will run when the object becomes eligible for garbage collection (providing additional motivation to ensure the finalize method can run on partially constructed objects). Also note that if a constructor prematurely shares its this reference, it will still be accessible even if the constructor throws an exception. Do not allow this scenario to occur.

Advanced Topic: Resurrecting Objects

By the time an object’s finalization method is called, all references to the object have disappeared and the only step before garbage collection is running the finalization code. However, it is possible to add a reference inadvertently for a finalization object back into the root reference’s graph. In so doing, the rereferenced object is no longer inaccessible, and therefore, it is not ready for garbage collection. However, if the finalization method for the object has already run, it will not necessarily be run again unless it is explicitly marked for finalization (using the GC.ReRegisterFinalize() method).

Obviously, resurrecting objects like this is peculiar behavior and you should generally avoid it. Finalization code should be simple and should focus on cleaning up only the resources that it references.

Lazy Initialization

In this preceding section, we discussed how to deterministically dispose of an object with a using statement and how the finalization queue will dispose of resources in the event that no deterministic approach is used.

A related pattern is lazy initialization or lazy loading. Using lazy initialization, you can create (or obtain) objects when you need them rather than beforehand—especially when they were never used. Consider the FileStream property of Listing 9.23.

Listing 9.23. Lazy Loading a Property

Click here to view code image

using System.IO;

class DataCache
{
 // ...

 public TemporaryFileStream FileStream
 {
 get
 {
 if (_FileStream == null)
 {
 _FileStream = new TemporaryFileStream();
 }
 return _FileStream;
 }
 }
 private TemporaryFileStream _FileStream = null;

 // ...
}

In the FileStream property, we instantiate the TemporaryFileStream object only when the getter on the property is called. If the getter is never invoked, the TemporaryFileStream object would not get instantiated and we would save whatever execution time such an instantiation would cost. Obviously, if the instantiation is negligible or inevitable (and postponing the inevitable is less desirable), simply assigning it during declaration or in the constructor makes sense. Deferring the initialization of an object until it is required is called lazy initialization.

Advanced Topic: Lazy Loading with Generics and Lambda Expressions

Starting with .NET Framework 4.0, a new class was added to the CLR to assist with lazy initialization: System.Lazy<T>. Listing 9.24 demonstrates how to use it.

Listing 9.24. Lazy Loading a Property with System.Lazy<T>

Click here to view code image

using System.IO;

class DataCache
{
 // ...

 public string FileStreamName { get; set; }

 public DataCache()
 {
 _FileStream = new Lazy<TemporaryFileStream>(
 () => new TemporaryFileStream(FileStreamName));
 }

 public TemporaryFileStream FileStream
 {
 get
 {
 return _FileStream.Value;
 }
 }
 private Lazy<TemporaryFileStream> _FileStream;

 // ...
}

The System.Lazy<T> class takes a type parameter (T) that identifies what type the Value property on System.Lazy<T> will return. Instead of assigning a fully constructed TemporaryFileStream to the _FileStream field, an instance of Lazy<TemporaryFileStream> is assigned (a lightweight call), delaying the instantiation of the TemporaryFileStream itself, until the Value property (and therefore the FileStream property) is accessed.

If in addition to type parameters (generics) you use delegates, you can even provide a function for how to initialize an object when the Value property is accessed. Listing 9.24 demonstrates passing the delegate, a lambda expression in this case, into the constructor for System.Lazy<T>.

It is important to note that the lambda expression itself, () => new TemporaryFileStream(FileStreamName), does not execute until Value is called. Rather, the lambda expression provides a means of passing the instructions for what will happen, but not actually performing those instructions until explicitly requested.

Summary

This chapter provided a whirlwind tour of many topics related to building solid class libraries. All the topics pertain to internal development as well, but they are much more critical to building robust classes. Ultimately, the topic is about forming more robust and programmable APIs. In the category of robustness fit namespaces and garbage collection. Both of these items fit in the programmability category, along with the other items covered: overriding object’s virtual members, operator overloading, and XML comments for documentation.

Exception handling uses inheritance heavily by defining an exception hierarchy and enforcing custom exceptions to fit within this hierarchy. Furthermore, the C# compiler uses inheritance to verify catch block order. In the next chapter, you will see why inheritance is such a core part of exception handling.

10. Exception Handling

Chapter 4 discussed using the try/catch/finally blocks for standard exception handling. In that chapter, the catch block always caught exceptions of type System.Exception. This chapter defines some additional details of exception handling—specifically, details surrounding additional exception types, defining custom exceptions, and multiple catch blocks for handling each type. This chapter also details exceptions because of their reliance on inheritance.

[image: Image]

Multiple Exception Types

Listing 10.1 throws a System.ArgumentException, not the System.Exception type demonstrated in Chapter 4. C# allows code to throw any type that derives (perhaps indirectly) from System.Exception.

The code for throwing any exception is simply to prefix the exception instance with the keyword throw. The type of exception used is obviously the type that best describes the circumstances surrounding the error that caused the exception.

For example, consider the TextNumberParser.Parse() method in Listing 10.1.

Listing 10.1. Throwing an Exception

Click here to view code image

public sealed class TextNumberParser
{
 public static int Parse(string textDigit)
 {
 string[] digitTexts =
 { "zero", "one", "two", "three", "four",
 "five", "six", "seven", "eight", "nine" };

 int result = Array.IndexOf(
 digitTexts, textDigit.ToLower());

 if (result < 0)
 {

 throw new ArgumentException(
 "The argument did not represent a digit",
 "textDigit");

 }

 return result;
 }
}

Instead of throwing System.Exception, it is more appropriate to throw ArgumentException because the type itself indicates what went wrong and includes special parameters for identifying which parameter was at fault.

Two similar exceptions are ArgumentNullException and NullReferenceException. ArgumentNullException should be thrown for the inappropriate passing of null arguments. This is a special case of an invalid parameter exception that would more generally (when it wasn’t null) be thrown as an ArgumentException or an ArgumentOutOfRangeException. NullReferenceException is generally something that only the underlying runtime will throw with an attempt to dereference a null value—to call a member on an object whose value is null. Instead of causing a NullReferenceException, programmers should check parameters for null before accessing them and then throw an ArgumentNullException, which can provide more contextual information such as the parameter name.

There are several other exceptions that are only intended for the runtime and that derive (sometimes indirectly) from System.SystemException. They include System.StackOverflowException, System.OutOfMemoryException, System.Runtime.InteropServices.COMException, System.ExecutionEngineException, and System.Runtime.InteropServices.SEHException. Do not throw exceptions of these types. Similarly, avoid throwing a System.Exception or System.ApplicationException, as these are so general that they provide little indication of the cause of or resolution to the problem. Instead, throw the most derived exception that fits the scenario. Obviously, developers should avoid creating APIs that could potentially result in a system failure. However, if the executing code reaches a certain state such that continuing to execute is unsafe or unrecoverable, call System.Environemnt.FailFast(). This will immediately terminate the process after writing a message to the Windows Application event log, and will even include the message as part of Windows Error Reporting if the user so chooses.

Guidelines

DO throw ArgumentException or one of its subtypes if bad arguments are passed to a member. Prefer the most derived exception type (ArgumentNullException, for example), if applicable.

DO set the ParamName property when throwing an ArgumentException or one of the subclasses.

DO throw the most specific (most derived) exception that makes sense.

DO NOT throw a NullReferenceException. Instead, throw ArgumentNullException when a value is unexpectedly null.

DO NOT throw a System.SystemException or an exception type that derives from it.

DO NOT throw a System.Exception or System.ApplicationException.

CONSIDER terminating the process by calling System.Environment.FailFast() if the program encounters a scenario where it is unsafe for further execution.

Catching Exceptions

Throwing a particular exception type enables the catcher to use the exception’s type itself to identify the problem. It is not necessary, in other words, to catch the exception and use a switch statement on the exception message to determine what action to take in light of the exception. Instead, C# allows for multiple catch blocks, each targeting a specific exception type, as Listing 10.2 shows.

Listing 10.2. Catching Different Exception Types

Click here to view code image

using System;

public sealed class Program
{
 public static void Main(string[] args)
 {
 try
 {
 // ...
 throw new InvalidOperationException(
 "Arbitrary exception");
 // ...
 }
 catch (NullReferenceException exception)
 {
 // Handle NullReferenceException
 }
 catch (ArgumentException exception)
 {
 // Handle ArgumentException
 }
 catch (InvalidOperationException exception)
 {
 bool exceptionHandled=false;
 // Handle InvalidOperationException
 // ...
 if(!exceptionHandled)
 {
 throw;
 }
 }
 catch (SystemException)
 {
 // Handle SystemException
 }
 catch (Exception exception)
 {
 // Handle Exception
 }
 finally
 {
 // Handle any cleanup code here as it runs
 // regardless of an exception or not.
 }
 }
}

Listing 10.2 has five catch blocks, each handling a different type of exception. When an exception occurs, the execution will jump to the catch block with the exception type that most closely matches. The closeness of a match is determined by the inheritance chain. For example, even though the exception thrown is of type System.Exception, this “is a” relationship occurs through inheritance because System.InvalidOperationException ultimately derives from System.Exception. Since InvalidOperationException most closely matches the exception thrown, catch(InvalidOperationException ...) will catch the exception instead of the catch(Exception...) block.

Catch blocks must appear in order, from most specific to most general, to avoid a compile error. For example, moving the catch(Exception ...) block before any of the other exceptions will result in a compile error, since all prior exceptions derive from System.Exception at some point in their inheritance chain.

As shown with the catch (SystemException){ }) block, a named parameter for the catch block is not required. In fact, a final catch without even the type parameter is allowable, as you will see in the next section.

Language Contrast: Java—Exception Specifiers

C# has no equivalent for Java’s exception specifiers. With exception specifiers, the Java compiler is able to verify that all possible exceptions thrown within a function (or a function’s call hierarchy) are either caught or declared as possibly rethrown. The C# team considered this option and concluded that the maintenance burden that it imposed was not worth the perceived benefit. Therefore, it is not necessary to maintain a list of all possible exceptions throughout a particular call stack, but neither is it feasible to easily determine the possible exceptions. (As it turns out, this wasn’t possible for Java either. Calling virtual methods or using late binding, such as reflection, made it impossible to fully resolve at compile time what exceptions a method could possibly throw.)

Notice that in the InvalidOperationException catch block there appears a throw statement without identifying the exception to throw (throw is on its own) even though there is the exception instance (exception) in the catch block scope that could be re-thrown. Throwing a specific exception would update all the stack information to match the new throw location. As a result, all the stack information indicating the call site the exception originally occurred would be lost making it significantly more difficult to diagnose the problem. For this reason, C# supports a throw statement without the explicit exception reference as long as it occurs within a catch block. This way, code can examine the exception to determine if it is possible to fully handle it, and if not, re-throw the exception (even though not specified explicitly) as though it was never caught and without replacing any stack information.

Advanced Topic: Throwing Existing Exceptions without Replacing Stack Information

In C# 5.0, a mechanism was added that enables the throwing of a previously thrown exception without losing the stack trace information in the original exception. This allows you to re-throw exceptions, for example, even from outside a catch block and, therefore, without using throw;. Although it is fairly rare to need to do this, there are occasions when exceptions are wrapped or saved until outside the catch block. For example, multithreaded code might wrap an exception with an AggregateException. The .NET 4.5 Framework provides a System.Runtime.ExceptionServices.ExceptionDispatchInfo class specifically to handle this scenario through the use of its static Catch() and instance Throw() methods. Listing 10.3 demonstrates re-throwing the exception without resetting the stack trace information or using an empty throw statement.

Listing 10.3: Using ExceptionDispatchInfo to Re-throw an Exception

Click here to view code image

using System
using System.Runtime.ExceptionServices;
using System.Threading.Tasks;
Task task = WriteWebRequestSizeAsync(url);
try
{
 while (!task.Wait(100))
 {
 Console.Write(".");
 }
}
catch(AggregateException exception)
{
 exception = exception.Flatten();

 ExceptionDispatchInfo.Capture(
 exception.InnerException).Throw();

}

One thing worth noting about the ExeptionDispatchInfo.Throw() method is that the compile doesn’t treat it as a return statement in the same way that it might a normal throw statement. For example, if the method signature returned a value but no value was returned from the code path with the ExceptionDispatchInfo.Throw(), the compile would issue an error indicating no value was returned. On occasion, therefore, developers will be forced to follow the ExceptionDispatchInfo.Throw() with a return statement even though such a statement would never execute at runtime—the exception would be thrown instead.

Language Contrast: Java—Exception Specifiers

C# has no equivalent for Java’s exception specifiers. With exception specifiers, the Java compiler is able to verify that all possible exceptions thrown within a function (or a function’s call hierarchy) are either caught or declared as possibly rethrown. The C# team considered this option and concluded that the maintenance burden that it imposed was not worth the perceived benefit. Therefore, it is not necessary to maintain a list of all possible exceptions throughout a particular call stack, but neither is it feasible to easily determine the possible exceptions. (As it turns out, this wasn’t possible for Java either. Calling virtual methods or using late binding, such as reflection, made it impossible to fully resolve at compile time what exceptions a method could possibly throw.)

General Catch Block

C# requires that any object that code throws must derive from System.Exception. However, this requirement is not universal to all languages. C/C++, for example, allows any object type to be thrown, including managed exceptions that don’t derive from System.Exception. Starting with C# 2.0, all exceptions, whether deriving from System.Exception or not, will propagate into C# assemblies as derived from System.Exception. The result is that System.Exception catch blocks will catch all exceptions not caught by earlier blocks.

C# also supports a general catch block (catch{ }) that behaves identically to the catch(System.Exception exception) block except that there is no type or variable name. Also, the general catch block must appear last within the list of catch blocks. Since the general catch block is identical to the catch(System.Exception exception) block and the general catch block must appear last, the compiler issues a warning if both exist within the same try/catch statement because the general catch block will never be invoked (see the Advanced Topic, General Catch Blocks in C# 1.0, for more information on general catch blocks).

Advanced Topic: General Catch Blocks in C# 1.0

In C# 1.0, if a non-System.Exception-derived exception was thrown from a method call (residing in an assembly not written in C#), the exception would not be caught by a catch(System.Exception) block. If a different language throws a string, for example, the exception could go unhandled. To avoid this, C# includes a catch block that takes no parameters. The term for such a catch block is general catch block, and Listing 10.4 includes one.

Listing 10.4. Catching Any Exception

Click here to view code image

using System

public sealed class Program
{
 public static void Main()
 {
 try
 {
 // ...
 throw new InvalidOperationException (
 "Arbitrary exception");
 // ...
 }
 catch (NullReferenceException exception)
 {
 // Handle NullReferenceException
 }
 catch (ArgumentException exception)
 {
 // Handle ArgumentException
 }
 catch (InvalidOperationException exception)
 {
 // Handle ApplicationException
 }
 catch (SystemException exception)
 {
 // Handle SystemException
 }
 catch (Exception exception)
 {
 // Handle Exception
 }

 catch
 {
 // Any unhandled exception
 }

 finally
 {
 // Handle any cleanup code here as it runs
 // regardless of an exception or not.
 }
 }
}

The general catch block will catch all exceptions, regardless of whether they derive from System.Exception, assuming an earlier catch block does not catch them. The disadvantage of such a block is simply that there is no exception instance to access, and therefore no way to know the appropriate course of action. It wouldn’t even be possible to recognize the unlikely case where such an exception is innocuous. The best course of action is to handle the exception with some cleanup code before shutting down the application. The catch block could save any volatile data, for example, before shutting down the application or rethrowing the exception.

Advanced Topic: Empty Catch Block Internals

The CIL code corresponding to an empty catch block is, in fact, a catch(object) block. This means that regardless of the type thrown, the empty catch block will catch it. Interestingly, it is not possible to explicitly declare a catch(object) exception block within C# code. Therefore, there is no means of catching a non-System.Exception-derived exception and having an exception instance to scrutinize.

Ironically, unmanaged exceptions from languages such as C++ generally result in System.Runtime.InteropServices.SEHException type exceptions, which derive from the System.Exception type. Therefore, not only can the unmanaged type exceptions be caught using a general catch block, but the non-System.Exception-managed types that are thrown can be caught as well—for instance, types such as string.

Guidelines for Exception Handling

Exception handling provides much-needed structure to the error-handling mechanisms that preceded it. However, it can still make for some unwieldy results if used haphazardly. The following guidelines offer some best practices for exception handling.

• Catch only the exceptions that you can handle.

Generally it is possible to handle some types of exceptions but not others. For example, opening a file for exclusive read-write access may throw a System.IO.IOException because the file is already in use. In catching this type of exception, the code can report to the user that the file is in use and allow the user the option of canceling the operation or retrying it. Only exceptions for which there is a known action should be caught. Other exception types should be left for callers higher in the stack.

• Don’t hide (bury) exceptions you don’t fully handle.

New programmers are often tempted to catch all exceptions and then continue executing instead of reporting an unhandled exception to the user. However, this may result in a critical system problem going undetected. Unless code takes explicit action to handle an exception or explicitly determines certain exceptions to be innocuous, catch blocks should rethrow exceptions instead of catching them and hiding them from the caller. Predominantly, catch(System.Exception) and general catch blocks should occur higher in the call stack, unless the block ends by rethrowing the exception.

• Use System.Exception and general catch blocks rarely.

Virtually all exceptions derive from System.Exception. However, the best way to handle some System.Exceptions is to allow them to go unhandled or to gracefully shut down the application sooner rather than later. These exceptions include things such as System.OutOfMemoryException and System.StackOverflowException. In CLR 4, such exceptions were defaulted to nonrecoverable such that catching them without rethrowing them will cause the CLR to rethrow them anyway. These exceptions are runtime exceptions that the developer cannot write code to recover from. Therefore, the best course of action is to shut down the application—something the runtime will force in CLR 4 and later. Code prior to CLR 4 should catch such exceptions only to run cleanup or emergency code (such as saving any volatile data) before shutting down the application or rethrowing the exception with throw;.

• Avoid exception reporting or logging lower in the call stack.

Often, programmers are tempted to log exceptions or report exceptions to the user at the soonest possible location in the call stack. However, these locations are seldom able to handle the exception fully and they resort to rethrowing the exception. Such catch blocks should not log the exception or report it to a user while in the bowels of the call stack. If the exception is logged and rethrown, the callers higher in the call stack may do the same, resulting in duplicate log entries of the exception. Worse, displaying the exception to the user may not be appropriate for the type of application. (Using System.Console.WriteLine() in a Windows application will never be seen by the user, for example, and displaying a dialog in an unattended command-line process may go unnoticed and freeze the application.) Logging- and exception-related user interfaces should be reserved for high up in the call stack.

• Use throw; rather than throw <exception object> inside a catch block.

It is possible to rethrow an exception inside a catch block. For example, the implementation of catch(ArgumentNullException exception) could include a call to throw exception. However, rethrowing the exception like this will reset the stack trace to the location of the rethrown call, instead of reusing the original throw point location. Therefore, unless you are rethrowing with a different exception type or intentionally hiding the original call stack, use throw; to allow the same exception to propagate up the call stack.

• Use caution when rethrowing different exceptions.

From inside a catch block, rethrowing a different exception will not only reset the throw point, it will also hide the original exception. To preserve the original exception set the new exception’s InnerException property, generally assignable via the constructor. Rethrowing a different exception should be reserved for the following situations.

1. Changing the exception type clarifies the problem.

For example, in a call to Logon(User user), rethrowing a different exception type is perhaps more appropriate than propagating System.IO.IOException when the file with the user list is inaccessible.

2. Private data is part of the original exception.

In the preceding scenario, if the file path is included in the original System.IO.IOException, thereby exposing private security information about the system, the exception should be wrapped. This assumes, of course, that InnerException is not set with the original exception. (Funnily enough, a very early version of CLR v1 [pre-alpha even] had an exception that said something like “Security exception: You do not have permission to determine the path of c:\temp\foo.txt”.)

3. The exception type is too specific for the caller to handle appropriately.

For example, instead of throwing an exception specific to a particular database system, a more generic exception is used so that database-specific code higher in the call stack can be avoided.

Guidelines

AVOID exception reporting or logging lower in the call stack.

DO NOT over-catch. Exceptions should be allowed to propagate up the call stack unless it is clearly understood how to programmatically address the error lower in the stack.

CONSIDER catching a specific exception when you understand why it was thrown in a given context and can respond to the failure programmatically.

AVOID catching System.Exception or System.SystemException except in top-level exception handlers to make perform final cleanup operations before rethrowing the exception.

DO use throw rather than throw <exception object> inside a catch block.

DO use caution when rethrowing different exceptions.

DO NOT throw a NullRefernceException, favoring ArgumentNullException instead when a value is unexpectedly null.

Defining Custom Exceptions

Once throwing an exception becomes the best course of action, it is preferable to use framework exceptions because they are well established and understood. Instead of throwing a custom invalid argument exception, for example, it is preferable to use the System.ArgumentException type. However, if the developers using a particular API will take special action—the exception-handling logic will vary to handle a custom exception type, for instance—it is appropriate to define a custom exception. For example, if a mapping API receives an address for which the ZIP Code is invalid, instead of throwing System.ArgumentException, it may be better to throw a custom InvalidAddressException. The key is whether the caller is likely to write a specific InvalidAddressException catch block with special handling rather than just a generic System.ArgumentException catch block.

Defining a custom exception simply involves deriving from System.Exception or some other exception type. Listing 10.5 provides an example.

Listing 10.5. Creating a Custom Exception

Click here to view code image

class DatabaseException : System.Exception
{
 public DatabaseException(
 System.Data.SqlClient.SQLException exception)
 {
 InnerException = exception;
 // ...
 }

 public DatabaseException(
 System.Data.OracleClient.OracleException exception)
 {
 InnerException = exception;
 // ...
 }

 public DatabaseException()
 {
 // ...
 }

 public DatabaseException(string message)
 {
 // ...
 }

 public DatabaseException(
 string message, Exception innerException)
 {
 InnerException = innerException;
 // ...
 }
}

This custom exception might be created to wrap proprietary database exceptions. Since Oracle and SQL Server (for example) each throw different exceptions for similar errors, an application could define a custom exception that standardizes the database-specific exceptions into a common exception wrapper that the application can handle in a standard manner. That way, whether the application was using an Oracle or a SQL Server backend database, the same catch block could be used to handle the error higher up the stack.

The only requirement for a custom exception is that it derives from System.Exception or one of its descendants. However, there are several more good practices for custom exceptions.

• All exceptions should use the “Exception” suffix. This way, their purpose is easily established from the name.

• Generally, all exceptions should include constructors that take no parameters, a string parameter, and a parameter set of a string and an inner exception. Furthermore, since exceptions are usually constructed within the same statement in which they are thrown, any additional exception data should also be allowed as part of the constructor. (The obvious exception to creating all these constructors is if certain data is required and a constructor circumvents the requirements.)

• The inheritance chain should be kept relatively shallow (with fewer than approximately five levels).

The inner exception serves an important purpose when rethrowing an exception that is different from the one that was caught. For example, if a System.Data.SqlClient.SqlException is thrown by a database call but is caught within the data access layer to be rethrown as a DatabaseException, the DatabaseException constructor that takes the SqlException (or inner exception) will save the original SqlException in the InnerException property. That way, when requiring additional details about the original exception, developers can retrieve the exception from the InnerException property (for example, exception.InnerException).

Guidelines

DO NOT create a new exception type if the exception would not be handled differently than an existing CLR exception. Throw the existing framework exception instead.

DO create a new exception type to communicate a unique program error that cannot be communicated using an existing CLR exception and can be programmatically handled in a different way than any other existing CLR exception type.

DO provide a parameterless constructor on all custom exception types. Also provide constructors that take a message and an inner exception.

DO end exception class names with the “Exception” suffix.

DO make exceptions runtime-serializable.

CONSIDER providing exception properties for programmatic access to extra information relevant to the exception.

AVOID deep exception hierarchies.

Advanced Topic: Serializable Exceptions

Serializable objects are objects that the runtime can persist into a stream—a file stream, for example—and then reinstantiate out of the stream. In the case of exceptions, this may be necessary for certain distributed communication technologies. To support serialization, exception declarations should include the System.SerializableAttribute attribute or they should implement ISerializable. Furthermore, they must include a constructor that takes System.Runtime.Serialization.SerializationInfo and System.Runtime.Serialization.StreamingContext. Listing 10.6 shows an example of using System.SerializableAttribute.

Listing 10.6. Defining a Serializable Exception

Click here to view code image

// Supporting serialization via an attribute

[Serializable]

class DatabaseException : System.Exception
{
 // ...

 // Used for deserialization of exceptions
 public DatabaseException(

 SerializationInfo serializationInfo,
 StreamingContext context)

 {
 //...
 }

}

The preceding DatabaseException example demonstrates both the attribute and the constructor requirement for making an exception serializable.

Wrapping an Exception and Rethrowing

On occasion, an exception thrown at a lower level in the stack will no longer make sense when caught at a higher level. For example, consider a System.IO.IOException that occurs because a system is out of disk space on the server. A client catching such an exception would not necessarily be able to understand the context of why there was even I/O activity. Similarly, consider a geographic coordinate request API that throws a System.UnauthorizedAccessException (an exception totally unrelated to the API called). In this second example, the caller has no context or understanding of what the API call has to do with security. From the perspective of the code that invokes the API, these exceptions cause more confusion than they help diagnose. Instead of exposing such exceptions to the client, it might make sense to catch the exception, and throw a different exception such as InvalidOperationException (or even perhaps a custom exception) as a means of communicating that the system is in an invalid state. In such scenarios, be sure to set the InnerException property of the wrapping exception (generally via the constructor call such as new InvalidOperationException(String, Exception)) so that there is additional context that can be used for diagnostics by someone closer to the framework that was invoked.

An important detail to remember when considering to wrap and rethrow an exception is the fact that the original stack trace—which provides the context of where the exception was thrown—will be replaced with the new stack trace of where the wrapping exception is thrown. Fortunately, by embedding the original exception into the wrapping exception, the original stack trace is still available.

Ultimately, remember that the intended recipient of the exception is the programmer writing code that calls your API—possibly incorrectly. Therefore, provide as much information to her that indicates both what she did wrong and (perhaps more importantly) how to fix it. The exception type is a critical piece of the communication mechanism. Therefore, choose the type carefully.

Guidelines

CONSIDER wrapping specific exceptions thrown from the lower layer in a more appropriate exception if the lower-layer exception does not make sense in the context of the higher-layer operation.

DO specify the inner exception when wrapping exceptions.

DO target developers as the audience for exceptions, identifying both the problem as well as the mechanism to resolve it, where possible.

DO use an empty throw statement (throw;) when rethrowing the same exception rather than passing the exception as an argument to throw.

Beginner Topic: Checked and Unchecked Conversions

As we first discussed in a Chapter 2 Advanced Topic, C# provides special keywords for marking a code block with instructions to the runtime of what should happen if the target data type is too small to contain the assigned data. By default, if the target data type cannot contain the assigned data, the data will truncate during assignment. For an example, see Listing 10.7.

Listing 10.7. Overflowing an Integer Value

Click here to view code image

using System;

public class Program
{
 public static void Main()
 {
 // int.MaxValue equals 2147483647
 int n = int.MaxValue;
 n = n + 1 ;
 System.Console.WriteLine(n);
 }
}

The results of Listing 10.7 appear in Output 10.1.

Output 10.1.

-2147483648

The code in Listing 10.7 writes the value -2147483648 to the console. However, placing the code within a checked block or using the checked option when running the compiler will cause the runtime to throw an exception of type System.OverflowException. The syntax for a checked block uses the checked keyword, as shown in Listing 10.8.

Listing 10.8. A Checked Block Example

Click here to view code image

using System;

public class Program
{
 public static void Main()
 {

 checked
 {

 // int.MaxValue equals 2147483647
 int n = int.MaxValue;
 n = n + 1 ;
 System.Console.WriteLine(n);

 }

 }
}

If the calculation involves only constants, the calculation will be checked by default. The results of Listing 10.8 appear in Output 10.2.

Output 10.2.

Click here to view code image

Unhandled Exception: System.OverflowException: Arithmetic operation
resulted in an overflow. at Program.Main() in ...Program.cs:line 12

In addition, depending on the version of Windows and whether a debugger is installed, a dialog may appear prompting the user to send an error message to Microsoft, check for a solution, or debug the application. Also, the location information (Program.cs:line X) will appear only in debug compilations—compilations using the /Debug option of the Microsoft csc.exe compiler.

The result is that an exception is thrown if, within the checked block, an overflow assignment occurs at runtime.

The C# compiler provides a command-line option for changing the default checked behavior from unchecked to checked. C# also supports an unchecked block that truncates the data instead of throwing an exception for assignments within the block (see Listing 10.9).

Listing 10.9. An Unchecked Block Example

Click here to view code image

using System;

public class Program
{
 public static void Main()
 {

 unchecked
 {

 // int.MaxValue equals 2147483647
 int n = int.MaxValue;
 n = n + 1 ;
 System.Console.WriteLine(n);

 }

 }
}

The results of Listing 10.8 appear in Output 10.3.

Output 10.3.

-2147483648

Even if the checked option is on during compilation, the unchecked keyword in the code in Listing 10.8 will prevent the runtime from throwing an exception during execution.

There are equivalent checked and unchecked expressions for cases where statements are not allowed. For example, a field initializer may only be an expression, not a statement:

 int _Number = unchecked(int.MaxValue + 1);

Summary

Throwing an exception causes a significant performance hit. A single exception causes lots of runtime stack information to be loaded and processed, data that would not otherwise be loaded, and it takes a considerable amount of time. As pointed out in Chapter 4, use exceptions only to handle exceptional circumstances; APIs should provide mechanisms to check whether an exception will be thrown instead of forcing a particular API to be called in order to determine whether an exception will be thrown.

The next chapter introduces generics, a C# 2.0 feature that significantly enhances the code written in C# 1.0. In fact, it essentially deprecates any use of the System.Collections namespace, which was formerly used in nearly every project.

11. Generics

As your projects become more sophisticated, you will need a better way to reuse and customize existing software. To facilitate code reuse, especially the reuse of algorithms, C# includes a feature called generics. Just as methods are powerful because they can take arguments, types and methods that take type arguments have significantly more functionality.

Generics are lexically similar to generic types in Java and templates in C++. In all three languages, these features enable the implementation of algorithms and patterns once, rather than requiring separate implementations for each type the algorithm or pattern operates upon. However, C# generics are very different from both Java generics and C++ templates in the details of their implementation and impact upon the type system of their respective languages.

[image: Image]

Generics were added to the runtime and C# in version 2.0.

C# without Generics

We begin the discussion of generics by examining a class that does not use generics. The class is System.Collections.Stack, and its purpose is to represent a collection of objects such that the last item to be added to the collection is the first item retrieved from the collection (called last in, first out, or LIFO). Push() and Pop(), the two main methods of the Stack class, add items to the stack and remove them from the stack, respectively. The declarations for the methods on the stack class appear in Listing 11.1.

Listing 11.1. The System.Collections.Stack Method Signatures

Click here to view code image

public class Stack
{
 public virtual object Pop() { ... }
 public virtual void Push(object obj) { ... }
 // ...
}

Programs frequently use stack type collections to facilitate multiple undo operations. For example, Listing 11.2 uses the System.Collections.Stack class for undo operations within a program which simulates the Etch A Sketch® game.

Listing 11.2. Supporting Undo in a Program Similar to the Etch A Sketch Game

Click here to view code image

using System;
using System.Collections;

class Program
{
 // ...

 public void Sketch()
 {
 Stack path = new Stack();
 Cell currentPosition;
 ConsoleKeyInfo key; // Added in C# 2.0

 do
 {
 // Etch in the direction indicated by the
 // arrow keys that the user enters.
 key = Move();

 switch (key.Key)
 {
 case ConsoleKey.Z:
 // Undo the previous Move.
 if (path.Count >= 1)
 {

 currentPosition = (Cell)path.Pop();

 Console.SetCursorPosition(
 currentPosition.X, currentPosition.Y);
 Undo();
 }
 break;

 case ConsoleKey.DownArrow:
 case ConsoleKey.UpArrow:
 case ConsoleKey.LeftArrow:
 case ConsoleKey.RightArrow:
 // SaveState()
 currentPosition = new Cell(
 Console.CursorLeft, Console.CursorTop);

 path.Push(currentPosition);

 break;

 default:
 Console.Beep(); // Added in C# 2.0
 break;
 }

 }
 while (key.Key != ConsoleKey.X); // Use X to quit.

 }
}

public struct Cell
{
 readonly public int X;
 readonly public int Y;
 public Cell(int x, int y)
 {
 X = x;
 Y = y;
 }
}

The results of Listing 11.2 appear in Output 11.1.

Output 11.1.

[image: Image]

Using the variable path, which is declared as a System.Collections.Stack, you save the previous move by passing a custom type, Cell, into the Stack.Push() method using path.Push(currentPosition). If the user enters a Z (or Ctrl+Z), you undo the previous move by retrieving it from the stack using a Pop() method, setting the cursor position to be the previous position, and calling Undo(). Although the code is functional, there is a fundamental shortcoming in the System.Collections.Stack class. As shown in Listing 11.1, the Stack class collects values of type object. Because every object in the CLR derives from object, Stack provides no validation that the elements you place into it are homogenous or are of the intended type. For example, instead of passing currentPosition, you can pass a string in which X and Y are concatenated with a decimal point between them. However, the compiler must allow the inconsistent data types because the stack class is written to take any object, regardless of its more specific type.

Furthermore, when retrieving the data from the stack using the Pop() method, you must cast the return value to a Cell. But if the type of the value returned from the Pop() method is not Cell, an exception is thrown. By deferring type checking until runtime by using a cast, you make the program more brittle. The fundamental problem with creating classes that can work with multiple data types without generics is that they must work with a common base class (or interface), usually object.

Using value types, such as a struct or an integer, with classes that use object exacerbates the problem. If you pass a value type to the Stack.Push() method, for example, the runtime automatically boxes it. Similarly, when you retrieve a value type, you need to explicitly unbox the data and cast the object reference you obtain from the Pop() method into a value type. Casting a reference type to a base class or interface has a negligible performance impact, but the box operation for a value type introduces more overhead, because it must allocate memory, copy the value, and then later garbage-collect that memory.

C# is a language that encourages “type safety”: The language is designed so that many type errors, such as assigning an integer to a variable of type string, can be caught at compile time. The fundamental problem is that the stack class is not as type-safe as one expects a C# program to be. To change the stack class to enforce type safety to restrict the contents of the stack to be a particular data type (without using generic types) you must create a specialized stack class, as in Listing 11.3.

Listing 11.3. Defining a Specialized Stack Class

Click here to view code image

public class CellStack
{
 public virtual Cell Pop();
 public virtual void Push(Cell cell);
 // ...
}

Because CellStack can store only objects of type Cell, this solution requires a custom implementation of the stack methods, which is less than ideal. Implementing a type-safe stack of integers would require yet another custom implementation; each implementation would look remarkably like every other one. There would be lots of duplicated, redundant code.

Beginner Topic: Another Example: Nullable Value Types

Chapter 2 introduced the capability of declaring variables that could contain null by using the nullable modifier, ?, when declaring a value type variable. C# only began supporting this in version 2.0 because the right implementation required generics. Prior to the introduction of generics, programmers faced essentially two options.

The first option was to declare a nullable data type for each value type that needs to handle null values, as shown in Listing 11.4.

Listing 11.4. Declaring Versions of Various Value Types That Store null

Click here to view code image

struct NullableInt
{
 /// <summary>
 /// Provides the value when HasValue returns true.
 /// </summary>
 public int Value{ get; private set; }

 /// <summary>
 /// Indicates whether there is a value or whether
 /// the value is "null"
 /// </summary>
 public bool HasValue{ get; private set; }

 // ...
}

struct NullableGuid
{
 /// <summary>
 /// Provides the value when HasValue returns true.
 /// </summary>
 public Guid Value{ get; private set; }

 /// <summary>
 /// Indicates whether there is a value or whether
 /// the value is "null"
 /// </summary>
 public bool HasValue{ get; private set; }

 ...
}
...

Listing 11.4 shows possible implementations of NullableInt and NullableGuid. If a program required additional nullable value types, you would have to create yet another struct with the properties modified to use the desired value type. Any improvement of the implementation (adding a user-defined implicit conversion from the underlying type to the nullable type, for example) would require modifying all of the nullable type declarations.

An alternative strategy for implementing a nullable type without generics is to make a single type with a Value property of type object, as shown in Listing 11.5.

Listing 11.5. Declaring a Nullable Type That Contains a Value Property of Type object

Click here to view code image

struct Nullable
{
 /// <summary>
 /// Provides the value when HasValue returns true.
 /// </summary>
 public object Value{ get; private set; }

 /// <summary>
 /// Indicates whether there is a value or whether
 /// the value is "null"
 /// </summary>
 public bool HasValue{ get; private set; }

 ...
}

Although this option requires only one implementation of a nullable type, the runtime always boxes value types when setting the Value property. Furthermore, retrieving the underlying value from the Value property will require a cast operation, which is potentially invalid at runtime.

Neither option is particularly attractive. To eliminate this problem, C# 2.0 introduced generics to C#. (And in fact, nullable types are actually implemented as the generic type Nullable<T>.)

Introducing Generic Types

Generics provide a facility for creating data structures that can be specialized to handle specific types. Programmers define these parameterized types so that each variable of a particular generic type has the same internal algorithm, but the types of data and method signatures can vary based on the type arguments provided for the type parameters.

To minimize the learning curve for developers, C# designers chose syntax that superficially resembles C++ templates. In C# the syntax for generic classes and structures uses angle brackets to both declare the generic type parameters in the type declaration, and specify the generic type arguments when the type is used.

Using a Generic Class

Listing 11.6 shows how you can specify the actual type argument used by the generic class. You instruct the path variable to be the “Stack of Cell” type by specifying Cell within angle bracket notation in both the object creation expression and the declaration statement. In other words, when declaring a variable (path in this case) using a generic data type, C# requires the developer to identify the actual type arguments used by the generic type. An example showing the new generic Stack class appears in Listing 11.6.

Listing 11.6. Implementing Undo with a Generic Stack Class

Click here to view code image

using System;
using System.Collections.Generic;

class Program
{
 // ...

 public void Sketch()
{

 Stack<Cell> path; // Generic variable declaration
 path = new Stack<Cell>(); // Generic object instantiation

 Cell currentPosition;
 ConsoleKeyInfo key;

 do
 {
 // Etch in the direction indicated by the
 // arrow keys entered by the user.
 key = Move();

 switch (key.Key)
 {
 case ConsoleKey.Z:
 // Undo the previous Move.
 if (path.Count >= 1)
 {

 // No cast required.
 currentPosition = path.Pop();

 Console.SetCursorPosition(
 currentPosition.X, currentPosition.Y);
 Undo();
 }
 break;

 case ConsoleKey.DownArrow:
 case ConsoleKey.UpArrow:
 case ConsoleKey.LeftArrow:
 case ConsoleKey.RightArrow:
 // SaveState()
 currentPosition = new Cell(
 Console.CursorLeft, Console.CursorTop);

 // Only type Cell allowed in call to Push().
 path.Push(currentPosition);

 break;

 default:
 Console.Beep(); // Added in C# 2.0
 break;
 }

 } while (key.Key != ConsoleKey.X); // Use X to quit.
 }
}

The results of Listing 11.6 appear in Output 11.2.

Output 11.2.

[image: Image]

In the path declaration shown in Listing 11.6, you declare a variable and initialize it with a new instance of the System.Collections.Generic.Stack<Cell> class. You specify in angle brackets that the data type of the stack’s elements is Cell. As a result, every object added to and retrieved from path is of type Cell. And, therefore, you no longer need to cast the return of path.Pop() or ensure that only Cell type objects are added to path in the Push() method.

Defining a Simple Generic Class

Generics allow you to author algorithms and patterns, and reuse the code for different data types. Listing 11.7 creates a generic Stack<T> class similar to the System.Collections.Generic.Stack<T> class used in the code in Listing 11.6. You specify a type parameter (in this case, T) within angle brackets after the class name. The generic Stack<T> can then be supplied with a single type argument that is “substituted” everywhere T appears in the class. Thus the stack can store items of any stated type, without duplicating code or converting the item to type object. The type parameter T is a placeholder that must be supplied with a type argument. In Listing 11.7, you can see that the type parameter will be used for the internal Items array, the type for the parameter to the Push() method, and the return type for the Pop() method.

Listing 11.7. Declaring a Generic Class, Stack<T>

Click here to view code image

public class Stack<T>
{
 private T[] _Items;

 public void Push(T data)
 {
 ...
 }

 public T Pop()
 {
 ...
 }
}

Benefits of Generics

There are several advantages to using a generic class over a nongeneric version (such as the System.Collections.Generic.Stack<T> class used earlier instead of the original System.Collections.Stack type).

1. Generics facilitate increased type safety, preventing data types other than those explicitly intended by the members within the parameterized class. In Listing 11.7, the parameterized stack class restricts you to the Cell data type when using Stack<Cell>. (For example, the statement path.Push("garbage") produces a compile-time error indicating that there is no overloaded method for System.Collections.Generic.Stack<T>.Push(T) that can work with the string, because it cannot be converted to a Cell.)

2. Compile-time type checking reduces the likelihood of InvalidCastException type errors at runtime.

3. Using value types with generic class members no longer causes a boxing conversion to object. (For example, path.Pop() and path.Push() do not require an item to be boxed when added or unboxed when removed.)

4. Generics in C# reduce code bloat. Generic types retain the benefits of specific class versions, without the overhead. (For example, it is no longer necessary to define a class such as CellStack.)

5. Performance improves because casting from an object is no longer required, thus eliminating a type check operation. Also, performance improves because boxing is no longer necessary for value types.

6. Generics reduce memory consumption by avoiding boxing and thus consuming less memory on the heap.

7. Code becomes more readable because of fewer casting checks and because of the need for fewer type-specific implementations.

8. Editors that assist coding via some type of IntelliSense® work directly with return parameters from generic classes. There is no need to cast the return data for IntelliSense to work.

At their core, generics offer the ability to code pattern implementations and then reuse those implementations wherever the patterns appear. Patterns describe problems that occur repeatedly within code, and templates provide a single implementation for these repeating patterns.

Type Parameter Naming Guidelines

Just as when you name a method’s formal parameter, you should be as descriptive as possible when naming a type parameter. Furthermore, to distinguish the parameter as being a type parameter, its name should include a T prefix. For example, in defining a class such as EntityCollection<TEntity> you use the type parameter name “TEntity.”

The only time you would not use a descriptive type parameter name is when the description would not add any value. For example, using “T” in the Stack<T> class is appropriate, since the indication that “T” is a type parameter is sufficiently descriptive; the stack works for any type.

In the next section, you will learn about constraints. It is a good practice to use constraint-descriptive type names. For example, if a type parameter must implement IComponent, consider a type name of “TComponent.”

Guidelines

DO choose meaningful names for type parameters and prefix the name with “T”.

CONSIDER indicating a constraint in the name of a type parameter.

Generic Interfaces and Structs

C# supports the use of generics throughout the language, including interfaces and structs. The syntax is identical to that used by classes. To declare an interface with a type parameter, place the type parameter in angle brackets immediately after the interface name, as shown in the example of IPair<T> in Listing 11.8.

Listing 11.8. Declaring a Generic Interface

Click here to view code image

interface IPair<T>
{
 T First { get; set; }
 T Second { get; set; }
}

This interface represents pairs of like objects, such as the coordinates of a point, a person’s genetic parents, or nodes of a binary tree. The type contained in the pair is the same for both items.

To implement the interface, you use the same syntax as you would for a nongeneric class. Note that it is legal, and indeed common, for the type argument for one generic type to be a type parameter of another, as shown in Listing 11.9. The type argument of the interface is the type parameter declared by the class. In addition, this example uses a struct rather than a class, demonstrating that C# supports custom generic value types.

Listing 11.9. Implementing a Generic Interface

Click here to view code image

public struct Pair<T>: IPair<T>
{
 public T First
 {
 get
 {
 return _First;
 }
 set
 {
 _First = value;
 }
 }
 private T _First;

 public T Second
 {
 get
 {
 return _Second;
 }
 set
 {
 _Second = value;
 }
 }
 private T _Second;
}

Support for generic interfaces is especially important for collection classes, where generics are most prevalent. Before generics, developers relied on a series of interfaces within the System.Collections namespace. Like their implementing classes, these interfaces worked only with type object, and as a result, the interface forced all access to and from these collection classes to require a cast. By using type-safe generic interfaces, you can avoid cast operations.

Advanced Topic: Implementing the Same Interface Multiple Times on a Single Class

Two different constructions of the same generic interface are considered to be different types, and therefore, “the same” generic interface can be implemented multiple times by a class or struct. Consider the example in Listing 11.10.

Listing 11.10. Duplicating an Interface Implementation on a Single Class

Click here to view code image

public interface IContainer<T>
{
 ICollection<T> Items
 {
 get;
 set;
 }
}

public class Person: IContainer<Address>,
 IContainer<Phone>, IContainer<Email>
{

 ICollection<Address> IContainer<Address>.Items

 {
 get{...}
 set{...}
 }

 ICollection<Phone> IContainer<Phone>.Items

 {
 get{...}
 set{...}
 }

 ICollection<Email> IContainer<Email>.Items

 {
 get{...}
 set{...}
 }
}

In this example, the Items property appears multiple times using an explicit interface implementation with a varying type parameter. Without generics, this is not possible, and instead, the compiler would allow only one explicit IContainer.Items property.

However, this technique of implementing multiple versions of “the same” interface is considered by many to be a “bad code smell” because it is potentially confusing (particularly if the interface permits covariant or contravariant conversions). Moreover, the Person class here seems potentially badly designed; one does not normally think of a person as being “a thing that can provide a set of email addresses.” When you feel tempted to make a class implement three versions of the same interface, consider whether it might be better to make it instead implement three properties: EmailAddresses, PhoneNumbers, and MailingAddresses, which each return the appropriate construction of the generic interface.

Guidelines

AVOID implementing multiple constructions of the same generic interface in one type.

Defining a Constructor and a Finalizer

Perhaps surprisingly, the constructors (and finalizer) of a generic class or struct do not require type parameters (in other words, they do not require Pair<T>(){...}). In the pair example in Listing 11.11, the constructor is declared using public Pair(T first, T second).

Listing 11.11. Declaring a Generic Type’s Constructor

Click here to view code image

public struct Pair<T>: IPair<T>
{

 public Pair(T first, T second)
 {
 _First = first;
 _Second = second;
 }

 public T First
 {
 get{ return _First; }
 set{ _First = value; }
 }
 private T _First;

 public T Second
 {
 get{ return _Second; }
 set{ _Second = value; }
 }
 private T _Second;
}

Specifying a Default Value

Listing 11.11 included a constructor that takes the initial values for both First and Second, and assigns them to _First and _Second. Since Pair<T> is a struct, any constructor you provide must initialize all fields. This presents a problem, however. Consider a constructor for Pair<T> that initializes only half of the pair at instantiation time.

Defining such a constructor, as shown in Listing 11.12, causes a compile error because the field _Second is still uninitialized at the end of the constructor. Providing initialization for _Second presents a problem since you don’t know the data type of T. If it is a reference type, null would work, but this would not work if T were a non-nullable value type.

Listing 11.12. Not Initializing All Fields, Causing a Compile Error

Click here to view code image

public struct Pair<T>: IPair<T>
{
 // ERROR: Field 'Pair<T>._second' must be fully assigned
 // before control leaves the constructor
 // public Pair(T first)
 // {
 // _First = first;
 // }

 // ...
}

To deal with this scenario, C# provides the default operator, first discussed in Chapter 8. In Chapter 8, we showed how the default value of int could be specified with default(int). In the case of T, which _Second requires, you can use default(T) as shown in Listing 11.13.

Listing 11.13. Initializing a Field with the default Operator

Click here to view code image

public struct Pair<T>: IPair<T>
{
 public Pair(T first)
 {
 _First = first;

 _Second = default(T);

 }

 // ...
}

The default operator can provide the default value for any type, including type parameters.

Multiple Type Parameters

Generic types may declare any number of type parameters. The initial Pair<T> example contains only one type parameter. To enable support for storing a dichotomous pair of objects, such as a name/value pair, you could create a new version of the type that declares two type parameters, as shown in Listing 11.14.

Listing 11.14. Declaring a Generic with Multiple Type Parameters

Click here to view code image

interface IPair<TFirst, TSecond>
{
 TFirst First { get; set; }
 TSecond Second { get; set; }
}

public struct Pair<TFirst, TSecond>: IPair<TFirst, TSecond>
{
 public Pair(TFirst first, TSecond second)
 {
 _First = first;
 _Second = second;
 }

 public TFirst First
 {
 get{ return _First; }
 set{ _First = value; }
 }
 private TFirst _First;

 public TSecond Second
 {
 get{ return _Second; }
 set{ _Second = value; }
 }
 private TSecond _Second;
}

When you use the Pair<TFirst, TSecond> class, you supply multiple type parameters within the angle brackets of the declaration and instantiation statements, and then you supply matching types to the parameters of the methods when you call them, as shown in Listing 11.15.

Listing 11.15. Using a Type with Multiple Type Parameters

Click here to view code image

Pair<int, string> historicalEvent =
 new Pair<int, string>(1914,
 "Shackleton leaves for South Pole on ship Endurance");
Console.WriteLine("{0}: {1}",
 historicalEvent.First, historicalEvent.Second);

The number of type parameters, the arity, uniquely distinguishes the class from others of the same name. Therefore, it is possible to define both Pair<T> and Pair<TFirst, TSecond> within the same namespace because of the arity variation. Furthermore, because of their close semantic relationship, generics that differ only by arity should be placed into the same C# file.

Guidelines

DO place multiple generic classes into a single file if they only differ by the number of generic parameters.

Arity in Abundance

In C# 4.0 the CLR team defined nine new generic types all called Tuple. As with Pair<...>, it was possible to reuse the same name because of the variation in arity (each class had a different number of type parameters) as shown in Listing 11.16.

Listing 11.16. Using Arity to Overload a Type Definition

Click here to view code image

public class Tuple { ... }
public class Tuple<T1>:
 IStructuralEquatable, IStructuralComparable, IComparable {...}
public class Tuple<T1, T2>: ... {...}
public class Tuple<T1, T2, T3>: ... {...}
public class Tuple<T1, T2, T3, T4>: ... {...}
public class Tuple<T1, T2, T3, T4, T5>: ... {...}
public class Tuple<T1, T2, T3, T4, T5, T6>: ... {...}
public class Tuple<T1, T2, T3, T4, T5, T6, T7>: ... {...}
public class Tuple<T1, T2, T3, T4, T5, T6, T7, TRest>: ... {...}

The Tuple<...> set of classes was designed for the same purpose as the Pair<T> and Pair<TFirst, TSecond> classes, except together they can handle seven type arguments. In fact, using the last Tuple shown in Listing 11.16, TRest can be used to store another Tuple, making the number of elements of the tuple practically unlimited.

Another interesting member of the tuple family of classes is the nongeneric Tuple class. This class has eight static “factory” methods for instantiating the various generic tuple types. Although each generic type could be instantiated directly using its constructor, the Tuple type’s factory methods allow for inference of the type arguments. Listing 11.17 shows the difference.

Listing 11.17. Using a Tuple’s Create() Factory Methods

Click here to view code image

Tuple<string, Contact> keyValuePair;
keyValuePair =

 Tuple.Create(

 "555-55-5555", new Contact("Inigo Montoya"));
keyValuePair =

 new Tuple<string, Contact>(

 "555-55-5555", new Contact("Inigo Montoya"));

Obviously, when the Tuple gets large, the number of type parameters to specify could be cumbersome without the Create() factory methods.

As you might have deduced from the fact that the framework libraries declare eight different generic tuple types, there is no support in the CLR type system for what are called “variadic” generic types. Methods can take an arbitrary number of arguments by using “parameter arrays,” but there is no corresponding technique for generic types; every generic type must be of a specific arity.

Nested Generic Types

Type parameters on a containing generic type will “cascade” down to any nested types automatically. If the containing type declares a type parameter T, for example, all nested types will also be generic and type parameter T will be available on the nested type as well. If the nested type includes its own type parameter named T, this will hide the type parameter within the containing type and any reference to T in the nested type will refer to the nested T type parameter. Fortunately, reuse of the same type parameter name within the nested type will cause a compiler warning to prevent accidental overlap (see Listing 11.18).

Listing 11.18. Nested Generic Types

Click here to view code image

class Container<T, U>
{
 // Nested classes inherit type parameters.
 // Reusing a type parameter name will cause
 // a warning.
 class Nested<U>
 {

 void Method(T param0, U param1)

 {
 }
 }
}

The containing type’s type parameters are accessible in the nested type the same way that members of the containing type are also accessible from the nested type. The rule is simply that a type parameter is available anywhere within the body of the type that declares it.

Guidelines

AVOID shadowing a type parameter of an outer type with an identically named type parameter of a nested type.

Constraints

Generics support the ability to define constraints on type parameters. These constraints ensure that the types provided as type arguments conform to various rules. Take, for example, the BinaryTree<T> class shown in Listing 11.19.

Listing 11.19. Declaring a BinaryTree<T> Class with No Constraints

Click here to view code image

public class BinaryTree<T>
{
 public BinaryTree (T item)
 {
 Item = item;
 }

 public T Item
 {
 get{ return _Item; }
 set{ _Item = value; }
 }
 private T _Item;

 public Pair<BinaryTree<T>> SubItems
 {
 get{ return _SubItems; }
 set{ _SubItems = value; }
 }
 private Pair<BinaryTree<T>> _SubItems;
}

(An interesting side note is that BinaryTree<T> uses Pair<T> internally, which is possible because Pair<T> is simply another type.)

Suppose you want the tree to sort the values within the Pair<T> value as it is assigned to the SubItems property. In order to achieve the sorting, the SubItems set accessor uses the CompareTo() method of the supplied key, as shown in Listing 11.20.

Listing 11.20. Needing the Type Parameter to Support an Interface

Click here to view code image

public class BinaryTree<T>
{
 // ...
 public Pair<BinaryTree<T>> SubItems
 {
 get{ return _SubItems; }
 set
 {

 IComparable<T> first;
 // ERROR: Cannot implicitly convert type...
 first = value.First; // Explicit cast required

 if (first.CompareTo(value.Second) < 0)
 {
 // first is less than second.
 // ...
 }
 else
 {
 // first and second are the same or
 // second is less than first.
 // ...
 }
 _SubItems = value;

 }
 }
 private Pair<BinaryTree<T>> _SubItems;
}

At compile time, the type parameter T is an unconstrained generic. When the code is written as shown, the compiler assumes that the only members available on T are those inherited from the base type object, since every type has object as a base class. Only methods such as ToString(), therefore, are available to call on an instance of the type parameter T. As a result, the compiler displays a compilation error because the CompareTo() method is not defined on type object.

You can cast the T parameter to the IComparable<T> interface in order to access the CompareTo() method, as shown in Listing 11.21.

Listing 11.21. Needing the Type Parameter to Support an Interface or Exception Thrown

Click here to view code image

public class BinaryTree<T>
{
 ...
 public Pair<BinaryTree<T>> SubItems
 {
 get{ return _SubItems; }
 set
 {
 IComparable<T> first;

 first = (IComparable<T>)value.First.Item;

 if (first.CompareTo(value.Second.Item) < 0)

 {
 // first is less than second.
 ...
 }
 else
 {
 // second is less than or equal to first.
 ...
 }
 _SubItems = value;
 }
 }
 private Pair<BinaryTree<T>> _SubItems;
}

Unfortunately, however, if you now declare a BinaryTree<SomeType> class variable but the type argument does not implement the IComparable<SomeType> interface, you encounter an execution-time error—specifically, an InvalidCastException. This defeats a key reason for having generics in the first place: to improve type safety.

To avoid this exception and instead provide a compile-time error if the type argument does not implement the interface, C# enables you to supply an optional list of constraints for each type parameter declared in the generic type. A constraint declares the characteristics that the generic type requires of the type argument supplied for each type parameter. You declare a constraint using the where keyword, followed by a “parameter-requirements” pair, where the parameter must be one of those declared in the generic type and the requirements describe the class or interfaces to which the type argument must be convertible, the presence of a default constructor, or a reference/value type restriction.

Interface Constraints

In order to ensure that the binary tree has its nodes correctly ordered, you need to use the CompareTo() method in the BinaryTree class. To do this most effectively, you impose a constraint on the T type parameter. You need the T type parameter to implement the IComparable<T> interface. The syntax for this appears in Listing 11.22.

Listing 11.22. Declaring an Interface Constraint

Click here to view code image

public class BinaryTree<T>

 where T: System.IComparable<T>

{
 ...
 public Pair<BinaryTree<T>> SubItems
 {
 get{ return _SubItems; }
 set
 {
 IComparable<T> first;

 // Notice that the cast can now be eliminated.
 first = value.First.Item;

 if (first.CompareTo(value.Second.Item) < 0)

 {
 // first is less than second
 ...
 }
 else
 {
 // second is less than or equal to first.
 ...
 }
 _SubItems = value;
 }
 }
 private Pair<BinaryTree<T>> _SubItems;
}

Language Contrast: C++—Templates

It is interesting to note that Microsoft’s CLI support in C++ includes both generics and C++ templates because of the distinct characteristics of each.

Generics in C# and the CLR differ from similar constructs in other languages. Although other languages provide similar functionality, C# is significantly more type-safe. Generics in C# are a language feature and a platform feature—the underlying 2.0 runtime contains deep support for generics in its engine.

C++ templates differ significantly from C# generics; the fundamental difference is that C++ templates are compiled anew once for every type argument provided. The analysis of templatized code is almost exactly as though you had done a “search and replace,” replacing the type parameter with the type argument, and compiled the resultant code. C# generics, on the other hand, compile the generic class to CIL once. C# takes advantage of the fact that generic types are a part of the CIL language. At runtime, the CLR’s “just in time” compiler generates specialized code anew when a generic type has a value type for a type argument, though it cleverly reuses the generated code every time a type argument is a reference type.

Because C++ templates are reanalyzed anew at compile time for each type argument, there is no need for generic constraints; there is no requirement to prove to the compiler that the templatized code will work correctly for any type argument, only for the type arguments that are actually used.

An advantage of the C++ template strategy is that operators (+, -, and so on) may be used on the type argument. When type arguments are substituted in, the code will be analyzed anew to ensure that the type supplied is one that supports the operator, or will produce an error if it does not. (And unfortunately, typically the error is reported where the error would be in the substituted code, not where the bad type argument is used.) C# does not support the calling of operators on the type parameter because operators are static—they can’t be identified by interfaces or base class constraints.

In short, C++ template errors are discovered and reported only when using the template with a particular bad type argument, not when defining it. Because C# generics can declare constraints, the compiler can prevent such errors when defining the generic, thereby identifying invalid assumptions sooner. Furthermore, when using a generic type with a type argument that does not meet the constraints, the error will point to the type usage, not to some location in the generic implementation.

It is interesting to note that Microsoft’s CLI support in C++ includes both generics and C++ templates because of the distinct characteristics of each.

When given the interface constraint addition in Listing 11.22, the compiler ensures that each time you use the BinaryTree<T> class you specify a type parameter that implements the corresponding construction of the IComparable<T> interface. Furthermore, you no longer need to explicitly cast the variable to an IComparable<T> interface before calling the CompareTo() method. Casting is not even required to access members that use explicit interface implementation, which in other contexts would hide the member without a cast. When calling a method on a value typed as a generic type parameter, the compiler checks to see if the method matches any method on any of the interfaces declared as constraints.

If you tried to create a BinaryTree<T> variable using System.Text.StringBuilder as the type parameter, you would receive a compiler error because StringBuilder does not implement IComparable<StringBuilder>. The error is similar to the one shown in Output 11.3.

Output 11.3.

Click here to view code image

error CS0311: The type 'System.Text.StringBuilder' cannot be used as type
parameter 'T' in the generic type or method 'BinaryTree<T>'. There is no
implicit reference conversion from 'System.Text.StringBuilder' to
'System.IComparable<System.Text.StringBuilder>'.

To specify an interface for the constraint you declare an interface type constraint. This constraint even circumvents the need to cast in order to call an explicit interface member implementation.

Class Type Constraints

Sometimes you might want to constrain a type argument to be convertible to a particular class type. You do this using a class type constraint, as shown in Listing 11.23.

Listing 11.23. Declaring a Class Type Constraint

Click here to view code image

public class EntityDictionary<TKey, TValue>
 : System.Collections.Generic.Dictionary<TKey, TValue>
 where TValue : EntityBase
{
 ...
}

EntityDictionary<TKey, TValue> requires that all type arguments provided for the type parameter TValue be implicitly convertible to the EntityBase class. By requiring the conversion, it is possible to use the members of EntityBase on values of type TValue within the generic implementation, because the constraint will ensure that all type arguments can be implicitly converted to the EntityBase class.

The syntax for the class type constraint is the same as that for the interface type constraint, except that class type constraints must appear before any interface type constraints (just as the base class must appear before implemented interfaces in a class declaration). However, unlike interface constraints, multiple base class constraints are not allowed since it is not possible to derive from multiple unrelated classes. Similarly, base class constraints cannot specify sealed classes or nonclass types. For example, C# does not allow a type parameter to be constrained to string or System.Nullable<T> because there would then be only one possible type argument for that type parameter; that’s hardly “generic.” If the type parameter is constrained to a single type, there is no need for the type parameter in the first place; just use that type directly.

Certain “special” types are not legal as class type constraints: See the Advanced Topic Constraint Limitations, later in this chapter, for details.

struct/class Constraints

Another valuable generic constraint is the ability to restrict type arguments to be any non-nullable value type or any reference type. Instead, C# provides special syntax that works for reference types as well. Rather than specifying a class from which T must derive, you simply use the keyword struct or class, as shown in Listing 11.24.

Listing 11.24. Specifying the Type Parameter As a Value Type

Click here to view code image

public struct Nullable<T> :
 IFormattable, IComparable,
 IComparable<Nullable<T>>, INullable

 where T : struct

{
 // ...
}

Note that the class constraint somewhat confusingly does not restrict the type argument to class types; it restricts it to reference types. A type argument supplied for a type parameter constrained with the class constraint may be any class, interface, delegate, or array type.

Because a class type constraint requires a particular class, using a struct or class constraint with a class type constraint would be pointless and confusing. Therefore, you cannot combine struct and class constraints.

There is one special characteristic for the struct constraint: Nullable value types do not satisfy the constraint. Why? Nullable value types are implemented as the generic type Nullable<T>, which itself applies the struct constraint to T. If nullable value types satisfied that constraint, it would be possible to define the nonsense type Nullable<Nullable<int>>. A doubly nullable integer is confusing to the point of being meaningless. (As expected, the shorthand syntax int?? is also disallowed.)

Multiple Constraints

For any given type parameter, you may specify any number of interface type constraints, but no more than one class type constraint (just as a class may implement any number of interfaces but inherit from only one other class). Each new constraint is declared in a comma-delimited list following the generic type parameter and a colon. If there is more than one type parameter, each must be preceded by the where keyword. In Listing 11.25, the generic EntityDictionary class declares two type parameters: TKey and TValue. The TKey type parameter has two interface type constraints, and the TValue type parameter has one class type constraint.

Listing 11.25. Specifying Multiple Constraints

Click here to view code image

public class EntityDictionary<TKey, TValue>
 : Dictionary<TKey, TValue>
 where TKey : IComparable<TKey>, IFormattable
 where TValue : EntityBase
{
 ...
}

In this case, there are multiple constraints on TKey itself and an additional constraint on TValue. When specifying multiple constraints on one type parameter, an AND relationship is assumed. If a type C is supplied as the type argument for TKey, C must implement IComparable<C> and IFormattable, for example.

Notice there is no comma between each where clause.

Constructor Constraints

In some cases, it is desirable to create an instance of the type argument’s type inside the generic class. In Listing 11.26, the MakeValue() method for the EntityDictionary<TKey, TValue> class must create an instance of the type argument corresponding to type parameter TValue.

Listing 11.26. Requiring a Default Constructor Constraint

Click here to view code image

public class EntityBase<TKey>
{
 public TKey Key
 {
 get{ return _Key; }
 set{ _Key = value; }
 }
 private TKey _Key;
}

public class EntityDictionary<TKey, TValue> :
 Dictionary<TKey, TValue>
 where TKey: IComparable<TKey>, IFormattable

 where TValue : EntityBase<TKey>, new()

{
 // ...

 public TValue MakeValue(TKey key)
 {

 TValue newEntity = new TValue();

 newEntity.Key = key;
 Add(newEntity.Key, newEntity);
 return newEntity;
 }

 // ...
}

Because not all objects are guaranteed to have public default constructors, the compiler does not allow you to call the default constructor on an unconstrained type parameter. To override this compiler restriction, you add the text new() after all other constraints are specified. This text is a constructor constraint, and it requires the type argument corresponding to the constrained type parameter to have a public default constructor. Only the default constructor constraint is available. You cannot specify a constraint that ensures that the type argument supplied provides a constructor that takes formal parameters.

Constraint Inheritance

Neither generic type parameters nor their constraints are inherited by a derived class, because generic type parameters are not members. (Remember, class inheritance is the property that the derived class has all of the members of the base class.) It is a common practice to make new generic types that inherit from other generic types. Since the type parameters of the derived generic type are now the type arguments of the generic base class, the type parameters must have equal (or stronger) constraints as those on the base class. Confused? Consider Listing 11.27.

Listing 11.27. Inherited Constraints Specified Explicitly

Click here to view code image

class EntityBase<T> where T : IComparable<T>
{
 // ...
}

// ERROR:
// The type 'U' must be convertible to
// 'System.IComparable<U>' in order to use it as parameter
// 'T' in the generic type or method.
// class Entity<U> : EntityBase<U>
// {
// ...
// }

EntityBase<T> requires that the type argument U supplied for T by the base class specifier EntityBase<U> implement IComparable<U>. Therefore, the Entity<U> class needs to require the same constraint on U. Failure to do so will result in a compile error. This increases a programmer’s awareness of the base class’s type constraint in the derived class, avoiding confusion when using the derived class and discovering the constraint but not understanding where it comes from.

We have not covered generic methods yet; we’ll get to them later in this chapter. But briefly, methods may also be generic and may also place constraints on the type arguments supplied for their type parameters. How, then, are constraints handled when a virtual generic method is inherited and overridden? In contrast to the situation with type parameters declared on a generic class, constraints on overriding virtual generic methods (or explicit interface) methods are inherited implicitly and may not be restated (see Listing 11.28).

Listing 11.28. Repeating Inherited Constraints on Virtual Members Is Prohibited

Click here to view code image

class EntityBase
{
 public virtual void Method<T>(T t)
 where T : IComparable<T>
 {
 // ...
 }

}

class Order : EntityBase
{
 public override void Method<T>(T t)
 // Constraints may not be repeated on overriding
 // members
 // where T : IComparable<T>
 {
 // ...
 }
}

In the generic class inheritance case, the type parameter on the derived class can be additionally constrained by adding not only the constraints on the base class (required), but also additional constraints as well. However, overriding virtual generic methods need to conform exactly to the constraints defined by the base class method. Additional constraints could break polymorphism, so they are not allowed and the type parameter constraints on the overriding method are implied.

Advanced Topic: Constraint Limitations

Constraints are appropriately limited to avoid nonsensical code. For example, you cannot combine a class type constraint with a struct or class constraint. Also, you cannot specify constraints to restrict inheritance to special types such as object, arrays, System.ValueType, System.Enum (enum), System.Delegate, and System.MulticastDelegate.

In some cases, constraint limitations are perhaps more desirable, but they still are not supported. The following subsections provide some additional examples of constraints that are not allowed.

Operator Constraints Are Not Allowed

You cannot constrain a type parameter to a type that implements a particular method or operator, except via interface type constraints (for methods) or class type constraints (for methods and operators). Because of this, the generic Add() in Listing 11.29 does not work.

Listing 11.29. Constraint Expressions Cannot Require Operators

Click here to view code image

public abstract class MathEx<T>
{
 public static T Add(T first, T second)
 {
 // Error: Operator '+' cannot be applied to
 // operands of type 'T' and 'T'.
 // return first + second;
 }
}

In this case, the method assumes that the + operator is available on all types that could be supplied as type arguments for T. But there is no constraint that prevents you from supplying a type argument that does not have an associated addition operator, so an error occurs. Unfortunately, there is no way to specify that an addition operator is required within a constraint, aside from using a class type constraint where the class type implements an addition operator.

More generally, there is no way to constrain a type to have a static method.

OR Criteria Are Not Supported

If you supply multiple interfaces or class constraints for a type parameter, the compiler always assumes an AND relationship between constraints. For example, where T : IComparable<T>, IFormattable requires that both IComparable<T> and IFormattable are supported. There is no way to specify an OR relationship between constraints. Hence, an equivalent of Listing 11.30 is not supported.

Listing 11.30. Combining Constraints Using an OR Relationship Is Not Allowed

Click here to view code image

public class BinaryTree<T>
 // Error: OR is not supported.
 // where T: System.IComparable<T> || System.IFormattable
{
 ...
}

Supporting this would prevent the compiler from resolving which method to call at compile time.

Constraints of Type Delegate and Enum Are Not Valid

Delegate types, array types, and enumerated types may not be used as class type constraints, because they are all effectively “sealed” types. (If you are not familiar with delegate types, see Chapter 12.) Their base types, System.Delegate, System.MultiCastDelegate, System.Array, and System.Enum, may also not be used as constraints. For example, the compiler will output an error for the class declaration in Listing 11.31.

Listing 11.31. Inheritance Constraints Cannot Be of Type System.Delegate

Click here to view code image

// Error: Constraint cannot be special class 'System.Delegate'
public class Publisher<T>
 where T : System.Delegate
{
 public event T Event;
 public void Publish()
 {
 if (Event != null)
 {
 Event(this, new EventArgs());
 }
 }
}

All delegate types are considered special classes that cannot be specified as type parameters. Doing so would prevent compile-time validation on the call to Event() because the signature of the event firing is unknown with the data types System.Delegate and System.MulticastDelegate. The same restriction occurs for any enum type.

Constructor Constraints Are Allowed Only for Default Constructors

Listing 11.26 includes a constructor constraint that forces the type argument supplied for TValue to provide a public parameterless constructor. There is no constraint to force the type argument to provide a constructor that takes other formal parameters. For example, you might want to constrain TValue so that the type argument provided for TValue must provide a constructor that takes the type argument provided for TKey, but this is not possible. Listing 11.32 demonstrates the invalid code.

Listing 11.32. Constructor Constraints Can Be Specified Only for Default Constructors

Click here to view code image

 public TValue New(TKey key)
 {

 // Error: 'TValue': Cannot provide arguments
 // when creating an instance of a variable type.
 TValue newEntity = null;
 // newEntity = new TValue(key);

 Add(newEntity.Key, newEntity);
 return newEntity;
 }

One way to circumvent this restriction is to supply a factory interface that includes a method for instantiating the type. The factory implementing the interface takes responsibility for instantiating the entity rather than the EntityDictionary itself (see Listing 11.33).

Listing 11.33. Using a Factory Interface in Place of a Constructor Constraint

Click here to view code image

public class EntityBase<TKey>
{

 public EntityBase(TKey key)
 {
 Key = key;
 }

 public TKey Key
 {
 get { return _key; }
 set { _key = value; }
 }
 private TKey _key;
}

public class EntityDictionary<TKey, TValue, TFactory> :
 Dictionary<TKey, TValue>
 where TKey : IComparable<TKey>, IFormattable

 where TValue : EntityBase<TKey>
 where TFactory : IEntityFactory<TKey, TValue>, new()

{
 ...
 public TValue New(TKey key)
 {
 TFactory factory = new TFactory();

 TValue newEntity = factory.CreateNew(key);

 Add(newEntity.Key, newEntity);
 return newEntity;
 }
 ...
}

public interface IEntityFactory<TKey, TValue>
{
 TValue CreateNew(TKey key);
}

...

A declaration such as this allows you to pass the new key to a TValue factory method that takes parameters, rather than relying on the default constructor. It no longer uses the constructor constraint on TValue because TFactory is responsible for instantiating value. (One modification to the code in Listing 11.33 would be to save a reference to the factory. This would enable you to reuse the factory instead of reinstantiating it every time.)

A declaration for a variable of type EntityDictionary<TKey, TValue, TFactory> would result in an entity declaration similar to the Order entity in Listing 11.34.

Listing 11.34. Declaring an Entity to Be Used in EntityDictionary<...>

Click here to view code image

public class Order : EntityBase<Guid>
{
 public Order(Guid key) :
 base(key)
 {
 // ...
 }
}

public class OrderFactory : IEntityFactory<Guid, Order>
{
 public Order CreateNew(Guid key)
 {
 return new Order(key);
 }
}

Generic Methods

You already learned that it is relatively simple to add a method to a type when the type is generic, and that method can use the generic type parameters declared by the type. You did this in the generic class examples so far.

Generic methods are methods that use generic type parameters much as generic types do. They can be declared in generic or nongeneric types, and if declared in a generic type, their type parameters are distinct from those of their containing generic type. To declare a generic method, you specify the generic type parameters the same way you do for generic types: Add the type parameter declaration syntax immediately following the method name, as shown in the MathEx.Max<T> and MathEx.Min<T> examples in Listing 11.35.

Listing 11.35. Defining Generic Methods

Click here to view code image

public static class MathEx
{
 public static T Max<T>(T first, params T[] values)
 where T : IComparable<T>
 {
 T maximum = first;
 foreach (T item in values)
 {
 if (item.CompareTo(maximum) > 0)
 {
 maximum = item;
 }
 }
 return maximum;
 }

 public static T Min<T>(T first, params T[] values)
 where T : IComparable<T>
 {
 T minimum = first;

 foreach (T item in values)
 {
 if (item.CompareTo(minimum) < 0)
 {
 minimum = item;
 }
 }
 return minimum;
 }
}

In this example, the method is static but C# does not require this.

Note that generic methods, like generic types, can include more than one type parameter. The arity (the number of type parameters) is an additional distinguishing characteristic of a method signature. That is to say, it is legal to have two methods that are identical in their names and formal parameter types, as long as they differ in method type parameter arity.

Generic Method Type Inference

Just as type arguments are provided after the type name when using a generic type, the method type arguments are provided after the method type name. The code used to call the Min<T> and Max<T> methods looks like that shown in Listing 11.36.

Listing 11.36. Specifying the Type Parameter Explicitly

Click here to view code image

Console.WriteLine(
 MathEx.Max<int>(7, 490));
Console.WriteLine(
 MathEx.Min<string>("R.O.U.S.", "Fireswamp"));

The output to Listing 11.36 appears in Output 11.4.

Output 11.4.

490
Fireswamp

Not surprisingly, the type arguments, int and string, correspond to the actual types used in the generic method calls. However, specifying the type arguments is redundant because the compiler can infer the type parameters from the formal parameters passed to the method. Clearly, the caller of Max in Listing 11.36 intends the type argument to be int because both of the method arguments are of type int. To avoid redundancy, you can exclude the type parameters from the call in all cases when the compiler is able to logically infer what type arguments you must have intended. This is known as method type inference, and an example appears in Listing 11.37. The output appears in Output 11.5.

Listing 11.37. Inferring the Type Argument from the Arguments

Click here to view code image

Console.WriteLine(
 MathEx.Max(7, 490)); // No type arguments!
Console.WriteLine(
 MathEx.Min("R.O.U.S'", "Fireswamp"));

Output 11.5.

490
Fireswamp

For method type inference to succeed, the types of the arguments must be “matched” with the formal parameters of the generic method in such a way that the desired type arguments can be inferred. An interesting question to consider is what happens when contradictory inferences are made. For example, calling the Max<T> method using MathEx.Max(7.0, 490) could deduce from the first argument that the type argument should be double, and deduce from the second argument that the type argument is int, a contradiction. In C# 2.0, this would have produced an error. A more sophisticated analysis would notice that the contradiction can be resolved because every int can be converted to double, so double is the best choice for the type argument. C# 3.0 and C# 4.0 both included improvements to the method type inferencing algorithm that permit the compiler to make these more sophisticated analyses.

In cases where method type inference is still not sophisticated enough to deduce the type arguments, you can resolve the error by either inserting casts on the arguments that clarify to the compiler the argument types that should be used in the inferences, or giving up on type inferencing and including the type arguments explicitly.

Also note that when making its inferences, the method type inference algorithm considers only the arguments, the arguments’ types, and the formal parameter types of the generic method. Other factors that could in practice be used in the analysis—such as the return type of the generic method, the type of the variable that the method’s returned value is being assigned to, or the constraints on the method’s generic type parameters—are not considered at all by the method type inference algorithm.

Specifying Constraints

Type parameters of generic methods may be constrained in exactly the same way that type parameters of generic types are constrained. For example, you can restrict a method’s type parameter to implement an interface, or be convertible to a class type. The constraints are specified between the argument list and the method body, as shown in Listing 11.38.

Listing 11.38. Specifying Constraints on Generic Methods

Click here to view code image

public class ConsoleTreeControl
{
 // Generic method Show<T>
 public static void Show<T>(BinaryTree<T> tree, int indent)
 where T : IComparable<T>

 {
 Console.WriteLine("\n{0}{1}",
 "+ --".PadLeft(5*indent, ' '),
 tree.Item.ToString());
 if (tree.SubItems.First != null)
 Show(tree.SubItems.First, indent+1);
 if (tree.SubItems.Second != null)
 Show(tree.SubItems.Second, indent+1);
 }
}

Notice that the Show<T> implementation itself does not directly use any member of the IComparable<T> interface, so you might wonder why the constraint is required. Recall, however, that the BinaryTree<T> class did require this (see Listing 11.39).

Listing 11.39. BinaryTree<T> Requiring IComparable<T> Type Parameters

Click here to view code image

public class BinaryTree<T>

 where T: System.IComparable<T>

{
 ...
}

Because the BinaryTree<T> class requires this constraint on its T, and because Show<T> uses its T as a type argument corresponding to a constrained type parameter, Show<T> needs to ensure that the class’s type parameter’s constraint is met on its method type argument.

Advanced Topic: Casting inside a Generic Method

Sometimes you should be wary of using generics—for instance, when using them specifically to bury a cast operation. Consider the following method, which converts a stream into an object of a given type:

Click here to view code image

public static T Deserialize<T>(
 Stream stream, IFormatter formatter)
{
 return (T)formatter.Deserialize(stream);
}

The formatter is responsible for removing data from the stream and converting it to an object. The Deserialize() call on the formatter returns data of type object. A call to use the generic version of Deserialize() looks something like this:

Click here to view code image

string greeting =
 Deserialization.Deserialize<string>(stream, formatter);

The problem with this code is that to the caller of the method, Deserialize<T>() appears to be type-safe. However, a cast operation is still performed on behalf of the caller, as in the case of the nongeneric equivalent shown here:

Click here to view code image

string greeting =
 (string)Deserialization.Deserialize(stream, formatter);

The cast could fail at runtime; the method might not be as type-safe as it appears. The Deserialize<T> method is generic solely so that it can hide the existence of the cast from the caller, which seems dangerously deceptive. It might be better for the method to be nongeneric and return object, making the caller aware that it is not type-safe. Developers should use care when casting in generic methods if there are no constraints to verify cast validity.

Guidelines

AVOID misleading the caller with generic methods that are not as type-safe as they appear.

Covariance and Contravariance

A common question asked by new users of generic types is why an expression of type List<string> may not be assigned to a variable of type List<object>—if a string may be converted to type object, surely a list of strings is similarly compatible with a list of objects. But this is not, generally speaking, either type-safe or legal. If you declare two variables with different type parameters using the same generic class, the variables are not type-compatible even if they are assigning from a more specific type to a more generic type—in other words, they are not covariant.

Covariant is a technical term from category theory, but the idea is straightforward: Suppose two types X and Y have a special relationship, namely that every value of the type X may be converted to the type Y. If the types I<X> and I<Y> always also have that same special relationship, we say, “I<T> is covariant in T.” When dealing with simple generic types with only one type parameter, the type parameter can be understood and we simply say, “I<T> is covariant.” The conversion from I<X> to I<Y> is called a covariant conversion.

For example, instances of a generic class, Pair<Contact> and Pair<PdaItem>, are not type-compatible even when the type arguments are themselves compatible. In other words, the compiler prevents converting (implicitly or explicitly) Pair<Contact> to Pair<PdaItem>, even though Contact derives from PdaItem. Similarly, converting Pair<Contact> to the interface type IPair<PdaItem> will also fail. See Listing 11.40 for an example.

Listing 11.40. Conversion between Generics with Different Type Parameters

Click here to view code image

// ...
// Error: Cannot convert type ...
Pair<PdaItem> pair = (Pair<PdaItem>) new Pair<Contact>();
IPair<PdaItem> duple = (IPair<PdaItem>) new Pair<Contact>();

But why is this not legal? Why are List<T> and Pair<T> not covariant? Listing 11.41 shows what would happen if the C# language allowed unrestricted generic covariance.

Listing 11.41. Preventing Covariance Maintains Homogeneity

Click here to view code image

//...
Contact contact1 = new Contact("Princess Buttercup"),
Contact contact2 = new Contact("Inigo Montoya");
Pair<Contact> contacts = new Pair<Contact>(contact1, contact2);

// This gives an error: Cannot convert type ...
// But suppose it did not.
// IPair<PdaItem> pdaPair = (IPair<PdaItem>) contacts;
// This is perfectly legal, but not type safe.
// pdaPair.First = new Address("123 Sesame Street");

...

An IPair<PdaItem> can contain an address, but the object is really a Pair<Contact> that can only contain contacts, not addresses. Type safety is completely violated if unrestricted generic covariance is allowed

Now it should also be clear why a list of strings may not be used as a list of objects; you cannot insert an integer into a list of strings, but you can insert an integer into a list of objects, so it must be illegal to cast a list of strings to a list of objects so that this error can be prevented by the compiler.

Enabling Covariance with the out Type Parameter Modifier in C# 4.0

You might have noticed that both of the problems described above as consequences of unrestricted covariance arise because the generic pair and the generic list allow their contents to be written. Suppose we eliminated this possibility by making a read-only IReadOnlyPair<T> interface that only exposes T as coming “out” of the interface (that is, used as the return type of a method or read-only property) and never “into” it (that is, used as a formal parameter or writeable property type). If we restricted ourselves to an “out only” interface with respect to T, the covariance problem just described would not occur (see Listing 11.42).

Listing 11.42. Potentially Possible Covariance

Click here to view code image

interface IReadOnlyPair<T>
{
 T First { get; }
 T Second { get; }
}

interface IPair<T>
{
 T First { get; set; }
 T Second { get; set; }
}

public struct Pair<T> : IPair<T>, IReadOnlyPair<T>
{
 // ...
}

class Program
{
 static void Main()
 {
 // Error: Only theoretically possible without
 // the out type parameter modifier

 Pair<Contact> contacts =
 new Pair<Contact>(
 new Contact("Princess Buttercupt"),
 new Contact("Inigo Montoya"));
 IReadOnlyPair<PdaItem> pair = contacts;
 PdaItem pdaItem1 = pair.First;
 PdaItem pdaItem2 = pair.Second;

 }
}

By restricting the generic type declaration to only expose data out of the interface, there is no reason for the compiler to prevent covariance. All operations on an IReadOnlyPair<PdaItem> instance would convert Contacts (from the original Pair<Contact> object) up to the base class PdaItem—a perfectly valid conversion. There is no way to “write” an address into the object that is really a pair of contacts, because the interface does not expose any writeable properties.

The code above still does not compile. However, support for safe covariance was added to C# 4. To indicate that a generic interface is intended to be covariant in one of its type parameters, declare the type parameter with the out type parameter modifier. Listing 11.43 shows how to modify the interface declaration to indicate that it should be allowed to be covariant.

Listing 11.43. Covariance Using the out Type Parameter Modifier

Click here to view code image

...

interface IReadOnlyPair<out T>

{
 T First { get; }
 T Second { get; }
}

Modifying the type parameter on the IReadOnlyPair<out T> interface with out will cause the compiler to verify that indeed T is used only for “outputs”—method return types and read-only property return types—and never for formal parameters or property setters. From then on, the compiler will allow any covariant conversions involving the interface to succeed. With this modification made to the code in Listing 11.42, the code will now compile and execute successfully.

There are a number of important restrictions on covariant conversions.

• Only generic interfaces and generic delegates (described in Chapter 12) may be covariant. Generic classes and structs are never covariant.

• The varying type arguments of both the “source” and “target” generic types must be reference types, not value types. That is, an IReadOnlyPair<string> may be converted covariantly to IReadOnlyPair<object> because both string and IReadOnlyPair<object> are reference types. An IReadOnlyPair<int> may not be converted to IReadOnlyPair<object> because int is not a reference type.

• The interface or delegate must be declared as supporting covariance, and the compiler must be able to verify that the annotated type parameters are in fact used in only “output” positions.

Enabling Contravariance with the in Type Parameter Modifier in C# 4.0

Covariance that “goes backward” is called contravariance. Again, suppose two types X and Y are related such that every value of the type X may be converted to the type Y. If the types I<X> and I<Y> always have that same special relationship “backward”—that is, every value of the type I<Y> can be converted to the type I<X>—we say “I<T> is contravariant in T.”

Most people find that contravariance is much harder to comprehend than covariance is. The canonical example of contravariance is a comparer. Suppose you have a derived type, Apple, and a base type, Fruit. Clearly, they have the special relationship: Every value of type Apple may be converted to Fruit.

Now suppose you have an interface ICompareThings<T> that has a method bool FirstIsBetter(T t1, T t2) that takes two Ts, and returns a bool saying whether the first one is better than the second one.

What happens when we provide type arguments? An ICompareThings<Apple> has a method that takes two Apples and compares them. An ICompareThings<Fruit> has a method that takes two Fruits and compares them. But since every Apple is a Fruit, clearly a value of type ICompareThings<Fruit> can be safely used anywhere that an ICompareThings<Apple> is needed. The “direction” of the convertibility has been “reversed”; hence the name “contra-variance.”

Perhaps unsurprisingly, the opposite of the restrictions on a covariant interface are necessary to ensure safe contravariance. An interface that is contravariant in one of its type parameters must use that type parameter only in “input” positions such as formal parameters. (Or in the types of write-only properties, which are extremely rare.) You can mark an interface as being contravariant by declaring the type parameter with the in modifier, as shown in listing 11.44.

Listing 11.44. Contravariance Using the in Type Parameter Modifier

Click here to view code image

class Fruit {}
class Apple : Fruit {}
class Orange : Fruit {}

interface ICompareThings<in T>
{
 bool FirstIsBetter(T t1, T t2);

}

class Program
{
 class FruitComparer : ICompareThings<Fruit>
 { ... }
 static void Main()
 {
 // Allowed in C# 4.0
 ICompareThings<Fruit> fc = new FruitComparer();
 Apple apple1 = new Apple();
 Apple apple2 = new Apple();
 Orange orange = new Orange();
 // A fruit comparer can compare apples and oranges:
 bool b1 = fc.FirstIsBetter(apple1, orange);
 // or apples and apples:
 bool b2 = fc.FirstIsBetter(apple1, apple2);
 // This is legal because the interface is
 // contravariant:
 ICompareThings<Apple> ac = fc;
 // This is really a fruit comparer, so it can
 // compare two apples still.
 bool b3 = ac.FirstIsBetter(apple1, apple2);
 }
}

Notice that similar to covariance support, contravariance uses a type parameter modifier: in, on the interface’s type parameter declaration. This instructs the compiler to check that T never appears on a property getter or as the return type of a method, thus enabling contravariant conversions for this interface.

Contravariant conversions have all the analogous restrictions as described above for covariant conversions: They are only valid on generic interface and delegate types, the varying type arguments must be reference types, and the compiler must be able to verify that the interface is safe for the contravariant conversions.

An interface can be covariant in one type parameter and contravariant in the other. Imagine, for example, a device that can transform one thing into another described by the ITransformer<in TSource, out TTarget> interface defined in Listing 11.45.

Listing 11.45. Combining Covariance and Contravariance in a Single Generic Type

Click here to view code image

class Food {}
class Pizza : Food {}
class Salad : Food {}
class Document {}
class ComputerProgram : Document {}
interface ITransformer<in TSource, out TTarget>
{
 TTarget Transform(TSource source);
}
// A computer programmer is a device which transforms
// food into computer programs:

class Programmer : ITransformer<Food, ComputerProgram>
{
 public ComputerProgram Transform(Food f) { ... }
}
class Program
{
 static void Main()
 {
 var programmer = new Programmer();
 ComputerProgram cp = programmer.Transform(new Salad());
 // A computer programmer may be converted with
 // both co- and contra-variant conversions. Because
 // a programmer can turn any food into a computer
 // program, it can be used as a device that turns pizza
 // into documents.
 ITransformer<Pizza, Document> transformer = programmer;
 Document d = transformer.Transform(new Pizza());
 }
}

Lastly, note that the compiler will check validity of the covariance and contravariance type parameter modifiers throughout the source. Consider the PairInitializer<in T> interface in Listing 11.46.

Listing 11.46. Compiler Validation of Variance

Click here to view code image

// ERROR: Invalid variance, the type parameter 'T' is not
// invariantly valid
interface IPairInitializer<in T>
{
 void Initialize(IPair<T> pair);
}

// Suppose the code above were legal, and see what goes
// wrong:
class FruitPairInitializer : IPairInitializer<Fruit>
{
 // Let's initiaize our pair of fruit with an
 // apple and an orange.
 public void Initialize(IPair<Fruit> pair)
 {
 pair.First = new Orange();
 pair.Second = new Apple();
 }
}

 // ... later ...
 var f = new FruitPairInitializer();
 // This would be legal if contravariance were legal:
 IPairInitializer<Apple> a = f;
 // And now we write an orange into a pair of apples:
 a.Initialize(new Pair<Apple>());

A casual observer may be tempted to think that since IPair<T> is used only as an “input” formal parameter, the contravariant in modifier on IPairInitializer is valid. However, the IPair<T> interface cannot safely vary, and therefore, it cannot be constructed with a type argument that can vary. As you can see, this would not be type-safe, and therefore, the compiler disallows the IPairInitializer<T> interface from being declared as contravariant in the first place.

Support for Unsafe Covariance in Arrays

So far we have described covariance and contravariance as being properties of generic types. Of all the nongeneric types, arrays are most like generics; just as we think of a generic “list of T” or a generic “pair of T” we can think of an “array of T” as being the same sort of pattern. Since arrays clearly support both reading and writing, given what you know about covariance and contravariance, you probably would suppose that arrays may be neither safely contravariant nor covariant; an array can only be safely covariant if it is never written to, and only safely contravariant if it is never read from; neither seems like a realistic restriction.

Unfortunately, C# does support array covariance, even though doing so is not type-safe. For example, Fruit[] fruits = new Apple[10]; is perfectly legal in C#, and if you then say fruits[0] = new Orange();, the runtime will issue a type safety violation in the form of an exception. It is deeply disturbing that it is not always legal to assign an Orange into an array of Fruit because it might really be an array of Apples, but that is the situation in not just C#, but all CLR languages that use the runtime’s implementation of arrays.

Try to avoid using unsafe array covariance. Every array is convertible to the read-only (and therefore safely covariant) interface IEnumerable<T>; that is to say, IEnumerable<Fruit> fruits = new Apple[10] is both safe and legal because there is no way to insert an Orange into the array if all you have is the read-only interface.

Guidelines

AVOID unsafe array covariance. Instead, CONSIDER converting the array to the read-only interface IEnumerable<T>, which can be safely converted via covariant conversions.

Generic Internals

Given the discussions in earlier chapters about the prevalence of objects within the CLI type system, it is no surprise that generics are also objects. In fact, the type parameter on a generic class becomes metadata that the runtime uses to build appropriate classes when needed. Generics, therefore, support inheritance, polymorphism, and encapsulation. With generics, you can define methods, properties, fields, classes, interfaces, and delegates.

To achieve this, generics require support from the underlying runtime. So, the addition of generics to the C# language is a feature of both the compiler and the platform. To avoid boxing, for example, the implementation of generics is different for value-based type parameters than for generics with reference type parameters.

Advanced Topic: CIL Representation of Generics

When a generic class is compiled, it is not significantly different from a nongeneric class. The result of the compilation is nothing but metadata and CIL. The CIL is parameterized to accept a user-supplied type somewhere in code. Suppose you had a simple Stack class declared as shown in Listing 11.47.

Listing 11.47. Stack<T> Declaration

Click here to view code image

public class Stack<T> where T : IComparable
{
 T[] items;
 // rest of the class here

}

When you compile the class, the generated CIL is parameterized and looks something like Listing 11.48.

Listing 11.48. CIL Code for Stack<T>

Click here to view code image

.class private auto ansi beforefieldinit
 Stack'1<([mscorlib]System.IComparable)T>
 extends [mscorlib]System.Object
{
 ...
}

The first notable item is the '1 that appears following Stack on the second line. That number is the arity. It declares the number of type parameters that the generic class will require type arguments for. A declaration such as EntityDictionary<TKey, TValue> would have an arity of 2.

The second line of the generated CIL shows the constraints imposed upon the class. The T type parameter is decorated with an interface declaration for the IComparable constraint.

If you continue looking through the CIL, you will find that the item’s array declaration of type T is altered to contain a type parameter using “exclamation point notation,” used in the generics-capable version of the CIL. The exclamation point denotes the presence of the first type parameter specified for the class, as shown in Listing 11.49.

Listing 11.49. CIL with “Exclamation Point Notation” to Support Generics

Click here to view code image

.class public auto ansi beforefieldinit
 'Stack'1'<([mscorlib]System.IComparable) T>
 extends [mscorlib]System.Object
{

 .field private !0[] items

 ...
}

Beyond the inclusion of the arity and type parameter in the class header and the type parameter denoted with exclamation points in code, there is little difference between the CIL generated for a generic class and the CIL generated for a nongeneric class.

Instantiating Generics Based on Value Types

When a generic type is first constructed with a value type as a type parameter, the runtime creates a specialized generic type with the supplied type parameter(s) placed appropriately in the CIL. Therefore, the runtime creates new specialized generic types for each new parameter value type.

For example, suppose some code declared a Stack constructed of integers, as shown in Listing 11.50.

Listing 11.50. Stack<int> Definition

Stack<int> stack;

When using this type, Stack<int>, for the first time, the runtime generates a specialized version of the Stack class with the type argument int substituted for its type parameter. From then on, whenever the code uses a Stack<int>, the runtime reuses the generated specialized Stack<int> class. In Listing 11.51, you declare two instances of a Stack<int>, both using the code already generated by the runtime for a Stack<int>.

Listing 11.51. Declaring Variables of Type Stack<T>

Click here to view code image

Stack<int> stackOne = new Stack<int>();
Stack<int> stackTwo = new Stack<int>();

If later in the code, you create another Stack with a different value type substituted for the type parameter (such as a long or a user-defined struct) the runtime generates another version of the generic type. The benefit of specialized value type classes is better performance. Furthermore, the code is able to avoid conversions and boxing because each specialized generic class “natively” contains the value type.

Instantiating Generics Based on Reference Types

Generics work slightly differently for reference types. The first time a generic type is constructed with a reference type, the runtime creates a specialized generic type with object references substituted for type parameters in the CIL, not a specialized generic type based on the type argument. Each subsequent time a constructed type is instantiated with a reference type parameter, the runtime reuses the previously generated version of the generic type, even if the reference type is different from the first reference type.

For example, suppose you have two reference types, a Customer class and an Order class, and you create an EntityDictionary of Customer types, like so:

EntityDictionary<Guid, Customer> customers;

Prior to accessing this class, the runtime generates a specialized version of the EntityDictionary class that, instead of storing Customer as the specified data type, stores object references. Suppose the next line of code creates an EntityDictionary of another reference type, called Order:

EntityDictionary<Guid, Order> orders =
 new EntityDictionary<Guid, Order>();

Unlike value types, no new specialized version of the EntityDictionary class is created for the EntityDictionary that uses the Order type. Instead, an instance of the version of EntityDictionary that uses object references is instantiated and the orders variable is set to reference it.

To still gain the advantage of type safety, for each object reference substituted in place of the type parameter, an area of memory for an Order type is specifically allocated and the pointer is set to that memory reference.

Suppose you then encountered a line of code to instantiate an EntityDictionary of a Customer type as follows:

customers = new EntityDictionary<Guid, Customer>();

As with the previous use of the EntityDictionary class created with the Order type, another instance of the specialized EntityDictionary class (the one based on object references) is instantiated and the pointers contained therein are set to reference a Customer type specifically. This implementation of generics greatly reduces code bloat by reducing to one the number of specialized classes created by the compiler for generic classes of reference types.

Even though the runtime uses the same internal generic type definition when the type parameter on a generic reference type varies, this behavior is superseded if the type parameter is a value type. Dictionary<int, Customer>, Dictionary<Guid, Order>, and Dictionary<long, Order> will require new internal type definitions, for example.

Language Contrast: Java—Generics

The implementation of generics for Java occurs within the compiler entirely, not within the Java Virtual Machine. Sun did this to ensure that no updated Java Virtual Machine would need to be distributed because generics were used.

The Java implementation uses syntax similar to the templates in C++ and the generics in C#, including type parameters and constraints. But because it does not treat value types differently from reference types, the unmodified Java Virtual Machine cannot support generics for value types. As such, generics in Java do not gain the execution efficiency of C#. Indeed, whenever the Java compiler needs to return data, it injects automatic downcasts from the specified constraint, if one is declared, or the base Object type if it is not declared. Further, the Java compiler generates a single specialized type at compile time, which it then uses to instantiate any constructed type. Finally, because the Java Virtual Machine does not support generics natively, there is no way to ascertain the type parameter for an instance of a generic type at execution time, and other uses of reflection are severely limited.

Summary

The addition of generic types and methods to C# 2.0 fundamentally transformed the coding style of C# developers. In virtually all cases in which programmers used object within C# 1.0 code, generics became a better choice in C# 2.0. In modern C# programs, using object (particularly in the context of any collection type) should make you consider whether or not the problem would be better solved with generics. The increased type safety cause by elimination of casts, the elimination of the boxing performance penalty, and reduction of repeated code are all significant improvements.

Chapter 16 looks at one of the most pervasive generic namespaces, System.Collections.Generic. As the name implies, this namespace is composed almost exclusively of generic types. It provides clear examples of how some types that originally used objects were then converted to use generics. However, before we tackle these topics, we will investigate expressions, which provide a significant C# 3.0 (and later) improvement for working with collections.

12. Delegates and Lambda Expressions

Previous chapters discussed extensively how to create classes to encapsulate data and operations on data. As you create more and more classes, you see common patterns in the relationships among them. One common pattern is to pass an object to a method solely so that the method can in turn call a method on the object. For example, if you pass to a method a reference to IComparer<int>, odds are good that the called method will itself call the Compare() method on the object you provided. In this case, the interface is nothing more than a way to pass a reference to a single method that can be invoked. It seems unnecessary to have to define a new interface every time you want to pass a method around. In this chapter we describe how to create and use a special kind of class called a delegate that enables you to treat references to methods as you would any other data. We then show how to create custom delegates quickly and easily with lambda expressions.

Lambda expressions were added to the language in C# 3.0; the previous version, C# 2.0, supported a less elegant syntax for custom delegate creation, called anonymous methods. Every version of C# after C# 2.0 supports anonymous methods for backward compatibility, but in new code they should be deprecated in favor of using lambda expressions. This chapter includes Advanced Topic blocks that describe how to use anonymous methods should you need to work with legacy C# 2.0 code; you can largely ignore these if you are working only with newer code.

We conclude the chapter with a discussion of expression trees, which enable you to use the compiler’s analysis of a lambda expression at execution time.

[image: Image]

Introducing Delegates

Veteran C and C++ programmers have long used “function pointers” as a mechanism for passing a reference to one method as an argument to another method. C# achieves similar functionality by using delegates. Delegates allow you to capture a reference to a method and pass it around like any other object, and to call the captured method like any other method. Let’s consider an example illustrating how this technique might be useful.

Defining the Scenario

Although it is not very efficient, one of the simplest sort routines is the bubble sort. Listing 12.1 shows the BubbleSort() method.

Listing 12.1. BubbleSort() Method

Click here to view code image

static class SimpleSort1
{
 public static void BubbleSort(int[] items)
 {
 int i;
 int j;
 int temp;

 if(items==null)
 {
 return;
 }

 for (i = items.Length - 1; i >= 0; i--)
 {
 for (j = 1; j <= i; j++)
 {
 if (items[j - 1] > items[j])
 {
 temp = items[j - 1];
 items[j - 1] = items[j];
 items[j] = temp;
 }
 }
 }
 }
 // ...
}

This method will sort an array of integers in ascending order.

Suppose you need to sort the integers in Listing 12.1 in either ascending or descending order. You could duplicate the code and replace the greater-than operator with a less-than operator, but it seems like a bad idea to replicate several dozen lines of code merely to change a single operator. As a less verbose alternative, you could pass in an additional parameter indicating how to perform the sort, as shown in Listing 12.2.

Listing 12.2. BubbleSort() Method, Ascending or Descending

Click here to view code image

class SimpleSort2
{
 public enum SortType
 {
 Ascending,
 Descending
 }

 public static void BubbleSort(int[] items, SortType sortOrder)

 {
 int i;
 int j;
 int temp;

 if(items==null)
 {
 return;
 }

 for (i = items.Length - 1; i >= 0; i--)
 {
 for (j = 1; j <= i; j++)
 {
 bool swap = false;
 switch (sortOrder)
 {

 case SortType.Ascending :
 swap = items[j - 1] > items[j];

 break;

 case SortType.Descending :
 swap = items[j - 1] < items[j];

 break;
 }
 if (swap)
 {
 temp = items[j - 1];
 items[j - 1] = items[j];
 items[j] = temp;
 }
 }
 }
 }
 // ...
}

However, this handles only two of the possible sort orders. If you wanted to sort them lexicographically (that is, 1, 10, 11, 12, 2, 20,...), or order them via some other criterion, it would not take long before the number of SortType values and the corresponding switch cases would become cumbersome.

Delegate Data Types

To increase flexibility and reduce code duplication in the previous code listings, you can make the comparison method a parameter to the BubbleSort() method. In order to pass a method as an argument, a data type is required that can represent that method; that data type is called a delegate, because it “delegates” the call to the method referred to by the object. Listing 12.3 includes a modification to the BubbleSort() method that takes a delegate parameter. In this case, the delegate data type is ComparisonHandler.

Listing 12.3. BubbleSort() with Delegate Parameter

Click here to view code image

class DelegateSample
{
 // ...

 public static void BubbleSort(
 int[] items, ComparisonHandler comparisonMethod)

 {
 int i;
 int j;
 int temp;

 if(comparisonMethod == null)
 {
 throw new ArgumentNullException("comparisonMethod");
 }

 if(items==null)
 {
 return;
 }

 for (i = items.Length - 1; i >= 0; i--)
 {
 for (j = 1; j <= i; j++)
 {

 if (comparisonMethod(items[j - 1], items[j]))

 {
 temp = items[j - 1];
 items[j - 1] = items[j];
 items[j] = temp;
 }
 }
 }
 }
 // ...
}

ComparisonHandler is a delegate type that represents a method that compares two integers. Within the BubbleSort() method you then use the instance of the ComparisonHandler, referred to by the comparisonMethod parameter, to determine which integer is greater. Since comparisonMethod represents a method, the syntax to invoke the method is identical to calling any other method. In this case, the ComparisonHandler delegate takes two integer parameters and returns a Boolean value that indicates whether the first integer is greater than the second one.

Note that the ComparisonHandler delegate is strongly typed to represent a method that returns a bool and accepts exactly two integer parameters. Just as with any other method call, the call to a delegate is strongly typed, and if the data types for the arguments are not compatible with the parameters, the C# compiler reports an error.

Declaring a Delegate Type

You saw how to define a method that uses a delegate, and you learned how to invoke a call to the delegate simply by treating the delegate variable as a method. However, you have yet to learn how to declare a delegate type. To declare a delegate type you use the delegate keyword and follow it with what looks like a method declaration. The signature of that method is the signature of the method that the delegate can refer to, and the name of the delegate type appears where the name of the method would appear in a method declaration. Listing 12.4 shows how to declare the ComparisonHandler delegate type to require two integers and return a Boolean.

Listing 12.4. Declaring a Delegate Type

public delegate bool ComparisonHandler (
 int first, int second);

Just as classes can be nested in other classes, delegates can also be nested in classes. If the delegate declaration appeared within another class, the delegate type would be a nested type, as shown in Listing 12.5.

Listing 12.5. Declaring a Nested Delegate Type

class DelegateSample
{
 public delegate bool ComparisonHandler (
 int first, int second);
}

In this case, the data type would be DelegateSample.ComparisonHandler because it is defined as a nested type within DelegateSample.

Instantiating a Delegate

In this final step of implementing the BubbleSort() method with a delegate, you will learn how to call the method and pass a delegate instance—specifically, an instance of type ComparisonHandler. To instantiate a delegate, you need a method with parameters and a return type that matches the signature of the delegate type itself. In the case of ComparisonHandler, that method takes two integers and returns a bool. The name of the method need not match the name of the delegate, but the rest of the method signature has to be compatible with the delegate signature. Listing 12.6 shows the code for a greater-than method compatible with the delegate type.

Listing 12.6. Declaring a ComparisonHandler-Compatible Method

Click here to view code image

public delegate bool ComparisonHandler (
 int first, int second);

class DelegateSample
{
 public static void BubbleSort(
 int[] items, ComparisonHandler comparisonMethod)
 {
 // ...
 }

 public static bool GreaterThan(int first, int second)
 {
 return first > second;
 }

 // ...
}

With this method defined, you can call BubbleSort() and supply as the argument the name of the method that is to be captured by the delegate, as shown in Listing 12.7.

Listing 12.7. Using a Method Name As an Argument

Click here to view code image

public delegate bool ComparisonHandler (
 int first, int second);

class DelegateSample
{
 public static void BubbleSort(
 int[] items, ComparisonHandler comparisonMethod)
 {
 // ...
 }

 public static bool GreaterThan(int first, int second)

 {
 return first > second;
 }

 static void Main()
 {
 int i;
 int[] items = new int[5];

 for (i=0; i < items.Length; i++)
 {
 Console.Write("Enter an integer: ");
 items[i] = int.Parse(Console.ReadLine());
 }

 BubbleSort(items, GreaterThan);

 for (int i = 0; i < items.Length; i++)
 {
 Console.WriteLine(items[i]);
 }
 }

}

Note that the ComparisonHandler delegate is a reference type, but you do not necessarily use new to instantiate it. The conversion from the method group—the expression that names the method—to the delegate type automatically creates a new delegate object in C# 2.0 and later.

Advanced Topic: Delegate Instantiation in C# 1.0

In Listing 12.7, the delegate was instantiated by simply passing the name of the desired method, GreaterThan, as an argument to the call to the BubbleSort() method. The first version of C# required instantiation of the delegate, using the more verbose syntax shown in Listing 12.8.

Listing 12.8. Passing a Delegate As a Parameter in C# 1.0

 BubbleSort(items,
 new ComparisonHandler(GreaterThan));

Later versions support both syntaxes; throughout the remainder of the book we will show only the modern, concise syntax.

Advanced Topic: Delegate Internals

A delegate is actually a special kind of class. Though the C# standard does not specify exactly what the class hierarchy is, a delegate must always derive directly or indirectly from System.Delegate. In fact, in .NET delegate types always derive from System.MulticastDelegate, which in turn derives from System.Delegate, as shown in Figure 12.1.

[image: Image]

Figure 12.1. Delegate Types Object Model

The first property is of type System.Reflection.MethodInfo, which we cover in Chapter 17. MethodInfo describes the signature of a particular method, including its name, parameters, and return type. In addition to MethodInfo, a delegate also needs the instance of the object containing the method to invoke. This is the purpose of the second property, Target. In the case of a static method, Target corresponds to the type itself. The purpose of the MulticastDelegate class is the topic of the next chapter.

Note that all delegates are immutable; there is no way to change a delegate once you’ve created it. If you have a variable that contains a reference to a delegate and you want it to refer to a different method, you’ll have to create a new delegate and assign it to the variable.

Although all delegate data types derive indirectly from System.Delegate, the C# compiler does not allow you to declare a class that derives directly or indirectly from System.Delegate or System.MulticastDelegate. The code shown in Listing 12.9 is not valid.

Listing 12.9. System.Delegate Cannot Explicitly Be a Base Class

// ERROR: 'ComparisonHandler' cannot
// inherit from special class 'System.Delegate'
// public class ComparisonHandler: System.Delegate
{
 // ...
}

Passing the delegate to specify the sort order is significantly more flexible than the approach described at the beginning of this chapter. By passing a delegate you can change the sort order to be alphabetical simply by adding an alternative delegate to convert integers to strings as part of the comparison. Listing 12.10 shows a full listing that demonstrates alphabetical sorting, and Output 12.1 shows the results.

Listing 12.10. Using a Different ComparisonHandler-Compatible Method

Click here to view code image

using System;
class DelegateSample
{

 public delegate bool ComparisonHandler(int first, int second);

 public static void BubbleSort(
 int[] items, ComparisonHandler comparisonMethod)
 {
 int i;
 int j;
 int temp;

 for (i = items.Length - 1; i >= 0; i--)
 {
 for (j = 1; j <= i; j++)
 {
 if (comparisonMethod(items[j - 1], items[j]))
 {
 temp = items[j - 1];
 items[j - 1] = items[j];
 items[j] = temp;
 }
 }
 }
 }

 public static bool GreaterThan(int first, int second)
 {
 return first > second;
 }

 public static bool AlphabeticalGreaterThan(
 int first, int second)
 {
 int comparison;
 comparison = (first.ToString().CompareTo(
 second.ToString()));

 return comparison > 0;
 }

 static void Main(string[] args)
 {
 int i;
 int[] items = new int[5];

 for (i=0; i<items.Length; i++)
 {
 Console.Write("Enter an integer: ");
 items[i] = int.Parse(Console.ReadLine());
 }

 BubbleSort(items, AlphabeticalGreaterThan);

 for (i = 0; i < items.Length; i++)
 {
 Console.WriteLine(items[i]);
 }
 }
}

Output 12.1.

Enter an integer: 1
Enter an integer: 12
Enter an integer: 13
Enter an integer: 5
Enter an integer: 4
1
12
13
4
5

The alphabetic order is different from the numeric order. Note how simple it was to add this additional sort mechanism, however, compared to the process used at the beginning of the chapter.

The only changes to create the alphabetical sort order were the addition of the AlphabeticalGreaterThan method and then passing that method into the call to BubbleSort().

Lambda Expressions

In Listings 12.7 and 12.10 we saw that you can convert the expressions GreaterThan and AlphabeticalGreaterThan to a delegate type that is compatible with the parameter types and the return type of the named method. You might have noticed that the declaration of the GreaterThan method—the code that says it is a public, static, bool-returning method with two parameters of type int named first and second—was considerably larger than the body of the method, which simply compared its two parameters and returned the result. It is unfortunate that so much “ceremony” has to surround such a simple method merely so that it can be converted to a delegate type.

To address this concern, C# 2.0 introduced a far more compact syntax for creating a delegate, and C# 3.0 introduced several even more compact syntaxes than C# 2.0’s syntax. The C# 2.0 feature is called anonymous methods and the C# 3.0 feature is called lambda expressions. When referring generally to either syntax, we’ll refer to them as anonymous functions. Both syntaxes are still legal, but for new code the lambda expression syntax is preferred over the anonymous method syntax. Throughout this book we will generally use the lambda expression syntax except when specifically describing C# 2.0 anonymous methods.

Lambda expressions are themselves divided into two types: statement lambdas and expression lambdas. Figure 12.2 shows the hierarchical relationship between the terms.

[image: Image]

Figure 12.2. Anonymous Function Terminology

Statement Lambdas

The purpose of a lambda expression is to eliminate the hassle of declaring an entirely new member when you need to make a delegate from a very simple method. There are several different forms of lambda expression; a statement lambda consists of a formal parameter list, followed by the lambda operator =>, followed by a code block. Listing 12.11 shows equivalent functionality to the call to BubbleSort from Listing 12.7, except that Listing 12.11 uses a statement lambda to represent the comparison method, rather than creating a GreaterThan method. As you can see, much of the information that was in the GreaterThan method declaration is in the statement lambda; the formal parameter declarations and the block are the same, but the method name and its modifiers are missing.

Listing 12.11. Creating a Delegate with a Statement Lambda

 // ...

 BubbleSort(items,
 (int first, int second) =>
 {
 return first < second;
 }
);

 // ...

When reading code that includes a lambda operator, you would replace the lambda operator with the words go/goes to. For example, in Listing 12.11, you would read the second BubbleSort() parameter as “integers first and second go to returning the result of first less than second.”

As readers will observe, the syntax in Listing 12.11 is virtually identical to that in Listing 12.7, apart from the fact that the comparison method is now found lexically where it is converted to the delegate type, rather than being found elsewhere and looked up by name. The name of the method is missing, which explains why such methods are called “anonymous functions.” The return type is missing, but the compiler can see that the lambda expression is being converted to a delegate whose signature requires the return type bool. The compiler verifies that the expressions of every return statement in the statement lambda’s block would be legal in a bool-returning method. The public modifier is missing; as the method is no longer an accessible member of the containing class, there is no need to describe its accessibility. Similarly, the static modifier is no longer necessary. The amount of “ceremony” around the method is already greatly reduced.

The syntax is still needlessly verbose, however. We have deduced from the delegate type that the lambda expression must be bool-returning; we can similarly deduce that both parameters must be of type int, as shown in Listing 12.12.

Listing 12.12. Omitting Parameter Types from Statement Lambdas

 // ...

 BubbleSort(items,
 (first, second) =>
 {
 return first < second;
 }
);

 // ...

In general, explicitly declared parameter types are optional in all lambda expressions if the compiler can infer the types from the delegate that the lambda expression is being converted to. For situations when specifying the type makes code more readable, however, C# enables doing so. In cases where inference is not possible, the C# language requires that the lambda parameter types be stated explicitly. If one lambda parameter type is specified explicitly, they must all be specified, and they must all match the delegate parameter types exactly.

Guidelines

CONSIDER omitting the types from lambda formal parameter lists when the types are obvious to the reader, or when they are an insignificant detail.

There is one additional possible reduction of syntax, shown in Listing 12.13: A lambda expression that has exactly one parameter whose type is inferred may omit the parentheses around the parameter list. If there are zero parameters or more than one parameter, or if the single parameter is explicitly typed, the lambda must have parentheses around the parameter list.

Listing 12.13. Statement Lambdas with a Single Input Parameter

Click here to view code image

using System.Collections.Generic;
using System.Diagnostics;
using System.Linq;
 // ...
 IEnumerable<Process> processes = Process.GetProcesses().Where(
 process => { return process.WorkingSet64 > 1000000000; });
 // ...

In Listing 12.13, the Where() method returns a query for processes that have a physical memory utilization greater than 1 billion bytes.

Contrast this with Listing 12.14, which has a parameterless statement lambda. The empty parameter list requires parentheses. Note also that in Listing 12.14, the body of the statement lambda includes multiple statements inside the statement block (via curly braces). Although a statement lambda can have any number of statements, typically a statement lambda uses only two or three statements in its statement block. (The use of the generic Func delegate type is described in the section General-Purpose Delegates: System.Func and System.Action, later in this chapter.)

Listing 12.14. Parameterless Statement Lambdas

using System;
 // ...
 Func<string> getUserInput =
 () =>
 {
 string input;
 do
 {
 input = Console.ReadLine();
 }
 while(input.Trim().Length == 0);
 return input;
 };
 // ...

Expression Lambdas

The statement lambda syntax is already much less verbose than the corresponding method declaration; as we’ve seen it need not declare the method’s name, accessibility, return type, or parameter types. But we can get even less verbose than that with an expression lambda. In Listings 12.12, 12.13, and 12.14 we saw statement lambdas whose blocks consisted of a single return statement. What if we eliminated the “ceremony” around that? The only relevant information in such a lambda block is the expression that is returned. An expression lambda has only that returned expression, with no statement block at all. Listing 12.15 is the same as Listing 12.11, except that it uses an expression lambda rather than a statement lambda.

Listing 12.15. Passing a Delegate with an Expression Lambda

Click here to view code image

 // ...

 BubbleSort(items, (first, second) => first < second);

 // ...

Generally, you would read the lambda operator => in an expression lambda the same way you would a statement lambda: as goes to, or becomes. When a lambda is used to return a bool, as it is in our BubbleSort() example, the lambda is called a predicate. In those cases it is common to read the lambda operator as such that or where. You might read the lambda in Listing 12.15 as “first and second such that first is less than second.”

Like the null literal, an anonymous function does not have any type associated with it; rather, its type is determined by the type it is being converted to. In other words, the lambda expressions we’ve seen so far are not intrinsically of the ComparisonHandler type, but they are compatible with that type and may be converted to it. As a result, you cannot use the typeof() operator (see Chapter 17) on an anonymous method, and calling GetType() is possible only after converting the anonymous method to a particular type.

Table 12.1 contains additional lambda expression characteristics.

Table 12.1. Lambda Expression Notes and Examples

[image: Image]

[image: Image]

[image: Image]

Anonymous Methods

Lambda expressions are not supported in C# 2.0. Instead, C# 2.0 uses a syntax called anonymous methods. An anonymous method is like a statement lambda, but without many of the features that make lambdas so compact. An anonymous method must explicitly type every parameter, and must have a statement block. Rather than using the lambda operator => between the parameter list and the code block, an anonymous method puts the keyword delegate before the parameter list, emphasizing that the anonymous method must be converted to a delegate type. Listing 12.16 shows the code from Listings 12.7, 12.12, and 12.15 rewritten to use an anonymous method.

Listing 12.16. Passing an Anonymous Method in C# 2.0

 // ...

 BubbleSort(items,
 delegate(int first, int second)
 {
 return first < second;
 }
);

 // ...

It is unfortunate that there are two very similar ways to define an anonymous function in C# 3.0 and later.

Guidelines

AVOID the anonymous method syntax in new code; prefer the more compact lambda expression syntax.

There is, however, one small feature that is supported in anonymous methods that is not supported in lambda expressions: Anonymous methods may omit their parameter list entirely in some circumstances.

Advanced Topic: Parameterless Anonymous Methods

Unlike lambda expressions, anonymous methods may omit the parameter list entirely provided that the anonymous method body does not use any parameter and the delegate type requires only “value” parameters. (That is, it does not require the parameters to be marked as out or ref.) For example, the anonymous method expression delegate { return Console.ReadLine() != ""; } is convertible to any delegate type that requires a return type of bool regardless of the number of parameters the delegate requires. This feature is not used frequently, but you might encounter it when reading legacy code.

Advanced Topic: Why “Lambda” Expressions?

It is fairly obvious why anonymous methods are called “anonymous methods”; they look very similar to method declarations but do not have a declared name associated with them. But where did the “lambda” in “lambda expressions” come from?

The idea of lambda expressions comes from the work of the logician Alonzo Church, who in the 1930s invented a technique for studying functions called the “lambda calculus.” In Church’s notation, a function which takes a parameter x and results in an expression y is notated by prefixing the entire expression with a small Greek letter lambda, and separating the parameter from the value with a dot. The C# lambda expression x=>y would be notated λx.y in Church’s notation. Because it is inconvenient to use Greek letters in C# programs and because the dot already has many meanings in C#, the designers of C# chose to use the “fat arrow” notation rather than the original notation. The name “lambda expression” indicates that the theoretical underpinnings of the idea of anonymous functions are based on the lambda calculus, even though no letter lambda actually appears in the text.

General-Purpose Delegates: System.Func and System.Action

To reduce the need to define your own custom delegate types, the .NET 3.5 runtime library (which corresponds to C# 3.0) included a set of general-purpose delegates, most of them generic. The System.Func family of delegates is for referring to methods that return a value; the System.Action family of delegates is for referring to void-returning methods. The signatures for these delegates are shown in Listing 12.17 (although the in/out type modifiers were not added until C# 4.0, as discussed shortly).

Listing 12.17. Func and Action Delegate Declarations

Click here to view code image

public delegate void Action ();
public delegate void Action<in T>(T arg)
public delegate void Action<in T1, in T2>(
 in T1 arg1, in T2 arg2)
public delegate void Action<in T1, in T2, in T3>(
 T1 arg1, T2 arg2, T3 arg3)
public delegate void Action<in T1, in T2, in T3, in T4(
 T1 arg1, T2 arg2, T3 arg3, T4 arg4)
...
public delegate void Action<
 in T1, in T2, in T3, in T4, in T5, in T6, in T7, in T8,
 in T9, in T10, in T11, in T12, in T13, in T14, in T16(
 T1 arg1, T2 arg2, T3 arg3, T4 arg4,
 T5 arg5, T6 arg6, T7 arg7, T8 arg8,
 T9 arg9, T10 arg10, T11 arg11, T12 arg12,
 T13 arg13, T14 arg14, T15 arg15, T16 arg16)

public delegate TResult Func<out TResult>();
public delegate TResult Func<in T, out TResult>(T arg)
public delegate TResult Func<in T1, in T2, out TResult>(
 in T1 arg1, in T2 arg2)
public delegate TResult Func<in T1, in T2, in T3, out TResult>(
 T1 arg1, T2 arg2, T3 arg3)
public delegate TResult Func<in T1, in T2, in T3, in T4,
 out TResult>(T1 arg1, T2 arg2, T3 arg3, T4 arg4)
...
public delegate TResult Func<
 in T1, in T2, in T3, in T4, in T5, in T6, in T7, in T8,
 in T9, in T10, in T11, in T12, in T13, in T14, in T16,
 out TResult>(
 T1 arg1, T2 arg2, T3 arg3, T4 arg4,
 T5 arg5, T6 arg6, T7 arg7, T8 arg8,
 T9 arg9, T10 arg10, T11 arg11, T12 arg12,
 T13 arg13, T14 arg14, T15 arg15, T16 arg16)

Since the delegate definitions in Listing 12.17 are generic, it is possible to use them instead of defining a custom delegate. The last type parameter of a Func delegate is always the return type of the delegate. The other type parameters correspond in sequence to the types of the delegate parameters. The BubbleSort method in Listing 12.3 requires a delegate that returns bool and takes two int parameters. Thus, rather than declaring the ComparisonHandler delegate type and using it, we could have declared the BubbleSort method as follows:

Click here to view code image

void BubbleSort(int[] items,
 Func<int, int, bool> comparisonMethod) { ... }

In many cases, the inclusion of Func and Action delegates in the .NET 3.5 Framework entirely eliminates the need to define your own delegate types. However, you should consider declaring your own delegate types when doing so significantly increases the readability of the code. A delegate named ComparisonHandler provides an explicit indication of what the delegate is used for, whereas using Func<int, int, bool> provides a more explicit indication of the delegate’s formal parameters and return type.

Guidelines

CONSIDER whether the readability benefit of defining your own delegate type outweighs the convenience of using a predefined generic delegate type.

Delegates Do Not Have Structural Equality

Delegate types in .NET do not exhibit structural equality. That is, you cannot convert a reference to an object of one delegate type to an unrelated delegate type, even if the formal parameters and return types of both delegates are identical. For example, you cannot assign a reference to a ComparisonHandler to a variable of type Func<int, int, bool> even though both delegate types represent methods that take two int parameters and return a bool. Unfortunately, the only way to use a delegate of a given type when a delegate of a structurally identical but unrelated delegate type is needed is to create a new delegate that refers to the Invoke method of the old delegate. For example, if you have a variable c of type ComparisonHandler, and you need to assign its value to a variable f of type Func<int, int, bool>, you can say f = c.Invoke;.

However, thanks to the variance support added in C# 4.0, it is possible to make reference conversions between some delegate types. Consider the following contravariant example: Because void Action<in T>(T arg) has the in type parameter modifier, it is possible to assign a reference to a delegate of type Action<object> to a variable of type Action<string>.

Many people find delegate contravariance confusing; just remember that an action that can act on every object can be used as an action that acts on any string. But the opposite is not true; an action that can only act on strings cannot act on every object. Similarly, every type in the Func family of delegates is covariant in its return type, as indicated by the out type parameter modifier on TResult. Therefore it is possible to assign a reference to a delegate of type Func<string> to a variable of type Func<object>. Listing 12.18 shows examples of delegate covariance and contravariance.

Listing 12.18. Using Variance for Delegates

Click here to view code image

// Contravariance
Action<object> broadAction =
 (object data) =>
 {
 Console.WriteLine(data);
 };
Action<string> narrowAction = broadAction;

// Covariance
Func<string> narrowFunction =
 () =>Console.ReadLine();
Func<object> broadFunction = narrowFunction;

// Contravariance & Covariance Combined
Func<object, string> func1 =
 (object data) => data.ToString();
Func<string, object> func2 = func1;

The last part of the listing combines both variance concepts into a single example, demonstrating how they can occur simultaneously if both in and out type parameters are involved.

Allowing reference conversions on generic delegate types was a key motivating scenario for adding covariant and contravariant conversions to C# 4.0. (The other was support for covariance to IEnumerable<out T>.)

Advanced Topic: Lambda Expression and Anonymous Method Internals

Lambda expressions (and anonymous methods) are not intrinsically “built in” to the CLR. Rather, when the compiler encounters an anonymous function, it translates it into special hidden classes, fields, and methods that implement the desired semantics. The C# compiler generates the implementation code for this pattern so that developers do not have to do it themselves. When given the code in Listing 12.11, 12.12, 12.15, or 12.16, the C# compiler generates CIL code that is similar to the code shown in Listing 12.19.

Listing 12.19. C# Equivalent of CIL Generated by the Compiler for Lambda Expressions

Click here to view code image

class DelegateSample
{
 // ...
 static void Main(string[] args)
 {
 int i;
 int[] items = new int[5];

 for (i=0; i<items.Length; i++)
 {
 Console.Write("Enter an integer:");
 items[i] = int.Parse(Console.ReadLine());
 }

 BubbleSort(items,
 DelegateSample.__AnonymousMethod_00000000);

 for (i = 0; i < items.Length; i++)
 {
 Console.WriteLine(items[i]);
 }

 }

 private static bool __AnonymousMethod_00000000(
 int first, int second)
 {
 return first < second;
 }

}

In this example, the compiler transforms an anonymous function into a separately declared static method that is then instantiated as a delegate and passed as a parameter. Unsurprisingly, the compiler generates code that looks remarkably like the original code in Listing 12.7 that the anonymous function syntax was intended to streamline. However, the code transformation performed by the compiler can be considerably more complex than merely rewriting the anonymous function as a static method if “outer variables” are involved.

Outer Variables

Local variables declared outside a lambda expression (including parameters of the containing method) are called the outer variables of that lambda. (The this reference, though technically not a variable, is also considered to be an outer variable.) When a lambda body uses an outer variable, the variable is said to be captured (or, equivalently, closed over) by the lambda. In Listing 12.20 we use an outer variable to count how many times BubbleSort() performs a comparison. Output 12.2 shows the results of this listing.

Listing 12.20. Using an Outer Variable in a Lambda Expression

Click here to view code image

class DelegateSample
{

 // ...

 static void Main(string[] args)
 {

 int i;
 int[] items = new int[5];

 int comparisonCount=0;

 for (i=0; i<items.Length; i++)
 {
 Console.Write("Enter an integer:");
 items[i] = int.Parse(Console.ReadLine());
 }

 BubbleSort(items,
 (int first, int second) =>
 {
 comparisonCount++;
 return first < second;
 }
);

 for (i = 0; i < items.Length; i++)
 {
 Console.WriteLine(items[i]);
 }

 Console.WriteLine("Items were compared {0} times.",
 comparisonCount);

 }
}

Output 12.2.

Enter an integer:5
Enter an integer:1
Enter an integer:4
Enter an integer:2
Enter an integer:3
5
4
3
2
1
Items were compared 10 times.

Note that comparisonCount appears outside the lambda expression and is incremented inside it. After calling the BubbleSort() method, comparisonCount is printed out to the console.

Normally the lifetime of a local variable is tied to its scope; when control leaves the scope the storage location associated with the variable is no longer valid. But a delegate created from a lambda that captures an outer variable might have a longer (or shorter) lifetime than the local variable normally would, and the delegate must be able to safely access the outer variable every time the delegate is invoked. Therefore, the lifetime of a captured variable is extended; it is guaranteed to live at least as long as the longest-lived delegate object capturing it. (And it may live even longer than that; precisely how the compiler generates code that ensures outer variable lifetimes are extended is an implementation detail and subject to change.)

The C# compiler takes care of generating CIL code that shares comparisonCount between the anonymous method and the method that declares it.

Advanced Topic: Outer Variable CIL Implementation

The CIL code generated by the C# compiler for anonymous functions that capture outer variables is more complex than the code for a simple anonymous function that captures nothing. Listing 12.21 shows the C# equivalent of the CIL code used to implement outer variables for the code in Listing 12.20.

Listing 12.21. C# Equivalent of CIL Code Generated by Compiler for Outer Variables

Click here to view code image

class DelegateSample
{
 // ...

 private sealed class __LocalsDisplayClass_00000001
 {
 public int comparisonCount;
 public bool __AnonymousMethod_00000000(
 int first, int second)
 {
 comparisonCount++;
 return first < second;
 }
 }

 // ...
 static void Main(string[] args)
 {
 int i;

 __LocalsDisplayClass_00000001 locals =
 new __LocalsDisplayClass_00000001();
 locals.comparisonCount=0;

 int[] items = new int[5];

 for (i=0; i<items.Length; i++)
 {
 Console.Write("Enter an integer:");
 items[i] = int.Parse(Console.ReadLine());
 }

 BubbleSort(items, locals.__AnonymousMethod_00000000);

 for (i = 0; i < items.Length; i++)
 {
 Console.WriteLine(items[i]);
 }

 Console.WriteLine("Items were compared {0} times.",
 locals.comparisonCount);

 }
}

Notice that the captured local variable is never “passed” anywhere and is never “copied” anywhere. Rather, the captured local variable (comparisonCount) is a single variable whose lifetime the compiler has extended by implementing it as an instance field rather than as a local variable. All usages of the local variable are rewritten to be usages of the field.

The generated class, __LocalsDisplayClass, is a closure—a data structure (class in C#) that contains an expression and the variables (public fields in C#) necessary to evaluate the expression.

Advanced Topic: Accidentally Capturing Loop Variables

What do you think the output of Listing 12.22 should be?

Listing 12.22. Capturing Loop Variables in C# 5.0

Click here to view code image

class CaptureLoop
{
 static void Main()
 {
 var items = new string[] { "Moe", "Larry", "Curly" };
 var actions = new List<Action>();
 foreach (string item in items)
 {
 actions.Add(()=> { Console.WriteLine(item); });
 }
 foreach (Action action in actions)
 {
 action();
 }
 }
}

Most people expect that the output will be as shown in Output 12.3, and in C# 5.0 it is. In previous versions of C#, however, the output is as shown in Output 12.4.

Output 12.3. C# 5.0 Output

Moe
Larry
Curly

Output 12.4. C# 4.0 Output

Curly
Curly
Curly

A lambda captures a variable and always uses the latest value of the variable; it does not capture and preserve the value that the variable had when the delegate was created. This is normally what you want; the whole point of capturing comparisonCount in Listing 12.20 was to ensure that its latest value would be used when it was incremented. Loop variables are no different; when you capture a loop variable, every delegate captures the same loop variable. When the loop variable changes, every delegate that captured that loop variable sees the change. The C# 4.0 behavior is therefore justified, but is almost never what the author of the code wants.

In C# 5.0, the C# language was changed so that the loop variable of a foreach loop is now considered to be a “fresh” variable every time the loop iterates; therefore, each delegate creation captures a different variable, rather than all sharing the same variable. However, note that this change was not also applied to the for loop; if you write similar code using a for loop, any loop variable declared in the header of the for statement will be considered a single outer variable when captured. If you need to write code that works the same in both C# 5.0 and previous versions, use the pattern shown in Listing 12.23.

Listing 12.23. Loop Variable Capture Workaround Before C#5.0

Click here to view code image

class DoNotCaptureLoop
{
 static void Main()
 {
 var items = new string[] { "Moe", "Larry", "Curly" };
 var actions = new List<Action>();
 foreach (string item in items)
 {

 string _item = item;

 actions.Add(
 ()=> { Console.WriteLine(_item); });
 }
 foreach (Action action in actions)
 {
 action();
 }
 }
}

Now there is clearly one fresh variable per loop iteration; each delegate is therefore closed over a different variable.

Guidelines

AVOID capturing loop variables in anonymous functions.

Expression Trees

Thus far we’ve seen that lambda expressions are a succinct syntax for declaring an “inline” method that can be converted to a delegate type. Expression lambdas (but not statement lambdas or anonymous methods) can also be converted to expression trees. A delegate is an object that enables you to pass around a method like any other object and invoke it at any time. An expression tree is an object that enables you to pass around the compiler’s analysis of the lambda body. But why would you ever need that? Obviously, the compiler’s analysis is useful to the compiler when generating the CIL, but why is it useful to the developer to have an object representing that analysis at execution time? Let’s take a look at an example.

Using Lambda Expressions As Data

Consider the lambda expression in the following code:

Click here to view code image

 persons.Where(
 person => person.Name.ToUpper() == "INIGO MONTOYA");

Suppose that persons is an array of Persons, and the formal parameter of the Where method that corresponds to the lambda expression argument is of delegate type Func<Person, bool>. The compiler emits a method that contains the code in the body of the lambda. It generates code that creates a delegate to the emitted method and passes the delegate to the Where method. The Where method returns a query object that, when executed, applies the delegate to each member of the array to determine the query results.

Now suppose that persons is not of type Person[], but rather is an object that represents a remote database table containing data on millions of people. Information about each row in the table can be streamed from the server to the client, and the client can then create a Person object corresponding to that row. The call to Where returns an object that represents the query. When the results of that query are requested on the client, how are the results determined?

One technique would be to transmit several million rows of data from the server to the client. You could create a Person object from each row, create a delegate from the lambda, and execute the delegate on every Person. This is conceptually no different from the array scenario, but it is far, far more expensive.

A second, far better technique is to somehow send the meaning of the lambda (filter out every row that names a person other than Inigo Montoya) to the server. Database servers are optimized to rapidly perform this sort of filtering. The server can then choose to stream only the tiny number of matching rows to the client; instead of creating millions of Person objects and rejecting almost all of them, the client only creates the objects that already match the query, as determined by the server. But how does the meaning of the lambda get sent to the server?

This scenario is the motivation for adding expression trees to the language. Lambda expressions converted to expression trees become objects that represent data that describes the lambda expression, rather than compiled code that implements an anonymous function. Since the expression tree represents data rather than compiled code, it is possible to analyze the lambda at execution time and use that information to construct a query that executes on a database, for example. The expression tree received by Where() might be converted into a SQL query that is passed to a database, as shown in Listing 12.24.

Listing 12.24. Converting an Expression Tree to a SQL where Clause

[image: Image]

The expression tree passed to the Where() call says that the lambda argument consists of the following:

• A read of the Name property of a Person object

• A call to a string method called ToUpper()

• A constant value, "INIGO MONTOYA"

• And an equality operator, ==

The Where() method takes this data and converts it to the SQL where clause by examining the data and building a SQL query string. However, SQL is just one example; you can build an expression tree evaluator that converts expressions to any query language.

Expression Trees Are Object Graphs

At execution time, a lambda converted to an expression tree becomes an object graph containing objects from the System.Linq.Expressions namespace. The “root” object in the graph represents the lambda itself. This object refers to objects representing the parameters, a return type, and body expression, as shown in Figure 12.3. The object graph contains all the information that the compiler deduced about the lambda. That information can then be used at execution time to create a query; alternatively, the root lambda expression has a method, Compile, which generates CIL “on the fly” and creates a delegate that implements the described lambda.

[image: Image]

Figure 12.3. The Lambda Expression Tree Type

Figure 12.4 shows the types found in object graphs for a unary and binary expression in the body of a lambda.

[image: Image]

Figure 12.4. Unary and Binary Expression Tree Types

A UnaryExpression represents an expression such as –count. It has a single child Operand of type Expression. A BinaryExpression has two child expressions, Left and Right. Both types have a NodeType property that identifies the specific operator. Both inherit from the base class Expression. There are another thirty or so expression types, such as NewExpression, ParameterExpression, MethodCallExpression, LoopExpression, and so forth, to represent (almost) every possible expression in C# and Visual Basic.

Delegates versus Expression Trees

The validity of a lambda expression is verified at compile time with a full semantic analysis whether it is converted to a delegate or an expression tree. A lambda that is converted to a delegate causes the compiler to emit the lambda as a method, and generates code that creates a delegate to that method at execution time. A lambda that is converted to an expression tree causes the compiler to generate code that creates an instance of LambdaExpression at execution time. But when using LINQ, how does the compiler know whether to generate a delegate, to execute a query locally, or to generate an expression tree so that information about the query can be sent to the remote database server?

The methods used to build LINQ queries, such as Where(), are extension methods. The versions of those methods that extend the IEnumerable<T> interface take delegate parameters; the methods that extend the IQueryable<T> interface take expression tree parameters. The compiler can therefore use the type of the collection that is being queried to determine whether to create delegates or expression trees from lambdas supplied as arguments. Consider, for example, the Where() method in the following code:

Click here to view code image

 persons.Where(person => person.Name.ToUpper() ==
 "INIGO MONTOYA");

The extension method signature declared in the System.Linq.Enumerable class is:

Click here to view code image

 public IEnumerable<TSource> Where<TSource>(
 this IEnumerable<TSource> collection,
 Func<TSource, bool> predicate);

The extension method signature declared in the System.Linq.Queryable class is:

Click here to view code image

 public IQueryable<TSource> Where<TSource>(
 this IQueryable<TSource> collection,
 Expression<Func<TSource, bool>> predicate);

The compiler decides which extension method to use based on the compile-time type of persons; if it is a type convertible to IQueryable<Person> the method from System.Linq.Queryable is chosen. It converts the lambda to an expression tree. At execution time the object referred to by persons receives the expression tree data and might use that data to build a SQL query that is passed to the database when the results of the query are requested. The result of the call to Where is an object that, when asked for query results, sends the query to the database and produces the results.

If persons cannot be converted implicitly to IQueryable<Person> but can be converted implicitly to IEnumerable<Person> the method from System.Linq.Enumerable is chosen, and the lambda is converted to a delegate. The result of the call to Where is an object that, when asked for query results, applies the generated delegate as a predicate to every member of the collection and produces the results which match the predicate.

Examining an Expression Tree

As we’ve seen, converting a lambda expression to an Expression<TDelegate> creates an expression tree rather than a delegate. We have seen previously in this chapter how to convert a lambda such as (x,y)=>x>y to a delegate type such as Func<int, int, bool>. To turn this same lambda into an expression tree, we simply convert it to Expression<Func<int, int, bool>>, as shown in Listing 12.25. We can then examine the generated object and display information about its structure, as well as that of a more complex expression tree.

Note that passing an instance of expression tree to Console.WriteLine() automatically converts the expression tree to a descriptive string form; the objects generated for expression trees all override ToString() so that you can see at a glance what the contents of an expression tree are when debugging.

Listing 12.25. Examining an Expression Tree

Click here to view code image

using System;
using System.Linq.Expressions;

class Program
{
 static void Main()
 {
 Expression<Func<int, int, bool>> expression;
 expression = (x, y) => x > y;
 Console.WriteLine("-------------{0}-------------",
 expression);
 PrintNode(expression.Body, 0);
 Console.WriteLine();
 Console.WriteLine();
 expression = (x, y) => x * y > x + y;
 Console.WriteLine("-------------{0}-------------",
 expression);
 PrintNode(expression.Body, 0);
 Console.WriteLine();
 Console.WriteLine();
 }
 public static void PrintNode(Expression expression,
 int indent)
 {
 if (expression is BinaryExpression)
 PrintNode(expression as BinaryExpression, indent);
 else
 PrintSingle(expression, indent);
 }
 private static void PrintNode(BinaryExpression expression,
 int indent)
 {
 PrintNode(expression.Left, indent + 1);
 PrintSingle(expression, indent);
 PrintNode(expression.Right, indent + 1);
 }
 private static void PrintSingle(
 Expression expression, int indent)
 {
 Console.WriteLine("{0," + indent * 5 + "}{1}",
 "", NodeToString(expression));
 }
 private static string NodeToString(Expression expression)
 {
 switch (expression.NodeType)
 {
 case ExpressionType.Multiply:
 return "*";
 case ExpressionType.Add:
 return "+";
 case ExpressionType.Divide:
 return "/";
 case ExpressionType.Subtract:
 return "-";
 case ExpressionType.GreaterThan:
 return ">";
 case ExpressionType.LessThan:
 return "<";
 default:
 return expression.ToString() +
 " (" + expression.NodeType.ToString() + ")";
 }
 }
}

In Output 12.5, we see that the Console.WriteLine() statements within Main() print out the body of the expression trees as text.

Output 12.5.

Click here to view code image

------------- (x, y) => x > y -------------
 x (Parameter)
>
 y (Parameter)

------------- (x, y) => (x * y) > (x + y) -------------
 x (Parameter)
 *
 y (Parameter)
>
 x (Parameter)
 +
 y (Parameter)

The important point to note is that an expression tree is a collection of data, and by iterating over the data, it is possible to convert the data to another format; in this case we convert the expression tree to descriptive strings, but it could also be converted to expressions in another query language.

Using recursion, the PrintNode() function demonstrates that nodes in an expression tree are themselves trees containing zero or more child expression trees. The “root” tree that represents the lambda refers to the expression that is the body of the lambda with its Body property. Every expression tree node includes a NodeType property of enumerated type ExpressionType that describes what kind of expression it is. There are numerous types of expressions: BinaryExpression, ConditionalExpression, LambdaExpression, MethodCallExpression, ParameterExpression, and ConstantExpression are examples. Each type derives from Expression.

Note that, though the expression tree library now contains objects to represent most of the statements of C# and Visual Basic, neither language supports the conversion of statement lambdas to expression trees. Only expression lambdas can be converted to expression trees.

Summary

This chapter began with a discussion of delegates and their use as references to methods or callbacks. It introduced a powerful concept for passing a set of instructions to call in a different location, rather than immediately, when the instructions are coded.

The chapter introduced the C# 3.0 concept of lambda expressions, a syntax that supersedes (although does not eliminate) the C# 2.0 anonymous method syntax. These constructs allow programmers to assign a set of instructions to a variable directly, without defining an explicit method that contains the instructions. This provides significant flexibility for programming instructions dynamically within the method—a powerful concept that greatly simplifies the programming of collections through an API known as LINQ, which stands for Language Integrated Query.

The chapter ended with a discussion of the concept of expression trees, and how they compile into objects that represent the semantic analysis of a lambda expression, rather than the delegate implementation itself. This is a key feature that enables such libraries as LINQ to SQL and LINQ to XML, libraries that interpret the expression tree and use it within contexts other than CIL.

The term lambda expression encompasses both statement lambda and expression lambda. In other words, both statement lambdas and expression lambdas are types of lambda expressions.

One thing that the chapter mentioned but did not elaborate on was multicast delegates. The next chapter investigates multicast delegates in detail and explains how they enable the publish-subscribe pattern with events.

13. Events

In the preceding chapter, you saw how to reference a method with an instance of a delegate type and invoke that method via the delegate. Delegates are the building blocks of a larger pattern called publish-subscribe. The use of delegates for the publish-subscribe pattern is the focus of this chapter. Virtually everything described within this chapter is possible to do using delegates alone. However, the event constructs that this chapter focuses on provide additional encapsulation, making the publish-subscribe pattern easier to implement and less error-prone.

In the preceding chapter, all delegates referenced a single method. However, a single delegate value can reference a whole collection of methods to be called in sequence; such a delegate is called a multicast delegate. This enables scenarios where notifications of single events, such as a change in object state, are published to multiple subscribers.

[image: Image]

Although events existed in C# 1.0, the introduction of generics in C# 2.0 significantly changed the coding conventions because using a generic delegate data type meant that it was no longer necessary to declare a delegate for every possible event signature. For this reason, the chapter assumes a minimum of C# 2.0 throughout. Readers still living in the world of C# 1.0 can still use events; however, they will have to declare their own delegate data types (as discussed in Chapter 12).

Coding the Observer Pattern with Multicast Delegates

Consider a temperature control example, where a heater and a cooler are hooked up to the same thermostat. In order for a unit to turn on and off appropriately, you notify the unit of changes in temperature. One thermostat publishes temperature changes to multiple subscribers—the heating and cooling units. The next section investigates the code.1

Defining Subscriber Methods

Begin by defining the Heater and Cooler objects (see Listing 13.1).

Listing 13.1. Heater and Cooler Event Subscriber Implementations

Click here to view code image

class Cooler
{
 public Cooler(float temperature)
 {
 Temperature = temperature;
 }

 public float Temperature
 {
 get{return _Temperature;}
 set{_Temperature = value;}
 }
 private float _Temperature;

 public void OnTemperatureChanged(float newTemperature)
 {
 if (newTemperature > Temperature)
 {
 System.Console.WriteLine("Cooler: On");
 }
 else
 {
 System.Console.WriteLine("Cooler: Off");
 }
 }
}

class Heater
{
 public Heater(float temperature)
 {
 Temperature = temperature;
 }

 public float Temperature
 {
 get{return _Temperature;}
 set{_Temperature = value;}
 }
 private float _Temperature;

 public void OnTemperatureChanged(float newTemperature)
 {
 if (newTemperature < Temperature)
 {
 System.Console.WriteLine("Heater: On");
 }
 else
 {
 System.Console.WriteLine("Heater: Off");
 }
 }
}

The two classes are essentially identical, with the exception of the temperature comparison. (In fact, you could eliminate one of the classes if you used a delegate to a comparison method within the OnTemperatureChanged method.) Each class stores the temperature for when to turn on the unit. In addition, both classes provide an OnTemperatureChanged() method. Calling the OnTemperatureChanged() method is the means to indicate to the Heater and Cooler classes that the temperature has changed. The method implementation uses newTemperature to compare against the stored trigger temperature to determine whether to turn on the device.

The OnTemperatureChanged() methods are the subscriber methods. It is important that they have the parameters and a return type that matches the delegate from the Thermostat class, which we discuss next.

Defining the Publisher

The Thermostat class is responsible for reporting temperature changes to the heater and cooler object instances. The Thermostat class code appears in Listing 13.2.

Listing 13.2. Defining the Event Publisher, Thermostat

Click here to view code image

public class Thermostat
{
 // Define the event publisher
 public Action<float> OnTemperatureChange { get; set; }

 public float CurrentTemperature
 {
 get{return _CurrentTemperature;}
 set
 {
 if (value != CurrentTemperature)
 {
 _CurrentTemperature = value;
 }
 }
 }
 private float _CurrentTemperature;
}

The Thermostat includes a property called OnTemperatureChange that is of the Action<float> delegate type. OnTemperatureChange stores a list of subscribers. Notice that only one delegate field is required to store all the subscribers. In other words, both the Cooler and the Heater classes will receive notifications of a change in the temperature from this single publisher.

The last member of Thermostat is the CurrentTemperature property. This sets and retrieves the value of the current temperature reported by the Thermostat class.

Hooking Up the Publisher and Subscribers

Finally, put all these pieces together in a Main() method. Listing 13.3 shows a sample of what Main() could look like.

Listing 13.3. Connecting the Publisher and Subscribers

Click here to view code image

class Program
{
 public static void Main()
 {
 Thermostat thermostat = new Thermostat();
 Heater heater = new Heater(60);
 Cooler cooler = new Cooler(80);
 string temperature;

 thermostat.OnTemperatureChange +=
 heater.OnTemperatureChanged;
 thermostat.OnTemperatureChange +=
 cooler.OnTemperatureChanged;

 Console.Write("Enter temperature: ");
 temperature = Console.ReadLine();
 thermostat.CurrentTemperature = int.Parse(temperature);
 }
}

The code in this listing has registered two subscribers (heater.OnTemperatureChanged and cooler.OnTemperatureChanged) to the OnTemperatureChange delegate by directly assigning them using the += operator.

By taking the temperature value the user has entered, you can set the CurrentTemperature of thermostat. However, you have not yet written any code to publish the change temperature event to subscribers.

Invoking a Delegate

Every time the CurrentTemperature property on the Thermostat class changes, you want to invoke the delegate to notify the subscribers (heater and cooler) of the change in temperature. To do this, modify the CurrentTemperature property to save the new value and publish a notification to each subscriber. The code modification appears in Listing 13.4.

Listing 13.4. Invoking a Delegate without Checking for null

Click here to view code image

public class Thermostat
{
 ...
 public float CurrentTemperature
 {
 get{return _CurrentTemperature;}
 set
 {

 if (value != CurrentTemperature)

 {

 _CurrentTemperature = value;

 // INCOMPLETE: Check for null needed

 // Call subscribers
 OnTemperatureChange(value);

 }
 }
 }
 private float _CurrentTemperature;
}

Now the assignment of CurrentTemperature includes some special logic to notify subscribers of changes in CurrentTemperature. The call to notify all subscribers is simply the single C# statement, OnTemperatureChange(value). This single statement publishes the temperature change to the cooler and heater objects. Here, you see in practice that the ability to notify multiple subscribers using a single call is why delegates are more specifically known as multicast delegates.

Check for null

One important part of event publishing code is missing from Listing 13.4. If no subscriber registered to receive the notification, OnTemperatureChange would be null and executing the OnTemperatureChange(value) statement would throw a NullReferenceException. To avoid this, it is necessary to check for null before firing the event. Listing 13.5 demonstrates how to do this.

Listing 13.5. Invoking a Delegate

Click here to view code image

public class Thermostat
{
 ...
 public float CurrentTemperature
 {
 get{return _CurrentTemperature;}
 set
 {
 if (value != CurrentTemperature)
 {
 _CurrentTemperature = value;
 // If there are any subscribers
 // then notify them of changes in
 // temperature

 Action<float> localOnChange =
 OnTemperatureChange;
 if(localOnChange != null)
 {
 // Call subscribers
 localOnChange(value);
 }

 }
 }
 }
 private float _CurrentTemperature;
}

Instead of checking for null directly, first assign OnTemperatureChange to a second delegate variable, localOnChange. This simple modification ensures that if all OnTemperatureChange subscribers are removed (by a different thread) between checking for null and sending the notification, you will not raise a NullReferenceException.

Guidelines

DO check that the value of a delegate is not null before invoking it.

Advanced Topic: -= Operator for a Delegate Returns a New Instance

Given that a delegate is a reference type, it is perhaps somewhat surprising that assigning a local variable and then using that local variable is sufficient for making the null check thread-safe. Since localOnChange points at the same location that OnTemperatureChange points, one would think that any changes in OnTemperatureChange would be reflected in localOnChange as well.

This is not the case, because effectively, any calls to OnTemperatureChange -= <listener> will not simply remove a delegate from OnTemperatureChange so that it contains one less delegate than before. Rather, it will assign an entirely new multicast delegate without having any effect on the original multicast delegate to which localOnChange also points.

Advanced Topic: Thread-Safe Delegate Invocation

If subscribers can be added and removed from the delegate on different threads, it is wise (as noted above) to copy the delegate reference into a local variable before checking it for null. Though this prevents invoking a null delegate, it does not avoid all possible race conditions. For example, one thread could make the copy, and then another thread could reset the delegate to null, and then the original thread could invoke the previous value of the delegate, thereby notifying a subscriber that is no longer on the list of subscribers. Subscribers in multithreaded programs should ensure that they are robust in this scenario; it is always possible that a “stale” subscriber will be invoked.

Delegate Operators

To combine the two subscribers in the Thermostat example, you used the += operator. This takes the first delegate and adds the second delegate to the chain. Now, after the first delegate’s method returns, the second delegate is called. To remove delegates from a delegate chain, use the -= operator, as shown in Listing 13.6.

Listing 13.6. Using the += and -= Delegate Operators

Click here to view code image

// ...
Thermostat thermostat = new Thermostat();
Heater heater = new Heater(60);
Cooler cooler = new Cooler(80);

Action<float> delegate1;
Action<float> delegate2;
Action<float> delegate3;

delegate1 = heater.OnTemperatureChanged;
delegate2 = cooler.OnTemperatureChanged;

Console.WriteLine("Invoke both delegates:");
delegate3 = delegate1;

delegate3 += delegate2;

delegate3(90);

Console.WriteLine("Invoke only delegate2");

delegate3 -= delegate1;

delegate3(30);
// ...

The results of Listing 13.6 appear in Output 13.1.

Output 13.1.

Invoke both delegates:
Heater: Off
Cooler: On
Invoke only delegate2
Cooler: Off

Furthermore, you can also use the + and – operators to combine delegates, as Listing 13.7 shows.

Listing 13.7. Using the + and - Delegate Operators

Click here to view code image

// ...
Thermostat thermostat = new Thermostat();
Heater heater = new Heater(60);
Cooler cooler = new Cooler(80);

Action<float> delegate1;
Action<float> delegate2;
Action<float> delegate3;

// Note: Use new Action(
// cooler.OnTemperatureChanged) for C# 1.0 syntax.
delegate1 = heater.OnTemperatureChanged;
delegate2 = cooler.OnTemperatureChanged;

Console.WriteLine("Combine delegates using + operator:");

delegate3 = delegate1 + delegate2;

delegate3(60);

Console.WriteLine("Uncombine delegates using - operator:");

delegate3 = delegate3 - delegate2;

delegate3(60);
// ...

Use of the assignment operator clears out all previous subscribers and allows you to replace them with new subscribers. This is an unfortunate characteristic of a delegate. It is simply too easy to mistakenly code an assignment when, in fact, the += operator is intended. The solution, called events, appears in the Events section, later in this chapter.

It should be noted that both the + and - operators and their assignment equivalents, += and -=, are implemented internally using the static methods System.Delegate.Combine() and System.Delegate.Remove(). Both methods take two parameters of type delegate. The first method, Combine(), joins the two parameters so that the first parameter points to the second within the list of delegates. The second, Remove(), searches through the chain of delegates specified in the first parameter and then removes the delegate specified by the second parameter.

One interesting thing to note about the Combine() method is that either or both of the parameters can be null. If one of them is null, Combine() returns the non-null parameter. If both are null, Combine() returns null. This explains why you can call thermostat.OnTemperatureChange += heater.OnTemperatureChanged; and not throw an exception, even if the value of thermostat.OnTemperatureChange is still null.

Sequential Invocation

Figure 13.1 highlights the sequential notification of both heater and cooler.

[image: Image]

Figure 13.1. Delegate Invocation Sequence Diagram

Although you coded only a single call to OnTemperatureChange(), the call is broadcast to both subscribers so that from that one call, both cooler and heater are notified of the change in temperature. If you added more subscribers, they too would be notified by OnTemperatureChange().

Although a single call, OnTemperatureChange(), caused the notification of each subscriber, the subscribers are still called sequentially, not simultaneously, because they are all called on the same thread of execution.

Advanced Topic: Multicast Delegate Internals

To understand how events work, you need to revisit the first examination of the System.Delegate type internals. Recall that the delegate keyword is an alias for a type derived from System.MulticastDelegate. In turn, System.MulticastDelegate is derived from System.Delegate, which, for its part, is composed of an object reference (needed for no-static methods) and a method reference. When you create a delegate, the compiler automatically employs the System.MulticastDelegate type rather than the System.Delegate type. The MulticastDelegate class includes an object reference and method reference, just like its Delegate base class, but it also contains a reference to another System.MulticastDelegate object.

When you add a method to a multicast delegate, the MulticastDelegate class creates a new instance of the delegate type, stores the object reference and the method reference for the added method into the new instance, and adds the new delegate instance as the next item in a list of delegate instances. In effect, the MulticastDelegate class maintains a linked list of Delegate objects. Conceptually, you can represent the thermostat example as shown in Figure 13.2.

[image: Image]

Figure 13.2. Multicast Delegates Chained Together

When invoking a multicast delegate, each delegate instance in the linked list is called sequentially. Generally, delegates are called in the order they were added, but this behavior is not specified within the CLI specification, and furthermore, it can be overridden. Therefore, programmers should not depend on an invocation order.

Error Handling

Error handling makes awareness of the sequential notification critical. If one subscriber throws an exception, later subscribers in the chain do not receive the notification. Consider, for example, what would happen if you changed the Heater’s OnTemperatureChanged() method so that it threw an exception, as shown in Listing 13.8.

Listing 13.8. OnTemperatureChanged() Throwing an Exception

Click here to view code image

class Program
{
 public static void Main()
 {
 Thermostat thermostat = new Thermostat();
 Heater heater = new Heater(60);
 Cooler cooler = new Cooler(80);
 string temperature;

 thermostat.OnTemperatureChange +=
 heater.OnTemperatureChanged;
 // Using C# 3.0. Change to anonymous method
 // if using C# 2.0

 thermostat.OnTemperatureChange +=
 (newTemperature) =>
 {
 throw new InvalidOperationException();
 };

 thermostat.OnTemperatureChange +=
 cooler.OnTemperatureChanged;

 Console.Write("Enter temperature: ");
 temperature = Console.ReadLine();
 thermostat.CurrentTemperature = int.Parse(temperature);
 }
}

Figure 13.3 shows an updated sequence diagram.

[image: Image]

Figure 13.3. Delegate Invocation with Exception Sequence Diagram

Even though cooler and heater subscribed to receive messages, the lambda expression exception terminates the chain and prevents the cooler object from receiving notification.

To avoid this problem so that all subscribers receive notification, regardless of the behavior of earlier subscribers, you must manually enumerate through the list of subscribers and call them individually. Listing 13.9 shows the updates required in the CurrentTemperature property. The results appear in Output 13.2.

Listing 13.9. Handling Exceptions from Subscribers

Click here to view code image

public class Thermostat
{
 // Define the event publisher
 public Action<float> OnTemperatureChange;

 public float CurrentTemperature
 {
 get{return _CurrentTemperature;}
 set
 {
 if (value != CurrentTemperature)
 {
 _CurrentTemperature = value;
 if(OnTemperatureChange != null)
 {

 List<Exception> exceptionCollection =
 new List<Exception>();
 foreach (
 Action<float> handler in
 OnTemperatureChange.GetInvocationList())
 {
 try
 {
 handler(value);
 }
 catch (Exception exception)
 {
 exceptionCollection.Add(exception);
 }
 }
 if (exceptionCollection.Count > 0)
 {
 throw new AggregateException(
 "There were exceptions thrown by
OnTemperatureChange Event subscribers.",
 exceptionCollection);
 }

 }
 }
 }
 }
 private float _CurrentTemperature;
}

Output 13.2.

Enter temperature: 45
Heater: On
Error in the application
Cooler: Off

This listing demonstrates that you can retrieve a list of subscribers from a delegate’s GetInvocationList() method. Enumerating over each item in this list returns the individual subscribers. If you then place each invocation of a subscriber within a try/catch block, you can handle any error conditions before continuing with the enumeration loop. In this sample, even though the delegate listener throws an exception, cooler still receives notification of the temperature change. After all notifications have been sent, Listing 13.9 reports any exceptions by throwing an AggregateException, which wraps a collection of exceptions that are accessible by the InnerExceptions property. In this way, all exceptions are still reported while at the same time, all subscribers are notified.

Method Returns and Pass-by-Reference

There is another scenario where it is useful to iterate over the delegate invocation list instead of simply activating a notification directly. This scenario relates to delegates that either do not return void or have ref or out parameters. In the thermostat example so far, the OnTemperatureChange delegate is of type Action<float>, which returns void and has no out or ref parameters. The result is that there is no data returned back to the publisher. This is important because an invocation of a delegate potentially triggers notification to multiple subscribers. If the subscribers return a value, it is ambiguous which subscriber’s return value would be used.

If you changed OnTemperatureChange to return an enumeration value, indicating whether the device was on because of the temperature change, the new delegate would be of type Func<float, Status> where Status was an enum with elements On and Off. All subscriber methods would have to use the same method signature as the delegate, and therefore, each would be required to return a status value. And since OnTemperatureChange potentially corresponds to a chain of delegates, it is necessary to follow the same pattern that you used for error handling. In other words, you must iterate through each delegate invocation list, using the GetInvocationList() method, to retrieve each individual return value. Similarly, delegate types that use ref and out parameters need special consideration. However, although possible in exceptional circumstances, the guideline is to avoid this scenario entirely by returning void.

Events

There are two key problems with the delegates as you have used them so far in this chapter. To overcome these issues, C# uses the keyword event. In this section, you will see why you would use events, and how they work.

Why Events?

This chapter and the preceding one covered all you need to know about how delegates work. However, weaknesses in the delegate structure may inadvertently allow the programmer to introduce a bug. The issues relate to encapsulation that neither the subscription nor the publication of events can sufficiently control.

Encapsulating the Subscription

As demonstrated earlier, it is possible to assign one delegate to another using the assignment operator. Unfortunately, this capability introduces a common source for bugs. Consider Listing 13.10.

Listing 13.10. Using the Assignment Operator = Rather Than +=

Click here to view code image

class Program
{
 public static void Main()
 {
 Thermostat thermostat = new Thermostat();
 Heater heater = new Heater(60);
 Cooler cooler = new Cooler(80);
 string temperature;

 // Note: Use new Action(
 // cooler.OnTemperatureChanged) if C# 1.0
 thermostat.OnTemperatureChange =
 heater.OnTemperatureChanged;

 // Bug: assignment operator overrides
 // previous assignment.

 thermostat.OnTemperatureChange =
 cooler.OnTemperatureChanged;

 Console.Write("Enter temperature: ");
 temperature = Console.ReadLine();
 thermostat.CurrentTemperature = int.Parse(temperature);
 }
}

Listing 13.10 is almost identical to Listing 13.6, except that instead of using the += operator, you use a simple assignment operator. As a result, when code assigns cooler.OnTemperatureChanged to OnTemperatureChange, heater.OnTemperatureChanged is cleared out because an entirely new chain is assigned to replace the previous one. The potential for mistakenly using an assignment operator, when in fact the += assignment was intended, is so high that it would be preferable if the assignment operator were not even supported for objects except within the containing class. It is the purpose of the event keyword to provide additional encapsulation such that you cannot inadvertently cancel other subscribers.

Encapsulating the Publication

The second important difference between delegates and events is that events ensure that only the containing class can trigger an event notification. Consider Listing 13.11.

Listing 13.11. Firing the Event from Outside the Events Container

Click here to view code image

class Program
{
 public static void Main()
 {
 Thermostat thermostat = new Thermostat();
 Heater heater = new Heater(60);
 Cooler cooler = new Cooler(80);
 string temperature;

 // Note: Use new Action(
 // cooler.OnTemperatureChanged) if C# 1.0.
 thermostat.OnTemperatureChange +=
 heater.OnTemperatureChanged;

 thermostat.OnTemperatureChange +=
 cooler.OnTemperatureChanged;

 thermostat.OnTemperatureChange(42);

 }
}

In Listing 13.11, Program is able to invoke the OnTemperatureChange delegate even though the CurrentTemperature on thermostat did not change. Program, therefore, triggers a notification to all thermostat subscribers that the temperature changed, but in reality, there was no change in the thermostat temperature. As before, the problem with the delegate is that there is insufficient encapsulation. Thermostat should prevent any other class from being able to invoke the OnTemperatureChange delegate.

Declaring an Event

C# provides the event keyword to deal with both of these problems. Although seemingly like a field modifier, event defines a new type of member (see Listing 13.12).

Listing 13.12. Using the event Keyword with the Event-Coding Pattern

Click here to view code image

public class Thermostat
{

 public class TemperatureArgs: System.EventArgs
 {
 public TemperatureArgs(float newTemperature)
 {
 NewTemperature = newTemperature;
 }

 public float NewTemperature
 {
 get{return _newTemperature;}
 set{_newTemperature = value;}
 }
 private float _newTemperature;
 }

 // Define the event publisher
 public event EventHandler<TemperatureArgs> OnTemperatureChange =
 delegate { };

 public float CurrentTemperature
 {
 ...
 }
 private float _CurrentTemperature;
}

The new Thermostat class has four changes from the original class. First, the OnTemperatureChange property has been removed, and instead, OnTemperatureChange has been declared as a public field. This seems contrary to solving the earlier encapsulation problem. It would make more sense to increase the encapsulation, not decrease it by making a field public. However, the second change was to add the event keyword immediately before the field declaration. This simple change provides all the encapsulation needed. By adding the event keyword, you prevent use of the assignment operator on a public delegate field (for example, thermostat.OnTemperatureChange = cooler.OnTemperatureChanged). In addition, only the containing class is able to invoke the delegate that triggers the publication to all subscribers (for example, disallowing thermostat.OnTemperatureChange(42) from outside the class). In other words, the event keyword provides the needed encapsulation that prevents any external class from publishing an event or unsubscribing previous subscribers they did not add. This resolves the two issues with plain delegates and is one of the key reasons for the event keyword in C#.

Another potential pitfall with plain delegates was the fact that it was easy to forget to check for null before invoking the delegate. This resulted in an unexpected NullReferenceException. Fortunately, the encapsulation that the event keyword provides enables an alternative possibility during declaration (or within the constructor), as shown in Listing 13.12. Notice that when declaring the event we assign delegate { }—an empty delegate representing a collection of zero listeners. By assigning the empty delegate we can raise the event without checking whether there are any listeners. (The behavior is similar to assigning a variable with an array of zero items. Doing so allows the invocation of an array member without first checking whether the variable is null.) Of course, if there is any chance that the delegate could be reassigned with null, a check will still be required. However, because the event keyword restricts assignment to occur only within the class, any reassignment of the delegate could occur only from within the class. Assuming null is never assigned, there will be no need to check for null whenever the code invokes the delegate.

Coding Conventions

All you need to do to gain the desired functionality is to change the original delegate variable declaration to a field, and add the event keyword. With these two changes, you provide the necessary encapsulation and all other functionality remains the same. However, an additional change occurs in the delegate declaration in the code in Listing 13.12. To follow standard C# coding conventions, you replaced Action<float> with a new delegate type: EventHandler<TemperatureArgs>, a CLR type whose declaration is shown in Listing 13.13 (new in .NET Framework 2.0).

Listing 13.13. Declaring a Generic Delegate Type

Click here to view code image

public delegate void EventHandler<TEventArgs>(object sender, TEventArgs e)
 where TEventArgs : EventArgs;

The result was that the single temperature parameter in the Action<TEventArgs> delegate type was replaced with two new parameters, one for the sender and a second for the event data. This change is not something that the C# compiler will enforce, but passing two parameters of these types is the norm for a delegate intended for an event.

The first parameter, sender, should contain an instance of the class that invoked the delegate. This is especially helpful if the same subscriber method registers with multiple events—for example, if the heater.OnTemperatureChanged event subscribes to two different Thermostat instances. In such a scenario, either Thermostat instance can trigger a call to heater.OnTemperatureChanged. In order to determine which instance of Thermostat triggered the event, you use the sender parameter from inside Heater.OnTemperatureChanged(). If the event is static this will not be available, so pass null for the sender argument value.

The second parameter, TEventArgs e, is specified as type Thermostat.TemperatureArgs. The important part about TemperatureArgs, at least as far as the coding convention goes, is that it derives from System.EventArgs. (In fact, derivation from System.EventArgs is something that the framework forced with a generic constraint until .NET Framework 4.5.) The only significant property on System.EventArgs is Empty and it is used to indicate that there is no event data. When you derive TemperatureArgs from System.EventArgs, however, you add an additional property, NewTemperature, as a means to pass the temperature from the thermostat to the subscribers.

To summarize the coding convention for events: The first argument, sender, is of type object and it contains a reference to the object that invoked the delegate or null if the event is static. The second argument is of type System.EventArgs or something that derives from System.EventArgs but contains additional data about the event. You invoke the delegate exactly as before, except for the additional parameters. Listing 13.14 shows an example.

Listing 13.14. Firing the Event Notification

Click here to view code image

public class Thermostat
{
 ...
 public float CurrentTemperature
 {
 get{return _CurrentTemperature;}
 set
 {
 if (value != CurrentTemperature)
 {
 _CurrentTemperature = value;
 // If there are any subscribers
 // then notify them of changes in
 // temperature
 if(OnTemperatureChange != null)
 {
 // Call subscribers

 OnTemperatureChange(
 this, new TemperatureArgs(value));

 }
 }
 }
 }
 private float _CurrentTemperature;
}

You usually specify the sender using the container class (this) because that is the only class that can invoke the delegate for events.

In this example, the subscriber could cast the sender parameter to Thermostat and access the current temperature that way, as well as via the TemperatureArgs instance. However, the current temperature on the Thermostat instance may change via a different thread. In the case of events that occur due to state changes, passing the previous value along with the new value is a frequent pattern used to control what state transitions are allowable.

Guidelines

DO check that the value of a delegate is not null before invoking it.

DO NOT pass null as the value of the sender on nonstatic events, but DO pass null for the same value on static events.

DO NOT pass null as the value of eventArgs argument.

DO use a delegate type of EventHandler<TEventArgs> for the events.

DO use System.EventArgs or a type that derives from System.EventArgs for a TEventArgs.

CONSIDER using a subclass of System.EventArgs as the event argument type (TEventArgs), unless you are absolutely sure the event will never need to carry any data.

Generics and Delegates

The preceding section discussed that the guideline for defining a type for an event is to use a delegate type of EventHandler<TEventArgs>. In theory, any delegate type could be used, but by convention, the first parameter, sender, is of type object and the second parameter, e, should be a type deriving from System.EventArgs. One of the more cumbersome aspects of delegates in C# 1.0 was that you had to declare a new delegate type whenever the parameters on the handler change. Every creation of a new derivation from System.EventArgs (a relatively common occurrence) required the declaration of a new delegate data type that uses the new EventArgs derived type. For example, in order to use TemperatureArgs within the event notification code in Listing 13.14, it is necessary to declare the delegate type TemperatureChangeHandler that has TemperatureArgs as a parameter (see Listing 13.15).

Listing 13.15. Using a Custom Delegate Type

Click here to view code image

public class Thermostat
{
 public class TemperatureArgs: System.EventArgs
 {
 public TemperatureArgs(float newTemperature)
 {
 NewTemperature = newTemperature;
 }

 public float NewTemperature
 {
 get{return _newTemperature;}
 set{_newTemperature = value;}
 }
 private float _newTemperature;
 }

 public delegate void TemperatureChangeHandler(
 object sender, TemperatureArgs newTemperature);

 public event TemperatureChangeHandler
 OnTemperatureChange;

 public float CurrentTemperature
 {
 ...
 }
 private float _CurrentTemperature;
}

Although generally EventHandler<TEventArgs> is preferred over creating a custom delegate type such as TemperatureChangeHandler, there is one advantage of such a type. Specifically, if a custom type is used, the parameter names can be specific to the event. In Listing 13.15, for example, when invoking the delegate to raise the event, the second parameter name will appear as newTemperature rather than simply e.

Another reason why a custom delegate type might be used concerns parts of the CLR API that were defined prior to C# 2.0. Since this is a pretty significant percentage of the more common types within the framework, it is therefore not uncommon to encounter specific delegate types rather than the generic form on events coming from the CLR API. Regardless, in the majority of circumstances when using events in C# 2.0 and later, it is not necessary to declare a custom delegate data type.

Guidelines

DO use System.EventHandler<T> instead of manually creating new delegate types for event handlers, unless the parameter names of a custom type offer significant clarification.

Advanced Topic: Event Internals

Events restrict external classes from doing anything other than adding subscribing methods to the publisher via the += operator and then unsubscribing using the -= operator. In addition, they restrict classes, other than the containing class, from invoking the event. To do this the C# compiler takes the public delegate variable with its event keyword modifier and declares the delegate as private. In addition, it adds a couple of methods and two special event blocks. Essentially, the event keyword is a C# shortcut for generating the appropriate encapsulation logic. Consider the example in the event declaration shown in Listing 13.16.

Listing 13.16. Declaring the OnTemperatureChange Event

Click here to view code image

public class Thermostat
{
 public event EventHandler<TemperatureArgs> OnTemperatureChange

 ...
}

When the C# compiler encounters the event keyword, it generates CIL code equivalent to the C# code shown in Listing 13.17.

Listing 13.17. C# Conceptual Equivalent of the Event CIL Code Generated by the Compiler

Click here to view code image

public class Thermostat
{
 // ...

 // Declaring the delegate field to save the
 // list of subscribers.
 private EventHandler<TemperatureArgs> _OnTemperatureChange;

 public void add_OnTemperatureChange(
 EventHandler<TemperatureArgs> handler)
 {
 System.Delegate.Combine(_OnTemperatureChange, handler);
 }

 public void remove_OnTemperatureChange(
 EventHandler<TemperatureArgs> handler)
 {
 System.Delegate.Remove(_OnTemperatureChange, handler);
 }

 public event EventHandler<TemperatureArgs> OnTemperatureChange
 {
 add
 {
 add_OnTemperatureChange(value)
 }
 remove
 {
 remove_OnTemperatureChange(value)
 }
 }

}

In other words, the code shown in Listing 13.16 is (conceptually) the C# shorthand that the compiler uses to trigger the code expansion shown in Listing 13.17. (The “conceptually” qualifier is needed because some details regarding thread synchronization have been eliminated for the purpose of elucidation.)

The C# compiler first takes the original event definition and defines a private delegate variable in its place. As a result, the delegate becomes unavailable to any external class, even to classes derived from it.

Next, the C# compiler defines two methods, add_OnTemperatureChange() and remove_OnTemperatureChange(), where the OnTemperatureChange suffix is taken from the original name of the event. These methods are responsible for implementing the += and -= assignment operators, respectively. As Listing 13.17 shows, these methods are implemented using the static System.Delegate.Combine() and System.Delegate.Remove() methods, discussed earlier in the chapter. The first parameter passed to each of these methods is the private EventHandler<TemperatureArgs> delegate instance, OnTemperatureChange.

Perhaps the most curious part of the code generated from the event keyword is the last part. The syntax is very similar to that of a property’s getter and setter methods except that the methods are add and remove. The add block takes care of handling the += operator on the event by passing the call to add_OnTemperatureChange(). In a similar manner, the remove block operator handles the -= operator by passing the call on to remove_OnTemperatureChange.

It is important to notice the similarities between this code and the code generated for a property. Readers will recall that the C# implementation of a property is to create get_<propertyname> and set_<propertyname>, and then to pass calls to the get and set blocks on to these methods. Clearly, the event syntax is very similar.

Another important characteristic to note about the generated CIL code is that the CIL equivalent of the event keyword remains in the CIL. In other words, an event is something that the CIL code recognizes explicitly; it is not just a C# construct. By keeping an equivalent event keyword in the CIL code, all languages and editors are able to provide special functionality because they can recognize the event as a special class member.

Customizing the Event Implementation

You can customize the code for += and -= that the compiler generates. Consider, for example, changing the scope of the OnTemperatureChange delegate so that it is protected rather than private. This, of course, would allow classes derived from Thermostat to access the delegate directly instead of being limited to the same restrictions as external classes. To enable this, C# allows the same property as the syntax shown in Listing 13.15. In other words, C# allows you to define custom add and remove blocks to provide implementation for each aspect of the event encapsulation. Listing 13.18 provides an example.

Listing 13.18. Custom add and remove Handlers

Click here to view code image

public class Thermostat
{
 public class TemperatureArgs: System.EventArgs
 {
 ...
 }

 // Define the event publisher
 public event EventHandler<TemperatureArgs> OnTemperatureChange
 {
 add
 {
 System.Delegate.Combine(value, _OnTemperatureChange);
 }
 remove
 {
 System.Delegate.Remove(_OnTemperatureChange, value);
 }
 }
 protected EventHandler<TemperatureArgs> _OnTemperatureChange;

 public float CurrentTemperature
 {
 ...
 }
 private float _CurrentTemperature;
}

In this case, the delegate that stores each subscriber, _OnTemperatureChange, was changed to protected. In addition, implementation of the add block switches around the delegate storage so that the last delegate added to the chain is the first delegate to receive a notification.

Summary

Now that we have described events, it is worth mentioning that in general, method references are the only cases where it is advisable to work with a delegate variable outside the context of an event. In other words, given the additional encapsulation features of an event and the ability to customize the implementation when necessary, the best practice is always to use events for the observer pattern.

It may take a little practice to be able to code events from scratch without sample code. However, they are a critical foundation to the asynchronous, multithreaded coding of later chapters.

14. Collection Interfaces with Standard Query Operators

The most significant features added in C# 3.0 were in the area of collections. Extension methods and lambda expressions enabled a far superior API for working with collections. In fact, in earlier editions of this book, the chapter on collections came immediately after the chapter on generics and just before the one on delegates. However, lambda expressions make such a significant impact on collection APIs that it is no longer possible to cover collections without first covering delegates (the basis of lambda expressions). Now that you have a solid foundation on lambda expressions from the preceding chapter, we can delve into the details of collections, a topic that spans three chapters.

[image: Image]

To begin, this chapter introduces anonymous types and collection initializers, topics that we covered only briefly in a few Advanced Topic sections in Chapter 5. Next, this chapter covers the various collection interfaces and how they relate to one another. This is the basis for understanding collections, so readers should cover the material with diligence. The section on collection interfaces includes coverage of the IEnumerable<T> extension methods that were added in C# 3.0 to implement the standard query operators.

There are two categories of collection-related classes and interfaces: those that support generics and those that don’t. This chapter primarily discusses the generic collection interfaces. You should use collection classes that don’t support generics only when you are writing components that need to interoperate with earlier versions of the runtime. This is because everything that was available in the nongeneric form has a generic replacement that is strongly typed. Although the concepts still apply to both forms, we will not explicitly discuss the nongeneric versions.1

Anonymous Types and Implicitly Typed Local Variables

C# 3.0 significantly improved support for handling collections of items. What is amazing is that to support this advanced API, fewer than nine new language enhancements were made. However, these enhancements are critical to why C# 3.0 was such a marvelous improvement to the language. Two such enhancements were anonymous types and implicit local variables.

Anonymous Types

Anonymous types are data types that are declared by the compiler, rather than through the explicit class definitions of Chapter 5. Like anonymous functions, when the compiler sees an anonymous type, it does the work to make that class for you and then lets you use it as though you had declared it explicitly. Listing 14.1 shows such a declaration.

Listing 14.1. Implicit Local Variables with Anonymous Types

Click here to view code image

using System;

class Program
{
 static void Main()
 {

 var patent1 =
 new
 {
 Title = "Bifocals",
 YearOfPublication = "1784"
 };
 var patent2 =
 new
 {
 Title = "Phonograph",
 YearOfPublication = "1877"
 };
 var patent3 =
 new
 {
 patent1.Title,
 // Renamed to show property naming.
 Year = patent1.YearOfPublication
 };

 Console.WriteLine("{0} ({1})",
 patent1.Title, patent1.YearOfPublication);
 Console.WriteLine("{0} ({1})",
 patent2.Title, patent2.YearOfPublication);

 Console.WriteLine();
 Console.WriteLine(patent1);
 Console.WriteLine(patent2);

 Console.WriteLine();
 Console.WriteLine(patent3);
 }
}

The corresponding output is shown in Output 14.1.

Output 14.1.

Click here to view code image

Bifocals (1784)
Phonograph (1784)

{ Title = Bifocals, YearOfPublication = 1784 }
{ Title = Phonograph, YearOfPublication = 1877 }

{ Title = Bifocals, Year = 1784 }

Anonymous types are purely a C# feature, not a new kind of type in the runtime. When the compiler encounters the anonymous type syntax, it generates a CIL class with properties corresponding to the named values and data types in the anonymous type declaration.

Implicitly Typed Local Variables (var)

Since an anonymous type by definition has no name, it is not possible to declare a local variable as explicitly being of an anonymous type. Rather, the local variable’s type is replaced with var. However, by no means does this indicate that implicitly typed variables are untyped. On the contrary, they are fully typed to the data type of the value they are assigned. If an implicitly typed variable is assigned an anonymous type, the underlying CIL code for the local variable declaration will be of the type generated by the compiler. Similarly, if the implicitly typed variable is assigned a string, its data type in the underlying CIL will be a string. In fact, there is no difference in the resultant CIL code for implicitly typed variables whose assignment is not an anonymous type (such as string) and those that are declared as type string. If the declaration statement is string text = "This is a test of the...", the resultant CIL code will be identical to an implicitly typed declaration, var text = "This is a test of the...". The compiler determines the data type of the implicitly typed variable from the expression assigned. In an explicitly typed local variable with an initializer (string s = "hello";), the compiler first determines the type of s from the declared type on the left-hand side, then analyzes the right-hand side and verifies that the expression on the right-hand side is assignable to that type. In an implicitly typed local variable, the process is in some sense reversed. First the right-hand side is analyzed to determine its type, and then the “var” is logically replaced with that type.

Although there is no available name in C# for the anonymous type, it is still strongly typed as well. For example, the properties of the type are fully accessible. In Listing 14.1, patent1.Title and patent2.YearOfPublication are called within the Console.WriteLine statement. Any attempts to call nonexistent members will result in compile errors. Even IntelliSense in IDEs such as Visual Studio 2012 works with the anonymous type.

You should use implicitly typed variable declarations sparingly. Obviously, for anonymous types, it is not possible to specify the data type, and the use of var is required. However, for cases where the data type is not an anonymous type, it is frequently preferable to use the explicit data type. As is the case generally, you should focus on making the semantics of the code more readable while at the same time using the compiler to verify that the resultant variable is of the type you expect. To accomplish this with implicitly typed local variables, use them only when the type assigned to the implicitly typed variable is entirely obvious. For example, in var items = new Dictionary<string, List<Account>>();, the resultant code is more succinct and readable. In contrast, when the type is not obvious, such as when a method return is assigned, developers should favor an explicit variable type declaration such as the following:

Dictionary<string, List<Account>> dictionary = GetAccounts();

Note

Implicitly typed variables should generally be reserved for anonymous type declaration rather than used indiscriminately when the data type is known at compile time, unless the type assigned to the variable is entirely obvious.

Language Contrast: C++/Visual Basic/JavaScript—void*, Variant, and var

It is important to understand that an implicitly typed variable is not the equivalent of void* in C++, a Variant in Visual Basic, or var in JavaScript. In each of these cases, the variable declaration is not very restrictive since the variable may be assigned a value of any type, just as you could in C# with a variable declaration of type object. In contrast, var is definitively typed by the compiler, and once established at declaration, the type may not change, and type checks and member calls are verified at compile time.

More about Anonymous Types and Implicit Local Variables

In Listing 14.1, member names on the anonymous types are explicitly identified using the assignment of the value to the name for patent1 and patent2 (for example, Title = "Phonograph"). However, if the value assigned is a property or field call, the name may default to the name of the field or property rather than explicitly specifying the value. patent3, for example, is defined using a property named “Title” rather than an assignment to an explicit name. As Output 14.1 shows, the resultant property name is determined, by the compiler, to match the property from where the value was retrieved.

patent1 and patent2 both have the same property names with the same data types. Therefore, the C# compiler generates only one data type for these two anonymous declarations. patent3, however, forces the compiler to create a second anonymous type because the property name for the patent year is different from what it was in patent1 and patent2. Furthermore, if the order of the properties were switched between patent1 and patent2, these two anonymous types would also not be type-compatible. In other words, the requirements for two anonymous types to be type-compatible within the same assembly are a match in property names, data types, and order of properties. If these criteria are met, the types are compatible even if they appear in different methods or classes. Listing 14.2 demonstrates the type incompatibilities.

Listing 14.2. Type Safety and Immutability of Anonymous Types

Click here to view code image

class Program
{
 static void Main()
 {
 var patent1 =
 new
 {

 Title = "Bifocals",
 YearOfPublication = "1784"

 };

 var patent2 =
 new
 {

 YearOfPublication = "1877",
 Title = "Phonograph"

 };

 var patent3 =
 new
 {
 patent1.Title,

 Year = patent1.YearOfPublication

 };

 // ERROR: Cannot implicitly convert type
 // 'AnonymousType#1' to 'AnonymousType#2'
 patent1 = patent2;
 // ERROR: Cannot implicitly convert type
 // 'AnonymousType#3' to 'AnonymousType#2'
 patent1 = patent3;

 // ERROR: Property or indexer 'AnonymousType#1.Title'
 // cannot be assigned to -- it is read only'
 patent1.Title = "Swiss Cheese";
 }
}

The resultant two compile errors assert the fact that the types are not compatible, so they will not successfully convert from one to the other.

The third compile error is caused by the reassignment of the Title property. Anonymous types are immutable, so it is a compile error to change a property on an anonymous type once it has been instantiated.

Although not shown in Listing 14.2, it is not possible to declare a method with an implicit data type parameter (var). Therefore, instances of anonymous types can only be passed outside the method in which they are created in only two ways. First, if the method parameter is of type object, the anonymous type instance may pass outside the method because the anonymous type will convert implicitly. A second way is to use method type inference, whereby the anonymous type instance is passed as a method type parameter that the compiler can successfully infer. Calling void Method<T>(T parameter) using Function(patent1), therefore, would succeed, although the available operations on parameter within Function() are limited to those supported by object.

In spite of the fact that C# allows anonymous types such as the ones shown in Listing 14.1, it is generally not recommended that you define them in this way. Anonymous types provide critical functionality with C# 3.0 support for projections, such as joining/associating collections, as we discuss later in the chapter. However, generally you should reserve anonymous type definitions for circumstances where they are required, such as aggregation of data from multiple types.

Advanced Topic: Anonymous Type Generation

Even though Console.WriteLine()’s implementation is to call ToString(), notice in Listing 14.1 that the output from Console.WriteLine() is not the default ToString(), which writes out the fully qualified data type name. Rather, the output is a list of PropertyName = value pairs, one for each property on the anonymous type. This occurs because the compiler overrides ToString() in the anonymous type code generation, and instead formats the ToString() output as shown. Similarly, the generated type includes overriding implementations for Equals() and GetHashCode().

The implementation of ToString() on its own is an important reason that variation in the order of properties causes a new data type to be generated. If two separate anonymous types, possibly in entirely separate types and even namespaces, were unified and then the order of properties changed, changes in the order of properties on one implementation would have noticeable and possibly unacceptable effects on the other’s ToString() results. Furthermore, at execution time it is possible to reflect back on a type and examine the members on a type—even to call one of these members dynamically (determining at runtime which member to call). A variation in the order of members on two seemingly identical types could trigger unexpected results, and to avoid this, the C# designers decided to generate two different types.

Collection Initializers

Another feature added to C# in version 3.0 was collection initializers. A collection initializer allows programmers to construct a collection with an initial set of members at instantiation time in a manner similar to array declaration. Without collection initialization, elements had to be explicitly added to a collection after the collection was instantiated—using something like System.Collections.Generic.ICollection<T>’s Add() method. With collection initialization, the Add() calls are generated by the C# complier rather than explicitly coded by the developer. Listing 14.3 shows how to initialize the collection using a collection initializer instead.

Listing 14.3. Filtering with System.Linq.Enumerable.Where()

Click here to view code image

using System;
using System.Collections.Generic;

class Program
{
 static void Main()
 {
 List<string> sevenWorldBlunders;
 sevenWorldBlunders = new List<string>()
 {
 // Quotes from Ghandi
 "Wealth without work",
 "Pleasure without conscience",
 "Knowledge without character",
 "Commerce without morality",
 "Science without humanity",
 "Worship without sacrifice",
 "Politics without principle"
 };

 Print(sevenWorldBlunders);

 }

 private static void Print<T>(IEnumerable<T> items)
 {
 foreach (T item in items)
 {
 Console.WriteLine(item);
 }
 }
}

The syntax is similar not only to the array initialization, but also to an object initializer with the curly braces following the constructor. If no parameters are passed in the constructor, the parentheses following the data type are optional (as they are with object initializers).

A few basic requirements are needed in order for a collection initializer to compile successfully. Ideally, the collection type to which a collection initializer is applied would be of a type that implements System.Collections.Generic.ICollection<T>. This ensures that the collection includes an Add() that the compiler-generated code can invoke. However, a relaxed version of the requirement also exists and simply demands that one or more Add() methods exist on a type that implements IEnumerable<T>—even if the collection doesn’t implement ICollection<T>. The Add() methods need to take parameters that are compatible with the values specified in the collection initializer.

Allowing initializers on collections that don’t support ICollection<T> was important for two reasons. First, it turns out that the majority of collections (types that implement IEnumerable<T>) do not also implement ICollection<T>, thus significantly reducing the usefulness of collection initializers.

Second, matching on the method name and signature compatibility with the collection initializer items enables greater diversity in the items initialized into the collection. For example, the initializer now can support new DataStore(){ a, {b, c}} as long as there is one Add() method whose signature is compatible with a and a second Add() method compatible with b, c.

Note that you cannot have a collection initializer for an anonymous type since the collection initializer requires a constructor call, and it is impossible to name the constructor. The workaround is to define a method such as static List<T> CreateList<T>(T t) { return new List<T>(); }. Method type inference allows the type parameter to be implied rather than specified explicitly, and so this workaround successfully allows for the creation of a collection of anonymous types.

Another approach to initializing a collection of anonymous types is to use an array initializer. Since it is not possible to specify the data type in the constructor, array initialization syntax allows for anonymous array initializers using new[] (see Listing 14.4).

Listing 14.4. Initializing Anonymous Type Arrays

Click here to view code image

using System;
using System.Collections.Generic;
using System.Linq;

class Program
{
 static void Main()
 {

 var worldCup2006Finalists = new[]
 {

 new
 {
 TeamName = "France",
 Players = new string[]
 {
 "Fabien Barthez", "Gregory Coupet",
 "Mickael Landreau", "Eric Abidal",
 // ...
 }
 },
 new
 {
 TeamName = "Italy",
 Players = new string[]
 {
 "Gianluigi Buffon", "Angelo Peruzzi",
 "Marco Amelia", "Cristian Zaccardo",
 // ...
 }
 }
 };

 Print(worldCup2006Finalists);
 }

 private static void Print<T>(IEnumerable<T> items)
 {
 foreach (T item in items)
 {
 Console.WriteLine(item);
 }
 }
}

The resultant variable is an array of the anonymous type items, which must be homogeneous since it is an array.

What Makes a Class a Collection: IEnumerable<T>

By definition, a collection within .NET is a class that, at a minimum, implements IEnumerable<T> (or the nongeneric type IEnumerable). This interface is a key because implementing the methods of IEnumerable<T> is the minimum implementation requirement needed to support iterating over the collection.

Chapter 3 showed how to use a foreach statement to iterate over an array of elements. The syntax is simple and avoids the complication of having to know how many elements there are. The runtime does not directly support the foreach statement, however. Instead, the C# compiler transforms the code as described in this section.

foreach with Arrays

Listing 14.5 demonstrates a simple foreach loop iterating over an array of integers and then printing out each integer to the console.

Listing 14.5. foreach with Arrays

Click here to view code image

int[] array = new int[]{1, 2, 3, 4, 5, 6};

foreach (int item in array)
{
 Console.WriteLine(item);
}

From this code, the C# compiler creates a CIL equivalent of the for loop, as shown in Listing 14.6.

Listing 14.6. Compiled Implementation of foreach with Arrays

Click here to view code image

int number;
int[] tempArray;
int[] array = new int[]{1, 2, 3, 4, 5, 6};

tempArray = array;
for (int counter = 0; (counter < tempArray.Length); counter++)
{
 int item = tempArray[counter];

 Console.WriteLine(item);
}

In this example, note that foreach relies on support for the Length property and the index operator ([]). With the Length property, the C# compiler can use the for statement to iterate through each element in the array.

foreach with IEnumerable<T>

Although the code shown in Listing 14.6 works well on arrays where the length is fixed and the index operator is always supported, not all types of collections have a known number of elements. Furthermore, many of the collection classes, including the Stack<T>, Queue<T>, and Dictionary<Tkey, Tvalue> classes, do not support retrieving elements by index. Therefore, a more general approach of iterating over collections of elements is needed. The iterator pattern provides this capability. Assuming you can determine the first, next, and last elements, knowing the count and supporting retrieval of elements by index is unnecessary.

The System.Collections.Generic.IEnumerator<T> and nongeneric System.Collections.IEnumerator interfaces (see Listing 14.8) are designed to enable the iterator pattern for iterating over collections of elements, rather than the length-index pattern shown in Listing 14.6. A class diagram of their relationships appears in Figure 14.1.

[image: Image]

Figure 14.1. A Class Diagram of IEnumerator<T> and IEnumerator Interfaces

IEnumerator, which IEnumerator<T> derives from, includes three members. The first is bool MoveNext(). Using this method, you can move from one element within the collection to the next while at the same time detecting when you have enumerated through every item. The second member, a read-only property called Current, returns the element currently in process. Current is overloaded in IEnumerator<T>, providing a type-specific implementation of it. With these two members on the collection class, it is possible to iterate over the collection simply using a while loop, as demonstrated in Listing 14.7. (The Reset() method usually throws a NotImplementedException, and therefore should never be called. If you need to restart an enumeration, just create a fresh enumerator.)

Listing 14.7. Iterating over a Collection Using while

Click here to view code image

System.Collections.Generic.Stack<int> stack =
 new System.Collections.Generic.Stack<int>();
int number;
// ...

// This code is conceptual, not the actual code.
while (stack.MoveNext())
{
 number = stack.Current;
 Console.WriteLine(number);
}

In Listing 14.7, the MoveNext() method returns false when it moves past the end of the collection. This replaces the need to count elements while looping.

Listing 14.7 uses a System.Collections.Generic.Stack<T> as the collection type. Numerous other collection types exist; this is just one example. The key trait of Stack<T> is its design as a last in, first out (LIFO) collection. It is important to note that the type parameter T identifies the type of all items within the collection. Collecting one particular type of object within a collection is a key characteristic of a generic collection. It is important that the programmer understands the data type within the collection when adding, removing, or accessing items within the collection.

The preceding example shows the gist of the C# compiler output, but it doesn’t actually compile that way because it omits two important details concerning the implementation: interleaving and error handling.

State Is Shared

The problem with an implementation such as Listing 14.7 is that if two such loops interleaved each other—one foreach inside another, both using the same collection—the collection must maintain a state indicator of the current element so that when MoveNext() is called, the next element can be determined. The problem is that one interleaving loop can affect the other. (The same is true of loops executed by multiple threads.)

To overcome this problem, the collection classes do not support IEnumerator<T> and IEnumerator interfaces directly. As shown in Figure 14.1, there is a second interface, called IEnumerable<T>, whose only method is GetEnumerator(). The purpose of this method is to return an object that supports IEnumerator<T>. Instead of the collection class maintaining the state, a different class, usually a nested class so that it has access to the internals of the collection, will support the IEnumerator<T> interface and will keep the state of the iteration loop. The enumerator is like a “cursor” or a “bookmark” in the sequence. You can have multiple bookmarks, and moving each of them enumerates over the collection independently of the other. Using this pattern, the C# equivalent of a foreach loop will look like the code shown in Listing 14.8.

Listing 14.8. A Separate Enumerator Maintaining State during an Iteration

Click here to view code image

System.Collections.Generic.Stack<int> stack =
 new System.Collections.Generic.Stack<int>();
int number;
System.Collections.Generic.Stack<int>.Enumerator
 enumerator;

// ...

// If IEnumerable<T> is implemented explicitly,
// then a cast is required.
// ((IEnumerable<int>)stack).GetEnumerator();
enumerator = stack.GetEnumerator();
while (enumerator.MoveNext())
{
 number = enumerator.Current;
 Console.WriteLine(number);
}

Cleaning Up Following Iteration

Since the classes that implement the IEnumerator<T> interface maintain the state, sometimes you need to clean up the state after it exits the loop (because either all iterations have completed or an exception is thrown). To achieve this, the IEnumerator<T> interface derives from IDisposable. Enumerators that implement IEnumerator do not necessarily implement IDisposable, but if they do, Dispose() will be called as well. This enables the calling of Dispose() after the foreach loop exits. The C# equivalent of the final CIL code, therefore, looks like Listing 14.9.

Listing 14.9. Compiled Result of foreach on Collections

Click here to view code image

System.Collections.Generic.Stack<int> stack =
 new System.Collections.Generic.Stack<int>();
System.Collections.Generic.Stack<int>.Enumerator
 enumerator;
IDisposable disposable;

enumerator = stack.GetEnumerator();
try
{
 int number;
 while (enumerator.MoveNext())
 {
 number = enumerator.Current;
 Console.WriteLine(number);
 }
}
finally
{
 // Explicit cast used for IEnumerator<T>.
 disposable = (IDisposable) enumerator;
 disposable.Dispose();

 // IEnumerator will use the as operator unless IDisposable
 // support is known at compile time.
 // disposable = (enumerator as IDisposable);
 // if (disposable != null)
 // {
 // disposable.Dispose();
 // }
}

Notice that because the IDisposable interface is supported by IEnumerator<T>, the using statement can simplify the code in Listing 14.9 to that shown in Listing 14.10.

Listing 14.10. Error Handling and Resource Cleanup with using

Click here to view code image

System.Collections.Generic.Stack<int> stack =
 new System.Collections.Generic.Stack<int>();
int number;

using(
 System.Collections.Generic.Stack<int>.Enumerator
 enumerator = stack.GetEnumerator())

{
 while (enumerator.MoveNext())
 {
 number = enumerator.Current;
 Console.WriteLine(number);
 }
}

However, recall that the CIL also does not directly support the using keyword, so in reality, the code in Listing 14.9 is a more accurate C# representation of the foreach CIL code.

Advanced Topic: foreach without IEnumerable

C# doesn’t require that IEnumerable/IEnumerable<T> be implemented in order to iterate over a data type using foreach. Rather, the compiler uses a concept known as duck typing; it looks for a GetEnumerator() method that returns a type with a Current property and MoveNext() method. Duck typing involves searching by name rather than relying on an interface or explicit method call to the method. (The name “duck typing” comes from the whimsical idea that in order to be treated as a duck, the object must merely implement a Quack() method; it need not implement an IDuck interface.) If duck typing fails to find a suitable implementation of the enumerable pattern, the compiler checks to see if the collection implements the interfaces.

Do Not Modify Collections during foreach Iteration

Chapter 3 showed that the compiler prevents assignment of the foreach variable (number). As is demonstrated in Listing 14.10, an assignment to number would not be a change to the collection element itself, so the C# compiler prevents such an assignment altogether.

In addition, neither the element count within a collection nor the items themselves can generally be modified during the execution of a foreach loop. If, for example, you called stack.Push(42) inside the foreach loop, it would be ambiguous whether the iterator should ignore or incorporate the change to stack—in other words, whether iterator should iterate over the newly added item or ignore it and assume the same state as when it was instantiated.

Because of this ambiguity, an exception of type System.InvalidOperationException is generally thrown upon accessing the enumerator if the collection is modified within a foreach loop, reporting that the collection was modified after the enumerator was instantiated.

Standard Query Operators

Besides the methods on System.Object, any type that implements IEnumerable<T> is only required to implement one method, GetEnumerator(). And yet, it makes more than 50 methods available to all types implementing IEnumerable<T>, not including any overloading—and this happens without needing to explicitly implement any method except the GetEnumerator() method. The additional functionality is provided using C# 3.0’s extension methods and it all resides in the class System.Linq.Enumerable. Therefore, including the using declarative for System.Linq is all it takes to make these methods available.

Each method on IEnumerable<T> is a standard query operator; it provides querying capability over the collection on which it operates. In the following sections, we will examine some of the most prominent of these standard query operators.

Many of the examples will depend on an Inventor and/or Patent class, both defined in Listing 14.11.

Listing 14.11. Sample Classes for Use with Standard Query Operators

Click here to view code image

using System;
using System.Collections.Generic;
using System.Linq;

public class Patent
{
 // Title of the published application
 public string Title { get; set; }

 // The date the application was officially published
 public string YearOfPublication { get; set; }

 // A unique number assigned to published applications
 public string ApplicationNumber { get; set; }

 public long[] InventorIds { get; set; }

 public override string ToString()
 {
 return string.Format("{0}({1})",
 Title, YearOfPublication);
 }
}

public class Inventor
{
 public long Id { get; set; }
 public string Name { get; set; }
 public string City { get; set; }
 public string State { get; set; }
 public string Country { get; set; }

 public override string ToString()
 {
 return string.Format("{0}({1}, {2})",
 Name, City, State);
 }
}

class Program
{
 static void Main()
 {
 IEnumerable<Patent> patents = PatentData.Patents;
 Print(patents);

 Console.WriteLine();

 IEnumerable<Inventor> inventors = PatentData.Inventors;
 Print(inventors);
 }

 private static void Print<T>(IEnumerable<T> items)
 {
 foreach (T item in items)
 {
 Console.WriteLine(item);
 }
 }
}

public static class PatentData
{
 public static readonly Inventor[] Inventors = new Inventor[]
 {
 new Inventor(){
 Name="Benjamin Franklin", City="Philadelphia",
 State="PA", Country="USA", Id=1 },
 new Inventor(){
 Name="Orville Wright", City="Kitty Hawk",
 State="NC", Country="USA", Id=2},
 new Inventor(){
 Name="Wilbur Wright", City="Kitty Hawk",
 State="NC", Country="USA", Id=3},
 new Inventor(){
 Name="Samuel Morse", City="New York",
 State="NY", Country="USA", Id=4},
 new Inventor(){
 Name="George Stephenson", City="Wylam",
 State="Northumberland", Country="UK", Id=5},
 new Inventor(){
 Name="John Michaelis", City="Chicago",
 State="IL", Country="USA", Id=6},
 new Inventor(){
 Name="Mary Phelps Jacob", City="New York",
 State="NY", Country="USA", Id=7},
 };

 public static readonly Patent[] Patents = new Patent[]
 {
 new Patent(){
 Title="Bifocals", YearOfPublication="1784",
 InventorIds=new long[] {1}},
 new Patent(){
 Title="Phonograph", YearOfPublication="1877",
 InventorIds=new long[] {1}},
 new Patent(){
 Title="Kinetoscope", YearOfPublication="1888",
 InventorIds=new long[] {1}},
 new Patent(){
 Title="Electrical Telegraph",
 YearOfPublication="1837",
 InventorIds=new long[] {4}},
 new Patent(){
 Title="Flying machine", YearOfPublication="1903",
 InventorIds=new long[] {2,3}},
 new Patent(){
 Title="Steam Locomotive",
 YearOfPublication="1815",
 InventorIds=new long[] {5}},
 new Patent(){
 Title="Droplet deposition apparatus",
 YearOfPublication="1989",
 InventorIds=new long[] {6}},
 new Patent(){
 Title="Backless Brassiere",
 YearOfPublication="1914",
 InventorIds=new long[] {7}},
 };
}

Listing 14.11 also provides a selection of sample data. Output 14.2 displays the results.

Output 14.2.

Click here to view code image

Bifocals(1784)
Phonograph(1877)
Kinetoscope(1888)
Electrical Telegraph(1837)
Flying machine(1903)
Steam Locomotive(1815)
Droplet deposition apparatus(1989)
Backless Brassiere(1914)

Benjamin Franklin(Philadelphia, PA)
Orville Wright(Kitty Hawk, NC)
Wilbur Wright(Kitty Hawk, NC)
Samuel Morse(New York, NY)
George Stephenson(Wylam, Northumberland)
John Michaelis(Chicago, IL)
Mary Phelps Jacob(New York, NY)

Filtering with Where()

In order to filter out data from a collection, we need to provide a filter method that returns true or false, indicating whether a particular element should be included or not. A delegate expression that takes an argument and returns a Boolean is called a predicate, and a collection’s Where() method depends on predicates for identifying filter criteria, as shown in Listing 14.12. (Technically, the result of the Where() method is a monad which encapsulates the operation of filtering a given sequence with a given predicate.) The output appears in Output 14.3.

Listing 14.12. Filtering with System.Linq.Enumerable.Where()

Click here to view code image

using System;
using System.Collections.Generic;
using System.Linq;

class Program
{
 static void Main()
 {
 IEnumerable<Patent> patents = PatentData.Patents;

 patents = patents.Where(
 patent => patent.YearOfPublication.StartsWith("18"));

 Print(patents);
 }

 // ...
}

Output 14.3.

Phonograph(1877)
Kinetoscope(1888)
Electrical Telegraph(1837)
Steam Locomotive(1815)

Notice that the code assigns the output of the Where() call back to IEnumerable<T>. In other words, the output of IEnumerable<T>.Where() is a new IEnumerable<T> collection. In Listing 14.12, it is IEnumerable<Patent>.

Less obvious is that the Where() expression argument has not necessarily executed at assignment time. This is true for many of the standard query operators. In the case of Where(), for example, the expression is passed in to the collection and “saved” but not executed. Instead, execution of the expression occurs only when it is necessary to begin iterating over the items within the collection. A foreach loop, for example, such as the one in Print() (in Listing 14.11), will trigger the expression to be evaluated for each item within the collection. At least conceptually, the Where() method should be understood as a means of specifying the query regarding what appears in the collection, not the actual work involved with iterating over to produce a new collection with potentially fewer items.

Projecting with Select()

Since the output from the IEnumerable<T>.Where() method is a new IEnumerable<T> collection, it is possible to again call a standard query operator on the same collection. For example, rather than just filtering the data from the original collection, we could transform the data (see Listing 14.13).

Listing 14.13. Projection with System.Linq.Enumerable.Select()

Click here to view code image

using System;
using System.Collections.Generic;
using System.Linq;

class Program
{
 static void Main()
 {
 IEnumerable<Patent> patents = PatentData.Patents;
 IEnumerable<Patent> patentsOf1800 = patents.Where(
 patent => patent.YearOfPublication.StartsWith("18"));

 IEnumerable<string> items = patentsOf1800.Select(
 patent => patent.ToString());

 Print(items);
 }

 // ...
}

In Listing 14.13, we create a new IEnumerable<string> collection. In this case, it just so happens that adding the Select() call doesn’t change the output; but this is only because Print()’s Console.WriteLine() call used ToString() anyway. Obviously, a transform still occurred on each item from the Patent type of the original collection to the string type of the items collection.

Consider the example using System.IO.FileInfo in Listing 14.14.

Listing 14.14. Projection with System.Linq.Enumerable.Select() and new

Click here to view code image

 // ...
 IEnumerable<string> fileList = Directory.GetFiles(
 rootDirectory, searchPattern);
 IEnumerable<FileInfo> files = fileList.Select(
 file => new FileInfo(file));
 // ...

fileList is of type IEnumerable<string>. However, using the projection offered by Select, we can transform each item in the collection to a System.IO.FileInfo object.

Lastly, capitalizing on anonymous types, we could create an IEnumerable<T> collection where T is an anonymous type (see Listing 14.15 and Output 14.4).

Listing 14.15. Projection to an Anonymous Type

Click here to view code image

 // ...
 IEnumerable<string> fileList = Directory.GetFiles(
 rootDirectory, searchPattern);

 var items = fileList.Select(
 file =>
 {
 FileInfo fileInfo = new FileInfo(file);
 return new
 {
 FileName = fileInfo.Name,
 Size = fileInfo.Length
 };
 });

 // ...

Output 14.4.

Click here to view code image

{ FileName = AssemblyInfo.cs, Size = 1704 }
{ FileName = CodeAnalysisRules.xml, Size = 735 }
{ FileName = CustomDictionary.xml, Size = 199 }
{ FileName = EssentialCSharp.sln, Size = 40415 }
{ FileName = EssentialCSharp.suo, Size = 454656 }
{ FileName = EssentialCSharp.vsmdi, Size = 499 }
{ FileName = EssentialCSharp.vssscc, Size = 256 }
{ FileName = intelliTechture.ConsoleTester.dll, Size = 24576 }
{ FileName = intelliTechture.ConsoleTester.pdb, Size = 30208 }
{ FileName = LocalTestRun.testrunconfig, Size = 1388 }

The output of an anonymous type automatically shows the property names and their values as part of the generated ToString() method associated with the anonymous type.

Projection using the Select() method is very powerful. We already saw how to filter a collection vertically (reducing the number of items in the collection) using the Where() standard query operator. Now, via the Select() standard query operator, we can also reduce the collection horizontally (making fewer columns) or transform the data entirely. In combination, Where() and Select() provide a means for extracting only the pieces of the original collection that are desirable for the current algorithm. These two methods alone provide a powerful collection manipulation API that would otherwise result in significantly more code that is less readable.

Advanced Topic: Running LINQ Queries in Parallel

With the abundance of computers having multiple processors and multiple cores within those processors, the ability to easily take advantage of the additional processing power becomes far more important. To do this, programs need to be changed to support multiple threads so that work can happen simultaneously on different CPUs within the computer. Listing 14.16 demonstrates one way to do this using Parallel LINQ (PLINQ).

Listing 14.16. Executing LINQ Queries in Parallel

Click here to view code image

 // ...
 IEnumerable<string> fileList = Directory.GetFiles(
 rootDirectory, searchPattern);
 var items = fileList.AsParallel().Select(
 file =>
 {
 FileInfo fileInfo = new FileInfo(file);
 return new
 {
 FileName = fileInfo.Name,
 Size = fileInfo.Length
 };
 });
 // ...

As Listing 14.16 shows, the change in code to enable parallel support is minimal. All that it uses is a .NET Framework 4–introduced standard query operator, AsParallel(), on the static class System.Linq.ParallelEnumerable. Using this simple extension method, however, the runtime begins executing over the items within the fileList collection and returning the resultant objects in parallel. Each parallel operation in this case isn’t particularly expensive (although it is relative to what other execution is taking place), but consider CPU-intensive operations such as encryption or compression. Running the query in parallel across multiple CPUs can decrease execution time by a factor corresponding to the number of CPUs.

An important caveat to be aware of (and the reason why AsParallel() appears as an Advanced Topic rather than in the standard text) is that parallel execution can introduce race conditions such that an operation on one thread can be intermingled with an operation on a different thread, causing data corruption. To avoid this, synchronization mechanisms are required on data with shared access from multiple threads in order to force the operations to be atomic where necessary. Synchronization itself, however, can introduce deadlocks that freeze the execution, further complicating the effective parallel programming.

More details on this and additional multithreading topics are covered in Chapter 18 and Chapter 19.

Counting Elements with Count()

Another common query performed on a collection of items is to retrieve the count. To support this LINQ includes the Count() extension method.

Listing 14.17 demonstrates that Count() is overloaded to simply count all elements (no parameters) or to take a predicate that only counts items identified by the predicate expression.

Listing 14.17. Counting Items with Count()

Click here to view code image

using System;
using System.Collections.Generic;
using System.Linq;

class Program
{
 static void Main()
 {
 IEnumerable<Patent> patents = PatentData.Patents;
 Console.WriteLine("Patent Count: {0}", patents.Count());
 Console.WriteLine("Patent Count in 1800s: {0}",
 patents.Count(patent =>
 patent.YearOfPublication.StartsWith("18")));
 }

 // ...
}

In spite of the simplicity of writing the Count() statement, IEnumerable<T> has not changed, so the executed code still involves iterating over all the items in the collection. Whenever a Count property is directly available on the collection, it is preferable to use that rather than LINQ’s Count() method (a subtle difference). Fortunately, ICollection<T> includes the Count property, so code that calls the Count() method on a collection that supports ICollection<T> will cast the collection and call Count directly. However, if ICollection<T> is not supported, Enumerable.Count() will proceed to enumerate all the items in the collection rather than call the built-in Count mechanism. If the purpose of checking the count is only to see whether it is greater than zero (if(patents.Count() > 0){...}), a preferable approach would be to use the Any() operator (if(patents.Any()){...}). Any() attempts to iterate over only one of the items in the collection to return a true result, rather than the entire sequence.

Guidelines

DO use System.Linq.Enumerable.Any() rather than calling patents.Count() when checking if there are more than zero items.

DO use a collection’s Count property (if available) in favor of calling the System.Linq.Enumerable.Count() method.

Deferred Execution

One of the most important concepts to remember when using LINQ is deferred execution. Consider the code in Listing 14.18 and the corresponding output in Output 14.5.

Listing 14.18. Filtering with System.Linq.Enumerable.Where()

Click here to view code image

using System;
using System.Collections.Generic;
using System.Linq;

// ...

 IEnumerable<Patent> patents = PatentData.Patents;
 bool result;
 patents = patents.Where(
 patent =>
 {
 if (result =
 patent.YearOfPublication.StartsWith("18"))
 {
 // Side effects like this in a predicate
 // are used here to demonstrate a
 // principle and should generally be
 // avoided.
 Console.WriteLine("\t" + patent);
 }
 return result;
 });

 Console.WriteLine("1. Patents prior to the 1900s are:");
 foreach (Patent patent in patents)
 {
 }

 Console.WriteLine();
 Console.WriteLine(
 "2. A second listing of patents prior to the 1900s:");
 Console.WriteLine(
 " There are {0} patents prior to 1900.",
 patents.Count());

 Console.WriteLine();
 Console.WriteLine(
 "3. A third listing of patents prior to the 1900s:");
 patents = patents.ToArray();
 Console.Write(" There are ");
 Console.WriteLine("{0} patents prior to 1900.",
 patents.Count());

// ...

Output 14.5.

Click here to view code image

1. Patents prior to the 1900s are:
 Phonograph(1877)
 Kinetoscope(1888)
 Electrical Telegraph(1837)
 Steam Locomotive(1815)

2. A second listing of patents prior to the 1900s:
 Phonograph(1877)
 Kinetoscope(1888)
 Electrical Telegraph(1837)
 Steam Locomotive(1815)
 There are 4 patents prior to 1900.

3. A third listing of patents prior to the 1900s:
 Phonograph(1877)
 Kinetoscope(1888)
 Electrical Telegraph(1837)
 Steam Locomotive(1815)
 There are 4 patents prior to 1900.

Notice that Console.WriteLine("1. Patents prior...) executes before the lambda expression. This is a very important characteristic to pay attention to because it is not obvious to those who are unaware of its importance. In general, predicates should do exactly one thing—evaluate a condition—and they should not have any side effects (even printing to the console, as in this example).

To understand what is happening, recall that lambda expressions are delegates—references to methods—that can be passed around. In the context of LINQ and standard query operators, each lambda expression forms part of the overall query to be executed.

At the time of declaration, lambda expressions do not execute. It isn’t until the lambda expressions are invoked that the code within them begins to execute. Figure 14.2 shows the sequence of operations.

[image: Image]

Figure 14.2. Sequence of Operations Invoking Lambda Expressions

As Figure 14.2 shows, three calls in Listing 14.16 trigger the lambda expression, and each time it is fairly implicit. If the lambda expression were expensive (such as a call to a database) it would be important to minimize the lambda expression’s execution.

First, the execution is triggered within the foreach loop. As we described earlier in the chapter, the foreach loop breaks down into a MoveNext() call and each call results in the lambda expression’s execution for each item in the original collection. While iterating, the runtime invokes the lambda expression for each item to determine whether the item satisfies the predicate.

Second, a call to Enumerable’s Count() (the function) triggers the lambda expression for each item once more. Again, this is very subtle since Count (the property) is very common on collections that have not been queried with a standard query operator.

Third, the call to ToArray() (or ToList(), ToDictionary(), or ToLookup()) triggers the lambda expression for each item. However, converting the collection with one of these “To” methods is extremely helpful. Doing so returns a collection on which the standard query operator has already executed. In Listing 14.16, the conversion to an array means that when Length is called in the final Console.WriteLine(), the underlying object pointed to by patents is in fact an array (which obviously implements IEnumerable<T>), and therefore, System.Array’s implementation of Length is called and not System.Linq.Enumerable’s implementation. Consequently, following a conversion to one of the collection types returned by a “To” method, it is generally safe to work with the collection (until another standard query operator is called). However, be aware that this will bring the entire result set into memory (it may have been backed by a database or file before this). Furthermore, the “To” method will snapshot the underlying data so that no fresh results will be returned upon requerying the “To” method result.

We strongly encourage readers to review the sequence diagram in Figure 14.2 along with the corresponding code and understand the fact that the deferred execution of standard query operators can result in extremely subtle triggering of the standard query operators; therefore, developers should use caution to avoid unexpected calls. The query object represents the query, not the results. When you ask the query for the results, the whole query executes (perhaps even again) because the query object doesn’t know that the results will be the same as they were during a previous execution (if one existed).

Note

To avoid such repeated execution, it is necessary to cache the data that the executed query retrieves. To do this, you assign the data to a local collection using one of the “To” method’s collection methods. During the assignment call of a “To” method, the query obviously executes. However, iterating over the assigned collection after that will not involve the query expression any further. In general, if you want the behavior of an in-memory collection snapshot, it is a best practice to assign a query expression to a cached collection to avoid unnecessary iterations.

Sorting with OrderBy() and ThenBy()

Another common operation on a collection is to sort it. This involves a call to System.Linq.Enumerable’s OrderBy(), as shown in Listing 14.19 and Output 14.6.

Listing 14.19. Ordering with System.Linq.Enumerable.OrderBy()/ThenBy()

Click here to view code image

using System;
using System.Collections.Generic;
using System.Linq;

// ...

 IEnumerable<Patent> items;
 Patent[] patents = PatentData.Patents;
 items = patents.OrderBy(
 patent => patent.YearOfPublication).ThenBy(
 patent => patent.Title);
 Print(items);
 Console.WriteLine();

 items = patents.OrderByDescending(
 patent => patent.YearOfPublication).ThenByDescending(
 patent => patent.Title);
 Print(items);

// ...

Output 14.6.

Click here to view code image

Bifocals (1784)
Steam Locomotive(1815)
Electrical Telegraph(1837)
Phonograph(1877)
Kinetoscope(1888)
Flying machine (1903)
Backless Brassiere(1914)
Droplet deposition apparatus(1989)

Droplet deposition apparatus(1989)
Backless Brassiere(1914)
Flying machine (1903)
Kinetoscope(1888)
Phonograph(1877)
Electrical Telegraph(1837)
Steam Locomotive(1815)
Bifocals (1784)

The OrderBy() call takes a lambda expression that identifies the key on which to sort. In Listing 14.19, the initial sort uses the year that the patent was published.

However, notice that the OrderBy() call takes only a single parameter, which uses the name keySelector, to sort on. To sort on a second column, it is necessary to use a different method: ThenBy(). Similarly, code would use ThenBy() for any additional sorting.

OrderBy() returns an IOrderedEnumerable<T> interface, not an IEnumerable<T>. Furthermore, IOrderedEnumerable<T> derives from IEnumerable<T>, so all the standard query operators (including OrderBy()) are available on the OrderBy() return. However, repeated calls to OrderBy() would undo the work of the previous call such that the end result would sort by only the keySelector in the final OrderBy() call. As a result, be careful not to call OrderBy() on a previous OrderBy() call.

Instead, you should specify additional sorting criteria using ThenBy(). Although ThenBy() is an extension method, it is not an extension of IEnumerable<T>, but rather IOrderedEnumerable<T>. The method, also defined on System.Linq.Extensions.Enumerable, is declared as follows:

Click here to view code image

 public static IOrderedEnumerable<TSource>
 ThenBy<TSource, TKey>(
 this IOrderedEnumerable<TSource> source,
 Func<TSource, TKey> keySelector)

In summary, use OrderBy() first, followed by zero or more calls to ThenBy() to provide additional sorting “columns.” The methods OrderByDescending() and ThenByDescending() provide the same functionality except with descending order. Mixing and matching ascending and descending methods is not a problem, but if sorting further, use a ThenBy() call (either ascending or descending).

Two more important notes about sorting: First, the actual sort doesn’t occur until you begin to access the members in the collection, at which point the entire query is processed. This occurs because you can’t sort unless you have all the items to sort; otherwise, you can’t determine whether you have the first item. The fact that sorting is delayed until you begin to access the members is due to deferred execution, as we describe earlier in this chapter. Second, each subsequent call to sort the data (Orderby() followed by ThenBy() followed by ThenByDescending(), for example) does involve additional calls to the keySelector lambda expression of the earlier sorting calls. In other words, a call to OrderBy() will call its corresponding keySelector lambda expression once you iterate over the collection. Furthermore, a subsequent call to ThenBy() will again make calls to OrderBy()’s keySelector.

Guidelines

DO not call an OrderBy() following a prior OrderBy() method call. Use ThenBy() to sequence items by more than one value.

Beginner Topic: Join Operations

Consider two collections of objects as shown in the Venn diagram in Figure 14.3.

[image: Image]

Figure 14.3. Venn Diagram of Inventor and Patent Collections

The left circle in the diagram includes all inventors, and the right circle contains all patents. Within the intersection, we have both inventors and patents and a line is formed for each case where there is a match of inventors to patents. As the diagram shows, each inventor may have multiple patents and each patent can have one or more inventors. Each patent has an inventor, but in some cases inventors do not yet have patents.

Matching up inventors within the intersection to patents is an inner join. The result is a collection of inventor-patent pairs in which both patents and inventions exist for a pair. A left outer join includes all the items within the left circle regardless of whether they have a corresponding patent. In this particular example, a right outer join would be the same as an inner join since there are no patents without inventors. Furthermore, the designation of left versus right is arbitrary, so there is really no distinction between left and outer joins. A full outer join, however, would include records from both outer sides; it is relatively rare to perform a full outer join.

Another important characteristic in the relationship between inventors and patents is that it is a many-to-many relationship. Each individual patent can have one or more inventors (the flying machine’s invention by both Orville and Wilbur Wright, for example). Furthermore, each inventor can have one or more patents (Benjamin Franklin’s invention of both bifocals and the phonograph, for example).

Another common relationship is a one-to-many relationship. For example, a company department may have many employees. However, each employee can belong to only one department at a time. (However, as is common with one-to-many relationships, adding the factor of time can transform them into many-to-many relationships. A particular employee may move from one department to another so that over time, she could potentially be associated with multiple departments, making another many-to-many relationship.)

Listing 14.20 provides a sample listing of Employee and Department data, and Output 14.7 shows the results.

Listing 14.20. Sample Employee and Department Data

Click here to view code image

public class Department
{
 public long Id { get; set; }
 public string Name { get; set; }
 public override string ToString()
 {
 return string.Format("{0}", Name);
 }
}

public class Employee
{
 public int Id { get; set; }
 public string Name { get; set; }
 public string Title { get; set; }
 public int DepartmentId { get; set; }
 public override string ToString()
 {
 return string.Format("{0} ({1})", Name, Title);
 }
}

public static class CorporateData
{
 public static readonly Department[] Departments =
 new Department[]
 {
 new Department(){
 Name="Corporate", Id=0},
 new Department(){
 Name="Finance", Id=1},
 new Department(){
 Name="Engineering", Id=2},
 new Department(){
 Name="Information Technology",
 Id=3},
 new Department(){
 Name="Research",
 Id=4},
 new Department(){
 Name="Marketing",
 Id=5},
 };

 public static readonly Employee[] Employees = new Employee[]
 {
 new Employee(){
 Name="Mark Michaelis",
 Title="Chief Computer Nerd",
 DepartmentId = 0},
 new Employee(){
 Name="Michael Stokesbary",
 Title="Senior Computer Wizard",
 DepartmentId=2},
 new Employee(){
 Name="Brian Jones",
 Title="Enterprise Integration Guru",
 DepartmentId=2},
 new Employee(){
 Name="Jewel Floch",
 Title="Bookkeeper Extraordinaire",
 DepartmentId=1},
 new Employee(){
 Name="Robert Stokesbary",
 Title="Expert Mainframe Engineer",
 DepartmentId = 3},
 new Employee(){
 Name="Paul R. Bramsman",
 Title="Programmer Extraordinaire",
 DepartmentId = 2},
 new Employee(){
 Name="Thomas Heavey",
 Title="Software Architect",
 DepartmentId = 2},
 new Employee(){
 Name="John Michaelis",
 Title="Inventor",
 DepartmentId = 4}
 };
}

class Program
{
 static void Main()
 {
 IEnumerable<Department> departments =
 CorporateData.Departments;
 Print(departments);

 Console.WriteLine();

 IEnumerable<Employee> employees =
 CorporateData.Employees;
 Print(employees);
 }

 private static void Print<T>(IEnumerable<T> items)
 {
 foreach (T item in items)
 {
 Console.WriteLine(item);
 }
 }
}

Output 14.7.

Click here to view code image

Corporate
Finance
Engineering
Information Technology
Research
Marketing

Mark Michaelis (Chief Computer Nerd)
Michael Stokesbary (Senior Computer Wizard)
Brian Jones (Enterprise Integration Guru)
Jewel Floch (Bookkeeper Extraordinaire)
Robert Stokesbary (Expert Mainframe Engineer)
Paul R. Bramsman (Programmer Extraordinaire)
Thomas Heavey (Software Architect)
John Michaelis (Inventor)

We will use the same data within the following section on joining data.

Performing an Inner Join with Join()

In the world of objects on the client side, relationships between objects are generally already set up. For example, the relationship between files and the directories in which they lie are preestablished with the DirectoryInfo.GetFiles() method and the FileInfo.Directory method. Frequently, however, this is not the case with data being loaded from nonobject stores. Instead, the data needs to be joined together so that you can navigate from one type of object to the next in a way that makes sense for the data.

Consider the example of employees and company departments. In Listing 14.21, we join each employee to his or her department and then list each employee with his or her corresponding department. Since each employee belongs to only one (and exactly one) department, the total number of items in the list is equal to the total number of employees—each employee appears only once (each employee is said to be normalized). Output 14.8 follows.

Listing 14.21. An Inner Join Using System.Linq.Enumerable.Join()

Click here to view code image

using System;
using System.Linq;

// ...

 Department[] departments = CorporateData.Departments;
 Employee[] employees = CorporateData.Employees;

 var items = employees.Join(
 departments,
 employee => employee.DepartmentId,
 department => department.Id,
 (employee, department) => new
 {
 employee.Id,
 employee.Name,
 employee.Title,
 Department = department
 });

 foreach (var item in items)
 {
 Console.WriteLine("{0} ({1})",
 item.Name, item.Title);
 Console.WriteLine("\t" + item.Department);
 }

// ...

Output 14.8.

Click here to view code image

Mark Michaelis (Chief Computer Nerd)
 Corporate
Michael Stokesbary (Senior Computer Wizard)
 Engineering
Brian Jones (Enterprise Integration Guru)
 Engineering
Jewel Floch (Bookkeeper Extraordinaire)
 Finance
Robert Stokesbary (Expert Mainframe Engineer)
 Information Technology
Paul R. Bramsman (Programmer Extraordinaire)
 Engineering
Thomas Heavey (Software Architect)
 Engineering
John Michaelis (Inventor)
 Research

The first parameter for Join() has the name inner. It specifies the collection, departments, that employees joins to. The next two parameters are lambda expressions that specify how the two collections will connect. employee => employee.DepartmentId (with a parameter name of outerKeySelector) identifies that on each employee the key will be DepartmentId. The next lambda expression (department => department.Id) specifies the Department’s Id property as the key. In other words, for each employee, join a department where employee.DepartmentId equals department.Id. The last parameter, the anonymous type, is the resultant item that is selected. In this case, it is a class with Employee’s Id, Name, and Title as well as a Department property with the joined department object.

Notice in the output that Engineering appears multiple times—once for each employee in CorporateData. In this case, the Join() call produces a Cartesian product between all the departments and all the employees such that a new record is created for every case where a record exists in both collections and the specified department IDs are the same. This type of join is an inner join.

The data could also be joined in reverse such that department joins to each employee so as to list each department-to-employee match. Notice that the output includes more records than there are departments because there are multiple employees for each department and the output is a record for each match. As we saw before, the Engineering department appears multiple times, once for each employee.

The code in Listing 14.22 and Output 14.9 is similar to that in Listing 14.21, except that the objects, Departments and Employees, are reversed. The first parameter to Join() is employees, indicating what departments joins to. The next two parameters are lambda expressions that specify how the two collections will connect: department => department.Id for departments and employee => employee.DepartmentId for employees. Just like before, a join occurs whenever department.Id equals employee.EmployeeId. The final anonymous type parameter specifies a class with int Id, string Name, and Employee Employee properties.

Listing 14.22. Another Inner Join with System.Linq.Enumerable.Join()

Click here to view code image

using System;
using System.Linq;

// ...

 Department[] departments = CorporateData.Departments;
 Employee[] employees = CorporateData.Employees;

 var items = departments.Join(
 employees,
 department => department.Id,
 employee => employee.DepartmentId,
 (department, employee) => new
 {
 department.Id,
 department.Name,
 Employee = employee
 });

 foreach (var item in items)
 {
 Console.WriteLine("{0}",
 item.Name);
 Console.WriteLine("\t" + item.Employee);
 }

// ...

Output 14.9.

Click here to view code image

Corporate
 Mark Michaelis (Chief Computer Nerd)
Finance
 Jewel Floch (Bookkeeper Extraordinaire)
Engineering
 Michael Stokesbary (Senior Computer Wizard)
Engineering
 Brian Jones (Enterprise Integration Guru)
Engineering
 Paul R. Bramsman (Programmer Extraordinaire)
Engineering
 Thomas Heavey (Software Architect)
Information Technology
 Robert Stokesbary (Expert Mainframe Engineer)
Research
 John Michaelis (Inventor)

Grouping Results with GroupBy()

In addition to ordering and joining a collection of objects, frequently you might want to group objects with like characteristics together. For the employee data, you might want to group employees by department, region, job title, and so forth. Listing 14.23 shows an example of how to do this using the GroupBy() standard query operator (see Output 14.10 to view the output).

Listing 14.23. Grouping Items Together Using System.Linq.Enumerable.GroupBy()

Click here to view code image

using System;
using System.Linq;

// ...

 IEnumerable<Employee> employees = CorporateData.Employees;

 IEnumerable<IGrouping<int, Employee>> groupedEmployees =
 employees.GroupBy((employee) => employee.DepartmentId);

 foreach(IGrouping<int, Employee> employeeGroup in
 groupedEmployees)
 {
 Console.WriteLine();
 foreach(Employee employee in employeeGroup)
 {
 Console.WriteLine("\t" + employee);
 }
 Console.WriteLine(
 "\tCount: " + employeeGroup.Count());
 }
// ...

Output 14.10.

Click here to view code image

Mark Michaelis (Chief Computer Nerd)
 Count: 1

Michael Stokesbary (Senior Computer Wizard)
Brian Jones (Enterprise Integration Guru)
Paul R. Bramsman (Programmer Extraordinaire)
Thomas Heavey (Software Architect)
 Count: 4

Jewel Floch (Bookkeeper Extraordinaire)
 Count: 1

Robert Stokesbary (Expert Mainframe Engineer)
 Count: 1

John Michaelis (Inventor)
 Count: 1

Note that the items output from a GroupBy() call are of type IGrouping<TKey, TElement> which has a property for the key that the query is grouping on (employee.DepartmentId). However, it does not have a property for the items within the group. Rather, IGrouping<TKey, TElement> derives from IEnumerable<T>, allowing for enumeration of the items within the group using a foreach statement or for aggregating the data into something such as a count of items (employeeGroup.Count()).

Implementing a One-to-Many Relationship with GroupJoin()

Listing 14.21 and Listing 14.22 are virtually identical. Either Join() call could have produced the same output just by changing the anonymous type definition. When trying to create a list of employees, Listing 14.21 provides the correct result. department ends up as a property of each anonymous type representing the joined employee. However, Listing 14.22 is not optimal. Given support for collections, a preferable representation of a department would have a collection of employees rather than a single anonymous type record for each department-employee relationship. Listing 14.24 demonstrates; Output 14.11 shows the preferred output.

Listing 14.24. Creating a Child Collection with System.Linq.Enumerable.GroupJoin()

Click here to view code image

using System;
using System.Linq;

// ...

 Department[] departments = CorporateData.Departments;
 Employee[] employees = CorporateData.Employees;

 var items = departments.GroupJoin(
 employees,
 department => department.Id,
 employee => employee.DepartmentId,
 (department, departmentEmployees) => new
 {
 department.Id,
 department.Name,
 Employees = departmentEmployees
 });

 foreach (var item in items)
 {
 Console.WriteLine("{0}",
 item.Name);
 foreach (Employee employee in item.Employees)
 {
 Console.WriteLine("\t" + employee);
 }
 }

// ...

Output 14.11.

Click here to view code image

Corporate
 Mark Michaelis (Chief Computer Nerd)
Finance
 Jewel Floch (Bookkeeper Extraordinaire)
Engineering
 Michael Stokesbary (Senior Computer Wizard)
 Brian Jones (Enterprise Integration Guru)
 Paul R. Bramsman (Programmer Extraordinaire)
 Thomas Heavey (Software Architect)
Information Technology
 Robert Stokesbary (Expert Mainframe Engineer)
Research
 John Michaelis (Inventor)

To achieve the preferred result we use System.Linq.Enumerable’s GroupJoin() method. The parameters are the same as those in Listing 14.21, except for the final anonymous type selected. In Listing 14.21, the lambda expression is of type Func<Department, IEnumerable<Employee>, TResult> where TResult is the selected anonymous type. Notice that we use the second type argument (IEnumerable<Employee>) to project the collection of employees for each department onto the resultant department anonymous type.

(Readers familiar with SQL will notice that, unlike Join(), GroupJoin() doesn’t have a SQL equivalent since data returned by SQL is record-based, and not hierarchical.)

Advanced Topic: Implementing an Outer Join with GroupJoin()

The earlier inner joins are equi-joins because they are based on an equivalent evaluation of the keys. Records appear in the resultant collection only if there are objects in both collections. On occasion, however, it is desirable to create a record even if the corresponding object doesn’t exist. For example, rather than leaving the Marketing department out from the final department list simply because it doesn’t have any employees, it would be preferable if we included it with an empty employee list. To accomplish this we perform a left outer join using a combination of both GroupJoin() and SelectMany() along with DefaultIfEmpty(). This is demonstrated in Listing 14.25 and Output 14.12.

Listing 14.25. Implementing an Outer Join Using GroupJoin() with SelectMany()

Click here to view code image

using System;
using System.Linq;

// ...

 Department[] departments = CorporateData.Departments;
 Employee[] employees = CorporateData.Employees;

 var items = departments.GroupJoin(
 employees,
 department => department.Id,
 employee => employee.DepartmentId,
 (department, departmentEmployees) => new
 {
 department.Id,
 department.Name,
 Employees = departmentEmployees
 }).SelectMany(
 departmentRecord =>
 departmentRecord.Employees.DefaultIfEmpty(),
 (departmentRecord, employee) => new
 {
 departmentRecord.Id,
 departmentRecord.Name,
 Employees =
 departmentRecord.Employees
 }).Distinct();

 foreach (var item in items)
 {
 Console.WriteLine("{0}",
 item.Name);
 foreach (Employee employee in item.Employees)
 {
 Console.WriteLine("\t" + employee);
 }
 }

// ...

Output 14.12.

Click here to view code image

Corporate
 Mark Michaelis (Chief Computer Nerd)
Finance
 Jewel Floch (Bookkeeper Extraordinaire)
Engineering
 Michael Stokesbary (Senior Computer Wizard)
 Brian Jones (Enterprise Integration Guru)
 Paul R. Bramsman (Programmer Extraordinaire)
 Thomas Heavey (Software Architect)
Information Technology
 Robert Stokesbary (Expert Mainframe Engineer)
Research
 John Michaelis (Inventor)
Marketing

Calling SelectMany()

On occasion, you may have collections of collections. Listing 14.26 provides an example of such a scenario. The teams array contains two teams, each with a string array of players.

Listing 14.26. Calling SelectMany()

Click here to view code image

using System;
using System.Collections.Generic;
using System.Linq;

// ...

 var worldCup2006Finalists = new[]
 {
 new
 {
 TeamName = "France",
 Players = new string[]
 {
 "Fabien Barthez", "Gregory Coupet",
 "Mickael Landreau", "Eric Abidal",
 "Jean-Alain Boumsong", "Pascal Chimbonda",
 "William Gallas", "Gael Givet",
 "Willy Sagnol", "Mikael Silvestre",
 "Lilian Thuram", "Vikash Dhorasoo",
 "Alou Diarra", "Claude Makelele",
 "Florent Malouda", "Patrick Vieira",
 "Zinedine Zidane", "Djibril Cisse",
 "Thierry Henry", "Franck Ribery",
 "Louis Saha", "David Trezeguet",
 "Sylvain Wiltord",
 }
 },
 new
 {
 TeamName = "Italy",
 Players = new string[]
 {
 "Gianluigi Buffon", "Angelo Peruzzi",
 "Marco Amelia", "Cristian Zaccardo",
 "Alessandro Nesta", "Gianluca Zambrotta",
 "Fabio Cannavaro", "Marco Materazzi",
 "Fabio Grosso", "Massimo Oddo",
 "Andrea Barzagli", "Andrea Pirlo",
 "Gennaro Gattuso", "Daniele De Rossi",
 "Mauro Camoranesi", "Simone Perrotta",
 "Simone Barone", "Luca Toni",
 "Alessandro Del Piero", "Francesco Totti",
 "Alberto Gilardino", "Filippo Inzaghi",
 "Vincenzo Iaquinta",
 }
 }
 };

 IEnumerable<string> players =
 worldCup2006Finalists.SelectMany(
 team => team.Players);

 Print(players);

// ...

The output from this listing has each player’s name displayed on its own line in the order in which it appears in the code. The difference between Select() and SelectMany() is the fact that Select() would return two items, one corresponding to each item in the original collection. Select() may project out a transform from the original type, but the number of items would not change. For example, teams.Select(team => team.Players) will return an IEnumerable<string[]>.

In contrast, SelectMany() iterates across each item identified by the lambda expression (the array selected by Select() earlier) and hoists out each item into a new collection that includes a union of all items within the child collection. Instead of two arrays of players, SelectMany() combines each array selected and produces a single collection of all items.

More Standard Query Operators

Listing 14.27 shows code that uses some of the simpler APIs enabled by Enumerable; Output 14.13 shows the results.

Listing 14.27. More System.Linq.Enumerable Method Calls

Click here to view code image

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

class Program
{
 static void Main()
 {
 IEnumerable<object> stuff =
 new object[] { new object(), 1, 3, 5, 7, 9,
 "\"thing\"", Guid.NewGuid() };
 Print("Stuff: {0}", stuff);
 IEnumerable<int> even = new int[] { 0, 2, 4, 6, 8 };
 Print("Even integers: {0}", even);

 IEnumerable<int> odd = stuff.OfType<int>();
 Print("Odd integers: {0}", odd);

 IEnumerable<int> numbers = even.Union(odd);
 Print("Union of odd and even: {0}", numbers);

 Print("Union with even: {0}", numbers.Union(even));
 Print("Concat with odd: {0}", numbers.Concat(odd));
 Print("Intersection with even: {0}",
 numbers.Intersect(even));
 Print("Distinct: {0}", numbers.Concat(odd).Distinct());
 if (!numbers.SequenceEqual(
 numbers.Concat(odd).Distinct()))
 {
 throw new Exception("Unexpectedly unequal");
 }
 else
 {
 Console.WriteLine(
 @"Collection ""SequenceEquals""" +
 " collection.Concat(odd).Distinct())");
 Print("Reverse: {0}", numbers.Reverse());

 Print("Average: {0}", numbers.Average());
 Print("Sum: {0}", numbers.Sum());
 Print("Max: {0}", numbers.Max());
 Print("Min: {0}", numbers.Min());
 }
 }

 private static void Print<T>(
 string format, IEnumerable<T> items)
 {
 StringBuilder text = new StringBuilder();
 foreach (T item in items.Take(items.Count()-1))
 {
 text.Append(item + ", ");
 }
 text.Append(items.Last());

 Console.WriteLine(format, text);
 }

 private static void Print<T>(string format, T item)
 {
 Console.WriteLine(format, item);
 }
}

Output 14.13.

Click here to view code image

Stuff: System.Object, 1, 3, 5, 7, 9, "thing"
24c24a41-ee05-41b9-958e-50dd12e3981e
Even integers: 0, 2, 4, 6, 8
Odd integers: 1, 3, 5, 7, 9
Union of odd and even: 0, 2, 4, 6, 8, 1, 3, 5, 7, 9
Union with even: 0, 2, 4, 6, 8, 1, 3, 5, 7, 9
Concat with odd: 0, 2, 4, 6, 8, 1, 3, 5, 7, 9, 1, 3, 5, 7, 9
Intersection with even: 0, 2, 4, 6, 8
Distinct: 0, 2, 4, 6, 8, 1, 3, 5, 7, 9
Collection "SequenceEquals"collection.Concat(odd).Distinct())
Reverse: 9, 7, 5, 3, 1, 8, 6, 4, 2, 0
Average: 4.5
Sum: 45
Max: 9
Min: 0

None of the API calls in Listing 14.20 requires a lambda expression. Table 14.1 and Table 14.2 describe each method and provide an example.

Table 14.1. Simpler Standard Query Operators

[image: Image]

Table 14.2. Aggregate Functions on System.Linq.Enumerable

[image: Image]

Included on System.Linq.Enumerable is a collection of aggregate functions that enumerate the collection and calculate a result. Count is one example of an aggregate function already shown within the chapter.

Note that each method listed in Tables 14.1 and 14.2 will trigger deferred execution.

Advanced Topic: Queryable Extensions for IQueryable<T>

One virtually identical interface to IEnumerable<T> is IQueryable<T>. Because IQueryable<T> derives from IEnumerable<T>, it has all the members of IEnumerable<T> but only those declared directly (GetEnumerator(), for example). Extension methods are not inherited, so IQueryable<T> doesn’t have any of the Enumerable extension methods. However, it has a similar extending class called System.Linq.Queryable that adds to IQueryable<T> virtually all of the same methods that Enumerable added to IEnumerable<T>. Therefore, it provides a very similar programming interface.

What makes IQueryable<T> unique is the fact that it enables custom LINQ providers. A LINQ provider subdivides expressions into their constituent parts. Once divided, the expression can be translated into another language, serialized for remote execution, injected with an asynchronous execution pattern, and much more. Essentially, LINQ providers allow for an interception mechanism into a standard collection API, and via this seemingly limitless functionality, behavior relating to the queries and collection can be injected.

For example, LINQ providers allow for the translation of a query expression from C# into SQL that is then executed on a remote database. In so doing, the C# programmer can remain in her primary object-oriented language and leave the translation to SQL to the underlying LINQ provider. Through this type of expression, programming languages are able to span the impedance mismatch between the object-oriented world and the relational database.

In the case of IQueryable<T>, vigilance regarding deferred execution is even more critical. Imagine, for example, a LINQ provider that returns data from a database. Rather than retrieving the data from a database regardless of the selection criteria, the lambda expression would provide an implementation of IQueryable<T> that possibly includes context information such as the connection string, but not the data itself. The data retrieval wouldn’t occur until the call to GetEnumerator() or even MoveNext(). However, the GetEnumerator() call is generally implicit, such as when iterating over the collection with foreach or calling an Enumerable method such as Count<T>() or Cast<T>(). Obviously, cases such as this require developers to be wary of the subtle and repeated calls to any expensive operation that deferred execution might involve. For example, if calling GetEnumerator() involves a distributed call over the network to a database, avoid unintentional duplicate calls to iterations with Count() or foreach.

Summary

After introducing anonymous types, implicit variables, and collection initializers, this chapter described the internals of how the foreach loop works and what interfaces are required for its execution. In addition, developers frequently filter a collection so that there are fewer items and project the collection so that the items take a different form. Toward that end, this chapter discussed the details of how to use the standard query operators, common collection APIs on the System.Linq.Enumerable class, to perform collection manipulation.

In the introduction to standard query operators, we spent a few pages detailing deferred execution and how developers should take care to avoid unintentionally reexecuting an expression via a subtle call that enumerates over the collection contents. The deferred execution and resultant implicit execution of standard query operators is a significant quality, especially when the query execution is expensive. Programmers should treat the query object as the query object, not the results, and expect the query to execute fully even if it executed already. The query object doesn’t know that the results will be the same as they were during a previous execution.

Listing 14.25 appeared within an Advanced Topic section because of the complexity of calling multiple standard query operators one after the other. Although requirements for similar execution may be common, it is not necessary to rely on standard query operators directly. C# 3.0 includes query expressions, a SQL-like syntax for manipulating collections in a way that is frequently easier to code and read, as we show in the next chapter.

15. LINQ with Query Expressions

The end of Chapter 14 showed a query using standard query operators for GroupJoin(), SelectMany(), and Distinct(), in addition to the creation of two anonymous types. The result was a statement that spanned multiple lines and was rather more complex and difficult to comprehend than statements typically written using only features of C# 2.0. Modern programs that manipulate rich data sets often require such complex queries; it would therefore be nice if the language made them easier to read. Domain-specific query languages such as SQL make it much easier to read and understand a query, but lack the full power of the C# language. That is why the C# language designers added query expressions syntax to C# 3.0. With query expressions, many standard query operator expressions are transformed into more readable code, much like SQL.

[image: Image]

In this chapter, we introduce query expressions and use them to express many of the queries from the preceding chapter.

Introducing Query Expressions

Two of the most frequent operations developers perform are filtering the collection to eliminate unwanted items and projecting the collection so that the items take a different form. For example, given a collection of files, we could filter it to create a new collection of only the files with a “.cs” extension, or only files larger than 1 million bytes. We could also project the file collection to create a new collection of paths to the directories the files are located in and the corresponding directory size. Query expressions provide straightforward syntaxes for both of these common operations. Listing 15.1 shows a query expression that filters a collection of strings; Output 15.1 shows the results.

Listing 15.1. Simple Query Expression

Click here to view code image

using System;
using System.Collections.Generic;
using System.Linq;

// ...

 static string[] Keywords = {
 "abstract", "add*", "alias*", "as", "ascending*",
 "async*", "await*", "base","bool", "break",
 "by*", "byte", "case", "catch", "char", "checked",
 "class", "const", "continue", "decimal", "default",
 "delegate", "descending*", "do", "double",
 "dynamic*", "else", "enum", "event", "equals*",
 "explicit", "extern", "false", "finally", "fixed",
 "from*", "float", "for", "foreach", "get*", "global*",
 "group*", "goto", "if", "implicit", "in", "int",
 "into*", "interface", "internal", "is", "lock", "long",
 "join*", "let*", "namespace", "new", "null", "object",
 "on*", "operator", "orderby*", "out", "override",
 "params", "partial*", "private", "protected", "public",
 "readonly", "ref", "remove*", "return", "sbyte", "sealed",
 "select*", "set*", "short", "sizeof", "stackalloc",
 "static", "string", "struct", "switch", "this", "throw",
 "true", "try", "typeof", "uint", "ulong", "unchecked",
 "unsafe", "ushort", "using", "value*", "var*", "virtual",
 "void", "volatile", "where*", "while", "yield*"};

 private static void ShowContextualKeywords1()
 {

 IEnumerable<string> selection =
 from word in Keywords
 where !word.Contains('*')
 select word;

 foreach (string keyword in selection)
 {
 Console.Write(keyword + " ");
 }
 }

// ...

Output 15.1.

Click here to view code image

abstract as base bool break byte case catch char checked class const
continue decimal default delegate do double else enum event explicit
extern false finally fixed float for foreach goto if implicit in int
interface internal is lock long namespace new null object operator out
override params private protected public readonly ref return sbyte
sealed short sizeof stackalloc static string struct switch this throw
true try typeof uint ulong unchecked unsafe ushort using virtual void
volatile while

In this query expression, selection is assigned the collection of C# reserved keywords. The query expression in this example includes a where clause that filters out the noncontextual keywords.

Query expressions always begin with a “from clause” and end with a “select clause” or a “group clause,” identified by the from, select, or group contextual keyword, respectively. The identifier word in the from clause is called a range variable; it represents each item in the collection, much as the loop variable in a foreach loop represents each item in a collection.

Developers familiar with SQL will notice that query expressions have a syntax that is similar to that of SQL. This design was deliberate so that LINQ would be easy to learn for programmers who already know SQL. However, there are some obvious differences. The first difference most developers familiar with SQL notice is that the C# query expression shown here has the clauses in the order from, then where, then select. The equivalent SQL query has the SELECT clause first, then the FROM clause, and ends with the WHERE clause.

One reason for this is to enable IntelliSense, the feature of the IDE whereby the editor produces helpful user interface elements such as drop-down lists that describe the members of a given object. Because from appears first and identifies the string array Keywords as the data source, the code editor can deduce that the range variable word is of type string. When you are typing the code into the editor and reach the dot following word, the editor will display only the members of string.

If the from clause appeared after the select, as it does in SQL, as you were typing in the query the editor would not know what the data type of word was, and therefore would not be able to display a list of word’s members. In Listing 15.1, for example, it wouldn’t be possible to predict that Contains() was a possible member of word.

The C# query expression order also more closely matches the order in which operations are logically performed. When evaluating the query, you begin by identifying the collection (described by the from clause), then filter out the unwanted items (with the where clause), and finally describe the desired result (with the select clause).

Finally, the C# query expression order ensures that the rules about where (range) variables are in scope are mostly consistent with the scoping rules for local variables; for example, a (range) variable must be declared by a clause (typically a from clause) before the variable can be used, much as a local variable must always be declared before it can be used.

Projection

The result of a query expression is a collection of type IEnumerable<T> or IQueryable<T>.1 The actual type T is inferred from the select or group by clause. In Listing 15.1, for example, the compiler knows that Keywords is of type string[], which is convertible to IEnumerable<string> and deduces that word is therefore of type string. The query ends with select word, and therefore, the result of the query expression must be a collection of strings, so the type of the query expression is IEnumerable<string>.

In this case the “input” and “output” of the query are both a collection of strings. However, the “output” type can be quite different from the “input” type if the expression in the select clause is of an entirely different type. Consider the query expression in Listing 15.2, and its corresponding output in Output 15.2.

Listing 15.2. Projection Using Query Expressions

Click here to view code image

using System;
using System.Collections.Generic;
using System.Linq;
using System.IO;

// ...

 static void List1(string rootDirectory, string searchPattern)
 {

 IEnumerable<string> fileNames = Directory.GetFiles(
 rootDirectory, searchPattern);
 IEnumerable<FileInfo> fileInfos =
 from fileName in fileNames
 select new FileInfo(fileName);

 foreach (FileInfo fileInfo in fileInfos)
 {
 Console.WriteLine(".{0}({1})",
 fileInfo.Name, fileInfo.LastWriteTime);
 }
 }

// ...

Output 15.2.

Click here to view code image

Account.cs(11/22/2011 11:56:11 AM)
Bill.cs(8/10/2011 9:33:55 PM)
Contact.cs(8/19/2011 11:40:30 PM)
Customer.cs(11/17/2011 2:02:52 AM)
Employee.cs(8/17/2011 1:33:22 AM)
Person.cs(10/22/2011 10:00:03 PM)

This query expression results in an IEnumerable<FileInfo> rather than the IEnumerable<string> data type returned by Directory.GetFiles(). The select clause of the query expression can potentially project out a data type that is different from what was collected by the from clause expression.

Notice that in this example, the type FileInfo was chosen because it has the two relevant fields needed for the desired output: the filename and the last write time. There might not be such a convenient type if you needed other information not captured in the FileInfo object. Anonymous types provide a convenient and concise way to project the exact data you need without having to find or create an explicit type. (In fact, this scenario was the key motivator for adding anonymous types to the language.) Listing 15.3 provides output similar to that in Listing 15.2, but via anonymous types rather than FileInfo.

Listing 15.3. Anonymous Types within Query Expressions

Click here to view code image

using System;
using System.Collections.Generic;
using System.Linq;
using System.IO;

// ...

 static void List2(string rootDirectory, string searchPattern)
 {

 var fileNames =Directory.GetFiles(
 rootDirectory, searchPattern)
 var fileResults =
 from fileName in fileNames
 select new
 {
 Name = fileName,
 LastWriteTime = File.GetLastWriteTime(fileName)
 };

 foreach (var fileResult in fileResults)
 {
 Console.WriteLine("{0}({1})",

 fileResult.Name, fileResult.LastWriteTime);

 }
 }

// ...

In this example, the query projects out only the filename and its last file write time. A projection such as the one in Listing 15.3 makes little difference when working with something small such as FileInfo. However, “horizontal” projection that filters down the amount of data associated with each item in the collection is extremely powerful when the amount of data is significant and retrieving it (perhaps from a different computer over the Internet) is expensive. Rather than retrieving all the data when a query executes, the use of anonymous types enables the capability of storing and retrieving only the required data into the collection.

Imagine, for example, a large database that has tables with 30 or more columns. If there were no anonymous types, developers would be required to either use objects containing unnecessary information or define small, specialized classes useful only for storing the specific data required. Instead, anonymous types enable support for types to be defined by the compiler—types that contain only the data needed for their immediate scenario. Other scenarios can have a different projection of only the properties needed for that scenario.

Beginner Topic: Deferred Execution with Query Expressions

Queries written using query expression notation exhibit deferred execution, just as the queries written in the preceding chapter do. Consider again the assignment of a query object to variable selection in Listing 15.1. The creation of the query and the assignment to the variable do not execute the query; rather, they just build an object that represents the query. The method word.Contains("*") is not called when the query object is created. Rather, the query expression saves the selection criteria to be used when iterating over the collection identified by the selection variable.

To demonstrate this point, consider Listing 15.4 and the corresponding output (Output 15.3).

Listing 15.4. Deferred Execution and Query Expressions (Example 1)

Click here to view code image

using System;
using System.Collections.Generic;
using System.Linq;

// ...

 private static void ShowContextualKeywords2()
 {
 IEnumerable<string> selection = from word in Keywords
 where IsKeyword(word)
 select word;
 Console.WriteLine("Query created.");
 foreach (string keyword in selection)
 {
 // No space output here.
 Console.Write(keyword);
 }
 }

 // The side effect of console output is included
 // in the predicate to demonstrate deferred execution;
 // predicates with side effects are a poor practice in
 // production code.
 private static bool IsKeyword(string word)
 {
 if (word.Contains('*'))
 {
 Console.Write(" ");
 return true;
 }
 else
 {
 return false;
 }
 }
// ...

Output 15.3.

Click here to view code image

Query created.
 add* alias* ascending* by* descending* dynamic* equals* from* get*
global* group* into* join* let* on* orderby* partial* remove* select*
set* value* var* where* yield*

Notice that in Listing 15.4, no space is output within the foreach loop. The side effect of printing a space when the predicate IsKeyword() is executed happens when the query is iterated over, not when the query is created.

The point is that although selection is a collection (it is of type IEnumerable<T> after all), at the time of assignment everything following the from clause comprises the selection criteria. Not until we begin to iterate over selection are the criteria applied.

Consider a second example (see Listing 15.5 and Output 15.4).

Listing 15.5. Deferred Execution and Query Expressions (Example 2)

Click here to view code image

using System;
using System.Collections.Generic;
using System.Linq;

// ...

 private static void CountContextualKeywords()
 {
 int delegateInvocations = 0;
 Func<string, string> func =
 text=>
 {
 delegateInvocations++;
 return text;
 };

 IEnumerable<string> selection =
 from keyword in Keywords
 where keyword.Contains('*')
 select func(keyword);

 Console.WriteLine(
 "1. delegateInvocations={0}", delegateInvocations);

 // Executing count should invoke func once for
 // each item selected.
 Console.WriteLine(
 "2. Contextual keyword count={0}", selection.Count());

 Console.WriteLine(
 "3. delegateInvocations={0}", delegateInvocations);

 // Executing count should invoke func once for
 // each item selected.
 Console.WriteLine(
 "4. Contextual keyword count={0}", selection.Count());

 Console.WriteLine(
 "5. delegateInvocations={0}", delegateInvocations);

 // Cache the value so future counts will not trigger
 // another invocation of the query.
 List<string> selectionCache = selection.ToList();

 Console.WriteLine(
 "6. delegateInvocations={0}", delegateInvocations);

 // Retrieve the count from the cached collection.
 Console.WriteLine(
 "7. selectionCache count={0}",selectionCache.Count());

 Console.WriteLine(
 "8. delegateInvocations={0}", delegateInvocations);

 }

// ...

Output 15.4.

Click here to view code image

1. delegateInvocations=0
2. Contextual keyword count=15
3. delegateInvocations=15
4. Contextual keyword count=15
5. delegateInvocations=30
6. delegateInvocations=45
7. selectionCache count=15
8. delegateInvocations=45

Rather than defining a separate method, Listing 15.5 uses a statement lambda that counts the number of times the method is called.

Three things in the output are remarkable. First, notice that after selection is assigned, DelegateInvocations remains at zero. At the time of assignment to selection, no iteration over Keywords is performed. If Keywords were a property, the property call would run—in other words, the from clause executes at the time of assignment. However, neither the projection, nor the filtering, nor anything after the from clause will execute until the code iterates over the values within selection. It is as though at the time of assignment, selection would more appropriately be called “query.”

However, once we call Count(), a term such as selection or items that indicates a container or collection is appropriate because we begin to count the items within the collection. In other words, the variable selection serves a dual purpose of saving the query information as well as acting like a container from which the data is retrieved.

A second important characteristic to notice is that calling Count() twice causes func to again be invoked once on each item selected. Since selection behaves both as a query and as a collection, requesting the count requires that the query be executed again by iterating over the IEnumerable<string> collection selection refers to and counting the items. The C# compiler does not know whether anyone has modified the strings in the array such that the count would now be different, so the counting has to happen fresh every time to ensure that the answer is correct and up-to-date. Similarly, a foreach loop over selection would trigger func to be called again for each item. The same is true of all the other extension methods provided via System.Linq.Enumerable.

Advanced Topic: Implementing Deferred Execution

Deferred execution is implemented by using delegates and expression trees. A delegate provides the ability to create and manipulate a reference to a method that contains an expression that can be invoked later. An expression tree similarly provides the ability to create and manipulate information about an expression that can be examined and manipulated later.

In Listing 15.5, the predicate expressions of the where clauses and the projection expressions of the select clauses are transformed by the compiler into expression lambdas, and then the lambdas are transformed into delegate creations. The result of the query expression is an object that holds onto references to these delegates. Only when the query results are iterated over does the query object actually execute the delegates.

Filtering

In Listing 15.1, we include a where clause that filters out reserved keywords but not contextual keywords. The where clause filters the collection “vertically”; if you think of the collection as a vertical list of items, the where clause makes that vertical list shorter so that there are fewer items within the collection. The filter criteria are expressed with a predicate—a lambda expression that returns a bool such as word.Contains() (as in Listing 15.1) or File.GetLastWriteTime(file) < DateTime.Now.AddMonths(-1). The latter is shown in Listing 15.6, the output of which appears in Output 15.5.

Listing 15.6. Query Expression Filtering Using where

Click here to view code image

using System;
using System.Collections.Generic;
using System.Linq;
using System.IO;

// ...

 static void FindMonthOldFiles(
 string rootDirectory, string searchPattern)
 {
 IEnumerable<FileInfo> files =
 from fileName in Directory.GetFiles(
 rootDirectory, searchPattern)

 where File.GetLastWriteTime(fileName) <
 DateTime.Now.AddMonths(-1)

 select new FileInfo(fileName);

 foreach (FileInfo file in files)
 {
 // As simplification, current directory is
 // assumed to be a subdirectory of
 // rootDirectory
 string relativePath = file.FullName.Substring(
 Environment.CurrentDirectory.Length);
 Console.WriteLine(".{0}({1})",
 relativePath, file.LastWriteTime);
 }
 }

// ...

Output 15.5.

Click here to view code image

.\TestData\Bill.cs(8/10/2011 9:33:55 PM)
.\TestData\Contact.cs(8/19/2011 11:40:30 PM)
.\TestData\Employee.cs(8/17/2011 1:33:22 AM)
.\TestData\Person.cs(10/22/2011 10:00:03 PM)

Sorting

To order the items using a query expression you can use the orderby clause, as shown in Listing 15.7.

Listing 15.7. Sorting Using a Query Expression with an orderby Clause

Click here to view code image

using System;
using System.Collections.Generic;
using System.Linq;
using System.IO;

// ...
 static void ListByFileSize1(
 string rootDirectory, string searchPattern)
 {
 IEnumerable<string> fileNames =
 from fileName in Directory.GetFiles(
 rootDirectory, searchPattern)

 orderby (new FileInfo(fileName)).Length descending,
 fileName

 select fileName;

 foreach (string fileName in fileNames)
 {
 Console.WriteLine("{0}", fileName);
 }
 }
// ...

Listing 15.7 uses the orderby clause to sort the files returned by Directory.GetFiles() first by file size in descending order and then by filename in ascending order. Multiple sort criteria are separated by a comma such that first the items are ordered by size, and if the size is the same they are ordered by filename. ascending and descending are contextual keywords indicating the sort order direction. Specifying the order as ascending or descending is optional; if the direction is omitted (as it is here on filename) the default is ascending.

The let Clause

In Listing 15.8 we have a query that is very similar to that in Listing 15.7 except that the type argument of IEnumerable<T> is FileInfo. Notice that there is a problem with this query: We have to redundantly create a FileInfo twice, in both the orderby clause and the select clause.

Listing 15.8. Projecting a FileInfo Collection and Sorting by File Size

Click here to view code image

using System;
using System.Collections.Generic;
using System.Linq;
using System.IO;

// ...
 static void ListByFileSize2(
 string rootDirectory, string searchPattern)
 {
 IEnumerable<FileInfo> files =
 from fileName in Directory.GetFiles(
 rootDirectory, searchPattern)
 orderby new FileInfo(fileName).Length, fileName
 select new FileInfo(fileName);

 foreach (FileInfo file in files)
 {
 // As simplification, current directory is
 // assumed to be a subdirectory of
 // rootDirectory
 string relativePath = file.FullName.Substring(
 Environment.CurrentDirectory.Length);
 Console.WriteLine(".{0}({1})",
 relativePath, file.Length);
 }
 }
// ...

Unfortunately, although the end result is correct, Listing 15.8 ends up instantiating a FileInfo object twice for each item in the source collection, which seems wasteful and unnecessary. To avoid unnecessary and potentially expensive overhead like this, you can use a let clause, as demonstrated in Listing 15.9.

Listing 15.9. Ordering the Results in a Query Expression

Click here to view code image

 // ...
 IEnumerable<FileInfo> files =
 from fileName in Directory.GetFiles(
 rootDirectory, searchPattern)

 let file = new FileInfo(fileName)
 orderby file.Length, fileName
 select file;

 // ...

The let clause introduces a new range variable that can hold the value of an expression that is used throughout the remainder of the query expression. You can add as many let clauses as you like; simply add each as an additional clause to the query after the first from clause but before the final select/group by clause.

Grouping

A common data manipulation scenario is the grouping of related items. In SQL, this generally involves aggregating the items to produce a summary or total or other aggregate value. LINQ, however, is more expressive than this. LINQ expressions allow for individual items to be grouped into a series of subcollections, and for those groups to be associated with items in the collection being queried. For example, Listing 15.10 and Output 15.6 demonstrate how to group together the contextual keywords and the regular keywords.

Listing 15.10. Grouping Together Query Results

Click here to view code image

using System;
using System.Collections.Generic;
using System.Linq;

// ...

 private static void GroupKeywords1()
 {
 IEnumerable<IGrouping<bool, string>> selection =
 from word in Keywords
 group word by word.Contains('*');

 foreach (IGrouping<bool, string> wordGroup
 in selection)
 {
 Console.WriteLine(Environment.NewLine + "{0}:",
 wordGroup.Key ?
 "Contextual Keywords" : "Keywords");
 foreach (string keyword in wordGroup)
 {
 Console.Write(" " +
 (wordGroup.Key ?
 keyword.Replace("*", null) : keyword));
 }
 }
 }

// ...

Output 15.6.

Click here to view code image

Keywords:
 abstract as base bool break byte case catch char checked class const
continue decimal default delegate do double else enum event explicit
extern false finally fixed float for foreach goto if implicit in int
interface internal is lock long namespace new null object operator out
override params private protected public readonly ref return sbyte
sealed short sizeof stackalloc static string struct switch this throw
true try typeof uint ulong unchecked unsafe ushort using virtual void
volatile while
Contextual Keywords:
 add alias ascending async await by descending dynamic equals from
get global group into join let on orderby partial remove select
set value var where yield

There are several things to note in this listing. First, the query result is a sequence of elements of type IGrouping<bool, string>. The first type argument indicates that the “group key” expression following by was of type bool, and the second type argument indicates that the “group element” expression following group was of type string. That is, the query produces a sequence of groups where the Boolean key is the same for each string in the group.

Because a query with a groupby clause produces a sequence of collections, the common pattern for iterating over the results is to create nested foreach loops. In Listing 15.10, the outer loop iterates over the groupings and prints out the type of keyword as a header. The nested foreach loop prints each keyword in the group as an item below the header.

Since the result of this query expression is itself a sequence, you can query the resultant sequence like any other. Listing 15.11 and Output 15.7 show how to create an additional query that adds a projection onto a query that produces a sequence of groups. (The next section, on query continuations, shows a more pleasant syntax for adding additional query clauses to a complete query.)

Listing 15.11. Selecting an Anonymous Type Following the group Clause

Click here to view code image

using System;
using System.Collections.Generic;
using System.Linq;

// ...

 private static void GroupKeywords1()
 {

 IEnumerable<IGrouping<bool, string>> keywordGroups =
 from word in Keywords
 group word by word.Contains('*');

 var selection =
 from groups in keywordGroups
 select new
 {
 IsContextualKeyword = groups.Key,
 Items = groups
 };

 foreach (var wordGroup in selection)
 {
 Console.WriteLine(Environment.NewLine + "{0}:",
 wordGroup.IsContextualKeyword ?
 "Contextual Keywords" : "Keywords");
 foreach (var keyword in wordGroup.Items)
 {
 Console.Write(" " +
 keyword.Replace("*", null));
 }
 }
 }

// ...

Output 15.7.

Click here to view code image

Keywords:
 abstract as base bool break byte case catch char checked class const
continue decimal default delegate do double else enum event explicit
extern false finally fixed float for foreach goto if implicit in int
interface internal is lock long namespace new null object operator out
override params private protected public readonly ref return sbyte
sealed short sizeof stackalloc static string struct switch this throw
true try typeof uint ulong unchecked unsafe ushort using virtual void
volatile while
Contextual Keywords:
 add alias ascending async await by descending dynamic equals from
get global group into join let on orderby partial remove select
set value var where yield

The group clause results in a query that produces a collection of IGrouping<TKey, TElement> objects—just as the GroupBy() standard query operator did (see Chapter 14). The select clause in the subsequent query uses an anonymous type to effectively rename IGrouping<TKey, TElement>.Key to IsContextualKeyword and naming the subcollection property Items. With this change, the nested foreach uses wordGroup.Items rather than wordGroup directly, as shown in Listing 15.10. Another potential property to add to the anonymous type would be the count of items within the subcollection. However, this is available on wordGroup.Items.Count(), so the benefit of adding it to the anonymous type directly is questionable.

Query Continuation with into

As we saw in Listing 15.11, you can use an existing query as the input to a second query. However, it is not necessary to write an entirely new query expression when you want to use the results of one query as the input to another. You can extend any query with a query continuation clause using the contextual keyword into. A query continuation is nothing more than syntactic sugar for creating two queries and using the first as the input to the second. The range variable introduced by the into clause (groups in Listing 15.11) becomes the range variable for the remainder of the query; any previous range variables are logically a part of the earlier query and cannot be used in the query continuation. Listing 15.12 shows how to rewrite the code of Listing 15.11 to use a query continuation instead of two queries.

Listing 15.12. Selecting without the Query Continuation

Click here to view code image

using System;
using System.Collections.Generic;
using System.Linq;

// ...

 private static void GroupKeywords1()
 {
 var selection =
 from word in Keywords

 group word by word.Contains('*')
 into groups
 select new
 {
 IsContextualKeyword = groups.Key,
 Items = groups
 };

 // ...

 }

// ...

The ability to run additional queries on the results of an existing query using into is not specific to queries ending with group clauses, but rather can be used on all query expressions. Query continuation is simply a shorthand for writing query expressions that consume the results of other query expressions. You can think of into as a “pipeline operator,” because it “pipes” the results of the first query into the second query. You can arbitrarily chain together many queries in this way.

“Flattening” Sequences of Sequences with Multiple from Clauses

It is often desirable to “flatten” a sequence of sequences into a single sequence. For example, a sequence of customers might each have an associated sequence of orders, or a sequence of directories might each have an associated sequence of files. The SelectMany sequence operator (discussed in Chapter 14) concatenates together all the subsequences; to do the same thing with query expression syntax you can use multiple from clauses, as shown in Listing 15.13.

Listing 15.13. Multiple Selection

Click here to view code image

 var selection =
 from word in Keywords

 from character in word
 select character;

The preceding query will produce the sequence of characters a, b, s, t, r, a, c, t, a, s, b, a, s, e,

Multiple from clauses can also be used to produce the Cartesian product—the set of all possible combinations of several sequences—as shown in Listing 15.14.

Listing 15.14. Cartesian Product

Click here to view code image

 var numbers = new[] { 1, 2, 3 };
 var product =
 from word in Keywords

 from number in numbers
 select new {word, number};

This would produce a sequence of pairs (abstract, 1), (abstract, 2), (abstract, 3), (as, 1), (as, 2),

Beginner Topic: Distinct Members

Often, it is desirable to return only distinct items from within a collection, discarding any duplicates. Query expressions do not have explicit syntax for distinct members, but the functionality is available via the query operator Distinct(), which was introduced in the preceding chapter. To apply a query operator to a query expression, the expression must be enclosed in parentheses so that the compiler does not think that the call to Distinct() is a part of the select clause. Listing 15.15 gives an example; Output 15.8 shows the results.

Listing 15.15. Obtaining Distinct Members from a Query Expression

Click here to view code image

using System;
using System.Collections.Generic;
using System.Linq;

// ...

 public static void ListMemberNames()
 {
 IEnumerable<string> enumerableMethodNames = (
 from method in typeof(Enumerable).GetMembers(
 System.Reflection.BindingFlags.Static |
 System.Reflection.BindingFlags.Public)
 select method.Name).Distinct();
 foreach(string method in enumerableMethodNames)
 {
 Console.Write(" {0},", method);
 }
 }

// ...

Output 15.8.

Click here to view code image

Enumerable methods are: First, FirstOrDefault, Last, LastOrDefault,
Single, SingleOrDefault, ElementAt, ElementAtOrDefault, Repeat,
Empty, Any, All, Count, LongCount, Contains, Aggregate, Sum, Min, Max,
Average, Where, Select, SelectMany, Take, TakeWhile, Skip, SkipWhile,
Join, GroupJoin, OrderBy, OrderByDescending, ThenBy, ThenByDescending,
GroupBy, Concat, Distinct, Union, Intersect, Except, Reverse,
SequenceEqual, AsEnumerable, ToArray, ToList, ToDictionary, ToLookup,
DefaultIfEmpty, OfType, Cast, Range

In this example, typeof(Enumerable).GetMembers() returns a list of all the members (methods, properties, and so on) on System.Linq.Enumerable. However, many of these members are overloaded, sometimes more than once. Rather than displaying the same member multiple times, Distinct() is called from the query expression. This eliminates the duplicate names from the list. (We cover the details of typeof() and reflection [where methods like GetMembers() are available] in Chapter 17.)

Query Expressions Are Just Method Invocations

Somewhat surprisingly, adding query expressions to C# 3 required no changes to the CLR or to the CIL language. Rather, the C# compiler simply translates query expressions into a series of method calls. Consider, for example, the query expression from Listing 15.1, a portion of which appears in Listing 15.16.

Listing 15.16. Simple Query Expression

Click here to view code image

 private static void ShowContextualKeywords1()
 {
 IEnumerable<string> selection =
 from word in Keywords
 where word.Contains('*')
 select word;

 // ...
 }

// ...

After compilation, the expression from Listing 15.16 is converted to an IEnumerable<T> extension method call from System.Linq.Enumerable, as shown in Listing 15.17.

Listing 15.17. Query Expression Translated to Standard Query Operator Syntax

Click here to view code image

 private static void ShowContextualKeywords3()
 {

 IEnumerable<string> selection =
 Keywords.Where(word => word.Contains('*'));

 // ...
 }

// ...

As discussed in Chapter 14, the lambda expression is then itself translated by the compiler to emit a method with the body of the lambda, and the usage of it becomes allocation of a delegate to that method.

Every query expression can (and must) be translated to method calls, but not every sequence of method calls has a corresponding query expression. For example, there is no query expression equivalent for the extension method TakeWhile<T>(Func<T, bool> predicate), which repeatedly returns items from the collection as long as the predicate returns true.

For those queries that do have both a method call form and a query expression form, which is better? This is a judgment call; some queries are better suited for query expressions whereas others are more readable as method invocations.

Guidelines

DO use query expression syntax to make queries easier to read, particularly if they involve complex from, let, join, or group clauses.

CONSIDER using the standard query operators (method call form) if the query involves operations that do not have a query expression syntax, such as Count(), TakeWhile(), or Distinct().

Summary

This chapter introduced a new syntax, that of query expressions. Readers familiar with SQL will immediately see the similarities between query expressions and SQL. However, query expressions also introduce additional functionality, such as grouping into a hierarchical set of new objects, which was unavailable with SQL. All of the functionality of query expressions was already available via standard query operators, but query expressions frequently provide a simpler syntax for expressing such a query. Whether through standard query operators or query expression syntax, however, the end result is a significant improvement in the way developers are able to code against collection APIs, an improvement that ultimately provides a paradigm shift in the way object-oriented languages are able to interface with relational databases.

In the next chapter, we continue our discussion of collections: investigating some of the .NET Framework collection types as well as how to define custom collections.

16. Building Custom Collections

Chapter 14 covered the standard query operators, the extension methods on IEnumerable<T> that provide methods common to all collections. However, these operators do not make all collections equally suited for all tasks; there is still a need for different collection types. Some collections are better suited to searching by key, whereas others are better suited to accessing items by position. Some collections act like queues: The first element in is the first out. Others are more like stacks: The first in is the last out. Others are not ordered at all.

[image: Image]

The .NET Framework provides a plethora of collection types suited for many of the scenarios in which collections are needed. This chapter provides an introduction to some of these collection types and the interfaces they implement. The chapter also describes how to create custom-built collections that support standard functionality, such as indexing. It also includes a discussion of how to use the yield return statement to create classes and methods that implement IEnumerable<T>. This C# 2.0 feature greatly simplifies implementation of collections that can be enumerated with the foreach statement.

There are many nongeneric collection classes and interfaces in the .NET Framework, but in general these exist today only for backward compatibility with code written before generics. The generic collection types are both faster, because they avoid boxing costs, and more type-safe than the nongeneric collections. Thus, new code should almost always use the generic collection types exclusively. Throughout this book we are assuming that you are primarily using generic collection types.

More Collection Interfaces

We’ve already seen how collections implement IEnumerable<T>, the primary interface that enables iteration over the elements of a collection. There are many additional interfaces implemented by more complex collections. Figure 16.1 shows the hierarchy of interfaces implemented by collection classes.

[image: Image]

Figure 16.1. Generic Collection Interface Hierarchy

These interfaces provide a standard way to perform common tasks such as iterating, indexing, and counting elements in a collection. This section examines these interfaces (at least all the generic ones), starting at the bottom of Figure 16.1 and moving upward.

IList<T> versus IDictionary<TKey, TValue>

An English-language dictionary can be thought of as a collection of definitions; a definition can be rapidly accessed by looking up its associated “key”: the word being defined. A dictionary collection class is similarly a collection of values; each value can be rapidly accessed by using its associated unique key. Note, however, that a language dictionary typically stores the definitions sorted alphabetically by key; a dictionary class might choose to do so but typically does not. Dictionary collections are best thought of as an unordered list of keys and associated values unless specifically documented as being ordered. Similarly, one does not normally think of looking up “the sixth definition in the dictionary”; dictionary classes usually provide indexing only by key, not by position.

A list, by contrast, stores values in a specific order, and accesses them by their position. In a sense, lists are just the special case of dictionaries where the “key” is always an integer and the “key set” is always a contiguous set of non-negative integers starting with zero. But that is a strong enough difference that it is worth having an entirely different type to represent it.

Thus, when selecting a collection class to solve some data storage or retrieval problem, the first two interfaces to look for are IList<T> and IDictionary<TKey, TValue>. These interfaces indicate whether the collection type is focused on retrieval of a value when given its positional index or retrieval of a value when given its associated key.

Note that both of these interfaces require that a class that implements them provide an indexer. In the case of IList<T>, the operand of the indexer corresponds to the position of the element being retrieved: The indexer takes an integer and gives you access to the nth element in the list. In the case of the IDictionary<TKey, TValue> interface, the operand of the indexer corresponds to the key associated with a value, and gives you access to that value.

ICollection<T>

Both IList<T> and IDictionary<TKey, TValue> implement ICollection<T>. A collection that does not implement either IList<T> or IDictionary<TKey, TValue> is more than likely going to implement ICollection<T> (although not necessarily, since collections could implement the lesser requirement of IEnumerable or IEnumerable<T>). ICollection<T> is derived from IEnumerable<T> and includes two members: Count and CopyTo().

• The Count property returns the total number of elements in the collection. Initially, it may appear that this would be sufficient to iterate through each element in the collection using a for loop, but in order for this to be possible the collection would also need to support retrieval by index, which the ICollection<T> interface does not include (although IList<T> does include it).

• The CopyTo() method provides the ability to convert the collection into an array. The method includes an index parameter so that you can specify where to insert elements in the target array. Note that to use the method you must initialize the array target with sufficient capacity, starting at the index, to contain all the elements in ICollection<T>.

Primary Collection Classes

There are five key categories of collection classes, and they differ from one another in terms of how data is inserted, stored, and retrieved. Each generic class is located in the System.Collections.Generic namespace, and their nongeneric equivalents are in the System.Collections namespace.

List Collections: List<T>

The List<T> class has properties similar to an array. The key difference is that these classes automatically expand as the number of elements increases. (In contrast, an array size is constant.) Furthermore, lists can shrink via explicit calls to TrimToSize() or Capacity (see Figure 16.2).

[image: Image]

Figure 16.2. List<> Class Diagrams

These classes are categorized as list collections whose distinguishing functionality is that each element can be individually accessed by index, just like an array. Therefore, you can set and access elements in the list collection classes using the index operator, where the index parameter value corresponds to the position of an element in the collection. Listing 16.1 shows an example, and Output 16.1 shows the results.

Listing 16.1. Using List<T>

Click here to view code image

using System;
using System.Collections.Generic;

class Program
{
 static void Main()
 {
 List<string> list = new List<string>();

 // Lists automatically expand as elements
 // are added.
 list.Add("Sneezy");
 list.Add("Happy");
 list.Add("Dopey");
 list.Add("Doc");
 list.Add("Sleepy");
 list.Add("Bashful");
 list.Add("Grumpy");

 list.Sort();

 Console.WriteLine(
 "In alphabetical order {0} is the "
 + "first dwarf while {1} is the last.",
 list[0], list[6]);

 list.Remove("Grumpy");
 }
}

Output 16.1.

In alphabetical order Bashful is the first dwarf while Sneezy is the last.

C# is zero-index-based; therefore, index 0 in Listing 16.1 corresponds to the first element and index 6 indicates the seventh element. Retrieving elements by index does not involve a search. It involves a quick and simple “jump” operation to a location in memory.

A List<T> is an ordered collection; the Add() method appends the given item to the end of the list. Before the call to Sort() in Listing 16.1, "Sneezy" was first and "Grumpy" was last; after the call, the list is sorted into alphabetical order, rather than the order in which items were added. Some collections automatically sort elements as they are added, but List<T> is not one of them; an explicit call to Sort() is required for the elements to be sorted.

To remove an element, you use the Remove() or RemoveAt() method, to either remove a given element or remove whatever element is at a particular index.

Advanced Topic: Customizing Collection Sorting

You might have wondered how it was that the List<T>.Sort() method in Listing 16.1 knew how to sort the elements of the list into alphabetical order. The string type implements the IComparable<string> interface, which has one method, CompareTo(). It returns an integer indicating whether the element passed is greater than, less than, or equal to the current element. If the element type implements the generic IComparable<T> interface (or the nongeneric IComparable interface) the sorting algorithm will, by default, use it to determine the sorted order.

But what if either the element type does not implement IComparable<T> or the default logic for comparing two things does not meet your needs? To specify a nondefault sort order you can call the overload of List<T>.Sort() which takes as an argument an IComparer<T>.

The difference between IComparable<T> and IComparer<T> is subtle but important: The first interface means, “I know how to compare myself to another instance of my type.” The latter means, “I know how to compare two things of a given type.”

The IComparer<T> interface is typically used when there are many different possible ways of sorting a data type and none is obviously the best. For example, you might have a collection of Contact objects that you sometimes want to sort by name, by location, by birthday, by geographic region, or by any number of other possibilities. Rather than choosing one and making the Contact class implement IComparable<Contact>, it might be wiser to create several different classes that implement IComparer<Contact>. Listing 16.2 shows a sample implementation of a LastName, FirstName comparison.

Listing 16.2. Implementing IComparer<T>

Click here to view code image

class Contact
{
 public string FirstName { get; private set; }
 public string LastName { get; private set; }
 public Contact(string firstName, string lastName)
 {
 this.FirstName = firstName;
 this.LastName = lastName;
 }
}

using System;
using System.Collections.Generic;

class NameComparison : IComparer<Contact>
{
 public int Compare(Contact x, Contact y)
 {
 if (Object.ReferenceEquals(x, y))
 return 0;
 if (x == null)
 return 1;
 if (y == null)
 return -1;
 int result = StringCompare(x.LastName, y.LastName);
 if (result == 0)
 result = StringCompare(x.FirstName, y.FirstName);
 return result;
 }

 private static int StringCompare(string x, string y)
 {
 if (Object.ReferenceEquals(x, y))
 return 0;
 if (x == null)
 return 1;
 if (y == null)
 return -1;
 return x.CompareTo(y);
 }
}

To sort a List<Contact> by last name and then first name, you can call contactList.Sort(new NameComparer()).

Total Ordering

You are required to produce a total order when implementing IComparable<T> or IComparer<T>. Your implementation of CompareTo must provide a fully consistent ordering for any possible pair of items. The ordering is required to have a number of basic characteristics: For example, every element is required to be considered equal to itself. If an element X is considered to be equal to element Y, and element Y is considered to be equal to element Z, all three elements X, Y, and Z must be considered equal to one another. If an element X is considered to be greater than Y, Y must be considered to be less than X. And there must be no “transitivity paradoxes”; you cannot have X greater than Y, Y greater than Z, and Z greater than X. If you fail to provide a total ordering, the action of the sort algorithm is undefined; it may produce a crazy ordering, it may crash, it may go into an infinite loop, and so on.

Notice, for example, how the comparer in Listing 16.2 ensures a total order, even if the arguments are null references. It would not be legal to say “if either element is null then return zero,” for example, because then two non-null things could be equal to null but not equal to each other.

Guidelines

DO ensure that custom comparison logic produces a consistent “total order.”

Searching a List<T>

To search List<T> for a particular element, you use the Contains(), IndexOf(), LastIndexOf(), and BinarySearch() methods. The first three methods search through the array, starting at the first element (or the last element for LastIndexOf()), and examine each element until the desired one is found. The execution time for these algorithms is proportional to the number of elements searched before a hit occurs. (Be aware that the collection classes do not require that all the elements within the collection are unique. If two or more elements in the collection are the same, IndexOf() returns the first index and LastIndexOf() returns the last index.)

BinarySearch() uses a much faster binary search algorithm but it requires that the elements be sorted. A useful feature of the BinarySearch() method is that if the element is not found, a negative integer is returned. The bitwise complement (~) of this value is the index of the next element larger than the element being sought, or the total element count if there is no greater value. This provides a convenient means to insert new values into the list at the specific location so as to maintain sorting. See Listing 16.3 for an example.

Listing 16.3. Using the Bit Complement of the BinarySearch() Result

Click here to view code image

using System;
using System.Collections.Generic;

class Program
{
 static void Main()
 {
 List<string> list = new List<string>();
 int search;

 list.Add("public");
 list.Add("protected");
 list.Add("private");

 list.Sort();

 search = list.BinarySearch("protected internal");
 if (search < 0)
 {
 list.Insert(~search, "protected internal");
 }

 foreach (string accessModifier in list)
 {
 Console.WriteLine(accessModifier);
 }
 }
}

Beware that if the list is not first sorted, an element will not necessarily be found, even if it is in the list. The results of Listing 16.3 appear in Output 16.2.

Output 16.2.

private
protected
protected internal
public

Advanced Topic: Finding Multiple Items with FindAll()

Sometimes you must find multiple items within a list and your search criteria are more complex than merely looking for specific values. To support this, System.Collections.Generic.List<T> includes a FindAll() method. FindAll() takes a parameter of type Predicate<T>, which is a reference to a method called a delegate. Listing 16.4 demonstrates how to use the FindAll() method.

Listing 16.4. Demonstrating FindAll() and Its Predicate Parameter

Click here to view code image

using System;
using System.Collections.Generic;

class Program
{
 static void Main()
 {
 List<int> list = new List<int>();
 list.Add(1);
 list.Add(2);
 list.Add(3);
 list.Add(2);

 List<int> results = list.FindAll(Even);

 foreach(int number in results)

 {
 Console.WriteLine(number);
 }
 }

 public static bool Even(int value)
 {
 return (value % 2) == 0;
 }
}

In Listing 16.4’s call to FindAll(), you pass a delegate instance, Even(). This method returns true when the integer argument value is even. FindAll() takes the delegate instance and calls into Even() for each item within the list (this listing uses C# 2.0’s delegate type inferencing). Each time the return is true, it adds it to a new List<T> instance and then returns this instance once it has checked each item within list. A complete discussion of delegates occurs in Chapter 12.

Dictionary Collections: Dictionary<TKey, TValue>

Another category of collection classes is the dictionary classes—specifically, Dictionary<TKey, TValue> (see Figure 16.3). Unlike the list collections, dictionary classes store name/value pairs. The name functions as a unique key that can be used to look up the corresponding element in a manner similar to that of using a primary key to access a record in a database. This adds some complexity to the access of dictionary elements, but because lookups by key are efficient operations, this is a useful collection. Note that the key may be any data type, not just a string or a numeric value.

[image: Image]

Figure 16.3. Dictionary Class Diagrams

One option for inserting elements into a dictionary is to use the Add() method, passing both the key and the value, as shown in Listing 16.5.

Listing 16.5. Adding Items to a Dictionary<TKey, TValue>

Click here to view code image

using System;
using System.Collections.Generic;

class Program
{
 static void Main()
 {
 Dictionary<Guid,string> dictionary =
 new Dictionary<Guid, string>();
 Guid key = Guid.NewGuid();

 dictionary.Add(key, "hello");
 }
}

Listing 16.5 inserts the string "hello" using a Guid as its key. If an element with the same key has already been added, an exception is thrown.

An alternative is to use the indexer, as shown in Listing 16.6.

Listing 16.6. Inserting Items in a Dictionary<TKey, TValue> Using the Index Operator

Click here to view code image

using System;
using System.Collections.Generic;

class Program
{
 static void Main()
 {
 Dictionary<Guid, string> dictionary =
 new Dictionary<Guid, string>();
 Guid key = Guid.NewGuid();

 dictionary[key] = "hello";
 dictionary[key] = "goodbye";
 }
}

The first thing to observe in Listing 16.6 is that the index operator does not require an integer. Instead, the index operand type is specified by the first type argument (Guid), and the type of the value that is set or retrieved by the indexer is specified by the second type argument (string).

The second thing to notice in Listing 16.6 is that the same key is used twice. In the first assignment, no dictionary value corresponds to the given key. When this happens, the dictionary collection classes insert a new value with the supplied key. In the second assignment, an element with the specified key already exists. Instead of inserting an additional element, the value "hello" is removed and the value "goodbye" is associated with the key.

Attempting to read a value from a dictionary with a nonexistent key throws a KeyNotFoundException. The ContainsKey() method allows you to check whether a particular key is used before accessing its value, thereby avoiding the exception.

The Dictionary<TKey, TValue> is implemented as a “hash table”; this data structure provides extremely fast access when searching by key, regardless of the number of values stored in the dictionary. By contrast, checking whether there is a particular value in the dictionary collections is a time-consuming operation with linear performance characteristics, much like searching an unsorted list. To do this you use the ContainsValue() method, which searches sequentially through each element in the collection.

You remove a dictionary element using the Remove() method, passing the key, not the element value.

Because both the key and the value are required to add a value to the dictionary, the loop variable of a foreach loop that enumerates elements of a dictionary must be KeyValuePair<TKey, TValue>. Listing 16.7 shows a snippet of code demonstrating the use of a foreach loop to enumerate the keys and values in a dictionary. The output appears in Output 16.3.

Listing 16.7. Iterating over Dictionary<TKey, TValue> with foreach

Click here to view code image

using System;
using System.Collections.Generic;

class Program
{
 static void Main()
 {
 var dictionary = newDictionary<string,string>();
 dictionary.Add("do", "a deer");
 dictionary.Add("re", "a drop");
 dictionary.Add("mi", "a name");
 dictionary.Add("fa", "a long way");
 dictionary.Add("so", "a needle");
 dictionary.Add("la", "a note");
 dictionary.Add("ti", "a drink");
 Console.WriteLine("Key Value ");
 Console.WriteLine("--- ------- ");
 foreach (KeyValuePair<string, string> i in dictionary)
 {
 Console.WriteLine("{0} {1}", i.Key, i.Value);
 }
 }
}

Output 16.3.

Key Value
--- -------
do a deer
re a drop
mi a name
fa a long way
so a needle
la a note
ti a drink

Note that the order of the items shown here is the order in which the items were added to the dictionary, just as if they had been added to a list. Implementations of dictionaries will often enumerate the keys and values in the order that they were added to the dictionary, but this feature is neither required nor documented, and therefore, you should not rely on it.

Guidelines

DO NOT make any unwarranted assumptions about the order in which elements of a collection will be enumerated; if the collection is not documented as enumerating its elements in a particular order, it is not guaranteed to produce elements in any particular order.

If you want to deal only with keys or only with elements within a dictionary class, they are available via the Keys and Values properties. The data type returned from these properties is of type ICollection<T>. The data returned by these properties is a reference to the data within the original dictionary collection, rather than a copy; changes within the dictionary are automatically reflected in the collection returned by the Keys and Values properties.

Advanced Topic: Customizing Dictionary Equality

In order to determine whether a given key matches any existing key in the dictionary, the dictionary must be able to compare two keys for equality. This is analogous to the way that lists must be able to compare two items to determine their order. (For an example, see the Advanced Topic, Customizing Collection Sorting, earlier in this chapter.) By default, two instances of a value type are compared by checking to see if they contain exactly the same data, and two instances of a reference type are compared to see if they both reference the same object. However, it is occasionally necessary to be able to compare two instances as equal even if they are not exactly the same value or exactly the same reference.

For example, suppose you wish to create a Dictionary<Contact, string> using the Contact type from Listing 16.2. However, you want any two Contact objects to compare as equal if they have the same first and last names, regardless of whether the two objects are reference equal or not. Much as you can provide an implementation of IComparer<T> to sort a list, you can similarly provide an implementation of IEqualityComparer<T> to determine if two keys are to be considered equal. This interface requires two methods: one that returns whether or not two items are equal, and one that returns a “hash code” that the dictionary can use to facilitate fast indexing. Listing 16.8 shows an example.

Listing 16.8. Implementing IEqualityComparer<T>

Click here to view code image

using System;
using System.Collections.Generic;

class ContactEquality : IEqualityComparer<Contact>
{
 public bool Equals(Contact x, Contact y)
 {
 if (Object.ReferenceEquals(x, y))
 return true;
 if (x == null || y == null)
 return false;
 return x.LastName == y.LastName &&
 x.FirstName == y.FirstName;
 }

 public int GetHashCode(Contact x)
 {
 if (Object.ReferenceEquals(x, null))
 return 0;
 int h1 = x.FirstName == null ? 0 : x.FirstName.GetHashCode();
 int h2 = x.LastName == null ? 0 : x.LastName.GetHashCode();
 return h1 * 23 + h2;
 }
}

To create a dictionary that uses this equality comparer you can use the constructor new Dictionary<Contact, string>(new ContactEquality).

Beginner Topic: Requirements of Equality Comparisons

As discussed in Chapter 9, Well-Formed Types, there are several important rules for the equality and hash code algorithms. Conformance to these rules is critical in the context of collections. Just as correctly sorting a list requires a custom ordering comparison to provide a total order, so too does a hash table require certain guarantees to be met by a custom equality comparison. The most important requirement is that if Equals() returns true for two objects, GetHashCode() must return the same value for those two objects. Note that the converse is not true: Two unequal items may have the same hash code. (And indeed, there must be two unequal items that have the same hash code because there are only 232 possible hash codes, but more than that many unequal objects!)

The second most important requirement is that two calls to GetHashCode() on the same item must produce the same result for at least as long as the item is in the hash table. Note, however, that two objects that “look equal” are not required to give the same hash code in two separate runs of a program. For example, it is perfectly legal for a given contact to be assigned one hash code today, and two weeks later when you run the program a second time for “the same” contact to be given a different hash code. Do not persist hash codes into a database and expect them to remain stable across different runs of a program.

Ideally, the result of GetHashCode() should appear to be “random.” That is, small changes to the input should cause large changes to the output, and the result should be distributed roughly evenly across all possible integer values. It is difficult, however, to devise a hash algorithm that is extremely fast and produces extremely well-distributed output; try to find a good middle ground.

Finally, GetHashCode() and Equals() must not throw exceptions; notice how the code in Listing 16.8 is careful to never dereference a null reference, for example.

To summarize, here are the key principles:

• Equal objects must have equal hash codes.

• The Hash code of an object should not change for the life of the instance (at least while it is in a hash table).

• The hashing algorithm should quickly produces a well-distributed hash.

• The hashing algorithm should avoid throwing exceptions in all possible object states.

Sorted Collections: SortedDictionary<TKey, TValue> and SortedList<T>

The sorted collection classes (see Figure 16.4) store their elements sorted by key for SortedDictionary<TKey, TValue> and by value for SortedList<T>. (There is also a nongeneric SortedList class.) If we change the code in Listing 16.7 to use a SortedDictionary<string, string> instead of a Dictionary<string, string>, the output of the program is as appears in Output 16.4.

[image: Image]

Figure 16.4. SortedList<> and SortedDictionary<> Class Diagrams

Output 16.4.

Key Value
--- -------
do a deer
fa a long way
la a note
mi a name
re a drop
so a needle
ti a drink

Note that the elements are sorted into order by key, not by value.

Because sorted collections must do extra work to maintain the sorted order of their elements, insertion and removal is typically slightly slower than insertion and removal of values in an unordered dictionary.

Because sorted collections must store their items in a particular order, it is possible to access values both by key and by index. To access a key or value by its index in the sorted list, use the Keys and Values properties. These return IList<TKey> and IList<TValue> instances, respectively; the resultant collection can be indexed like any other list.

Stack Collections: Stack<T>

Chapter 11 discussed the stack collection classes (see Figure 16.5). The stack collection classes are designed as last in, first out (LIFO) collections. The two key methods are Push() and Pop().

• Push() inserts elements into the collection. The elements do not have to be unique.

• Pop() removes elements in the reverse order in which they were added.

[image: Image]

Figure 16.5. Stack<T> Class Diagram

To access the elements on the stack without modifying the stack, you use the Peek() and Contains() methods. The Peek() method returns the next element that Pop() will retrieve.

As with most collection classes, you use the Contains() method to determine whether an element exists anywhere in the stack. As with all collections, it is also possible to use a foreach loop to iterate over the elements in a stack. This allows you to access values from anywhere in the stack. Note, however, that accessing a value via the foreach loop does not remove it from the stack. Only Pop() provides this functionality.

Queue Collections: Queue<T>

Queue collection classes, shown in Figure 16.6, are identical to stack collection classes, except they follow the ordering pattern of first in, first out (FIFO). In place of the Pop() and Push() methods are the Enqueue() and Dequeue() methods. The queue collection behaves like a pipe: You place objects into the queue at one end using the Enqueue() method and remove them from the other end using the Dequeue() method. As with stack collection classes, the objects do not have to be unique, and queue collection classes automatically increase in size as required. As a queue shrinks it does not necessarily reclaim the storage space previously used, because that would make inserting a new element potentially more expensive; if you happen to know that a queue is going to remain the same size for a long time, you can hint to it that you would like to reclaim storage space using the TrimToSize() method.

[image: Image]

Figure 16.6. Queue<T> Class Diagram

Linked Lists: LinkedList<T>

In addition, System.Collections.Generic supports a linked list collection that enables both forward and reverse traversal. Figure 16.7 shows the class diagram. (There is no corresponding nongeneric type.)

[image: Image]

Figure 16.7. LinkedList<T> and LinkedListNode<T> Class Diagrams

Providing an Indexer

Arrays, dictionaries, and lists all provide an indexer as a convenient way to get or set a member of a collection based on a key or index. As we’ve seen, to use the indexer you simply put the index (or indices) in square brackets after the collection. It is possible to define your own indexer; Listing 16.9 shows an example using Pair<T>.

Listing 16.9. Defining an Indexer

Click here to view code image

interface IPair<T>
{
 T First
 {
 get;
 }

 T Second
 {
 get;
 }

 T this[PairItem index]
 {
 get;
 }

}

public enum PairItem
{
 First,
 Second
}

public struct Pair<T> : IPair<T>
{
 public Pair(T first, T second)
 {
 _first = first;
 _second = second;
 }
 public T First
 {
 get{ return _first; }
 private set{ _first = value; }
 }
 private T _first;
 public T Second
 {
 get{ return _second; }
 private set{ _second = value; }
 }
 private T _second;

 public T this[PairItem index]
 {
 get
 {

 switch (index)
 {
 case PairItem.First:
 return First;
 case PairItem.Second:
 return Second;
 default :
 throw new NotImplementedException(
 string.Format(
 "The enum {0} has not been implemented",
 index.ToString()));
 }
 }
 set
 {

 switch (index)
 {
 case PairItem.First:
 First = value;
 break;
 case PairItem.Second:
 Second = value;
 break;
 default:
 throw new NotImplementedException(
 string.Format(
 "The enum {0} has not been implemented",
 index.ToString()));
 }

 }
 }

}

An indexer is declared much as a property is declared; instead of the name of the property, you use the keyword this followed by a parameter list in square brackets. The body is also like a property, with get and set blocks. As Listing 16.9 shows, the parameter does not have to be an int. In fact, the index can take multiple parameters and can even be overloaded. This example uses an enum to reduce the likelihood that callers will supply an index for a nonexistent item.

The resultant CIL code the C# compiler creates from an index operator is a special property called Item that takes an argument. Properties that accept arguments cannot be created explicitly in C#, so the Item property is unique in this aspect. This is because any additional member with the identifier Item, even if it has an entirely different signature, will conflict with the compiler-created member, and will therefore not be allowed.

Advanced Topic: Assigning the Indexer Property Name Using IndexerName

As indicated earlier, the CIL property name for an indexer defaults to Item. Using the IndexerNameAttibute you can specify a different name, however. Listing 16.10, for example, changes the name to "Entry".

Listing 16.10. Changing the Indexer’s Default Name

Click here to view code image

 [System.Runtime.CompilerServices.IndexerName("Entry")]
 public T this[params PairItem[] branches]
 {
 // ...
 }

This makes no difference to C# callers of the index, but it specifies the name for languages that do not support indexers directly.

This attribute is merely an instruction to the compiler to use a different name for the indexer; the attribute is not actually emitted into metadata by the compiler, and therefore, it is not available via reflection.

Advanced Topic: Defining an Index Operator with Variable Parameters

An index operator can also take a variable parameter list. For example, Listing 16.11 defines an index operator for BinaryTree<T>, discussed in Chapter 11 (and again in the next section).

Listing 16.11. Defining an Index Operator with Variable Parameters

Click here to view code image

using System;
using System.Collections.Generic;

public class BinaryTree<T>:
 IEnumerable<T>
{

 // ...

 public T this[params PairItem[] branches]

 {
 get
 {
 BinaryTree<T> currentNode = this;
 int totalLevels =
 (branches == null) ? 0 : branches.Length;
 int currentLevel = 0;

 while (currentLevel < totalLevels)
 {
 currentNode = currentNode.SubItems[
 branches[currentLevel]];
 if (currentNode == null)
 {
 // The binary tree at this location is null.
 throw new IndexOutOfRangeException();
 }
 currentLevel++;
 }

 return currentNode.Value;
 }
 set
 {
 // ...
 }
 }

}

Each item within branches is a PairItem and indicates which branch to navigate down in the binary tree.

Returning Null or an Empty Collection

When returning an array or collection, you must indicate that there are zero items by returning either null or a collection instance with no items. The better choice in general is to return a collection instance with no items. In so doing, you avoid forcing the caller to check for null before iterating over the items in the collection. For example, given a zero-size IEnumerable<T> collection, the caller can immediately and safely use a foreach loop over the collection without concern that the generated call to GetEnumerator() will throw a NullReferenceException. Consider using the Enumerable.Empty<T>() method to easily generate an empty collection of a given type.

One of the few times to deviate from this guideline is when null is intentionally indicating something different from zero items. For example, a collection of user names for a web site might be null to indicate that an up-to-date collection could not be obtained for some reason; that is semantically different from an empty collection.

Guidelines

DO NOT represent an empty collection with a null reference.

CONSIDER using the Enumerable.Empty<T>() method instead.

Iterators

Chapter 14 went into detail on the internals of the foreach loop. This section discusses how to use iterators to create your own implementation of the IEnumerator<T>, IEnumerable<T>, and corresponding nongeneric interfaces for custom collections. Iterators provide clean syntax for specifying how to iterate on data in collection classes, especially using the foreach loop. The iterator allows end-users of a collection to navigate its internal structure without knowledge of that structure.

Advanced Topic: Origin of Iterators

In 1972, Barbara Liskov and a team of scientists at MIT began researching programming methodologies, focusing on user-defined data abstractions. To prove much of their work, they created a language called CLU that had a concept called “clusters” (CLU being the first three letters). Clusters were predecessors to the primary data abstraction that programmers use today: objects. As part of their research, the team realized that although they were able to use the CLU language to abstract some data representation away from end-users of their types, they consistently found themselves having to reveal the inner structure of their data in order to allow others to intelligently consume it. Through their consternation came the creation of a language construct called an iterator. (The CLU language offered many insights into what would eventually be popularized as object-oriented programming.)

If classes want to support iteration using the foreach loop construct, they must implement the enumerator pattern. As Chapter 14 describes, in C# the foreach loop construct is expanded by the compiler into the while loop construct based on the IEnumerator<T> interface that is retrieved from the IEnumerable<T> interface.

The problem with the enumeration pattern is that it can be cumbersome to implement manually, because it must maintain all the state necessary to describe the current position in the collection. This internal state may be simple for a list collection type class; the index of the current position suffices. But for data structures that require recursive traversal, such as binary trees, the state can be quite complicated. To mitigate the challenges associated with implementing this pattern, C# 2.0 included a construct that makes it easier for a class to dictate how the foreach loop iterates over its contents.

Defining an Iterator

Iterators are a means to implement methods of a class, and they are syntactic shortcuts for the more complex enumerator pattern. When the C# compiler encounters an iterator, it expands its contents into CIL code that implements the enumerator pattern. As such, there are no runtime dependencies for implementing iterators. Because the C# compiler handles implementation through CIL code generation, there is no real runtime performance benefit to using iterators. However, there is a substantial programmer productivity gain in choosing iterators over manual implementation of the enumerator pattern. To begin, the next section examines how an iterator is defined in code.

Iterator Syntax

An iterator provides shorthand implementation of iterator interfaces, the combination of the IEnumerable<T> and IEnumerator<T> interfaces. Listing 16.12 declares an iterator for the generic BinaryTree<T> type by creating a GetEnumerator() method. Next, you will add support for the iterator interfaces.

Listing 16.12. Iterator Interfaces Pattern

Click here to view code image

using System;
using System.Collections.Generic;

public class BinaryTree<T>:

 IEnumerable<T>

{
 public BinaryTree (T value)
 {
 Value = value;
 }

 #region IEnumerable<T>

 public IEnumerator<T> GetEnumerator()

 {
 //...
 }
 #endregion IEnumerable<T>

 public T Value
 { get; private set; }
 public Pair<BinaryTree<T>> SubItems
 { get; private set; }
}

public struct Pair<T>
{
 public Pair(T first, T second) : this()
 {
 First = first;
 Second = second;
 }
 public T First { get; private set; }
 public T Second { get; private set; }
}

As Listing 16.12 shows, we need to provide an implementation for the GetEnumerator() method.

Yielding Values from an Iterator

Iterators are like functions, but instead of returning a single value, they yield a sequence of values, one at a time. In the case of BinaryTree<T>, the iterator yields a sequence of values of the type argument provided for T. If the nongeneric version of IEnumerator is used, the yielded values will instead be of type object.

To correctly implement the iterator pattern, you need to maintain some internal state to keep track of where you are while enumerating the collection. In the BinaryTree<T> case, you track which elements within the tree have already been enumerated and which are still to come. Iterators are transformed by the compiler into a “state machine” that keeps track of the current position and knows how to “move itself” to the next position.

The yield return statement yields a value each time an iterator encounters it; control immediately returns to the caller that requested the item. When the caller requests the next item, the code begins to execute immediately following the previously executed yield return statement. In Listing 16.13, you return the C# built-in data type keywords sequentially.

Listing 16.13. Yielding Some C# Keywords Sequentially

Click here to view code image

using System;
using System.Collections.Generic;

public class CSharpBuiltInTypes: IEnumerable<string>
{
 public IEnumerator<string> GetEnumerator()
 {
 yield return "object";
 yield return "byte";
 yield return "uint";
 yield return "ulong";
 yield return "float";
 yield return "char";
 yield return "bool";
 yield return "ushort";
 yield return "decimal";
 yield return "int";
 yield return "sbyte";
 yield return "short";
 yield return "long";
 yield return "void";
 yield return "double";
 yield return "string";
 }

 // The IEnumerable.GetEnumerator method is also required
 // because IEnumerable<T> derives from IEnumerable.
 System.Collections.IEnumerator
 System.Collections.IEnumerable.GetEnumerator()
 {
 // Invoke IEnumerator<string> GetEnumerator() above
 return GetEnumerator();
 }
}

public class Program
{
 static void Main()
 {
 CSharpBuiltInTypes keywords =
 new CSharpBuiltInTypes();

 foreach (string keyword in keywords)
 {
 Console.WriteLine(keyword);
 }
 }
}

The results of Listing 16.13 appear in Output 16.5.

Output 16.5.

object
byte
uint
ulong
float
char
bool
ushort
decimal
int
sbyte
short
long
void
double
string

The output from this listing is a listing of the C# built-in types.

Iterators and State

When GetEnumerator() is first called in a foreach statement (such as foreach (string keyword in keywords) in Listing 16.13), an iterator object is created and its state is initialized to a special “start” state that represents the fact that no code has executed in the iterator and thus no values have been yielded yet. The iterator maintains its state as long as the foreach statement at the call site continues to execute. Every time the loop requests the next value, control enters the iterator and continues where it left off the previous time around the loop; the state information stored in the iterator object is used to determine where control must resume. When the foreach statement at the call site terminates, the iterator’s state is no longer saved.

It is always safe to call GetEnumerator() again; “fresh” enumerator objects will be created when necessary.

Figure 16.8 shows a high-level sequence diagram of what takes place. Remember that the MoveNext() method appears on the IEnumerator<T> interface.

[image: Image]

Figure 16.8. Sequence Diagram with yield return

In Listing 16.13, the foreach statement at the call site initiates a call to GetEnumerator() on the CSharpBuiltInTypes instance called keywords.

Given the iterator instance (referenced by iterator), foreach begins each iteration with a call to MoveNext(). Within the iterator, you yield a value back to the foreach statement at the call site. After the yield return statement, the GetEnumerator() method seemingly pauses until the next MoveNext() request. Back at the loop body, the foreach statement displays the yielded value on the screen. It then loops back around and calls MoveNext() on the iterator again. Notice that the second time, control picks up at the second yield return statement. Once again, the foreach displays on the screen what CSharpBuiltInTypes yielded and starts the loop again. This process continues until there are no more yield return statements within the iterator. At that point, the foreach loop at the call site terminates because MoveNext() returns false.

More Iterator Examples

Before you modify BinaryTree<T>, you must modify Pair<T> to support the IEnumerable<T> interface using an iterator. Listing 16.14 is an example that yields each element in Pair<T>.

Listing 16.14. Using yield to Implement BinaryTree<T>

Click here to view code image

public struct Pair<T>: IPair<T>,

 IEnumerable<T>

{
 public Pair(T first, T second) : this()
 {
 First = first;
 Second = second;
 }
 public T First { get; private set; }
 public T Second { get; private set; }

 #region IEnumerable<T>
 public IEnumerator<T> GetEnumerator()
 {
 yield return First;
 yield return Second;
 }
#endregion IEnumerable<T>

 #region IEnumerable Members
 System.Collections.IEnumerator
 System.Collections.IEnumerable.GetEnumerator()
 {
 return GetEnumerator();
 }
 #endregion

}

In Listing 16.14, the iteration over the Pair<T> data type loops twice: first through yield return First, and then through yield return Second. Each time the yield return statement within GetEnumerator() is encountered, the state is saved and execution appears to “jump” out of the GetEnumerator() method context and into the loop body. When the second iteration starts, GetEnumerator() begins to execute again with the yield return Second statement.

System.Collections.Generic.IEnumerable<T> inherits from System.Collections.IEnumerable. Therefore, when implementing IEnumerable<T>, it is also necessary to implement IEnumerable. In Listing 16.14, you do so explicitly, and the implementation simply involves a call to IEnumerable<T>’s GetEnumerator() implementation. This call from IEnumerable.GetEnumerator() to IEnumerable<T>.GetEnumerator() will always work because of the type compatibility (via inheritance) between IEnumerable<T> and IEnumerable. Since the signatures for both GetEnumerator()s are identical (the return type does not distinguish a signature), one or both implementations must be explicit. Given the additional type safety offered by IEnumerable<T>’s version, you implement IEnumerable’s implementation explicitly.

Listing 16.15 uses the Pair<T>.GetEnumerator() method and displays "Inigo" and "Montoya" on two consecutive lines.

Listing 16.15. Using Pair<T>.GetEnumerator() via foreach

Click here to view code image

Pair<string> fullname = new Pair<string>("Inigo", "Montoya");
foreach (string name in fullname)
{
 Console.WriteLine(name);
}

Notice that the call to GetEnumerator() is implicit within the foreach loop.

Placing a yield return within a Loop

It is not necessary to hardcode each yield return statement, as you did in both CSharpPrimitiveTypes and Pair<T>. Using the yield return statement, you can return values from inside a loop construct. Listing 16.16 uses a foreach loop. Each time the foreach within GetEnumerator() executes, it returns the next value.

Listing 16.16. Placing yield return Statements within a Loop

Click here to view code image

public class BinaryTree<T>: IEnumerable<T>
{
 // ...

 #region IEnumerable<T>
 public IEnumerator<T> GetEnumerator()
 {
 // Return the item at this node.
 yield return Value;

 // Iterate through each of the elements in the pair.

 foreach (BinaryTree<T> tree in SubItems)
 {
 if (tree != null)
 {
 // Since each element in the pair is a tree,
 // traverse the tree and yield each
 // element.
 foreach (T item in tree)
 {
 yield return item;
 }
 }
 }

 }
 #endregion IEnumerable<T>

 #region IEnumerable Members
 System.Collections.IEnumerator
 System.Collections.IEnumerable.GetEnumerator()
 {
 return GetEnumerator();
 }
 #endregion
}

In Listing 16.16, the first iteration returns the root element within the binary tree. During the second iteration you traverse the pair of subelements. If the subelement pair contains a non-null value, you traverse into that child node and yield its elements. Note that foreach (T item in tree) is a recursive call to a child node.

As observed with CSharpBuiltInTypes and Pair<T>, you can now iterate over BinaryTree<T> using a foreach loop. Listing 16.17 demonstrates this, and Output 16.6 shows the results.

Listing 16.17. Using foreach with BinaryTree<string>

Click here to view code image

// JFK
jfkFamilyTree = new BinaryTree<string>(
 "John Fitzgerald Kennedy");

jfkFamilyTree.SubItems = new Pair<BinaryTree<string>>(
 new BinaryTree<string>("Joseph Patrick Kennedy"),
 new BinaryTree<string>("Rose Elizabeth Fitzgerald"));

// Grandparents (Father's side)
jfkFamilyTree.SubItems.First.SubItems =
 new Pair<BinaryTree<string>>(
 new BinaryTree<string>("Patrick Joseph Kennedy"),
 new BinaryTree<string>("Mary Augusta Hickey"));

// Grandparents (Mother's side)
jfkFamilyTree.SubItems.Second.SubItems =
 new Pair<BinaryTree<string>>(
 new BinaryTree<string>("John Francis Fitzgerald"),
 new BinaryTree<string>("Mary Josephine Hannon"));

foreach (string name in jfkFamilyTree)
{
 Console.WriteLine(name);
}

Output 16.6.

John Fitzgerald Kennedy
Joseph Patrick Kennedy
Patrick Joseph Kennedy
Mary Augusta Hickey
Rose Elizabeth Fitzgerald
John Francis Fitzgerald
Mary Josephine Hannon

Advanced Topic: The Dangers of Recursive Iterators

The code in Listing 16.16 creates new “nested” iterators as it traverses the binary tree. This means that when the value is yielded by a node, the value is yielded by the node’s iterator, and then yielded by its parent’s iterator, and then yielded by its parent’s iterator, and so on, until it is finally yielded to the original loop by the root’s iterator. A value that is n levels deep must actually pass its value up a chain of n iterators. If the binary tree is relatively shallow, this is not typically a problem; however, an imbalanced binary tree can be extremely deep, and therefore expensive to iterate recursively.

Guidelines

CONSIDER using nonrecursive algorithms when iterating over potentially deep data structures.

Beginner Topic: struct versus class

An interesting side effect of defining Pair<T> as a struct rather than a class is that SubItems.First and SubItems.Second cannot be assigned directly, even if the setter were public. If you modify the setter to be public, the following will produce a compile error indicating that SubItems cannot be modified, “because it is not a variable”:

Click here to view code image

jfkFamilyTree.SubItems.First =
 new BinaryTree<string>("Joseph Patrick Kennedy");

The issue is that SubItems is a property of type Pair<T>, a struct. Therefore, when the property returns the value, a copy of SubItems is made, and assigning First on a copy that is promptly lost at the end of the statement would be misleading. Fortunately, the C# compiler prevents this.

To overcome the issue, don’t assign it (see the approach in Listing 16.17), use class rather than struct for Pair<T>, don’t create a SubItems property and instead use a field, or provide properties in BinaryTree<T> that give direct access to SubItems members.

Canceling Further Iteration: yield break

Sometimes you might want to cancel further iteration. You can do this by including an if statement so that no further statements within the code are executed. However, you can also use yield break to cause MoveNext() to return false and control to return immediately to the caller and end the loop. Listing 16.18 shows an example of such a method.

Listing 16.18. Escaping Iteration via yield break

Click here to view code image

public System.Collections.Generic.IEnumerable<T>
 GetNotNullEnumerator()
{

 if((First == null) || (Second == null))
 {
 yield break;
 }

 yield return Second;
 yield return First;
}

This method cancels the iteration if either of the elements in the Pair<T> class is null.

A yield break statement is similar to placing a return statement at the top of a function when it is determined that there is no work to do. It is a way to exit from further iterations without surrounding all remaining code with an if block. As such, it allows multiple exits, and therefore, you should use it with caution because casual reading of the code may miss the early exit.

Advanced Topic: How Iterators Work

When the C# compiler encounters an iterator, it expands the code into the appropriate CIL for the corresponding enumerator design pattern. In the generated code, the C# compiler first creates a nested private class to implement the IEnumerator<T> interface, along with its Current property and a MoveNext() method. The Current property returns a type corresponding to the return type of the iterator. Listing 16.14 of Pair<T> contains an iterator that returns a T type. The C# compiler examines the code contained within the iterator and creates the necessary code within the MoveNext method and the Current property to mimic its behavior. For the Pair<T> iterator, the C# compiler generates roughly equivalent code (see Listing 16.19).

Listing 16.19. C# Equivalent of Compiler-Generated C# Code for Iterators

Click here to view code image

using System;
using System.Collections.Generic;

public class Pair<T> : IPair<T>, IEnumerable<T>
{
 // ...

 // The iterator is expanded into the following
 // code by the compiler
 public virtual IEnumerator<T> GetEnumerator()
 {
 __ListEnumerator result = new __ListEnumerator(0);
 result._Pair = this;
 return result;
 }
 public virtual System.Collections.IEnumerator
 System.Collections.IEnumerable.GetEnumerator()
 {
 return new GetEnumerator();
 }

 private sealed class __ListEnumerator<T> : IEnumerator<T>
 {
 public __ListEnumerator(int itemCount)
 {
 _ItemCount = itemCount;
 }

 Pair<T> _Pair;
 T _Current;
 int _ItemCount;

 public object Current
 {
 get
 {
 return _Current;
 }
 }

 public bool MoveNext()
 {
 switch (_ItemCount)
 {
 case 0:
 _Current = _Pair.First;
 _ItemCount++;
 return true;
 case 1:
 _Current = _Pair.Second;
 _ItemCount++;
 return true;
 default:
 return false;
 }
 }
 }
}

Because the compiler takes the yield return statement and generates classes that correspond to what you probably would have written manually, iterators in C# exhibit the same performance characteristics as classes that implement the enumerator design pattern manually. Although there is no performance improvement, the programmer productivity gained is significant.

Advanced Topic: Contextual Keywords

Many C# keywords are “reserved” and cannot be used as identifiers unless preceded with an @ sign. The yield keyword is a contextual keyword, not a reserved keyword; it is legal (though confusing) to declare a local variable called yield. In fact, all the keywords added to C# after version 1.0 have been contextual keywords; this helps prevent accidental breakages when upgrading existing programs to use new versions of the language.

Had the C# designers chosen to use yield value; as the syntax for an iterator to yield instead of yield return value;, a possible ambiguity is introduced: yield(1+2); now might be yielding a value, or might be passing the value as an argument to a method called yield.

Since it was previously never legal to have the identifier yield appear immediately before return or break, the C# compiler knows that such a usage of yield must be as a keyword, not an identifier.

Creating Multiple Iterators in a Single Class

Previous iterator examples implemented IEnumerable<T>.GetEnumerator(). This is the method that foreach seeks implicitly. Sometimes you might want different iteration sequences, such as iterating in reverse, filtering the results, or iterating over an object projection other than the default. You can declare additional iterators in the class by encapsulating them within properties or methods that return IEnumerable<T> or IEnumerable. If you want to iterate over the elements of Pair<T> in reverse, for example, you provide a GetReverseEnumerator() method, as shown in Listing 16.20.

Listing 16.20. Using yield return in a Method That Returns IEnumerable<T>

Click here to view code image

public struct Pair<T>: IEnumerable<T>
{
 ...

 public IEnumerable<T> GetReverseEnumerator()

 {
 yield return Second;
 yield return First;
 }
 ...
}

public void Main()
{
 Pair<string> game = new Pair<string>("Redskins", "Eagles");

 foreach (string name in game.GetReverseEnumerator())

 {
 Console.WriteLine(name);
 }
}

Note that you return IEnumerable<T>, not IEnumerator<T>. This is different from IEnumerable<T>.GetEnumerator(), which returns IEnumerator<T>. The code in Main() demonstrates how to call GetReverseEnumerator() using a foreach loop.

yield Statement Requirements

You can use the yield return statement only in members that return an IEnumerator<T> or IEnumerable<T> type, or their nongeneric equivalents. Members whose bodies include a yield return statement may not have a simple return. If the member uses the yield return statement, the C# compiler generates the necessary code to maintain the state of the iterator. In contrast, if the member uses the return statement instead of yield return, the programmer is responsible for maintaining his own state machine and returning an instance of one of the iterator interfaces. Further, just as all code paths in a method with a return type must contain a return statement accompanied by a value (assuming they don’t throw an exception), all code paths in an iterator must contain a yield return statement if they are to return any data.

Additional restrictions on the yield statement that result in compiler errors if violated are as follows.

• The yield statement may only appear inside a method, a user-defined operator, or the get accessor of an indexer or property. The member must not take any ref or out parameter.

• The yield statement may not appear anywhere inside an anonymous method or lambda expression (see Chapter 12).

• The yield statement may not appear inside the catch and finally clauses of the try statement. Furthermore, a yield statement may appear in a try block only if there is no catch block.

Summary

The generic collection classes and interfaces made available in C# 2.0 are universally superior to their nongeneric counterparts; by avoiding boxing penalties and enforcing type rules at compile time, they are faster and safer. Unless you must maintain compatibility with legacy C# 1.0 code, you should consider the entire namespace of System.Collections as obsolete. (And in fact, it has been excluded from the Silverlight and WinRT CLR implementations entirely.) In other words, don’t go back and necessarily remove all code that already uses this namespace. Instead, use System.Collections.Generics for any new code and, over time, consider migrating existing code to use the corresponding generic collections that contain both the interfaces and the classes for working with collections of objects.

Providing the System.Collections.Generic namespace is not the only change that C# 2.0 brought to collections. Another significant addition is the iterator. Iterators involve a new contextual keyword, yield, that C# uses to generate underlying CIL code that implements the iterator pattern used by the foreach loop.

In the next chapter we explore reflection, a topic briefly touched on before but with little to no explanation. Reflection allows one to examine the structure of a type within CIL code at runtime.

17. Reflection, Attributes, and Dynamic Programming

Attributes are a means of inserting additional metadata into an assembly and associating the metadata with a programming construct such as a class, method, or property. This chapter investigates the details surrounding attributes that are built into the framework, as well as how to define custom attributes. In order to take advantage of custom attributes, it is necessary to identify them. This is handled through reflection. This chapter begins with a look at reflection, including how you can use it to dynamically bind at runtime and call a member using its name at compile time. This is frequently performed within tools such as a code generator. In addition, reflection is used at execution time when the call target is unknown.

[image: Image]

The chapter ends with a discussion of dynamic programming, a feature added in C# 4.0 that greatly simplifies working with data that is dynamic and requires execution-time rather than compile-time binding.

Reflection

Using reflection, it is possible to do the following.

• Access the metadata for types within an assembly. This includes constructs such as the full type name, member names, and any attributes decorating the construct.

• Dynamically invoke a type’s members at runtime using the metadata, rather than a compile-time-defined binding.

Reflection is the process of examining the metadata within an assembly. Traditionally, when code compiles down to a machine language, all the metadata (such as type and method names) about the code is discarded. In contrast, when C# compiles into the CIL, it maintains most of the metadata about the code. Furthermore, using reflection, it is possible to enumerate through all the types within an assembly and search for those that match certain criteria. You access a type’s metadata through instances of System.Type, and this object includes methods for enumerating the type instance’s members. Additionally, it is possible to invoke those members on particular objects that are of the examined type.

The facility for reflection enables a host of new paradigms that otherwise are unavailable. For example, reflection enables you to enumerate over all the types within an assembly, along with their members, and in the process create stubs for documentation of the assembly API. You can then combine the metadata retrieved from reflection with the XML document created from XML comments (using the /doc switch) to create the API documentation. Similarly, programmers use reflection metadata to generate code for persisting (serializing) business objects into a database. It could also be used in a list control that displays a collection of objects. Given the collection, a list control could use reflection to iterate over all the properties of an object in the collection, defining a column within the list for each property. Furthermore, by invoking each property on each object, the list control could populate each row and column with the data contained in the object, even though the data type of the object is unknown at compile time.

XmlSerializer, ValueType, and DataBinder are a few of the classes in the framework that use reflection for portions of their implementation as well.

Accessing Metadata Using System.Type

The key to reading a type’s metadata is to obtain an instance of System.Type that represents the target type instance. System.Type provides all the methods for retrieving the information about a type. You can use it to answer questions such as the following.

• What is the type’s name (Type.Name)?

• Is the type public (Type.IsPublic)?

• What is the type’s base type (Type.BaseType)?

• Does the type support any interfaces (Type.GetInterfaces())?

• Which assembly is the type defined in (Type.Assembly)?

• What are a type’s properties, methods, fields, and so on (Type.GetProperties(), Type.GetMethods(), Type.GetFields(), and so on)?

• What attributes decorate a type (Type.GetCustomAttributes())?

There are more such members, but in summary, they all provide information about a particular type. The key is to obtain a reference to a type’s Type object, and the two primary ways to do this are through object.GetType() and typeof().

Note that the GetMethods() call does not return extension methods. They are available only as static members on the implementing type.

GetType()

object includes a GetType() member, and therefore, all types include this function. You call GetType() to retrieve an instance of System.Type corresponding to the original object. Listing 17.1 demonstrates this, using a Type instance from DateTime. Output 17.1 shows the results.

Listing 17.1. Using Type.GetProperties() to Obtain an Object’s Public Properties

Click here to view code image

DateTime dateTime = new DateTime();

Type type = dateTime.GetType();
foreach (
 System.Reflection.PropertyInfo property in
 type.GetProperties())
{
 Console.WriteLine(property.Name);
}

Output 17.1.

Date
Day
DayOfWeek
DayOfYear
Hour
Kind
Millisecond
Minute
Month
Now
UtcNow
Second
Ticks
TimeOfDay
Today
Year

After calling GetType(), you iterate over each System.Reflection.PropertyInfo instance returned from Type.GetProperties() and display the property names. The key to calling GetType() is that you must have an object instance. However, sometimes no such instance is available. Static classes, for example, cannot be instantiated, so there is no way to call GetType().

typeof()

Another way to retrieve a Type object is with the typeof expression. typeof binds at compile time to a particular Type instance, and it takes a type directly as a parameter. Listing 17.2 demonstrates the use of typeof with Enum.Parse().

Listing 17.2. Using typeof() to Create a System.Type Instance

Click here to view code image

using System.Diagnostics;
// ...
 ThreadPriorityLevel priority;
 priority = (ThreadPriorityLevel)Enum.Parse(
 typeof(ThreadPriorityLevel), "Idle");
// ...

Enum.Parse() takes a Type object identifying an enum and then converts a string to the specific enum value. In this case, it converts "Idle" to System.Diagnostics.ThreadPriorityLevel.Idle.

Member Invocation

The possibilities with reflection don’t stop with retrieving the metadata. The next step is to take the metadata and dynamically invoke the members it references. Consider the possibility of defining a class to represent an application’s command line. The difficulty with a CommandLineInfo class such as this has to do with populating the class with the actual command-line data that started the application. However, using reflection, you can map the command-line options to property names and then dynamically set the properties at runtime. Listing 17.3 demonstrates this example.

Listing 17.3. Dynamically Invoking a Member

Click here to view code image

using System;
using System.Diagnostics;

public partial class Program
{
 public static void Main(string[] args)
 {
 string errorMessage;
 CommandLineInfo commandLine = new CommandLineInfo();
 if (!CommandLineHandler.TryParse(
 args, commandLine, out errorMessage))
 {
 Console.WriteLine(errorMessage);
 DisplayHelp();
 }

 if (commandLine.Help)
 {
 DisplayHelp();
 }
 else
 {
 if (commandLine.Priority !=
 ProcessPriorityClass.Normal)
 {
 // Change thread priority
 }

 }
 // ...

 }

 private static void DisplayHelp()
 {
 // Display the command-line help.
 }
}

using System;
using System.Diagnostics;

public partial class Program
{
 private class CommandLineInfo
 {
 public bool Help { get; set; }

 public string Out { get; set; }

 public ProcessPriorityClass Priority
 {
 get { return _Priority; }
 set { _Priority = value; }
 }
 private ProcessPriorityClass _Priority =
 ProcessPriorityClass.Normal;
 }

}

using System;
using System.Diagnostics;
using System.Reflection;

public class CommandLineHandler
{
 public static void Parse(string[] args, object commandLine)
 {
 string errorMessage;
 if (!TryParse(args, commandLine, out errorMessage))
 {
 throw new ApplicationException(errorMessage);
 }
 }

 public static bool TryParse(string[] args, object commandLine,
 out string errorMessage)
 {
 bool success = false;
 errorMessage = null;
 foreach (string arg in args)
 {
 string option;
 if (arg[0] == '/' || arg[0] == '-')
 {
 string[] optionParts = arg.Split(
 new char[] { ':' }, 2);

 // Remove the slash|dash
 option = optionParts[0].Remove(0, 1);

 PropertyInfo property =
 commandLine.GetType().GetProperty(option,
 BindingFlags.IgnoreCase |
 BindingFlags.Instance |
 BindingFlags.Public);
 if (property != null)
 {
 if (property.PropertyType == typeof(bool))
 {
 // Last parameters for handling indexers
 property.SetValue(
 commandLine, true, null);
 success = true;
 }
 else if (
 property.PropertyType == typeof(string))
 {
 property.SetValue(
 commandLine, optionParts[1], null);
 success = true;
 }
 else if (property.PropertyType.IsEnum)
 {
 try
 {
 property.SetValue(commandLine,
 Enum.Parse(
 typeof(ProcessPriorityClass),
 optionParts[1], true),
 null);
 success = true;
 }

 catch (ArgumentException)
 {
 success = false;
 errorMessage =
 string.Format(
 "The option '{0}' is " +
 "invalid for '{1}'",
 optionParts[1], option);
 }
 }
 else
 {
 success = false;
 errorMessage = string.Format(
 "Data type '{0}' on {1} is not"
 + " supported.",
 property.PropertyType.ToString(),
 commandLine.GetType().ToString());
 }
 }
 else
 {
 success = false;
 errorMessage = string.Format(
 "Option '{0}' is not supported.",
 option);
 }
 }
 }
 return success;
 }
}

Although Listing 17.3 is long, the code is relatively simple. Main() begins by instantiating a CommandLineInfo class. This type is defined specifically to contain the command-line data for this program. Each property corresponds to a command-line option for the program where the command line is as shown in Output 17.2.

Output 17.2.

Click here to view code image

Compress.exe /Out:<file name> /Help
 /Priority:RealTime|High|AboveNormal|Normal|BelowNormal|Idle

The CommandLineInfo object is passed to the CommandLineHandler’s TryParse() method. This method begins by enumerating through each option and separating out the option name (Help or Out, for example). Once the name is determined, the code reflects on the CommandLineInfo object, looking for an instance property with the same name. If the property is found, it assigns the property using a call to SetValue() and specifies the data corresponding to the property type. (For arguments, this call accepts the object on which to set the value, the new value, and an additional index parameter that is null unless the property is an indexer.) This listing handles three property types: Boolean, string, and enum. In the case of enums, you parse the option value and assign the property the text’s enum equivalent. Assuming the TryParse() call was successful, the method exits and the CommandLineInfo object is initialized with the data from the command line.

Interestingly, in spite of the fact that CommandLineInfo is a private class nested within Program, CommandLineHandler has no trouble reflecting over it and even invoking its members. In other words, reflection is able to circumvent accessibility rules as long as appropriate code access security (CAS; see Chapter 21) permissions are established. If, for example, Out was private, it would still be possible for the TryParse() method to assign it a value. Because of this, it would be possible to move CommandLineHandler into a separate assembly and share it across multiple programs, each with their own CommandLineInfo class.

In this particular example, you invoke a member on CommandLineInfo using PropertyInfo.SetValue(). Not surprisingly, PropertyInfo also includes a GetValue() method for retrieving data from the property. For a method, however, there is a MethodInfo class with an Invoke() member. Both MethodInfo and PropertyInfo derive from MemberInfo (although indirectly), as shown in Figure 17.1.

[image: Image]

Figure 17.1. MemberInfo Derived Classes

The CAS permissions are set up to allow private member invocation in this case because the program runs from the local computer, and by default, locally installed programs are part of the trusted zone and have appropriate permissions granted. Programs run from a remote location will need to be explicitly granted such a right.

Reflection on Generic Types

The introduction of generic types in version 2.0 of the CLR necessitated additional reflection features. Runtime reflection on generics determines whether a class or method contains a generic type, and any type parameters or arguments it may include.

Determining the Type of Type Parameters

In the same way that you can use a typeof operator with nongeneric types to retrieve an instance of System.Type, you can use the typeof operator on type parameters in a generic type or generic method. Listing 17.4 applies the typeof operator to the type parameter in the Add method of a Stack class.

Listing 17.4. Declaring the Stack<T> Class

public class Stack<T>
{
 // ...
 public void Add(T i)
 {
 // ...
 Type t = typeof(T);
 // ...
 }
 // ...
}

Once you have an instance of the Type object for the type parameter, you may then use reflection on the type parameter itself to determine its behavior and tailor the Add method to the specific type more effectively.

Determining Whether a Class or Method Supports Generics

In the System.Type class for the version 2.0 release of the CLR, a handful of methods were added to determine whether a given type supports generic parameters and arguments. A generic argument is a type parameter supplied when a generic class is instantiated. You can determine whether a class or method contains generic parameters that have not yet been set by querying the Type.ContainsGenericParameters property, as demonstrated in Listing 17.5.

Listing 17.5. Reflection with Generics

Click here to view code image

using System;

public class Program
{
 static void Main()
 {
 Type type;
 type = typeof(System.Nullable<>);
 Console.WriteLine(type.ContainsGenericParameters);
 Console.WriteLine(type.IsGenericType);

 type = typeof(System.Nullable<DateTime>);
 Console.WriteLine(!type.ContainsGenericParameters);
 Console.WriteLine(type.IsGenericType);
 }
}

Output 17.3 shows the results of Listing 17.5.

Output 17.3.

True
True
True
True

Type.IsGenericType is a Boolean property that evaluates whether a type is generic.

Obtaining Type Parameters for a Generic Class or Method

You can obtain a list of generic arguments, or type parameters, from a generic class by calling the GetGenericArguments() method. The result is an array of System.Type instances that corresponds to the order in which they are declared as type parameters of the generic class. Listing 17.6 reflects into a generic type and obtains each type parameter. Output 17.4 shows the results.

Listing 17.6. Using Reflection with Generic Types

Click here to view code image

using System;
using System.Collections.Generic;

public partial class Program
{
 public static void Main()
 {

 Stack<int> s = new Stack<int>();

 Type t = s.GetType();

 foreach(Type type in t.GetGenericArguments())
 {
 System.Console.WriteLine(
 "Type parameter: " + type.FullName);
 }
 // ...
 }
}

Output 17.4.

Type parameter: System.Int32

Attributes

Before delving into details on how to program attributes, we should consider a use case that demonstrates their utility. In the CommandLineHandler example in Listing 17.3, you dynamically set a class’s properties based on the command-line option matching the property name. This approach is insufficient, however, when the command-line option is an invalid property name. /?, for example, cannot be supported. Furthermore, this mechanism doesn’t provide any way of identifying which options are required versus which are optional.

Instead of relying on an exact match between the option name and the property name, attributes provide a way of identifying additional metadata about the decorated construct—in this case, the option that the attribute decorates. With attributes, you can decorate a property as Required and provide a /? option alias. In other words, attributes are a means of associating additional data with a property (and other constructs).

Attributes appear within square brackets preceding the construct they decorate. For example, you can modify the CommandLineInfo class to include attributes, as shown in Listing 17.7.

Listing 17.7. Decorating a Property with an Attribute

Click here to view code image

class CommandLineInfo
{

 [CommandLineSwitchAlias("?")]

 public bool Help
 {
 get { return _Help; }
 set { _Help = value; }
 }
 private bool _Help;

 [CommandLineSwitchRequired]

 public string Out
 {
 get { return _Out; }
 set { _Out = value; }
 }
 private string _Out;

 public System.Diagnostics.ProcessPriorityClass Priority
 {
 get { return _Priority; }
 set { _Priority = value; }
 }
 private System.Diagnostics.ProcessPriorityClass _Priority =
 System.Diagnostics.ProcessPriorityClass.Normal;
}

In Listing 17.7, the Help and Out properties are decorated with attributes. The purpose of these attributes is to allow an alias of /? for /Help, and to indicate that /Out is a required parameter. The idea is that from within the CommandLineHandler.TryParse() method, you enable support for option aliases and, assuming the parsing was successful, you can check that all the required switches were specified.

There are two ways to combine attributes on the same construct. You can either separate the attributes with commas within the same square brackets, or place each attribute within its own square brackets, as shown in Listing 17.8.

Listing 17.8. Decorating a Property with Multiple Attributes

 [CommandLineSwitchRequired]
 [CommandLineSwitchAlias("FileName")]
 public string Out
 {
 get { return _Out; }
 set { _Out = value; }
 }

 [CommandLineSwitchRequired,
 CommandLineSwitchAlias("FileName")]
 public string Out
 {
 get { return _Out; }
 set { _Out = value; }
 }

In addition to decorating properties, developers can use attributes to decorate classes, interfaces, structs, enums, delegates, events, methods, constructors, fields, parameters, return values, assemblies, type parameters, and modules. For the majority of these, applying an attribute involves the same square bracket syntax shown in Listing 17.8. However, this syntax doesn’t work for return values, assemblies, and modules.

Assembly attributes are used to add additional metadata about the assembly. Visual Studio’s Project Wizard, for example, generates an AssemblyInfo.cs file that includes numerous attributes about the assembly. Listing 17.9 is an example of such a file.

Listing 17.9. Assembly Attributes within AssemblyInfo.cs

Click here to view code image

using System.Reflection;
using System.Runtime.CompilerServices;
using System.Runtime.InteropServices;

// General information about an assembly is controlled
// through the following set of attributes. Change these
// attribute values to modify the information
// associated with an assembly.
[assembly: AssemblyTitle("CompressionLibrary")]
[assembly: AssemblyDescription("")]
[assembly: AssemblyConfiguration("")]
[assembly: AssemblyCompany("Michaelis.net")]
[assembly: AssemblyProduct("CompressionLibrary")]
[assembly: AssemblyCopyright("Copyright© Michaelis.net 2006-2012")]
[assembly: AssemblyTrademark("")]
[assembly: AssemblyCulture("")]

// Setting ComVisible to false makes the types in this
// assembly not visible to COM components. If you need to
// access a type in this assembly from COM, set the ComVisible
// attribute to true on that type.
[assembly: ComVisible(false)]

// The following GUID is for the ID of the typelib if this project is
exposed to COM
[assembly: Guid("417a9609-24ae-4323-b1d6-cef0f87a42c3")]

// Version information for an assembly consists
// of the following four values:
//
// Major Version
// Minor Version
// Build Number
// Revision
//
// You can specify all the values or you can
// default the Revision and Build Numbers
// by using the '*' as shown below:
// [assembly: AssemblyVersion("1.0.*")]
[assembly: AssemblyVersion("1.0.0.0")]
[assembly: AssemblyFileVersion("1.0.0.0")]

The assembly attributes define things such as company, product, and assembly version number. Similar to assembly, identifying an attribute usage as module requires prefixing it with module:. The restriction on assembly and module attributes is that they appear after the using directive but before any namespace or class declarations. The attributes listed above are generated by the Visual Studio Project Wizard and should be included in all projects to mark the resultant binaries with information about the contents of the executable or DLL.

Return attributes, such as the one shown in Listing 17.10, appear before a method declaration but use the same type of syntax structure.

Listing 17.10. Specifying a Return Attribute

Click here to view code image

 [return: Description(
 "Returns true if the object is in a valid state.")]
 public bool IsValid()
 {
 // ...
 return true;
 }

In addition to assembly: and return:, C# allows for explicit target identifications of module:, class:, and method:, corresponding to attributes that decorate the module, class, and method. class: and method:, however, are optional, as demonstrated earlier.

One of the conveniences of using attributes is that the language takes into consideration the attribute naming convention, which is to place Attribute at the end of the name. However, in all the attribute uses in the preceding listings, no such suffix appears, despite the fact that each attribute used follows the naming convention. This is because although the full name (DescriptionAttribute, AssemblyVersionAttribute, and so on) is allowed when applying an attribute, C# makes the suffix optional. Generally, no such suffix appears when applying an attribute; it appears only when defining one or using the attribute inline (such as typeof(DescriptionAttribute)).

Guidelines

DO apply AssemblyVersionAttribute to assemblies with public types.

CONSIDER applying the AssemblyFileVersionAttribute and AssemblyCopyrightAttribute in order to provide additional information about the assembly.

DO apply the following information assembly attributes: System.Reflection.AssemblyTitleAttribute, System.Reflection.AssemblyCompanyAttribute, System.Reflection.AssemblyProductAttribute, System.Reflection.AssemblyDescriptionAttribute, System.Reflection.AssemblyFileVersionAttribute, and System.Reflection.AssemblyCopyrightAttribute.

Custom Attributes

Defining a custom attribute is relatively trivial. Attributes are objects; therefore, to define an attribute, you need to define a class. The characteristic that turns a general class into an attribute is that it derives from System.Attribute. Consequently, you can create a CommandLineSwitchRequiredAttribute class, as shown in Listing 17.11.

Listing 17.11. Defining a Custom Attribute

Click here to view code image

public class CommandLineSwitchRequiredAttribute : Attribute
{
}

With that simple definition, you now can use the attribute as demonstrated in Listing 17.7. So far, no code responds to the attribute; therefore, the Out property that includes the attribute will have no effect on command-line parsing.

Guidelines

DO name custom attribute classes with the suffix “Attribute”.

Looking for Attributes

In addition to providing properties for reflecting on a type’s members, Type includes methods to retrieve the Attributes decorating that type. Similarly, all the reflection types (PropertyInfo and MethodInfo, for example) include members for retrieving a list of attributes that decorate a type. Listing 17.12 defines a method to return a list of required switches that are missing from the command line.

Listing 17.12. Retrieving a Custom Attribute

Click here to view code image

using System;
using System.Collections.Specialized;
using System.Reflection;

public class CommandLineSwitchRequiredAttribute : Attribute
{
 public static string[] GetMissingRequiredOptions(
 object commandLine)
 {
 StringCollection missingOptions = new StringCollection();
 PropertyInfo[] properties =
 commandLine.GetType().GetProperties();

 foreach (PropertyInfo property in properties)
 {
 Attribute[] attributes =
 (Attribute[])property.GetCustomAttributes(
 typeof(CommandLineSwitchRequiredAttribute),
 false);
 if ((attributes.Length > 0) &&
 (property.GetValue(commandLine, null) == null))
 {
 missingOptions.Add(property.Name);
 }
 }
 return missingOptions.ToArray();
 }
}

The code that checks for an attribute is relatively simple. Given a PropertyInfo object (obtained via reflection), you call GetCustomAttributes() and specify the attribute sought, followed by whether to check any overloaded methods. (Alternatively, you can call the GetCustomAttributes() method without the attribute type to return all of the attributes.)

Although it is possible to place code for finding the CommandLineSwitchRequiredAttribute attribute within the CommandLineHandler’s code directly, it makes for better object encapsulation to place the code within the CommandLineSwitchRequiredAttribute class itself. This is frequently the pattern for custom attributes. What better location to place code for finding an attribute than in a static method on the attribute class?

Initializing an Attribute through a Constructor

The call to GetCustomAttributes() returns an array of objects that will successfully cast to an Attribute array. But since the attribute in this example didn’t have any instance members, the only metadata information that it provided in the returned attribute was whether it appeared. Attributes can also encapsulate data, however. Listing 17.13 defines a CommandLineAliasAttribute attribute. This is another custom attribute, and it provides alias command-line options. For example, you can provide command-line support for /Help or /? as an abbreviation. Similarly, /S could provide an alias to /Subfolders that indicates that the command should traverse all the subdirectories.

To support this, you need to provide a constructor on the attribute. Specifically, for the alias you need a constructor that takes a string argument. (Similarly, if you want to allow multiple aliases, you need to define an attribute that has a params string array for a parameter.)

Listing 17.13. Providing an Attribute Constructor

Click here to view code image

public class CommandLineSwitchAliasAttribute : Attribute
{

 public CommandLineSwitchAliasAttribute(string alias)
 {
 Alias = alias;
 }

 public string Alias
 {
 get { return _Alias; }
 private set { _Alias = value; }
 }
 private string _Alias;
}

class CommandLineInfo
{

 [CommandLineSwitchAlias("?")]

 public bool Help
 {
 get { return _Help; }
 set { _Help = value; }
 }
 private bool _Help;

 // ...
}

The only restriction on the constructor is that when applying an attribute to a construct, only literal values and types (such as typeof(int)) are allowed as arguments. This is to enable their serialization into the resultant CIL. Therefore, it is not possible to call a static method when applying an attribute. In addition, providing a constructor that takes arguments of type System.DateTime would be of little value, since there is no System.DateTime literal.

Given the constructor call, the objects returned from PropertyInfo.GetCustomAttributes() will be initialized with the specified constructor arguments, as demonstrated in Listing 17.14.

Listing 17.14. Retrieving a Specific Attribute and Checking Its Initialization

Click here to view code image

PropertyInfo property =
 typeof(CommandLineInfo).GetProperty("Help");
CommandLineSwitchAliasAttribute attribute =
 (CommandLineSwitchAliasAttribute)
 property.GetCustomAttributes(
 typeof(CommandLineSwitchAliasAttribute), false)[0];
if(attribute.Alias == "?")
{
 Console.WriteLine("Help(?)");
};

Furthermore, as Listing 17.15 and Listing 17.16 demonstrate, you can use similar code in a GetSwitches() method on CommandLineAliasAttribute that returns a dictionary collection of all the switches, including those from the property names, and associate each name with the corresponding attribute on the command-line object.

Listing 17.15. Retrieving Custom Attribute Instances

Click here to view code image

using System;
using System.Reflection;
using System.Collections.Generic;

public class CommandLineSwitchAliasAttribute : Attribute
{
 public CommandLineSwitchAliasAttribute(string alias)
 {
 Alias = alias;
 }

 public string Alias
 {
 get { return _Alias; }
 private set { _Alias = value; }
 }
 private string _Alias;

 public static Dictionary<string, PropertyInfo> GetSwitches(
 object commandLine)
 {
 PropertyInfo[] properties = null;
 Dictionary<string, PropertyInfo> options =
 new Dictionary<string, PropertyInfo>();

 properties = commandLine.GetType().GetProperties(
 BindingFlags.Public | BindingFlags.NonPublic |
 BindingFlags.Instance);
 foreach (PropertyInfo property in properties)
 {
 options.Add(property.Name.ToLower(), property);

 foreach (CommandLineSwitchAliasAttribute attribute in
 property.GetCustomAttributes(
 typeof(CommandLineSwitchAliasAttribute), false))

 {
 options.Add(attribute.Alias.ToLower(), property);
 }
 }
 return options;
 }
}

Listing 17.16. Updating CommandLineHandler.TryParse() to Handle Aliases

Click here to view code image

using System;
using System.Reflection;
using System.Collections.Generic;

public class CommandLineHandler
{
 // ...

 public static bool TryParse(
 string[] args, object commandLine,
 out string errorMessage)
 {
 bool success = false;
 errorMessage = null;

 Dictionary<string, PropertyInfo> options =
 CommandLineSwitchAliasAttribute.GetSwitches(
 commandLine);

 foreach (string arg in args)
 {
 PropertyInfo property;
 string option;
 if (arg[0] == '/' || arg[0] == '-')
 {
 string[] optionParts = arg.Split(
 new char[] { ':' }, 2);
 option = optionParts[0].Remove(0, 1).ToLower();

 if (options.TryGetValue(option, out property))

 {
 success = SetOption(
 commandLine, property,
 optionParts, ref errorMessage);
 }
 else
 {
 success = false;
 errorMessage = string.Format(
 "Option '{0}' is not supported.",
 option);
 }
 }
 }

 return success;
 }

 private static bool SetOption(
 object commandLine, PropertyInfo property,
 string[] optionParts, ref string errorMessage)
 {
 bool success;

 if (property.PropertyType == typeof(bool))
 {
 // Last parameters for handling indexers
 property.SetValue(
 commandLine, true, null);
 success = true;
 }
 else
 {

 if ((optionParts.Length < 2)
 || optionParts[1] == ""
 || optionParts[1] == ":")
 {
 // No setting was provided for the switch.
 success = false;
 errorMessage = string.Format(
 "You must specify the value for the {0} option.",
 property.Name);
 }
 else if (
 property.PropertyType == typeof(string))
 {
 property.SetValue(
 commandLine, optionParts[1], null);
 success = true;
 }
 else if (property.PropertyType.IsEnum)
 {
 success = TryParseEnumSwitch(
 commandLine, optionParts,
 property, ref errorMessage);
 }
 else
 {
 success = false;
 errorMessage = string.Format(
 "Data type '{0}' on {1} is not supported.",
 property.PropertyType.ToString(),
 commandLine.GetType().ToString());
 }
 }
 return success;
 }
}

Guidelines

DO provide get-only properties (with private setters) for required arguments.

DO provide constructor parameters to initialize properties corresponding to required arguments. Each parameter should have the same name (although with different casing) as the corresponding property.

AVOID providing constructor parameters to initialize properties corresponding to the optional arguments (and therefore, avoid overloading custom attribute constructors).

System.AttributeUsageAttribute

Most attributes are intended to decorate only particular constructs. For example, it makes no sense to allow CommandLineOptionAttribute to decorate a class or an assembly. The attribute in those contexts would be meaningless. To avoid inappropriate use of an attribute, custom attributes can be decorated with System.AttributeUsageAttribute. Listing 17.17 (for CommandLineOptionAttribute) demonstrates how to do this.

Listing 17.17. Restricting the Constructs an Attribute Can Decorate

Click here to view code image

[AttributeUsage(AttributeTargets.Property)]
public class CommandLineSwitchAliasAttribute : Attribute
{
 // ...
}

If the attribute is used inappropriately, as it is in Listing 17.18, it will cause a compile-time error, as Output 17.5 demonstrates.

Listing 17.18. AttributeUsageAttribute Restricting Where to Apply an Attribute

Click here to view code image

// ERROR: The attribute usage is restricted to properties
[CommandLineSwitchAlias("?")]
class CommandLineInfo
{
}

Output 17.5.

Click here to view code image

...Program+CommandLineInfo.cs(24,17): error CS0592: Attribute
'CommandLineSwitchAlias' is not valid on this declaration type. It is
valid on 'property, indexer' declarations only.

AttributeUsageAttribute’s constructor takes an AttributesTargets flag. This enum provides a list of all the possible targets that the runtime allows an attribute to decorate. For example, if you also allowed CommandLineSwitchAliasAttribute on a field, you would update the AttributeUsageAttribute class as shown in Listing 17.19.

Listing 17.19. Limiting an Attribute’s Usage with AttributeUsageAttribute

Click here to view code image

// Restrict the attribute to properties and methods

[AttributeUsage(
 AttributeTargets.Field | AttributeTargets.Property)]

public class CommandLineSwitchAliasAttribute : Attribute
{
 // ...
}

Guidelines

DO apply the AttributeUsageAttribute class to custom attributes.

Named Parameters

In addition to restricting what an attribute can decorate, AttributeUsageAttribute provides a mechanism for allowing duplicates of the same attribute on a single construct. The syntax appears in Listing 17.20.

Listing 17.20. Using a Named Parameter

Click here to view code image

[AttributeUsage(AttributeTargets.Property, AllowMultiple=true)]
public class CommandLineSwitchAliasAttribute : Attribute
{
 // ...
}

The syntax is different from the constructor initialization syntax discussed earlier. The AllowMultiple parameter is a named parameter, similar to the named parameter syntax used for optional method parameters (added in C# 4.0). Named parameters provide a mechanism for setting specific public properties and fields within the attribute constructor call, even though the constructor includes no corresponding parameters. The named attributes are optional designations, but they provide a means of setting additional instance data on the attribute without providing a constructor parameter for the purpose. In this case, AttributeUsageAttribute includes a public member called AllowMultiple. Therefore, you can set this member using a named parameter assignment when you use the attribute. Assigning named parameters must occur as the last portion of a constructor, following any explicitly declared constructor parameters.

Named parameters allow for assigning attribute data without providing constructors for every conceivable combination of which attribute properties are specified and which are not. Since many of an attribute’s properties may be optional, this is a useful construct in many cases.

Beginner Topic: FlagsAttribute

Chapter 8 introduced enums and included an Advanced Topic in regard to FlagsAttribute. This is a framework-defined attribute that targets enums that represent flag type values. Here is similar text as a Beginner Topic, starting with the sample code shown in Listing 17.21.

Listing 17.21. Using FlagsAttribute

Click here to view code image

// FileAttributes defined in System.IO.

[Flags] // Decorating an enum with FlagsAttribute.

public enum FileAttributes
{
 ReadOnly = 1<<0, // 000000000000001
 Hidden = 1<<1, // 000000000000010
 // ...
}

using System;
using System.Diagnostics;
using System.IO;

class Program
{
 public static void Main()
 {
 // ...

 string fileName = @"enumtest.txt";
 FileInfo file = new FileInfo(fileName);

 file.Attributes = FileAttributes.Hidden |
 FileAttributes.ReadOnly;

 Console.WriteLine("\"{0}\" outputs as \"{1}\"",
 file.Attributes.ToString().Replace(",", " |"),
 file.Attributes);

 FileAttributes attributes =
 (FileAttributes)Enum.Parse(typeof(FileAttributes),
 file.Attributes.ToString());

 Console.WriteLine(attributes);

 // ...
 }
}

Output 17.6 shows the results of Listing 17.21.

Output 17.6.

"ReadOnly | Hidden" outputs as "ReadOnly, Hidden"

The flag documents that the enumeration values can be combined. Furthermore, it changes the behavior of the ToString() and Parse() methods. For example, calling ToString() on an enumeration that is decorated with FlagsAttribute writes out the strings for each enumeration flag that is set. In Listing 17.21, file.Attributes.ToString() returns "ReadOnly, Hidden" rather than the 3 it would have returned without the FlagsAttribute flag. If two enumeration values are the same, the ToString() call would return the first one. As mentioned earlier, however, you should use this with caution because it is not localizable.

Parsing a value from a string to the enumeration also works, provided each enumeration value identifier is separated by a comma.

It is important to note that FlagsAttribute does not automatically assign the unique flag values or check that they have unique values. The values of each enumeration item still must be assigned explicitly.

Predefined Attributes

The AttributeUsageAttribute attribute has a special characteristic that you didn’t see in the custom attributes you have created thus far in this book. This attribute affects the behavior of the compiler, causing the compiler to sometimes report an error. Unlike the reflection code you wrote earlier for retrieving CommandLineRequiredAttribute and CommandLineSwitchAliasAttribute, AttributeUsageAttribute has no runtime code; instead, it has built-in compiler support.

AttributeUsageAttribute is a predefined attribute. Not only do such attributes provide additional metadata about the constructs they decorate, but also the runtime and compiler behave differently in order to facilitate these attributes’ functionality. Attributes such as AttributeUsageAttribute, FlagsAttribute, ObsoleteAttribute, and ConditionalAttribute are examples of predefined attributes. They include special behavior that only the CLI provider or compiler can offer because there are no extension points for additional noncustom attributes. In contrast, custom attributes are entirely passive. Listing 17.21 includes a couple of predefined attributes; Chapter 18 includes a few more.

System.ConditionalAttribute

Within a single assembly, the System.Diagnostics.ConditionalAttribute attribute behaves a little like the #if/#endif preprocessor identifier. However, instead of eliminating the CIL code from the assembly, System.Diagnostics.ConditionalAttribute will optionally cause the call to behave like a no-op, an instruction that does nothing. Listing 17.22 demonstrates the concept, and Output 17.7 shows the results.

Listing 17.22. Using ConditionalAttribute to Eliminate a Call

Click here to view code image

#define CONDITION_A

using System;
using System.Diagnostics;

public class Program
{
 public static void Main()
 {
 Console.WriteLine("Begin...");
 MethodA();
 MethodB();
 Console.WriteLine("End...");
 }

 [Conditional("CONDITION_A")]
 static void MethodA()
 {
 Console.WriteLine("MethodA() executing...");
 }

 [Conditional("CONDITION_B")]
 static void MethodB()
 {
 Console.WriteLine("MethodB() executing...");
 }
}

Output 17.7.

Begin...
MethodA() executing...
End...

This example defined CONDITION_A, so MethodA() executed normally. CONDITION_B, however, was not defined either through #define or by using the csc.exe /Define option. As a result, all calls to Program.MethodB() from within this assembly will do nothing.

Functionally, ConditionalAttribute is similar to placing an #if/#endif around the method invocation. The syntax is cleaner, however, because developers create the effect by adding the ConditionalAttribute attribute to the target method without making any changes to the caller itself.

Note that the C# compiler notices the attribute on a called method during compilation, and assuming the preprocessor identifier exists, it eliminates any calls to the method. Note also that ConditionalAttibute does not affect the compiled CIL code on the target method itself (besides the addition of the attribute metadata). Instead, it affects the call site during compilation by removing the calls. This further distinguishes ConditionalAttribute from #if/#endif when calling across assemblies. Because the decorated method is still compiled and included in the target assembly, the determination of whether to call a method is based not on the preprocessor identifier in the callee’s assembly, but rather on the caller’s assembly. In other words, if you create a second assembly that defines CONDITION_B, any calls to Program.MethodB() from the second assembly will execute. This is a useful characteristic in many tracing and testing scenarios. In fact, calls to System.Diagnostics.Trace and System.Diagnostics.Debug use this trait with ConditionalAttributes on TRACE and DEBUG preprocessor identifiers.

Because methods don’t execute whenever the preprocessor identifier is not defined, ConditionalAttribute may not be used on methods that include an out parameter or specify a return other than void. Doing so causes a compile-time error. This makes sense because possibly none of the code within the decorated method will execute, so it is unknown what to return to the caller. Similarly, properties cannot be decorated with ConditionalAttribute. The AttributeUsage (see the section titled System.AttributeUsageAttribute, earlier in this chapter) for ConditionalAttribute is AttributeTargets.Class (starting in .NET 2.0) and AttributeTargets.Method. This allows the attribute to be used on either a method or a class. However, the class usage is special because ConditionalAttribute is allowed only on System.Attribute-derived classes.

When ConditionalAttribute decorates a custom attribute, a feature started in .NET 2.0, the latter can be retrieved via reflection only if the conditional string is defined in the calling assembly. Without such a conditional string, reflection that looks for the custom attribute will fail to find it.

System.ObsoleteAttribute

As mentioned earlier, predefined attributes affect the compiler’s and/or the runtime’s behavior. ObsoleteAttribute provides another example of attributes affecting the compiler’s behavior. The purpose of ObsoleteAttribute is to help with the versioning of code, providing a means of indicating to callers that a particular member or type is no longer current. Listing 17.23 is an example of ObsoleteAttribute usage. As Output 17.8 shows, any callers that compile code that invokes a member marked with ObsoleteAttribute will cause a compile-time warning, optionally an error.

Listing 17.23. Using ObsoleteAttribute

class Program
{
 public static void Main()
 {
 ObsoleteMethod();
 }

 [Obsolete]
 public static void ObsoleteMethod()
 {
 }
}

Output 17.8.

Click here to view code image

c:\SampleCode\ObsoleteAttributeTest.cs(24,17): warning CS0612:
Program.ObsoleteMethod()' is obsolete

In this case, ObsoleteAttribute simply displays a warning. However, there are two additional constructors on the attribute. One of them, ObsoleteAttribute(string message), appends the additional message argument to the compiler’s obsolete message. The best practice for this message is to provide direction on what replaces the obsolete code. The second, however, is a bool error parameter that forces the warning to be recorded as an error instead.

ObsoleteAttribute allows third parties to notify developers of deprecated APIs. The warning (not an error) allows the original API to work until the developer is able to update the calling code.

Serialization-Related Attributes

Using predefined attributes, the framework supports the capacity to serialize objects onto a stream so that they can be deserialized back into objects at a later time. This provides a means of easily saving a document type object to disk before shutting down an application. Later on, the document may be deserialized so that the user can continue to work on it.

In spite of the fact that an object can be relatively complex and can include links to many other types of objects that also need to be serialized, the serialization framework is easy to use. In order for an object to be serializable, the only requirement is that it includes a System.SerializableAttribute. Given the attribute, a formatter class reflects over the serializable object and copies it into a stream (see Listing 17.24).

Listing 17.24. Saving a Document Using System.SerializableAttribute

Click here to view code image

using System;
using System.IO;
using System.Runtime.Serialization.Formatters.Binary;

class Program
{
 public static void Main()
 {
 Stream stream;
 Document documentBefore = new Document();
 documentBefore.Title =
 "A cacophony of ramblings from my potpourri of notes";
 Document documentAfter;

 using (stream = File.Open(
 documentBefore.Title + ".bin", FileMode.Create))
 {
 BinaryFormatter formatter =
 new BinaryFormatter();

 formatter.Serialize(stream, documentBefore);

 }

 using (stream = File.Open(
 documentBefore.Title + ".bin", FileMode.Open))
 {
 BinaryFormatter formatter =
 new BinaryFormatter();

 documentAfter = (Document)formatter.Deserialize(
 stream);

 }

 Console.WriteLine(documentAfter.Title);
 }
}

// Serializable classes use SerializableAttribute.

[Serializable]

class Document
{

 public string Title = null;
 public string Data = null;

 [NonSerialized]

 public long _WindowHandle = 0;

 class Image
 {
 }

 [NonSerialized]

 private Image Picture = new Image();
}

Output 17.9 shows the results of Listing 17.24.

Output 17.9.

A cacophony of ramblings from my potpourri of notes

Listing 17.24 serializes and deserializes a Document object. Serialization involves instantiating a formatter (this example uses System.Runtime.Serialization.Formatters.Binary.BinaryFormatter) and calling Serialization() with the appropriate stream object. Deserializing the object simply involves a call to the formatter’s Deserialize() method, specifying the stream that contains the serialized object as an argument. However, since the return from Deserialize() is of type object, you also need to cast it specifically to the type that was serialized.

Notice that serialization occurs for the entire object graph (all the items associated with the serialized object [Document] via a field). Therefore, all fields in the object graph also must be serializable.

System.NonSerializable

Fields that are not serializable should be decorated with the System.NonSerializable attribute. This tells the serialization framework to ignore them. The same attribute should appear on fields that should not be persisted for use case reasons. Passwords and Windows handles are good examples of fields that should not be serialized: Windows handles because they change each time a window is re-created, and passwords because data serialized into a stream is not encrypted and can easily be accessed. Consider the Notepad view of the serialized document in Figure 17.2.

[image: Image]

Figure 17.2. BinaryFormatter Does Not Encrypt Data

Listing 17.24 set the Title field, and the resultant *.BIN file includes the text in plain view.

Providing Custom Serialization

One way to add encryption is to provide custom serialization. Ignoring the complexities of encrypting and decrypting, this requires implementing the ISerializable interface in addition to using SerializableAttribute. The interface requires only the GetObjectData() method to be implemented. However, this is sufficient only for serialization. In order to also support deserialization, it is necessary to provide a constructor that takes parameters of type System.Runtime.Serialization.SerializationInfo and System.Runtime.Serialization.StreamingContext (see Listing 17.25).

Listing 17.25. Implementing System.Runtime.Serialization.ISerializable

Click here to view code image

using System;
using System.Runtime.Serialization;

[Serializable]
class EncryptableDocument :
 ISerializable
{
 public EncryptableDocument(){ }

 enum Field
 {
 Title,
 Data
 }
 public string Title;
 public string Data;

 public static string Encrypt(string data)
 {
 string encryptedData = data;
 // Key-based encryption ...
 return encryptedData;
 }

 public static string Decrypt(string encryptedData)
 {
 string data = encryptedData;
 // Key-based decryption...
 return data;
 }

#region ISerializable Members
 public void GetObjectData(
 SerializationInfo info, StreamingContext context)
 {
 info.AddValue(
 Field.Title.ToString(), Title);
 info.AddValue(
 Field.Data.ToString(), Encrypt(Data));
 }

 public EncryptableDocument(
 SerializationInfo info, StreamingContext context)
 {
 Title = info.GetString(
 Field.Title.ToString());
 Data = Decrypt(info.GetString(
 Field.Data.ToString()));
 }
#endregion
}

Essentially, the System.Runtime.Serialization.SerializationInfo object is a collection of name/value pairs. When serializing, the GetObject() implementation calls AddValue(). To reverse the process, you call one of the Get*() members. In this case, you encrypt and decrypt prior to serialization and deserialization, respectively.

Versioning the Serialization

One more serialization point deserves mention: versioning. Objects such as documents may be serialized using one version of an assembly and deserialized using a newer version, sometimes the reverse. Without paying attention, however, version incompatibilities can easily be introduced, sometimes unexpectedly. Consider the scenario shown in Table 17.1.

Table 17.1. Deserialization of a New Version Throws an Exception

[image: Image]

[image: Image]

Surprisingly, even though all you did was to add a new field, deserializing the original file throws a System.Runtime.Serialization.SerializationException. This is because the formatter looks for data corresponding to the new field within the stream. Failure to locate such data throws an exception.

To avoid this, the 2.0 framework and later includes a System.Runtime.Serialization.OptionalFieldAttribute. When you require backward compatibility, you must decorate serialized fields—even private ones—with OptionalFieldAttribute (unless, of course, a latter version begins to require it).

Unfortunately, System.Runtime.Serialization.OptionalFieldAttribute is not supported in the earlier framework version. Instead, it is necessary to implement ISerializable, just as you did for encryption, saving and retrieving only the fields that are available. Assuming the addition of the Author field, for example, the implementation shown in Listing 17.26 is required for backward-compatibility support prior to the 2.0 framework.

Listing 17.26. Backward Compatibility Prior to the 2.0 Framework

Click here to view code image

[Serializable]
public class VersionableDocument : ISerializable
{
 enum Field
 {
 Title,
 Author,
 Data,
 }

 public VersionableDocument()
 {
 }

 public string Title;
 public string Author;
 public string Data;

 #region ISerializable Members
 public void GetObjectData(
 SerializationInfo info, StreamingContext context)
 {
 info.AddValue(Field.Title.ToString(), Title);
 info.AddValue(Field.Author.ToString(), Author);
 info.AddValue(Field.Data.ToString(), Data);
 }
 public VersionableDocument(
 SerializationInfo info, StreamingContext context)
 {
 foreach(SerializationEntry entry in info)
 {
 switch ((Field)Enum.Parse(typeof(Field), entry.Name))
 {
 case Field.Title:
 Title = info.GetString(
 Field.Title.ToString());
 break;
 case Field.Author:
 Author = info.GetString(
 Field.Author.ToString());
 break;
 case Field.Data:
 Data = info.GetString(
 Field.Data.ToString());
 break;
 }
 }
 }
 #endregion
}

Serializing in GetObjectData() simply involves serializing all fields (assume here that version 1 does not need to open documents from version 2). On deserialization, however, you can’t simply call GetString("Author") because if no such entry exists, it will throw an exception. Instead, iterate through all the entries that are in info and retrieve them individually.

Advanced Topic: System.SerializableAttribute and the CIL

In many ways, the serialization attributes behave just like custom attributes. At runtime, the formatter class searches for these attributes, and if the attributes exist, the classes are formatted appropriately. One of the characteristics that make System.SerializableAttribute not just a custom attribute, however, is the fact that the CIL has a special header notation for serializable classes. Listing 17.27 shows the class header for the Person class in the CIL.

Listing 17.27. The CIL for SerializableAttribute

Click here to view code image

class auto ansi serializable nested private
 beforefieldinit Person
 extends [mscorlib]System.Object
{
} // end of class Person

In contrast, attributes (including most predefined attributes) generally appear within a class definition (see Listing 17.28).

Listing 17.28. The CIL for Attributes in General

Click here to view code image

.class private auto ansi beforefieldinit Person
 extends [mscorlib]System.Object
{

 .custom instance void CustomAttribute::.ctor() =
 (01 00 00 00)

} // end of class Person

In Listing 17.28, CustomAttribute is the full name of the decorating attribute.

SerializableAttribute translates to a set bit within the metadata tables. This makes SerializableAttribute a pseudoattribute: an attribute that sets bits or fields in the metadata tables.

Programming with Dynamic Objects

The introduction of dynamic objects in C# 4.0 simplifies a host of programming scenarios and enables several new ones previously not available. At its core, programming with dynamic objects enables developers to code operations using a dynamic dispatch mechanism that the runtime will resolve at execution time, rather than the compiler verifying and binding to it at compile time.

Why? Because there are many times when objects are inherently not statically typed. Examples include loading data from an XML/CSV file, a database table, the Internet Explorer DOM, or COM’s IDispatch interface, or calling code in a dynamic language such as an IronPython object. C# 4.0’s Dynamic object support provides a common solution for talking to runtime environments that don’t necessarily have a compile-time-defined structure. In the initial implementation of dynamic objects in C# 4.0, four binding methods are available:

1. Using reflection against an underlying CLR type

2. Invoking a custom IDynamicMetaObjectProvider which makes available a DynamicMetaObject

3. Calling through the IUnknown and IDispatch interfaces of COM

4. Calling type defined by dynamic languages such as IronPython

Of these, we are going to delve into the first two. The principles found there translate seamlessly to the remaining cases—COM interoperability and dynamic language interoperability.

Invoking Reflection Using dynamic

One of the key features of reflection is the ability to dynamically find and invoke a member on a particular type based on an execution time identification of the member name or some other quality, such as an attribute (see Listing 17.3). However, C# 4.0’s addition of dynamic objects provides a simpler way of invoking a member by reflection, assuming compile-time knowledge of the member signature. Again: The restriction is that at compile time we need to know the member name along with the signature (number of parameters and whether the specified parameters will be type-compatible with the signature). Listing 17.29 (with Output 17.10) provides an example.

Listing 17.29. Dynamic Programming Using “Reflection”

Click here to view code image

using System;

// ...
dynamic data =
 "Hello! My name is Inigo Montoya";
Console.WriteLine(data);
data = (double)data.Length;
data = data*3.5 + 28.6;
if(data == 2.4 + 112 + 26.2)
{
 Console.WriteLine(
 "{0} makes for a long triathlon.", data);
}
else
{
 data.NonExistentMethodCallStillCompiles();
}
// ...

Output 17.10.

Hello! My name is Inigo Montoya
140.6 makes for a long triathlon.

In this example, there is no explicit code for determining the object type, finding a particular MemberInfo instance, and then invoking it. Instead, data is declared as type dynamic and methods are called against it directly. At compile time, there is no check as to whether the members specified are available, or even a check regarding what type underlies the dynamic object. Hence, it is possible at compile time to make any call so long as the syntax is valid. At compile time, it is irrelevant whether there is a corresponding member or not.

However, type safety is not abandoned altogether. For standard CLR types (such as those used in Listing 17.29), the same type checker normally used at compile time for non-dynamic types is instead invoked at execution time for the dynamic type. Therefore, at execution time, if in fact no such member is available, the call will result in a Microsoft.CSharp.RuntimeBinder.RuntimeBinderException.

Note again that this is not nearly as flexible as the reflection earlier in the chapter, although the API is undoubtedly simpler. The key difference when using a dynamic object is that it is necessary to identify the signature at compile time, rather than determine things such as the member name at runtime (like we did when parsing the command-line arguments).

dynamic Principles and Behaviors

Listing 17.29 and the accompanying text reveal several characteristics of the dynamic data type.

• dynamic is a directive to the compiler to generate code.

dynamic involves an interception mechanism so that when a dynamic call is encountered by the runtime, it can compile the request to CIL and then invoke the newly compiled call. (See the Advanced Block titled dynamic Uncovered, later in this chapter, for more details.)

The principle at work when a type is assigned to dynamic is to conceptually “wrap” the original type so that no compile-time validation occurs. Additionally, when a member is invoked at runtime, the “wrapper” intercepts the call and dispatches it appropriately (or rejects it). Calling GetType() on the dynamic object reveals the type underlying the dynamic instance—it does not return dynamic as a type.

• Any type that converts to object will convert to dynamic.

In Listing 17.29, we successfully cast both a value type (double) and a reference type (string) to dynamic. In fact, all types can successfully be converted into a dynamic object. There is an implicit conversion from any reference type to dynamic. Similarly, there is an implicit conversion (a boxing conversion) from a value type to dynamic. In addition, there is an implicit conversion from dynamic to dynamic. This is perhaps obvious, but with dynamic this is more complicated than simply copying the “pointer” (address) from one location to the next.

• Successful conversion from dynamic to an alternate type depends on support in the underlying type.

Conversion from a dynamic object to a standard CLR type is an explicit cast (for example, (double)data.Length). Not surprisingly, if the target type is a value type, an unboxing conversion is required. If the underlying type supports the conversion to the target type, the conversion from dynamic will also succeed.

• The type underlying the dynamic type can change from one assignment to the next.

Unlike the implicitly typed variable (var) which cannot be reassigned to a different type, dynamic involves an interception mechanism for compilation before the underlying type’s code is executed. Therefore, it is possible to successfully swap out the underlying type instance to an entirely different type. This will result in another interception call site that will need to be compiled before invocation.

• Verification that the specified signature exists on the underlying type doesn’t occur until runtime—but it does occur.

As the method call to person.NonExistentMethodCallStillCompiles() demonstrates, the compiler makes almost no verification of operations on a dynamic type. This is left entirely to the work of the runtime when the code executes. And if the code never executes, even though surrounding code does (as in the case with person.NonExistentMethodCallStillCompiles()), no verification and binding to the member will ever occur.

• The result of any dynamic member invocation is of compile-time type dynamic.

A call to any member on a dynamic object will return a dynamic object. Therefore, calls such as data.ToString() will return a dynamic object rather than the underlying string type. However, at execution time, when GetType() is called on the dynamic object, an object representing the runtime type is returned.

• If the member specified does not exist at runtime, the runtime will throw a Microsoft.CSharp.RuntimeBinder.RuntimeBinderException exception.

If an attempt to invoke a member at execution time does occur, the runtime will verify that in fact the member call is valid (that the signatures are type-compatible in the case of reflection, for example). If the method signatures are not compatible, the runtime will throw a Microsoft.CSharp.RuntimeBinder.RuntimeBinderException.

• dynamic with reflection does not support extension methods.

Just like with reflection using System.Type, reflection using dynamic does not support extension methods. Invocation of extension methods is still available on the implementing type (System.Linq.Enumerable, for example), just not on the extended type directly.

• At its core, dynamic is a System.Object.

Given that any object will successfully convert to dynamic and dynamic may be explicitly converted to a different object type, dynamic behaves like System.Object. Like System.Object, it even returns null for its default value (default(dynamic)), indicating it is a reference type. The special dynamic behavior of dynamic that distinguishes it from a System.Object appears only at compile time.

Advanced Topic: dynamic Uncovered

ILDASM reveals that within the CIL, the dynamic type is actually a System.Object. In fact, without any invocations, declaration of the dynamic type is indistinguishable from System.Object. However, the difference is apparent when invoking a member. In order to invoke the member, the compiler declares a variable of type System.Runtime.CompilerServices.CallSite<T>. T varies based on the member signature, but something simple such as the invocation of ToString() would require instantiation of the following type: CallSite<Func<CallSite, object, string>>, and a method call with parameters of CallSite site, object dynamicTarget, and string result. site is the call site itself, dynamicTarget is the object on which the method call is invoked, and result is the underlying return value from the ToString() method call. Rather than instantiate CallSite<Func<CallSite _site, object dynamicTarget, string result>> directly, there is a Create() factory method for instantiating it. (Create() takes a parameter of type Microsoft.CSharp.RuntimeBinder.CSharpConvertBinder.) Given an instance of the CallSite<T>, the final step involves a call to CallSite<T>.Target() to invoke the actual member.

Under the covers at execution time, the framework uses reflection to look up members and to verify that the signatures match. Next, the runtime builds an expression tree that represents the dynamic expression as defined by the call site. Once the expression tree is compiled we have a CIL method body that is similar to what the compiler would have generated had the call not been dynamic. This CIL code is then cached in the call site and the invocation occurs using a delegate invoke. Since the CIL is now cached at the call site, the next invocation doesn’t require all the reflection and compilation overhead again.

Why Dynamic Binding?

In addition to reflection, we can define custom types to invoke dynamically. Consider using dynamic invocation to retrieve the values of an XML element, for example. Rather than using the strongly typed syntax of Listing 17.30, using dynamic invocation we could call person.FirstName and person.LastName.

Listing 17.30. Runtime Binding to XML Elements without dynamic

Click here to view code image

using System;
using System.Xml.Linq;

// ...
XElement person = XElement.Parse(
 @"<Person>
 <FirstName>Inigo</FirstName>
 <LastName>Montoya</LastName>
</Person>");

Console.WriteLine("{0} {1}",
 person.Descendants("FirstName").FirstOrDefault().Value,
 person.Descendants("LastName").FirstOrDefault().Value);
// ...

Although the code in Listing 17.30 is not overly complex, compare it to Listing 17.31—an alternative approach that uses a dynamically typed object.

Listing 17.31. Runtime Binding to XML Elements with dynamic

Click here to view code image

using System;

// ...
dynamic person = DynamicXml.Parse(
 @"<Person>
 <FirstName>Inigo</FirstName>
 <LastName>Montoya</LastName>
 </Person>");

 Console.WriteLine("{0} {1}",
 person.FirstName, person.LastName);
// ...

The advantages are clear, but does that mean dynamic programming is preferable to static compilation?

Static Compilation versus Dynamic Programming

In Listing 17.31, we have the same functionality as in Listing 17.30, but there is one very important difference. Listing 17.30 is entirely statically typed. This means that at compile time, all types and their member signatures are verified. Method names are required to match, and all parameters are checked for type compatibility. This is a key feature of C# and something we have highlighted throughout the book.

In contrast, Listing 17.31 has virtually no statically typed code; the variable person is instead dynamic. As a result, there is no compile-time verification that person has a FirstName or LastName property, or any other members, for that matter. Furthermore, when coding within an IDE, there is no IntelliSense identifying any members on person.

The loss of typing would seem to result in a significant decrease in functionality. Why is such a possibility even available in C#—a functionality that was added in C# 4.0, in fact? Let’s examine Listing 17.31 again. Notice the call to retrieve the "FirstName" element: Element.Descendants("LastName").FirstOrDefault().Value. The listing uses a string ("LastName") to identify the element name. However, there is no compile-time verification that the string is correct. If the casing was inconsistent with the element name or if there was a space, the compile would still succeed, even though a NullReferenceException would occur with the call to the Value property. Furthermore, the compiler makes no verification that the "FirstName" element even exists, and if it doesn’t, we would also get the NullReferenceException. In other words, in spite of all the type-safety advantages, type safety doesn’t offer much advantage to accessing the dynamic data stored within the XML element.

Listing 17.31 is no better than Listing 17.30 when it comes to compile-time verification of the element retrieval. If there is a case mismatch or if the FirstName element didn’t exist, there would still be an exception.1 However, compare the call to access the first name in Listing 17.31 (person.FirstName) with the call in Listing 17.30. The call in the latter listing is undoubtedly significantly simpler. In summary, there are situations where type safety doesn’t—and likely can’t—make certain checks. And in such cases, being able to make a dynamic call that is only runtime-verified rather than also compile-time-verified is significantly more readable and succinct. Obviously, if compile-time verification is possible, statically typed programming is preferred because readable and succinct APIs can accompany it. However, in the cases where it isn’t effective, C# 4.0 enables simpler code rather than the purity of type safety.

Implementing a Custom Dynamic Object

Listing 17.31 included a method call to DynamicXml.Parse(...) that was essentially a factory method call for DynamicXml—a custom type rather than one built into the CLR Framework. However, DynamicXml doesn’t implement a FirstName or LastName property. To do so would break the dynamic support for retrieving data from the XML file at execution time, rather than compile-time-based implementation of the XML elements. In other words, DynamicXml does not use reflection for accessing its members, but rather it dynamically binds to the values based on the XML content.

The key to defining a custom dynamic type is implementation of the System.Dynamic.IDynamicMetaObjectProvider interface. Rather than implementing the interface from scratch, however, the preferred approach is to derive the custom dynamic type from System.Dynamic.DynamicObject. This provides default implementation for a host of members and allows you to override the ones that don’t fit. Listing 17.32 shows the full implementation.

Listing 17.32. Implementing a Custom Dynamic Object

Click here to view code image

using System;
using System.Dynamic;
using System.Xml.Linq;

public class DynamicXml : DynamicObject
{
 private XElement Element { get; set; }

 public DynamicXml(System.Xml.Linq.XElement element)
 {
 Element = element;
 }

 public static DynamicXml Parse(string text)
 {
 return new DynamicXml(XElement.Parse(text));
 }

 public override bool TryGetMember(
 GetMemberBinder binder, out object result)
 {
 bool success = false;
 result = null;
 XElement firstDescendant =
 Element.Descendants(binder.Name).FirstOrDefault();
 if (firstDescendant != null)
 {
 if (firstDescendant.Descendants().Count() > 0)
 {
 result = new DynamicXml(firstDescendant);
 }
 else
 {
 result = firstDescendant.Value;
 }
 success = true;
 }
 return success;
 }

 public override bool TrySetMember(
 SetMemberBinder binder, object value)
 {
 bool success = false;
 XElement firstDescendant =
 Element.Descendants(binder.Name).FirstOrDefault();
 if (firstDescendant != null)
 {
 if (value.GetType() == typeof(XElement))
 {
 firstDescendant.ReplaceWith(value);
 }
 else
 {
 firstDescendant.Value = value.ToString();
 }
 success = true;
 }
 return success;
 }
}

The key dynamic implementation methods for this use case are TryGetMember() and TrySetMember() (assuming you also want to assign the elements as well). Only these two method implementations are necessary to support the invocation of the dynamic getter and setter properties. Furthermore, the implementations are straightforward. First, they examine the contained XElement, looking for an element with the same name as the binder.Name—the name of the member invoked. If a corresponding XML element exists, the value is retrieved (or set). The return value is set to true if the element exists and false if it doesn’t. Automatically, a return value of false will cause the runtime to throw a Microsoft.CSharp.RuntimeBinder.RuntimeBinderException at the call site of the dynamic member invocation.

System.Dynamic.DynamicObject supports additional virtual methods if additional dynamic invocations are required. Listing 17.33 shows the list of all the overridable members.

Listing 17.33. Overridable Members on System.Dynamic.DynamicObject

Click here to view code image

using System.Dynamic;

public class DynamicObject : IDynamicMetaObjectProvider
{
 protected DynamicObject();

 public virtual IEnumerable<string> GetDynamicMemberNames();
 public virtual DynamicMetaObject GetMetaObject(
 Expression parameter);
 public virtual bool TryBinaryOperation(
 BinaryOperationBinder binder, object arg,
 out object result);
 public virtual bool TryConvert(
 ConvertBinder binder, out object result);
 public virtual bool TryCreateInstance(
 CreateInstanceBinder binder, object[] args,
 out object result);
 public virtual bool TryDeleteIndex(
 DeleteIndexBinder binder, object[] indexes);
 public virtual bool TryDeleteMember(
 DeleteMemberBinder binder);
 public virtual bool TryGetIndex(
 GetIndexBinder binder, object[] indexes,
 out object result);
 public virtual bool TryGetMember(
 GetMemberBinder binder, out object result);
 public virtual bool TryInvoke(
 InvokeBinder binder, object[] args, out object result);
 public virtual bool TryInvokeMember(
 InvokeMemberBinder binder, object[] args,
 out object result);
 public virtual bool TrySetIndex(
 SetIndexBinder binder, object[] indexes, object value);
 public virtual bool TrySetMember(
 SetMemberBinder binder, object value);
 public virtual bool TryUnaryOperation(
 UnaryOperationBinder binder, out object result);
}

As Listing 17.33 shows, there are member implementations for everything—from casts and various operations, through to index invocations. In addition, there is a method for retrieving all the possible member names: GetDynamicMemberNames().

Summary

This chapter discussed how to use reflection to read the metadata that is compiled into the CIL. Using reflection, you saw how to provide a late binding in which the code to call is defined at execution time rather than at compile time. Although reflection is entirely feasible for deploying a dynamic system, it is considerably slower than statically linked (compile-time), defined code. This tends to make it more prevalent and useful in development tools.

Reflection also enables the retrieval of additional metadata decorating various constructs in the form of attributes. Typically, custom attributes are sought using reflection. It is possible to define your own custom attributes that insert additional metadata of your own choosing into the CIL. At runtime, it is then possible to retrieve this metadata and use it within the programming logic.

Many view attributes as a precursor to a concept known as aspect-oriented programming, in which you add functionality through constructs such as attributes instead of manually implementing the functionality wherever it is needed. It will take some time before you see true aspects within C# (if ever); however, attributes provide a clear steppingstone in that direction, without forcing a significant risk to the stability of the language.

Finally, the chapter included a C# 4.0 introduced feature—dynamic programming using the new type dynamic. This section included a discussion of why static binding, although preferred when the API is strongly typed, has limitations when working with dynamic data.

The next chapter looks at multithreading, where attributes are used for synchronization.

18. Multithreading

Two significant trends of the past decade have had an enormous effect on the field of software development. First, the continued decrease in the cost of performing computations is no longer driven by increases in clock speed and transistor density, as illustrated by Figure 18.1. Rather, the cost of computation is now falling because it is economical to make hardware that has multiple CPUs.

[image: Image]

[image: Image]

Figure 18.1. Clock Speeds over Time (Graph compiled by Herb Sutter. Used with permission. Original at www.gotw.ca.)

Second, computations now routinely involve enormous latency. Latency is, simply put, the amount of time required to obtain a desired result. There are two principal causes of latency. Processor-bound latency occurs when the computational task is complex; if a computation requires performing 12 billion arithmetic operations and the total processing power available is only 6 billion operations per second, at least two seconds of processor-bound latency will be incurred between asking for the result and obtaining it. I/O-bound latency, by contrast, is latency incurred by the need to obtain data from an external source such as a disk drive, Web server, and so on. Any computation that requires fetching data from a Web server physically located far from the client machine will incur latency equivalent to millions of processor cycles.

These two trends together create an enormous challenge for modern software developers. Given that machines have more computing power than ever, how are we to make effective use of that power to deliver results to the user quickly, and without compromising on the user experience? How do we avoid creating frustrating user interfaces that freeze up when a high-latency operation is triggered? Moreover, how do we go about splitting CPU-bound work among multiple processors to decrease the time required for the computation?

The standard technique for engineering software that keeps the user interface responsive and CPU utilization high is to write multithreaded programs that do multiple computations “in parallel.” Unfortunately, multithreading logic is notoriously difficult to get right; we’ll spend the next two chapters exploring what makes multithreading difficult, and how to use higher-level abstractions and new language features to ease that burden.

The higher-level abstractions we’ll discuss are, first, the two principal components of the Parallel Extensions library that was released with .NET 4.01—the Task Parallel Library (TPL) and Parallel LINQ (PLINQ)—and second, the Task-based Asynchronous Pattern (TAP) and its accompanying language support in C# 5.0. Though we strongly encourage you to use these higher-level abstractions, we will also cover some of the lower-level threading APIs from previous versions of the .NET runtime in this chapter, and in Appendixes C and D. In addition, the multithreading chapters from preceding editions of this book (Essential C# 3.0 and Essential C# 4.0) are available for download at http://IntelliTect.com/EssentialCSharp. This is so that if you want to fully understand the resources from multithreaded programming without the later features, you still have access to that material.

We’ll start this chapter with a few beginner topics in case you are new to multithreading. Then we’ll briefly discuss “traditional” thread manipulation without using the Parallel Extensions libraries to ensure that you have a basic understanding of thread manipulation; the following chapter goes into more details on that topic. We’ll then spend most of this chapter covering the TPL, TAP, and PLINQ, in that order.

Multithreading Basics

Beginner Topic: Multithreading Jargon

There is a lot of confusing jargon associated with multithreading, so let’s define a few terms.

A CPU (central processing unit) or core2 is the unit of hardware that actually executes a given program. Every machine has at least one CPU, though today multiple CPU machines are common. Many modern CPUs support simultaneous multithreading (which Intel trademarks as Hyper-Threading), a mode where a single CPU can appear as multiple “virtual” CPUs.

A process is a currently executing instance of a given program; the fundamental purpose of the operating system is to manage processes. Each process contains one or more threads. A process is represented by an instance of the Process class in the System.Diagnostics namespace.

C# programming at the level of statements and expressions is fundamentally about describing flow of control, and thus far in this book we’ve made the implicit assumption that a given program only has a single “point of control.” You can imagine the point of control as being a cursor that enters the text of your program at the Main method when you start it up, and then moves around the program as the various conditions, loops, method calls, and so on, are executed. A thread is this point of control. A thread is represented by an instance of the System.Threading.Thread class and the API for manipulating a Thread is in the same System.Threading namespace.

A single-threaded program is one in which there is only one thread in the process. A multithreaded program has two or more threads in the process.

A piece of code is said to be thread safe if it behaves correctly when used in a multithreaded program. The threading model of a piece of code is the set of requirements that the code places upon its caller in exchange for guaranteeing thread safety. (For example, the threading model of many classes is “static methods may be called from any thread but instance methods may only be called from the thread that allocated the instance.”)

A task is a unit of potentially high-latency work that produces a resultant value or desired side effect. The distinction between tasks and threads is as follows: A task represents a job that needs to be performed, whereas a thread represents the worker that does the job. A task is useful only for its side effects and is represented by an instance of the Task class. A task used to produce a value of a given type is represented by the Task<T> class, which derives from the nongeneric Task type. These can be found in the System.Threading.Tasks namespace.

A thread pool is a collection of threads, and logic for determining how to assign work to those threads. When your program has a task to perform, it can delegate a worker thread from the pool, assign the thread to perform the task, and then de-allocate it when the work completes, thereby making it available the next time additional work is requested.

Beginner Topic: The Why and How of Multithreading

There are two principal scenarios for multithreading: enabling multitasking and dealing with latency.

Users think nothing of running dozens of processes at the same time. They might have presentations and spreadsheets open for editing while at the same time they are browsing documents on the Internet, listening to music, receiving instant messages and email arrival notifications, and watching the little clock in the corner. Each of these processes has to continue to do its job even though it is not the only task the machine has to attend to. This kind of multitasking is usually implemented at the process level, but there are situations in which you want to do this sort of multitasking within a single process.

For the purposes of this book, however, we will mostly be considering multithreading as a technique for dealing with latency. For example, in order to import a large file while simultaneously allowing a user to click Cancel, a developer creates an additional thread to perform the import. By performing the import on a different thread, the user can request cancellation instead of freezing the user interface until the import completes.

If there are enough cores that each thread can be assigned a core, each thread essentially gets its own little machine. However, more often than not there are more threads than cores as even the relatively common multicore machines of today still have only a handful of cores while each process could quite possibly run dozens of threads.

To overcome the discrepancy of numerous threads to only a handful of cores, an operating system simulates multiple threads running concurrently by time slicing. The operating system switches execution from one thread to the next so quickly that it appears the threads are executing simultaneously. The period of time that the processor executes a particular thread before switching to another is the time slice or quantum. The act of changing which thread is executing in a given core is called a context switch.

The effect is similar to that of a fiber optic telephone line in which the fiber optic line represents the processor and each conversation represents a thread. A (single-mode) fiber optic telephone line can send only one signal at a time, but many people can hold simultaneous conversations over the line. The fiber optic channel is fast enough to switch between conversations so quickly that each conversation appears uninterrupted. Similarly, each thread of a multithreaded process appears to run continuously with other threads.

If two operations are running “in parallel,” via either true multicore parallelism or simulated parallelism using time slicing, they are said to be concurrent. To implement such concurrency you invoke it asynchronously, such that both the execution and completion of the invoked operation are separate from the control flow that invoked it. Concurrency, therefore, occurs when work dispatched asynchronously executes in parallel with the current control flow. Parallel programming is the act of taking a single problem and splitting it into pieces, whereby you asynchronously initiate the process of each piece such that the pieces can all be processed concurrently.

Beginner Topic: Performance Considerations

A thread that is servicing an I/O bound operation can essentially be ignored by the operating system until the result is available from the I/O subsystem; switching away from an I/O bound thread to a processor-bound thread results in more efficient processor utilization because the CPU is not idle while waiting for the I/O operation to complete.

However, context switching is not free; the current internal state of the CPU must be saved to memory, and the state associated with the new thread must be loaded. If there are too many threads, the switching overhead can begin to noticeably affect performance. Adding more threads will likely decrease performance further, to the point where the processor spends more time switching from one thread to another than it does accomplishing the work of each thread.

Even if we ignore the cost of context switching, time slicing itself can have a huge impact on performance. Suppose, for example, that you have two processor-bound high-latency tasks, each working out the average of two lists of 1 billion numbers each. Suppose the processor can perform 1 billion operations per second. If the two tasks are each associated with a thread, and the two threads each have their own core, obviously we can get both results in one second.

If, however, we have a single processor that the two threads share, time slicing will perform a few hundred thousand operations on one thread, then switch to the other thread, then switch back, and so on. Each task will consume a total of one second of processor time, and the results of both will therefore be available after two seconds, leading to an average completion time of two seconds. (Again, we are ignoring the cost of context switching.)

If we assigned those two tasks to a single thread that performed the first task and did not even start the second until after the first was completed, the result of the first task would be obtained in one second and the result of the subsequent task would be obtained one second after that, leading to an average time of 1.5 seconds (a task completes in either 1 or 2 seconds and, therefore, on average completes in 1.5 seconds).

Guidelines

DO NOT fall into the common error of believing that more threads always makes code faster.

DO carefully measure performance when attempting to speed up processor-bound problems through multithreading.

Beginner Topic: Threading Problems

We’ve said several times that writing multithreaded programs is complex and difficult, but we have not said why. In a nutshell, the problem is that many of our reasonable assumptions that are true of single-threaded programs are violated in multithreaded programs. The issues include a lack of atomicity, race conditions, complex memory models, and deadlocks.

Most Operations Are Not Atomic

An atomic operation is one that always is observed to be either not started or already completed. Its state is never externally visible as “in progress.” Consider, for example, this code fragment:

Click here to view code image

if (bankAccounts.Checking.Balance >= 1000.00m)
{
 bankAccounts.Checking.Balance -= 1000.00m;
 bankAccounts.Savings.Balance += 1000.00m;
}

This operation—checking for available funds, and then conditionally debiting one account and crediting another—needs to be atomic. In other words, in order for it to be correctly executed, we must ensure that there is never a moment when the operation can be observed to be partially completed. Imagine, for example, that two threads are running in this code concurrently. It is possible that both threads verify that there are sufficient funds in the account, and then both threads do a transfer of funds, even if there are only sufficient funds in the account to do the transfer once. And, in fact, the situation is considerably worse as there are no operations in this code fragment that are atomic! Even operations like compound addition/subtraction or reading and writing a property of decimal type are nonatomic operations in C#. As such, they can all be observed to be “partially complete” in multithreaded scenarios—only partially incremented or decremented. The observation of inconsistent state due to partially completed nonatomic operations is a special case of a more general problem, called a race condition.

Uncertainty Caused by Race Conditions

As we discussed above, concurrency is often simulated by time slicing. In the absence of special control flow structures that we will discuss in the next chapter in detail, the operating system can switch contexts between any two threads at any time of its choosing. This means that when two threads are accessing the same object, which thread “wins the race” and gets to run first is unpredictable. If there are two threads running in the code fragment above, for example, it is possible that one thread wins the race and gets all the way to the end before the second thread gets a chance to run. It is also possible that the context switch happens after the first thread does the balance check, and the second thread then wins the race to get all the way to the end first.

The behavior of code that contains race conditions depends on the timing of context switches. This dependency introduces uncertainty concerning program execution. The order in which one instruction will execute relative to an instruction in a different thread is unknown. The worst of it is that often code containing race conditions will behave correctly 99.9 percent of the time, and then one time in a thousand a different thread wins the race due to an accident of timing. This unpredictability is what makes multithreaded programming so difficult.

Because such race conditions are difficult to replicate in the laboratory, much of the quality assurance of multithreaded code depends on long-running stress tests, specially designed code analysis tools, and a significant investment in code analysis and code review by experts.

The following chapter is about techniques for dealing with race conditions.

Memory Models Are Complex

The existence of race conditions, where two points of control can “race” through a piece of code at unpredictable and inconsistent speeds, is bad enough, but it gets worse. Consider two threads that are running on two different processors, but are accessing the same fields of some object. Modern processors do not actually access main memory every time you use a variable. Rather, they make a local copy in special “cache” memory on the processor; these caches are then periodically synchronized with main memory. This means that two threads that read and write the same location on two different processors can in fact be failing to observe each other’s updates to that memory, or observing inconsistent results. Essentially what we have here is a race condition that depends upon when processors choose to synchronize their caches.

Locking Leads to Deadlocks

Clearly there must exist mechanisms to make nonatomic operations into atomic operations, to instruct the operating system to schedule threads so as to avoid races, and to ensure that processor caches are synchronized when necessary. The primary mechanism used to solve all these problems in C# programs is the lock statement. This statement allows the developer to identify a section of code as “critical” code that only one thread may be in at one time; if multiple threads try to enter the critical section, the operating system will suspend all but one. The operating system also ensures that processor caches are synchronized properly upon encountering a lock.

However, locks introduce problems of their own. Most notably, if the order of lock acquisition between threads varies, a deadlock could occur such that threads freeze, each waiting for the other to release its lock.

For example:

[image: Image]

At this point, each thread is waiting on the other thread before proceeding, so each thread is blocked, leading to an overall deadlock in the execution of that code.

We discuss various locking techniques in detail in Chapter 19.

Guidelines

DO NOT make an unwarranted assumption that any operation that is atomic in regular code will be atomic in multithreaded code.

DO NOT assume that all threads will observe all side effects of operations on shared memory in a consistent order.

DO ensure that code that concurrently holds multiple locks always acquires them in the same order.

AVOID all “race conditions,” that is, conditions where program behavior depends on how the operating system chooses to schedule threads.

Working with System.Threading

The Parallel Extensions library is extraordinarily useful because it allows you to manipulate a higher-level abstraction, the task, rather than working directly with threads. However, you might need to work with code written before the TPL and PLINQ were available (prior to .NET 4.0), or you might have a programming problem not directly addressed by them. In this section, we briefly cover some of the basic underlying APIs for directly manipulating threads.

Asynchronous Operations with System.Threading.Thread

The operating system implements threads and provides various unmanaged APIs to create and manage those threads. The CLR wraps these unmanaged threads and exposes them in managed code via the System.Threading.Thread class, an instance of which represents a “point of control” in the program. As mentioned above, you can think of a thread as a “worker” that independently follows the instructions that make up your program.

Listing 18.1 provides an example. The independent point of control is represented by an instance of Thread that runs concurrently. A thread needs to know what code to run when it starts up, so its constructor takes a delegate that refers to the code that is to be executed. In this case we convert a method group, DoWork, to the appropriate delegate type, ThreadStart. We then start the thread running by calling Start(). While the new thread is running, the main thread attempts to print 10,000 hyphens to the console. We instruct the main thread to then wait for the worker thread to complete its work by calling Join(). The result is shown in Output 18.1.

Listing 18.1. Starting a Method Using System.Threading.Thread

Click here to view code image

using System;

using System.Threading;

public class RunningASeparateThread
{
 public const int Repetitions = 1000;

 public static void Main()
 {

 ThreadStart threadStart = DoWork;
 Thread thread = new Thread(threadStart);
 thread.Start();

 for(int count = 0; count < Repetitions; count++)
 {
 Console.Write('-');
 }

 thread.Join();

 }

 public static void DoWork()
 {
 for(int count = 0; count < Repetitions; count++)
 {
 Console.Write('+');
 }
 }
}

Output 18.1.

Click here to view code image

++++++++++++++++++++++++++++++++--
--
--
--
--
--++++++
++
++
++
++
++
+++++++++++++++++++++++++++++---
--
--
--
--
---+++++++++++++++++
++
++
++
++
++
++++++++++++++++++--
--
---+++++++++++++++++++++++++
++
+++

As you can see, the threads appear to be taking turns executing, each printing out a few hundred characters before the context switches. The two loops are running “in parallel,” rather than the first one running to completion before the second one begins, as it would if the delegate had been executed synchronously.

In order for code to run under the context of a different thread, you need a delegate of type ThreadStart or ParameterizedThreadStart to identify the code to execute. (The latter allows for a single parameter of type object; both are found in the System.Threading namespace.) Given a Thread instance created using the thread-start delegate constructor, you can start the thread executing with a call to thread.Start(). (Listing 18.1 creates a variable of type ThreadStart explicitly to show the delegate type in the source code. The method group DoWork could have been passed directly to the thread constructor.) The call to Thread.Start() tells the operating system to begin concurrent execution of the new thread; control on the main thread immediately returns from the call and executes the for loop in the Main() method. The threads are now independent and neither waits for the other until the call to Join().

Thread Management

Threads include a number of methods and properties for managing their execution. Here are some of the basic ones.

• As we saw in Listing 18.1, you can cause one thread to wait for another with Join(). This tells the operating system to suspend execution of the current thread until the other thread is terminated. The Join() method is overloaded to take either an int or a TimeSpan to support a maximum time to wait for thread completion before continuing execution.

• By default, a new thread is a “foreground” thread; the operating system will terminate a process when all its foreground threads are complete. You can mark a thread as a “background” thread by setting the IsBackground property to true. The operating system will then allow the process to be terminated even if the background thread is still running. However, it is still a good idea to ensure that all threads are not aborted and instead to exit cleanly before the process exits; see the section on thread aborting below for more details.

• Every thread has an associated priority, which you can change by setting the Priority property to a new ThreadPriority enum value. The possible values are Lowest, BelowNormal, Normal, AboveNormal, and Highest. The operating system prefers to schedule time slices to higher-priority threads. Be careful; by setting priorities incorrectly you can end up with “starvation” situations where one high-priority thread prevents many low-priority threads from ever running.

• If you want to simply know whether a thread is still “alive” or has finished all of its work, you can use the Boolean IsAlive property. A more informative picture of a thread’s state is accessible through the ThreadState property. The ThreadState enum values are Aborted, AbortRequested, Background, Running, Stopped, StopRequested, Suspended, SuspendRequested, Unstarted, and WaitSleepJoin. These are flags; some of these values can be combined.

There are two commonly used, and commonly abused, methods for controlling threads that deserve to be called out in their own sections: Sleep() and Abort().

Do Not Put Threads to Sleep in Production Code

The static Thread.Sleep() method puts the current thread to sleep, essentially telling the operating system to not schedule any time slices to this thread until the given amount of time has passed. A single parameter, either a number of milliseconds or a TimeSpan, specifies how long the operating system will wait before continuing execution. While it is waiting, the operating system will of course schedule time slices for any other threads that might be waiting their turn to execute. This might sound like a sensible thing to do, but it is a “bad code smell” that indicates that the design of the program could probably be better thought through.

Threads are often put to sleep to try to synchronize a thread with some event in time. However, the operating system does not guarantee any level of precision in its timing. That is, if you say “put me to sleep for 123 milliseconds,” the operating system will put the thread to sleep for at least 123 milliseconds, and possibly much longer. The actual amount of time between the thread going to sleep and it waking up again is not deterministic and can be arbitrarily long. Do not attempt to use Thread.Sleep() as a high-precision timer, because it is not.

Worse, Thread.Sleep() is often used as a “poor man’s synchronization system.” That is, if you have some unit of asynchronous work, and the current thread cannot proceed until that work is done, you might be tempted to put the thread to sleep for much longer than you think the asynchronous work will take, in the hopes that it will be finished when the current thread wakes up. This is a bad idea; asynchronous work by its nature can take longer than you think. Use proper thread synchronization mechanisms, described in the next chapter, to synchronize threads. (We’ll give an example of this sort of abuse in Listing 18.2, below.)

Putting a thread to sleep is also a bad programming practice because it means that the sleeping thread is, obviously, unresponsive to attempts to run code on it. If you put the main thread of a Windows application to sleep, that thread will no longer be processing messages from the user interface, and will therefore appear to be hung.

More generally, putting a thread to sleep is a bad programming practice because the whole point of allocating an expensive resource like a thread is to get work out of that resource. You wouldn’t pay an employee to sleep, so do not pay the price of allocating an expensive thread only to put it to sleep for millions or billions of processor cycles.

That said, there are some valid uses of Thread.Sleep(). First, putting a thread to sleep with a time delay of zero tells the operating system “the current thread is politely giving up the rest of its quantum to another thread if there is one that can use it.” The polite thread will then be scheduled normally, without any further delay. Second, Thread.Sleep() is commonly used in test code to simulate a thread that is working on some high-latency operation without actually having to burn a processor doing some pointless arithmetic. Other uses in production code should be reviewed carefully to ensure that there is not a better way to obtain the desired effect.

In task-based asynchronous programming in C# 5 you can use the await operator on the result of the Task.Delay() method to introduce an asynchronous delay without blocking the current thread. See the Timers section in the next chapter for further detail.

Guidelines

AVOID calling Thread.Sleep() in production code.

Do Not Abort Threads in Production Code

The Thread object has an Abort() method which, when executed, attempts to destroy the thread. It does so by causing the runtime to throw a ThreadAbortException in the thread; this exception can be caught, but even if it is caught and ignored, it is automatically rethrown to try to ensure that the thread is in fact destroyed. There are many reasons why it is a very bad idea to attempt to abort a thread. Here are some of them.

• The method only promises to try to abort the thread; there is no guarantee that it will succeed. For example, the runtime will not attempt to cause a ThreadAbortException if the point of control of the thread is currently inside a finally block (because critical cleanup code could be running right now and should not be interrupted) or is in unmanaged code (because doing so could corrupt the CLR itself). Rather, the CLR defers throwing the exception until control leaves the finally block or returns to managed code. But there is no guarantee that this ever happens. The thread being aborted might contain an infinite loop inside a finally block. (Ironically, the fact that the thread has an infinite loop might be the reason you are attempting to abort it in the first place.)

• The aborted thread might be in critical code protected by a lock statement. (See the next chapter for details.) Unlike a finally, a lock will not prevent the exception. The critical code will be interrupted halfway through by the exception, and the lock object will be automatically released, allowing other code that is waiting on the lock object to enter the critical section and observe the state of the halfway-executed code. The whole point of locking is to prevent that scenario, and therefore, aborting a thread can transform what looks like thread-safe code into dangerously incorrect code.

• The CLR guarantees that its internal data structures will never be corrupted if a thread is aborted, but the BCL does not make this guarantee. Aborting a thread can leave any of your data structures or the BCL’s data structures in an arbitrarily bad state if the exception is thrown at the wrong time. Code running on other threads, or in the finally blocks of the aborted thread, can see this corrupted state and crash or behave badly.

In short, you should never abort a thread unless you are doing so as a last resort; ideally you should only abort a thread as part of a larger emergency shutdown whereby the entire AppDomain or the entire process is being destroyed. Fortunately, task-based asynchrony uses a more robust and safe cooperative cancellation pattern to terminate a “thread” whose results are no longer needed, as discussed in the next major section, Asynchronous Tasks.

Guidelines

AVOID aborting a thread in production code; doing so has unpredictable results and can destabilize a program.

Thread Pooling

As we discussed earlier, in the Beginner Topic titled Performance Considerations, it is possible for an excess of threads to negatively impact performance. Threads are expensive resources, thread context switching is not free, and running two jobs in simulated parallelism via time slicing can be hugely slower than running them one after the other.

To mitigate these problems, the BCL provides a thread pool. Instead of allocating threads directly, you can tell the thread pool what work you want to perform. When the work is finished, rather than the thread terminating and being destroyed, it is returned to the pool, saving on the cost of allocating a new thread when more work comes along. Listing 18.2 shows how to do the same thing as Listing 18.1, but this time with a pooled thread.

Listing 18.2. Using ThreadPool Instead of Instantiating Threads Explicitly

Click here to view code image

using System;
using System.Threading;

public class Program
{
 public const int Repetitions = 1000;
 public static void Main()
 {

 ThreadPool.QueueUserWorkItem(DoWork, '+');

 for(int count = 0; count < Repetitions; count++)
 {
 Console.Write('-');
 }

 // Pause until the thread completes
 // This is for illustrative purposes; do not
 // use Thread.Sleep for synchronization in
 // production code.

 Thread.Sleep(1000);

 }

 public static void DoWork(object state)

 {
 for(int count = 0; count < Repetitions; count++)
 {
 Console.Write(state);
 }
 }
}

The output is similar to Output 18.1, an intermingling of periods and hyphens. If we had a lot of different jobs to perform asynchronously, this pooling technique would provide more efficient execution on single- and multiprocessor computers. The efficiency is achieved by reusing threads over and over, rather than reconstructing them for every asynchronous call. Unfortunately, thread pool use is not without its pitfalls: There are still performance and synchronization problems to consider when using a thread pool.

In order to make efficient use of processors, the thread pool assumes that all the work you schedule on the thread pool will finish in a timely manner so that the thread can be returned to the thread pool and reused by another task. The thread pool also assumes that all the work will be relatively short-running (that is, consuming milliseconds or seconds of processor time, not hours or days). By making this assumption, it can ensure that each processor is working full out on a task, and not inefficiently time slicing multiple tasks, as described in the Beginner Topic on performance. The thread pool attempts to prevent excessive time slicing by ensuring that thread creation is “throttled” so that no one processor is “oversubscribed” with too many threads. But that then means that consuming all threads within the pool can delay execution of queued-up work. If all the threads in the pool are consumed by long-running or I/O bound work, the queued-up work will be delayed.

Unlike Thread and Task, which are objects that you can manipulate directly, the thread pool does not provide a reference to the thread used to execute a given piece of work. This prevents the calling thread from synchronizing with, or controlling, the worker thread via the thread management functions described earlier in the chapter. In Listing 18.2 we use the “poor man’s synchronization” that we earlier discouraged; this would be a bad idea in production code because we do not actually know how long the work will take to complete.

In short, the thread pool does its job well, but that job does not include providing services to deal with long-running jobs or jobs that need to be synchronized with the main thread or with one another. What we really need to do is build a higher-level abstraction that can use threads and thread pools as an implementation detail; that abstraction is implemented by the Task Parallel Library, which is the topic of most of the rest of this chapter.

For more details on other techniques for managing worker threads that were commonly used prior to .NET 4, see Appendix D.

Guidelines

DO use the thread pool to efficiently assign processor time to processor-bound tasks.

AVOID allocating a pooled worker thread to a task that is I/O bound or long-running; use TPL instead.

Asynchronous Tasks

Multithreaded programming includes the following complexities.

1. Monitoring an asynchronous operation state for completion: This includes determining when an asynchronous operation has completed, preferably not by polling the thread’s state or by blocking and waiting.

2. Thread pooling: This avoids the significant cost of starting and tearing down threads. In addition, thread pooling avoids the creation of too many threads, such that the system spends more time switching threads than running them.

3. Avoiding deadlocks: This involves preventing the occurrence of deadlocks while attempting to protect the data from simultaneous access by two different threads.

4. Providing atomicity across operations and synchronizing data access: Adding synchronization around groups of operations ensures that operations execute as a single unit and that they are appropriately interrupted by another thread. Locking is provided so that two different threads do not access the data simultaneously.

Furthermore, anytime a method is long-running, it is probable that multithreaded programming is going to be required—invoking the long-running method asynchronously. As developers write more multithreaded code, a common set of scenarios and programming patterns for handling those scenarios emerges.

C# 5.0 enhanced the programmability of one such pattern—TAP—by leveraging the TPL from .NET 4.0 and enhancing the C# language with new constructs to support it. This and the following section delve into the details of the TPL on its own and then the TPL with the async/await contextual keywords that simplify TAP programming. In the second half of Chapter 19 we consider several additional multithreading patterns that are important to be familiar with if the TPL and C# 5.0 are not available or you are programming against a non-TPL-based API.

From Thread to Task

Creating a thread is a relatively expensive operation, and each thread consumes a large amount (one megabyte, by default) of virtual memory. We saw earlier in this chapter that it is potentially more efficient to use a thread pool to allocate threads when needed, assign asynchronous work to the thread, run the work to completion, and then reuse the thread for subsequent asynchronous work, rather than destroying the thread when the work is complete and creating a new one later.

In .NET Framework 4, instead of creating an operating system thread each time asynchronous work is started, the TPL creates a Task and tells the task scheduler that there is asynchronous work to perform. There are many different strategies that a task scheduler might use, but by default the task scheduler requests a worker thread from the thread pool. The thread pool, as we’ve seen already, might decide that it is more efficient to run the task later, after some currently executing tasks have completed, or might decide to schedule the task’s worker thread to a particular processor. The thread pool determines whether it is more efficient to create an entirely new thread or to reuse an existing thread that previously finished executing.

By abstracting the concept of asynchronous work into the Task object, the TPL provides an object that represents asynchronous work and provides an object-oriented API for interacting with that work. And by providing an object that represents the unit of work, the TPL enables programmatically building up workflows by composing small tasks into larger ones, as we’ll see.

A task is an object that encapsulates work that executes asynchronously. This should sound familiar; a delegate is also an object that represents code. The difference between a task and a delegate is that delegates are synchronous and tasks are asynchronous. Executing a delegate, say, an Action, immediately transfers the point of control of the current thread to the delegate’s code; control does not return to the caller until the delegate is finished. By contrast, starting a task almost immediately returns control to the caller, no matter how much work the task has to perform. The task executes asynchronously, typically on another thread (though, as we will see later in this chapter, it is in fact possible and even beneficial to execute tasks asynchronously with only one thread). A task essentially transforms a delegate from a synchronous to an asynchronous execution pattern.

Introducing Asynchronous Tasks

You know when a delegate is done executing on the current thread because the caller cannot do anything until the delegate is done. But how do you know when a task is done, and how do you get the result, if there is one? Consider the example of turning a synchronous delegate into an asynchronous task. We’ll do the same thing we did with threads in Listing 18.1 and thread pools in Listing 18.2, but this time with tasks: The worker thread will write periods to the console while the main thread writes hyphens.

Starting the task obtains a new thread from the thread pool, creating a second “point of control,” and executes the delegate on that thread. The point of control on the main thread continues normally after the call to start the task (Task.Run()). The results of Listing 18.3 will be almost identical to Output 18.1.

Listing 18.3. Invoking an Asynchronous Task

Click here to view code image

using System;

using System.Threading.Tasks;

public class Program
{
 public static void Main()
 {
 const int Repetitions = 10000;
 // Use Task.Factory.StartNew<string>() for
 // TPL prior to .NET 4.5
 Task task = Task.Run(() =>
 {
 for(int count = 0;
 count < Repetitions; count++)
 {
 Console.Write('-');
 }
 });
 for(int count = 0; count < Repetitions; count++)
 {
 Console.Write('+');
 }

 // Wait until the Task completes
 task.Wait();
 }
}

The code that is to run in a new thread is defined in the delegate (of type Action in this case) passed to the Task.Run() method. This delegate (in the form of a lambda expression) prints out dashes to the console repeatedly. The loop that follows the starting of the task is virtually identical, except that it displays periods.

Notice that following the call to Task.Run() the Action passed as the argument immediately starts executing. The Task is said to be “hot,” meaning that it has already been triggered to start executing—as opposed to a “cold” task that needs to be explicitly started before the asynchronous work begins.

Although a Task can also be instantiated in a “cold” state via the Task constructor, doing so is generally only appropriate as an implementation detail internal to an API that returns an already running (“hot”) Task, one triggered by a call to Task.Start().

Notice that the exact state of a “hot” task is indeterminate immediately following the call to Run(). The state is instead determined by the operating system and whether it chooses to run the task’s worker thread immediately or delay it until additional resources are available. In fact, it is possible that the hot task is already finished by the time the code on the calling thread gets its turn to execute again. The call to Wait() forces the main thread to wait until all the work assigned to the task has completed executing. This is analogous to calling Join() on the worker thread as we did in Listing 18.1.

In this scenario we have a single task, but of course it is possible for many tasks to be running asynchronously. It is common to have a set of tasks where you want to wait for all of them to complete, or for any one of them to complete, before continuing execution of the current thread. The Task.WaitAll() and Task.WaitAny() methods do so.

So far we’ve seen how a task can take an Action and run it asynchronously. What if the work executed in the task returns a result? We can use the Task<T> type to run a Func<T> asynchronously. When executing a delegate synchronously we know that control will not return until the result is available. When executing a Task<T> asynchronously we can poll it from one thread to see if it is done, and fetch the result when it is.3 Listing 18.4 demonstrates how to do so in a console application. Note that this sample uses a PiCalculator.Calculate() method that we will delve into further in the section Executing Loop Iterations in Parallel.

Listing 18.4. Polling a Task<T>

Click here to view code image

using System;
using System.Threading.Tasks;
using AddisonWesley.Michaelis.EssentialCSharp.Shared;

public class Program
{
 public static void Main()
 {
 // Use Task.Factory.StartNew<string>() for
 // TPL prior to .NET 4.5
 Task<string> task =
 Task.Run<string>(
 () => PiCalculator.Calculate(100));

 foreach(
 char busySymbol in Utility.BusySymbols())
 {
 if(task.IsCompleted)
 {
 Console.Write('\b');
 break;
 }
 Console.Write(busySymbol);
 }

 Console.WriteLine();

 Console.WriteLine(task.Result);
 System.Diagnostics.Trace.Assert(
 task.IsCompleted);
 }
}

public class PiCalculator
{
 public static string Calculate(int digits = 100)
 {
 \\ ...
 }
}

public class Utility
{
 public static IEnumerable<char> BusySymbols()
 {
 string busySymbols = @"-\|/-\|/";
 int next = 0;
 while(true)
 {
 yield return busySymbols[next];
 next = (next + 1) % busySymbols.Length;
 yield return '\b';
 }
 }
}

This listing shows that the data type of the task is Task<string>. The generic type includes a Result property from which to retrieve the value returned by the Func<string> that the Task<string> executes.

Note that in Listing 18.4 there is no call to Wait(). Instead, reading from the Result property automatically causes the current thread to wait until the result is available, if it isn’t already; in this case we know that it will already be complete when the result is fetched.

In addition to the IsCompleted and Result properties on Task<T>, there are several others worth noting.

• The IsCompleted property is set to true when a task completes whether it completed normally or faulted (that is, ended because it threw an exception). More detailed information on the status of a task can be determined by reading the Status property, which returns a value of type TaskStatus. Possible values are Created, WaitingForActivation, WaitingToRun, Running, WaitingForChildrenToComplete, RanToCompletion, Canceled, and Faulted. IsCompleted is true whenever the Status is RanToCompletion, Canceled, or Faulted. Note that, of course, if the task is running on another thread and you read the status as “Running,” the status could change to “Completed” at any time, including immediately after you read the value of the property. The same is true of many other states—even Created could potentially change if a different thread starts it. Only RanToCompletion, Canceled, and Faulted can be considered final states that can no longer be transitioned.

• A task can be uniquely identified by the value of the Id property. The static Task.CurrentId property provides the identifier for the currently executing Task (that is, the task that is executing the Task.CurrentId call). These properties are especially useful when debugging.

• You can use the AsyncState to associate additional data with a task. For example, imagine a List<T> whose values will be computed by various tasks. Each task could contain the index of the value in the AsyncState property. This way, when the task completes, the code can index into the list using the AsyncState (first casting it to an int).4

There are other useful properties that we will discuss later in this chapter, in the section on task cancellation.

Task Continuation

We’ve talked several times about the “control flow” of a program without ever saying what the most fundamental nature of control flow is: Control flow determines what happens next. When you have a simple control flow like Console.WriteLine(x.ToString()); the control flow tells you that when ToString completes normally, the next thing that is going to happen is a call to WriteLine with the value returned as the argument. The concept of “what happens next” is called continuation; each point in a control flow has a continuation. In our example, the continuation of ToString is WriteLine (and the continuation of WriteLine is whatever code runs in the next statement). The idea of continuation is so elementary to C# programming that most programmers don’t even think about it; it’s part of the invisible air that they breathe. The act of C# programming is the act of constructing continuation upon continuation until the control flow of the entire program is complete.

Notice that the continuation of a given piece of code in a normal C# program will be executed immediately upon the completion of that code. When ToString() returns, the point of control on the current thread immediately does a synchronous call to WriteLine. Notice also that there are actually two possible continuations of a given piece of code: the “normal” continuation and the “exceptional” continuation that will be executed if the current piece of code throws an exception.

Asynchronous method calls, such as starting a Task, add an additional dimension to the control flow. With an asynchronous Task invocation, the control flow goes immediately to the statement after the Task.Start() while at the same time, it begins executing within the body of the Task delegate. In other words, “what happens next” when asynchrony is involved is multidimensional. Unlike with exceptions where the continuation is just a different path, with asynchrony continuation is an additional, parallel path.

Asynchronous tasks also allow composition of larger tasks out of smaller tasks by describing asynchronous continuations. Just as with regular control flow, a task can have different continuations to handle error situations, and tasks can be composed together by manipulating their continuations. There are several techniques for doing so, the most explicit of which is the ContinueWith() method (see Listing 18.5 and its corresponding output, Output 18.2).

Listing 18.5. Calling Task.ContinueWith()

Click here to view code image

using System;
using System.Threading.Tasks;

public class Program
{
 public static void Main()
 {
 Console.WriteLine("Before");
 // Use Task.Factory.StartNew<string>() for
 // TPL prior to .NET 4.5
 Task taskA =
 Task.Run(() =>
 Console.WriteLine("Starting..."))
 .ContinueWith(antecedent =>
 Console.WriteLine("Continuing A..."));
 Task taskB = taskA.ContinueWith(antecedent =>
 Console.WriteLine("Continuing B..."));
 Task taskC = taskA.ContinueWith(antecedent =>
 Console.WriteLine("Continuing C..."));
 Task.WaitAll(taskB, taskC);
 Console.WriteLine("Finished!");
 }
}

Output 18.2.

Before
Starting...
Continuing A...
Continuing C...
Continuing B...
Finished!

The ContinueWith() method enables “chaining” two tasks together, such that when the predecessor task—the antecedent task—completes, the second task—the continuation task—is automatically started asynchronously. In Listing 18.5, for example, Console.WriteLine("Starting...") is the antecedent task body and Console.WriteLine("Continuing A...") is its continuation task body. The continuation task takes a Task as its argument (antecedent), thus allowing the continuation task’s code to access the antecedent task’s completion state. When the antecedent task is completed, the continuation task will start automatically, asynchronously executing the second delegate, and passing the just-completed antecedent task as an argument to that delegate. Furthermore, since the ContinueWith() method returns a Task as well, that Task can of course be used as the antecedent of yet another Task, and so on, thus forming a continuation chain of Tasks that can be arbitrarily long.

If you call ContinueWith() twice on the same antecedent task (as Listing 18.5 shows with taskB and taskC comprising continuation tasks for TaskA), the antecedent task (taskA) has two continuation tasks and when the antecedent task completes, both continuation tasks will be executed asynchronously. Notice that the order of execution of the continuation tasks from a single antecedent is indeterminate at compile time. Output 18.2 happens to show taskC executing before taskB, but in a second execution of the program, the order may be reversed. However, taskA will always execute before taskB and taskC since the latter are continuation tasks of taskA, and therefore, they can’t start before taskA completes. Similarly, the Console.WriteLine("Starting...") delegate will always execute to completion before taskA (Console.WriteLine("Continuing A...")) since the latter is a continuation task of the former. Furthermore, “Finished!” will always appear last because of the call to Task.WaitAll(taskB, taskC) that blocks the control flow from continuing until both taskB and taskC complete.

There are many different overloads of ContinueWith(), and some of them take a TaskContinuationOptions value to tweak the behavior of the continuation chain. The values are flags, so they can be combined using the logical OR operator (|). A brief description of some of the possible flag values appears in Table 18.1; see the online MSDN documentation5 for more details.

Table 18.1. List of Available TaskContinuationOptions Enums

[image: Image]

[image: Image]

[image: Image]

The items decorated with a star (*) indicate under what conditions the continuation task will be executed, and are therefore particularly useful for creating continuations that act like event handlers for the antecedent task’s behavior. Listing 18.6 demonstrates how an antecedent task can be given multiple continuations that execute conditionally, depending on how the antecedent task completed.

Listing 18.6. Registering for Notifications of Task Behavior with ContinueWith()

Click here to view code image

using System;
using System.Threading.Tasks;
using AddisonWesley.Michaelis.EssentialCSharp.Shared;

public class Program
{
 public static void Main()
 {
 // Use Task.Factory.StartNew<string>() for
 // TPL prior to .NET 4.5
 Task<string> task =
 Task.Run<string>(
 () => PiCalculator.Calculate(10));

 Task faultedTask = task.ContinueWith(
 (antecedentTask) =>
 {
 Trace.Assert(task.IsFaulted);
 Console.WriteLine(
 "Task State: Faulted");
 },
 TaskContinuationOptions.OnlyOnFaulted);

 Task canceledTask = task.ContinueWith(
 (antecedentTask) =>
 {
 Trace.Assert(task.IsCanceled);
 Console.WriteLine(
 "Task State: Canceled");
 },
 TaskContinuationOptions.OnlyOnCanceled);

 Task completedTask = task.ContinueWith(
 (antecedentTask) =>
 {
 Trace.Assert(task.IsCompleted);
 Console.WriteLine(
 "Task State: Completed");
 }, TaskContinuationOptions.
 OnlyOnRanToCompletion);

 completedTask.Wait();
 }
}

In this listing, we effectively register “listeners” for “events” on the antecedent’s task so that when the task completes normally or abnormally, the particular “listening” task will begin executing. This is a powerful capability, particularly if the original task is a “fire and forget” task; that is, a task that we start, hook up to continuation tasks, and then never refer to again. You’ll notice that in Listing 18.6, we do not wait for the original antecedent task; we wait for the continuation task that handles the completion event to finish. We can discard the reference to the original task; the task will begin executing asynchronously without any need for follow-up code that checks the status. In this case, we instead call completedTask.Wait() so that the main thread does not exit the program before the completed output appears (see Output 18.3).

Output 18.3.

Task State: Completed.

Note that in Listing 18.6, we must not call Wait() on canceledTask or faultedTask. Those continuation tasks only run if the antecedent task is canceled or throws an exception, and since that is not going to happen in this program, those tasks will never be scheduled to run, and waiting for them to complete would throw an exception. The continuation options in Listing 18.3 happen to be mutually exclusive, so when the antecedent task runs to completion and the task associated with completedTask executes, the task scheduler automatically cancels the tasks associated with canceledTask and faultedTask. The canceled tasks end with their state set to Canceled. Therefore, calling Wait() (or any other invocation that would cause the current thread to wait for a task completion) on either of these tasks will throw an exception indicating that they are canceled.

Unhandled Exception Handling on Task with AggregateException

When calling a method synchronously we can wrap it in a try block with a catch clause to identify to the compiler what code we want to execute when an exception occurs. This does not work with an asynchronous call, however. We cannot simply wrap a try around a call to Start() in order to catch an exception because control immediately returns from the call, and control will then leave the try block, possibly long before the exception occurs on the worker thread. One solution is to wrap the body of the task delegate with a try/catch block. Exceptions thrown on and subsequently caught by the worker thread will consequently not present problems as a try block will work normally on the worker thread. This is not the case, however, for unhandled exceptions—those that the worker thread does not catch.

Generally (starting with version 2.06 of the CLR), unhandled exceptions on any thread are treated as fatal, trigger the Windows Error Reporting dialog, and cause the application to terminate abnormally. All exceptions on all threads must be caught, and if they are not, the application is not allowed to continue to run. (For some advanced techniques for dealing with unhandled exceptions, see the upcoming Advanced Topic titled Dealing with Unhandled Exceptions.) Fortunately, this is not the case, however, for unhandled exceptions in an asynchronously running task. Rather, the task scheduler inserts a “catchall” exception handler around the delegate so that if the task throws an otherwise unhandled exception, the catchall handler will catch it and record the details of the exception in the task, avoiding any trigger of the CLR automatically terminating the process.

As we saw in Listing 18.6, one technique for dealing with a faulted task is to explicitly create a continuation task that is the “fault handler” for that task; the task scheduler will automatically schedule the continuation when it detects that the antecedent task threw an unhandled exception. If no such handler is present, however, and Wait() (or an attempt to get the Result) executes on a faulted task, an AggregateException will be thrown (see Listing 18.7 and Output 18.4).

Listing 18.7. Handling a Task’s Unhandled Exception

Click here to view code image

using System;
using System.Threading.Tasks;

public class Program
{
 public static void Main()
 {
 // Use Task.Factory.StartNew<string>() for
 // TPL prior to .NET 4.5
 Task task = Task.Run(() =>
 {
 throw new InvalidOperationException();
 });

 try
 {
 task.Wait();
 }
 catch(AggregateException exception)
 {
 exception.Handle(eachException =>
 {
 Console.WriteLine(
 "ERROR: {0}",
 eachException.Message);
 return true;
 });
 }
 }
}

Output 18.4.

ERROR: Operation is not valid due to the current state of the object.

The aggregate exception is so-called because it may contain many exceptions collected from one or more faulted tasks. Imagine, for example, asynchronously executing ten tasks in parallel and five of them throwing exceptions. In order to report all five exceptions and have them handled in a single catch block, the framework uses the AggregateException as a means of collecting the exceptions and reporting them as a single exception. Furthermore, since it is unknown at compile time whether a worker task will throw one or more exceptions, an unhandled faulted task will always throw an AggregateException. Listing 18.7 and Output 18.4 demonstrate this. Even though the unhandled exception thrown on the worker thread was of type InvalidOperationException, the type of the exception caught on the main thread is still an AggregateException. And, as expected, to catch the exception requires an AggregateException catch block.

A list of the exceptions contained within an AggregateException is available from the InnerExceptions property. As a result, you can iterate over this property to examine each exception and determine the appropriate course of action. Alternatively, and shown in Listing 18.7, you can use the AggregateException.Handle() method, specifying an expression to execute against each individual exception contained within the AggregateException. One important characteristic of the Handle() method to consider, however, is that it is a predicate. As such, the predicate should return true for any exceptions that the Handle() delegate successfully addresses. If any exception handling invocation returns false for an exception, the Handle() method will throw a new AggregateException that contains the composite list of such corresponding exceptions.

You can also observe the state of a faulted task without causing the exception to be rethrown on the current thread by simply looking at the Exception property of the task. Listing 18.8 demonstrates this by waiting for the completion of a fault continuation of a task7 that we know will throw an exception.

Listing 18.8. Observing Unhandled Exceptions on a Task Using ContinueWith()

Click here to view code image

using System;
using System.Diagnostics;
using System.Threading.Tasks;

public class Program
{
 public static void Main()
 {
 bool parentTaskFaulted = false;
 Task task = new Task(() =>
 {
 throw new InvalidOperationException();
 });
 Task continuationTask = task.ContinueWith(
 (antecedentTask) =>
 {
 antecedentTaskIsFaulted =
 antecedentTask.IsFaulted;
 }, TaskContinuationOptions.OnlyOnFaulted);
 task.Start();
 continuationTask.Wait();
 Trace.Assert(antecedentTaskIsFaulted);
 if (!task.IsFaulted)
 {
 task.Wait();
 }
 else
 {
 task.Exception.Handle(eachException =>
 {
 Console.WriteLine(
 "ERROR: {0}",
 eachException.Message);
 return true;
 });
 }
 }
}

Notice that to retrieve the unhandled exception on the original task we use the Exception property. The result is output identical to Output 18.4.

If an exception that occurs within a task goes entirely unobserved—a) it isn’t caught from within the task; b) the completion of the task is never observed, via Wait(), Result, or accessing the Exception property, for example; and c) the faulted ContinueWith() is never observed—then the exception is likely to go unhandled entirely, resulting in a process-wide unhandled exception. In .NET 4.0 such a faulted task would get rethrown by the finalizer thread and likely crash the process. In contrast, in .NET 4.5 the crashing has been suppressed (although the CLR can be configured for the crashing behavior if preferred).

In either case, you can register for an unhandled task exception via the TaskScheduler.UnobservedTaskException event.

Advanced Topic: Dealing with Unhandled Exceptions on a Thread

As we discussed above, an unhandled exception on any thread by default causes the application to shut down. An unhandled exception is a fatal, unexpected bug, and the exception may have occurred because a crucial data structure is corrupt. You therefore have no idea what the program could possibly be doing, so the safest thing to do is to shut down the whole thing immediately.

Ideally, no programs would ever throw unhandled exceptions on any thread; programs that do so have bugs, and the best course of action is to find and fix the bug before the software is shipped to customers. However, there is a school of thought that says that instead of shutting down an application as soon as possible when an unhandled exception occurs, it is often desirable to save any working data, and/or log the exception for error reporting and future debugging. This requires a mechanism to register for notifications of unhandled exceptions.

Every AppDomain provides such a mechanism, and to observe the unhandled exceptions that occur in an AppDomain, you must add a handler to the UnhandledException event. The UnhandledException event will fire for all unhandled exceptions on threads within the application domain, whether it is the main thread or a worker thread. Note that the purpose of this mechanism is notification; it does not permit the application to recover from the unhandled exception and continue executing. After the event handlers run, the application will display the Window Error Reporting dialog and then the application will exit. (For console applications, the exception details will also appear on the console.)

In Listing 18.9 we show how to create a second thread which throws an exception that is then handled by the application domain’s unhandled exception event handler. For demonstration purposes, to ensure that thread timing issues do not come into play, we insert some artificial delays using Thread.Sleep. Output 18.5 shows the results.

Listing 18.9. Registering for Unhandled Exceptions

Click here to view code image

using System;
using System.Diagnostics;
using System.Threading;

public class Program
{
 public static Stopwatch clock = new Stopwatch();
 public static void Main()
 {
 try
 {
 clock.Start();

 // Register a callback to receive notifications
 // of any unhandled exception.
 AppDomain.CurrentDomain.UnhandledException +=
 (s, e) =>
 {
 Message("Event handler starting");
 Delay(4000);
 };

 Thread thread = new Thread(() =>
 {
 Message("Throwing exception.");
 throw new Exception();
 });
 thread.Start();

 Delay(2000);
 }
 finally
 {
 Message("Finally block running.");
 }
 }

 static void Delay(int i)
 {
 Message(string.Format("Sleeping for {0} ms", i));
 Thread.Sleep(i);
 Message("Awake");
 }

 static void Message(string text)
 {
 Console.WriteLine("{0}:{1:0000}:{2}",
 Thread.CurrentThread.ManagedThreadId,
 clock.ElapsedMilliseconds,
 text);
 }
}

Output 18.5.

Click here to view code image

3:0047:Throwing exception.
3:0052:Unhandled exception handler starting.
3:0055:Sleeping for 4000 ms
1:0058:Sleeping for 2000 ms
1:2059:Awake
1:2060:finally block running.
3:4059:Awake
Unhandled Exception: System.Exception: Exception of type 'System.
Exception' was thrown.

As you can see in Output 18.5, the new thread is assigned thread ID 3 and the main thread is assigned thread ID 1. The operating system schedules thread 3 to run for a while; it throws an unhandled exception, the event handler is invoked, and it goes to sleep. Soon thereafter, the operating system realizes that thread 1 can be scheduled, but its code immediately puts it to sleep. Thread 1 wakes up first and runs the finally block, and then two seconds later thread 3 wakes up, and the unhandled exception finally crashes the process.

This sequence of events—the event handler executing, and the process crashing after it is finished—is typical, but not guaranteed. The moment there is an unhandled exception in your program, all bets are off; the program is now in an unknown and potentially very unstable state, and therefore, its behavior can be unexpected. In this case, as you can see, the CLR allows the main thread to continue running and executes its finally block, even though it knows by the time that control gets to the finally block, another thread is in the AppDomain’s unhanded exception event handler.

To emphasize this fact, try changing the delays so that the main thread sleeps longer than the event handler. In that scenario, the finally block will not be run! The process will be destroyed by the unhandled exception before thread 1 wakes up. You can also get different results depending on whether the exception-throwing thread is created by the thread pool or not. The best practice is therefore to avoid all possible unhandled exceptions, whether they occur in worker threads or in the main thread.

How does this pertain to tasks? What if there are unfinished tasks hanging around the system when you want to shut it down? We’ll look at task cancellation in the next section.

Guidelines

AVOID writing programs that produce unhandled exceptions on any thread.

CONSIDER registering an unhandled exception event handler for debugging, logging, and emergency shutdown purposes.

DO cancel unfinished tasks, rather than allowing them to run during application shutdown.

Canceling a Task

Earlier in this chapter we described why it’s a bad idea to rudely abort a thread in order to cancel a task being performed by that thread. The TPL uses cooperative cancellation, a far more polite, robust, and reliable technique for safely canceling a task that is no longer needed. A task that supports cancellation monitors a CancellationToken object (found in the System.Threading namespace) by periodically polling it to see if a cancellation request has been issued. Listing 18.10 demonstrates both the cancellation request and the response to the request. Output 18.6 shows the results.

Listing 18.10. Canceling a Task Using CancellationToken

Click here to view code image

using System;
using System.Threading;
using System.Threading.Tasks;
using AddisonWesley.Michaelis.EssentialCSharp.Shared;

public class Program
{
 public static void Main()
 {
 string stars =
 "*".PadRight(Console.WindowWidth-1, '*');
 Console.WriteLine("Push ENTER to exit.");

 CancellationTokenSource cancellationTokenSource=
 new CancellationTokenSource();
 // Use Task.Factory.StartNew<string>() for
 // TPL prior to .NET 4.5
 Task task = Task.Run(
 () =>
 WritePi(cancellationTokenSource.Token),
 cancellationTokenSource.Token);

 // Wait for the user's input
 Console.ReadLine();

 cancellationTokenSource.Cancel();
 Console.WriteLine(stars);
 task.Wait();
 Console.WriteLine();
 }

 private static void WritePi(
 CancellationToken cancellationToken)
 {
 const int batchSize = 1;
 string piSection = string.Empty;
 int i = 0;

 while(!cancellationToken.IsCancellationRequested

 || i == int.MaxValue)
 {
 piSection = PiCalculator.Calculate(
 batchSize, (i++) * batchSize);
 Console.Write(piSection);
 }
 }
}

Output 18.6.

Click here to view code image

Push ENTER to exit.
3.141592653589793238462643383279502884197169399375105820974944592307816
40628620899862803482534211706798214808651328230664709384460955058223172
5359408128481117450

2

After starting the task, a Console.Read() blocks the main thread. At the same time, the task continues to execute, calculating the next digit of pi and printing it out. Once the user presses Enter, the execution encounters a call to CancellationTokenSource.Cancel(). In Listing 18.10, we split the call to task.Cancel() from the call to task.Wait() and print out a line of asterisks in between. The purpose of this is to show that quite possibly an additional iteration will occur before the cancellation token is observed—hence the additional 2 in Output 18.6 following the stars. The 2 appears because the CancellationTokenSource.Cancel() doesn’t rudely stop the task from executing. The task keeps on running until it checks the token, and politely shuts down when it sees that the owner of the token is requesting cancellation of the task.

The Cancel() call effectively sets the IsCancellationRequested property on all cancellation tokens copied from CancellationTokenSource.Token. There are a few things to note, however.

• A CancellationToken, not a CancellationTokenSource, is given to the asynchronous task. A CancellationToken enables polling for a cancellation request; the CancellationTokenSource provides the token and signals it when it is canceled (see Figure 18.2).

[image: Image]

Figure 18.2. CancellationTokenSource and CancellationToken Class Diagrams

• A CancellationToken is a struct, and therefore is copied by value. The value returned by CancellationTokenSource.Token produces a copy of the token.

To monitor the IsCancellationRequested property, a copy of the CancellationToken (retrieved from CancellationTokenSource.Token) is passed to the task. In Listing 18.9, we then occasionally check the IsCancellationRequested property on the CancellationToken parameter; in this case, we check after each digit calculation. If IsCancellationRequested returns true, the while loop exits. Unlike a thread abort, which would throw an exception at essentially a random point, we exit the loop using normal control flow. We guarantee that the code is responsive to cancellation requests by polling frequently.

One other point to note about the CancellationToken is the overloaded Register() method. Via this method, you can register an action that will be invoked whenever the token is canceled. In other words, calling the Register() method subscribes to a listener delegate on the corresponding CancellationTokenSource’s Cancel().

Since canceling before completing is expected behavior in this program, the code in Listing 18.9 does not throw a System.Threading.Tasks.TaskCanceledException. Because of this, task.Status will return TaskStatus.RanToCompletion—providing no indication that the work of the task was in fact canceled. In this example, there is no need for such an indication; however, the TPL does include the capability to do this. If the cancel call were disruptive in some way—preventing a valid result from returning, for example—throwing a TaskCanceledException (which derives from System.OperationCanceledException) would be the TPL pattern for reporting it. Instead of throwing the exception explicitly, CancellationToken includes a ThrowIfCancellationRequested() method to report the exception more easily, assuming an instance of CancellationToken is available.

If you attempt to call Wait() (or obtain the Result) on a task that threw TaskCanceledException, the behavior is the same as if any other exception had been thrown in the task: The call will throw an AggregateException. The exception is a means of communicating that the state of execution following the task is potentially incomplete. Unlike a successfully completed task in which all expected work executed successfully, a canceled task potentially has partially completed work—the state of the work is untrusted.

This example demonstrates how a long-running processor-bound operation (calculating pi almost indefinitely) can monitor for a cancellation request and respond if one occurs. There are some cases, however, when cancellation can occur without explicitly coding for it within the target task. For example, the Parallel class discussed later in the chapter offers such a behavior by default.

Task.Run(): A Shortcut and Simplification to Task.Factory.StartNew()

In .NET 4.0 the general practice for obtaining a task was to call Task.Factory.StartNew(). In .NET 4.5, a simpler calling structure was provided in Task.Run().

Like Task.Run(), Task.Factory.StartNew() could be used in C# 4.0 scenarios to invoke CPU-intensive methods that require an additional thread to be created.

Given .NET 4.5, Task.Run() should be used by default unless it proves insufficient. For example, if you need to control the task with TaskCreationOptions, if you need to specify an alternative scheduler, or if, for performance reasons, you want to pass in object state, Task.Factory.StartNew() should be considered. Only in rare cases, where you need to separate creation from scheduling, should constructor instantiation followed by a call to Start() be considered.

Listing 18.11 provide an example using Task.Factory.StartNew().

Listing 18.11. Using Task.Factory.StartNew()

Click here to view code image

public Task<string> CalculatePiAsync(int digits)
{
 return Task.Factory.StartNew<string>(
 () => CalculatePi(digits));
}

private string CalculatePi(int digits)
{
 // ...
}

Long-Running Tasks

As we discussed earlier in the commentary on Listing 18.2, the thread pool assumes that work items will be processor-bound and relatively short-lived; it makes these assumptions in order to effectively throttle the number of threads created. This prevents both overallocation of expensive thread resources and oversubscription of processors that would lead to excessive context switching and time slicing.

But if the developer knows that a Task is going to be long-running and therefore holding on to an underlying thread resource for a long time, the developer can notify the scheduler that it is unlikely to complete its work anytime soon. This has two effects. First, it hints to the scheduler that perhaps a dedicated thread ought to be created specifically for this task, rather than attempting to use a thread from the thread pool. Second, it hints to the scheduler that perhaps this would be a good time to allow more tasks to be scheduled than there are processors to handle them. This will cause more time slicing to happen, which is a good thing. We do not want one long-running task to hog an entire processor and prevent shorter-running tasks from using it. The short-running tasks will be able to use their time slice to finish a large percentage of their work, and the long-running task is unlikely to notice the relatively slight delays caused by sharing a processor with other tasks. To accomplish this, use the TaskCreationOptions.LongRunning option when calling StartNew() (Task.Run() does not support a TaskCreationOptions parameter), as shown in Listing 18.12.

Listing 18.12. Cooperatively Executing Long-Running Tasks

Click here to view code image

using System.Threading.Tasks;

// ...

 Task task = Task.Factory.StartNew(
 () =>
 WritePi(cancellationTokenSource.Token),
 TaskCreationOptions.LongRunning);
// ...

Guidelines

DO inform the task factory that a newly created task is likely to be long-running so that it can manage it appropriately.

DO use TaskCreationOptions.LongRunning sparingly.

Tasks Are Disposable

Note that Task also supports IDisposable. This is necessary because Task may allocate a WaitHandle when waiting for it to complete, and since WaitHandle supports IDisposable, Task also supports IDisposable in accordance with best practices. However, readers will note that the preceding code samples do not include a Dispose() call nor do they rely on such a call implicitly via the using statement. The listings are instead relying on an automatic WaitHandle finalizer invocation when the program exits.

The result is that first the handles live longer and hence consume more resources than they ought to, and second, the garbage collector is slightly less efficient because finalized objects survive into the next generation. However, both of these concerns are inconsequential in the Task case unless there are an extraordinarily large number of tasks being finalized. Therefore, even though technically speaking all code should be disposing of tasks, don’t bother unless performance metrics require it and it’s easy—namely, you’re certain that Tasks have completed and no other code is using them.

The Task-Based Asynchronous Pattern in C# 5.0

As we’ve seen so far, tasks provide a better abstraction for the manipulation of asynchronous work than threads do. Tasks are automatically scheduled to the right number of threads and large tasks can be composed out of small tasks, just as large programs can be composed out of small methods.

However, there are some drawbacks to tasks as we’ve seen them thus far. The principal difficulty with tasks is that they turn your program logic “inside out.” To illustrate this, we first consider a synchronous method that is blocked on an I/O-bound, high-latency operation—a Web request. Next, we compare it to an asynchronous version prior to C# 5.0 and the Task-based Asynchronous Pattern (TAP). Lastly, we review the same example except using C# 5.0 and the async/await contextual keywords.

Synchronously Invoking a High-Latency Operation

In Listing 18.13 the code uses a WebRequest to download a Web page and display its size. If the operation fails an exception is thrown.

Listing 18.13. A Synchronous Web Request

Click here to view code image

using System;
using System.IO;
using System.Net;
using System.Linq;

public class Program
{
 public static void Main(string[] args)
 {
 string url = "http://www.IntelliTect.com";
 if(args.Length > 0)
 {
 url = args[0];
 }

 try
 {
 Console.Write(url);
 WebRequest webRequest =
 WebRequest.Create(url);

 WebResponse response =
 webRequest.GetResponse();

 Console.Write(".....");

 using(StreamReader reader =
 new StreamReader(
 response.GetResponseStream()))
 {
 string text =
 reader.ReadToEnd();
 Console.WriteLine(
 FormatBytes(text.Length));
 }
 }
 catch(WebException)
 {
 // ...
 }
 catch(IOException)
 {
 // ...
 }
 catch(NotSupportedException)
 {
 // ...
 }
 }

 static public string FormatBytes(long bytes)
 {
 string[] magnitudes =
 new string[] { "GB", "MB", "KB", "Bytes" };
 long max =
 (long)Math.Pow(1024, magnitudes.Length);

 return string.Format("{1:##.##} {0}",
 magnitudes.FirstOrDefault(
 magnitude =>
 bytes > (max /= 1024)) ?? "0 Bytes",
 (decimal)bytes / (decimal)max).Trim();
 }
}

The logic in Listing 18.13 is relatively straightforward—using common C# idioms like try/catch blocks and return statements to describe the control flow. Given a WebRequest it calls GetResponse() to download the page. To gain stream access to the page it calls GetResponseStream() and assigns the result to a StreamReader. Finally, it reads to the end of the stream with ReadToEnd() in order to determine the size of the page and then print that out to the screen.

The problem with this approach is, of course, that the calling thread is blocked until the I/O operation completes; this is wasting a thread that could be doing useful work while the asynchronous operation executes. For this reason, we can’t, for example, execute any other code, such as code that indicates progress.

Asynchronously Invoking a High-Latency Operation Using the TPL

To address this problem, Listing 18.14 takes a similar approach but instead uses task-based asynchrony with the TPL.

Listing 18.14. An Asynchronous Web Request

Click here to view code image

using System;
using System.IO;
using System.Net;
using System.Linq;
using System.Threading.Tasks;

public class Program
{
 public static void Main(string[] args)
 {
 string url = "http://www.IntelliTect.com";
 if(args.Length > 0)
 {
 url = args[0];
 }

 Console.Write(url);

 Task task = WriteWebRequestSizeAsync(url);

 try
 {
 while(!task.Wait(100))
 {
 Console.Write(".");
 }
 }
 catch(AggregateException exception)
 {
 exception = exception.Flatten();
 try
 {
 exception.Handle(innerException =>
 {
 // Rethrowing rather than using
 // if condition on the type.
 ExceptionDispatchInfo.Capture(
 exception.InnerException)
 .Throw();
 return true;
 });
 }
 catch(WebException)
 {
 // ...
 }
 catch(IOException)
 {
 // ...
 }
 catch(NotSupportedException)
 {
 // ...
 }
 }
 }

 private static Task WriteWebRequestSizeAsync(
 string url)
 {
 StreamReader reader = null;
 WebRequest webRequest =
 WebRequest.Create(url);

 Task task =
 webRequest.GetResponseAsync()
 .ContinueWith(antecedent =>
 {
 WebResponse response =
 antecedent.Result;

 reader =
 new StreamReader(
 response.GetResponseStream());
 return reader.ReadToEndAsync();
 })
 .Unwrap()
 .ContinueWith(antecedent =>
 {
 if(reader != null) reader.Dispose();
 string text = antecedent.Result;
 Console.WriteLine(
 FormatBytes(text.Length));
 });

 return task;
 }

 // ...
}

Unlike Listing 18.13, when Listing 18.14 executes it prints periods to the console while the page is downloading. The result is that instead of simply printing four periods (“....”) to the console, Listing 18.14 is able to continuously print periods for as long as it takes to download the file, read it from the stream, and determine its size.

Unfortunately, the asynchrony comes at the cost of complexity. Interspersed throughout the code we have TPL-related code that interrupts the flow. Rather than simply following on the WebRequest.GetResponseAsync() call with retrieving the StreamReader and calling ReadToEndAsync(), the asynchronous version of the code requires ContinueWith() statements. The first ContinueWith() statement identifies what to execute after the WebRequest.GetResponseAsync(). Notice that the return statement in the first ContinueWith() expression returns StreamReader.ReadToEndAsync() which returns another Task.

Without the Unwrap() call, therefore, the antecedent in the second ContinueWith() statement is a Task<Task<string>>, which alone indicates the complexity. As a result, it is necessary to call Result twice—once on the antecedent directly and a second time on the Task<string>.Result property antecedent.Result returned, the latter of which will block until the ReadToEnd() operation completes. To avoid the Task<Task<TResult>> structure, however, we preface the call to ContinueWith() with a call to Unwrap(), thereby shedding the outer Task and appropriately handling any errors or cancellation requests.

The complexity doesn’t stop with Tasks and ContinueWith(), however, as the exception handling adds an entirely new dimension to the complexity. As discussed earlier in the chapter, the TPL generally throws an AggregateException exception because of the possibility that an asynchronous operation could encounter multiple exceptions. However, because we are calling the Result property from within ContinueWith() blocks, it is possible that inside the worker thread we might also throw an AggregateException.

As you have learned earlier in the chapter, there are multiple ways to handle these exceptions.

1. Add continuation tasks to all *Async methods that return a task along with each ContinueWith() method call. However, doing so would prevent us from using the fluid API in which ContinueWith()’s chain together one after the other. Furthermore, this would force us to deeply embed error handling logic into the control flow rather than simply relying on exception handling.

2. Surround each delegate body with a try/catch so that no exceptions go unhandled from the task. Unfortunately, this approach is less than ideal as well. First of all, some exceptions (like those triggered when calling antecedent.Result) will throw an AggregateException from which we will need to unwrap the InnerException(s) in order to handle them individually. In unwrapping them we either rethrow them so as to catch a specific type or conditionally check for the type of the exception separately from any other catch blocks (even catch blocks for the same type). Second, each delegate body will require its own separate try/catch handler even if some of the exception types between blocks are the same. Third, Main’s call to task.Wait() could still throw an exception because WebRequest.GetResponseAsync() could potentially throw an exception and there is no way to surround it with a try/catch block. Therefore, there is no way to eliminate the try/catch block in Main that surrounds task.Wait().

3. Ignore all exception handling from within WriteWebRequesSizeAsync() and instead rely solely on the try/catch block that surrounds Main’s task.Wait(). And given that we know the exception will be an AggregateException, we only have a catch for that exception. Within the catch block we handle the exception by calling AggregateException.Handle() and throwing each exception using the Exception-Dispatch-Info object so as not to lose the original stack trace. These exceptions are then caught by the expected exception handles and addressed accordingly. Notice, however, that before handling the AggregateException’s InnerExceptions we first call AggregateException.Flatten(). This is to address the issue of an AggregateException wrapping inner exceptions that are also of type AggregateException (and so on). By calling Flatten(), all exceptions are moved to the first level and all contained AggregateExceptions removed.

And, as shown in Listing 18.14, Option 3 is probably the preferred approach because it keeps the exception handling outside the control flow for the most part. This doesn’t eliminate the error handling complexity entirely; it simply minimizes interspersing it within the regular control flow.

Although the asynchronous version in Listing 18.14 has virtually the same logical control flow as the synchronous version in Listing 18.13, both versions attempt to download a resource from a server and, if the download succeeds, the result is returned. (If the download fails, the exception’s type is interrogated to determine the right course of action.) However, it is clear that the asynchronous version of Listing 18.14 is significantly harder to read, understand, and change than the corresponding synchronous version in Listing 18.13. Unlike the synchronous version that uses standard control flow statements, the asynchronous version is forced to create multiple lambda expressions to express the continuation logic in the form of delegates.

Unfortunately, this is a fairly simple example! Imagine what the asynchronous code would look like if, for example, the synchronous code had a loop in it to retry the operation three times if it failed, if it tried to contact multiple different servers, if it took a collection of resources rather than a single one, or all of these possible features together. Adding those features to the synchronous version would be straightforward, but it is not at all clear how to do so in the asynchronous version. Rewriting synchronous methods into asynchronous methods by explicitly specifying the continuation of each task gets very complicated very quickly even if the synchronous continuations are what appear to be very simple control flows.

The Task-Based Asynchronous Pattern with async and await

Fortunately, it turns out that it is actually not too difficult to write a computer program that does these complex code transformations for you. The designers of the C# language realized this, and have added such a capability to the C# 5.0 compiler. In C# 5.0, you can rewrite the synchronous program above into an asynchronous program much more easily using the Task-based Asynchronous Pattern (TAP); the C# compiler then does the tedious work of transforming your method into a series of task continuations. Listing 18.15 shows how to rewrite Listing 18.13 into an asynchronous method without the major structural changes of Listing 18.14.

Listing 18.15. An Asynchronous Web Request Using the Task-Based Asynchronous Pattern

Click here to view code image

using System;
using System.IO;
using System.Net;
using System.Linq;
using System.Threading.Tasks;

public class Program
{
 private static async Task WriteWebRequestSizeAsync(
 string url)
 {
 try
 {
 WebRequest webRequest =
 WebRequest.Create(url);
 WebResponse response =
 await webRequest.GetResponseAsync();
 using(StreamReader reader =
 new StreamReader(
 response.GetResponseStream()))
 {
 string text =
 await reader.ReadToEndAsync();
 Console.WriteLine(
 FormatBytes(text.Length));
 }
 }
 catch(WebException)
 {
 // ...
 }
 catch(IOException)
 {
 // ...
 }
 catch(NotSupportedException)
 {
 // ...
 }
 }

 public static void Main(string[] args)
 {
 string url = "http://www.IntelliTect.com";
 if(args.Length > 0)
 {
 url = args[0];
 }

 Console.Write(url);

 Task task = WriteWebRequestSizeAsync(url);

 while(!task.Wait(100))
 {
 Console.Write(".");
 }
 }

 // ...

}

Notice the small differences between Listing 18.13 and Listing 18.15. First, we refactor the body of the Web request functionality into a new method (WriteWebRequestSizeAsync()) and add the new contextual keyword async to the method’s declaration. A method decorated with this keyword must return Task, Task<T> or void. In this case, since there is no data returned by the body of the method but we still want the capability of returning information about the asynchronous activity back to the caller, WriteWebRequestSizeAsync() returns Task. Notice the method name suffix is Async; this is not necessary, but it is conventional to mark asynchronous methods this way in order to identify their asynchronous behavior. Finally, everywhere for which there is an asynchronous equivalent for the synchronous method, we insert the new contextual keyword await before invoking the asynchronous version.

Notice that nothing else changes between Listings 18.13 and 18.15. The asynchronous method versions seemingly still return the same data types as before—in spite of the fact that in actuality they each return a Task<T>. This is not via some magical implicit cast, either. GetResponseAsync() is declared as:

public virtual Task<WebResponse> GetResponseAsync() { ... }

while at the call site we assign the return value to WebResponse:

WebResponse response = await webRequest.GetResponseAsync()

The key is the async contextual keyword, which signals to the compiler to rewrite the expression into a state machine that represents all the control flow we saw in Listing 18.14 (and more).

Notice the try/catch logic improvements over Listing 18.14 that appear in Listing 18.15 as well. In all of Listing 18.15 there is no need to catch an AggregateException. The catch clause continues to catch the exact type of exception expected, no unwrapping the inner exceptions required. Rather, the compiler’s rewrite seemingly ensures that the AggregateException in the task is processed as though it had been a normal, synchronously thrown exception. Whereas, in reality, the AggregateException (and its internal exception collection) still continue to operate as expected only when you await the task, the rewrite pulls the first exception from the collection and throws it. The aim is to make the asynchronous code look as much as possible like the synchronous code.

To better understand the control flow, Table 18.2 shows each task in a separate column along with the execution that occurs on each task.

Table 18.2. Control Flow within Each Task

[image: Image]

[image: Image]

There are a couple of important misconceptions that the table helps to dismiss.

• Misconception #1: A method decorated with the async keyword is automatically executed on a worker thread when called. This is absolutely not true; the method is executed normally, on the calling thread, and if the implementation doesn’t await any incomplete awaitable tasks, it will complete synchronously on the same thread. It’s the method’s implementation that is responsible for starting any asynchronous work. Just using the async keyword does not change where the method’s code executes. Also, there is nothing unusual about a call to an async method from the caller’s perspective; it is a method typed as returning a Task, it is called normally, and it returns an object of its return type normally.

• Misconception #2: The await keyword causes the current thread to block until the awaited task is completed. That is also absolutely not true. If you want the current thread to block until the task completes, call the Wait() method, as we have already described, and, in fact, the Main thread does repeatedly while waiting for the other tasks to complete. However, the while(!task.Wait(100)) { } executes concurrently with the other tasks—not synchronously. The await keyword evaluates the expression which follows it, which is usually of type Task or Task<T>, adds a continuation to the resultant task, and then immediately returns control to the caller. The creation of the task has started asynchronous work; the await keyword means that the developer wishes the caller of this method to continue executing its work on this thread while the asynchronous work is processed. At some point after that asynchronous work is complete, execution will resume at the point of control following the await expression.

In fact, the principal reasons why the async keyword exists in the first place are first, to make it crystal clear to the reader of the code that the method which follows will be automatically rewritten by the compiler, and second, to inform the compiler that usages of the await contextual keyword in the method are to be treated as asynchronous control flow, and not as an ordinary identifier.

Asynchronous Lambdas

Just as a lambda expression converted to a delegate can be used as a concise syntax for declaring a normal method, C# 5.0 allows lambdas containing await expressions to be converted to delegates also. Just precede the lambda expression with the async keyword. In Listing 18.16 we rewrite the GetResourceAsync() method from Listing 18.15 from an async method to an async lambda.

Listing 18.16. An Asynchronous Client-Server Interaction As a Lambda Expression

Click here to view code image

using System;
using System.IO;
using System.Net;
using System.Linq;
using System.Threading.Tasks;

public class Program
{

 public static void Main(string[] args)
 {
 string url = "http://www.IntelliTect.com";
 if(args.Length > 0)
 {
 url = args[0];
 }

 Console.Write(url);

 Func<string, Task> writeWebRequestSizeAsync =
 async (string webRequestUrl) =>
 {
 // Error handling ommitted for
 // elucidation.
 WebRequest webRequest =
 WebRequest.Create(url);

 WebResponse response =
 await webRequest.GetResponseAsync();
 using(StreamReader reader =
 new StreamReader(
 response.GetResponseStream()))
 {
 string text =
 (await reader.ReadToEndAsync());
 Console.WriteLine(
 FormatBytes(text.Length));
 }
 };

 Task task = writeWebRequestSizeAsync(url);

 while (!task.Wait(100))
 {
 Console.Write(".");
 }
 }

 // ...

}

Note that an async lambda expression has the exact same restrictions as the named async method.

• An async lambda expression must be converted to a delegate whose return type is void, Task or Task<T>.

• The lambda is rewritten so that return statements become signals that the task returned by the lambda has completed with the given result.

• Execution within the lambda expression occurs synchronously until the first await on an incomplete awaitable is executed.

• All instructions following the await will execute as continuations on the return from the invoked asynchronous method (or, if the awaitable is already complete, will be simply executed synchronously rather than as continuations).

• An async lambda expression can be invoked with an await (not shown in Listing 18.16).

Advanced Topic: Implementing a Custom Asynchronous Method

Implementing an asynchronous method by relying on other asynchronous methods (which in turn rely on more asynchronous methods) is relatively easy with the await keyword. However, at some point in the call hierarchy it becomes necessary to write a “leaf” asynchronous Task-returning method. Consider, for example, an asynchronous method for running a command-line program with the eventual goal that the output could be accessed. Such a method would be declared as follows:

static public Task<Process> RunProcessAsync(string filename)

The simplest implementation would, of course, be to rely on Task.Run() again and calling both System.Diagnostics.Process’s Start() and WaitForExit() methods. However, creating an additional thread in the current process is unnecessary when the invoked process itself will have its own collection of one or more threads. To implement the RunProcessAsync() method and return to the caller’s synchronization context when the invoked process completes, we can rely on a TaskCompletionSource<T> object, as shown in Listing 18.17.

Listing 18.17. Implementing a Custom Asynchronous Method

Click here to view code image

using System.Diagnostics;
using System.Threading;
using System.Threading.Tasks;
class Program
{
 static public Task<Process> RunProcessAsync(
 string fileName,
 string arguments = null,
 CancellationToken cancellationToken =
 default(CancellationToken))
 {
 TaskCompletionSource<Process> taskCS =
 new TaskCompletionSource<Process>();

 Process process = new Process()
 {
 StartInfo = new ProcessStartInfo(fileName)
 {
 UseShellExecute = false,
 Arguments = arguments,
 },
 EnableRaisingEvents = true,
 };

 process.Exited += (sender, localEventArgs) =>
 {
 taskCS.SetResult(process);
 };

 cancellationToken
 .ThrowIfCancellationRequested();

 process.Start();

 cancellationToken.Register(() =>
 {
 process.CloseMainWindow();
 });

 return taskCS.Task;
 }

 // ...
}

Ignore the highlighting for the moment and instead focus on the pattern of using an event for notification when the process completes. Since System.Diagnostics.Process includes a notification upon exit, we register for this notification and use it as a callback from which we can invoke TaskCompletionSource.SetResult(). The code above provides a fairly common pattern with which to create an asynchronous method without having to resort to Task.Run().

Another important characteristic that an async method might require is cancellation, and TAP relies on the same methods as the TPL—namely, a System.Threading.CancellationToken. The listing above highlights the code necessary to support cancellation. In this example we allow for canceling before the process ever starts, as well as an attempt to close the application’s main window (if there is one). A more aggressive approach would be to call Process.Kill(), but this could potentially cause problems for the program that is executing.

Notice that we don’t register for the cancellation event until after the process is started. This avoids any race conditions that might occur if cancellation is triggered before the process is actually started.

One last feature to consider supporting is a progress update. Listing 18.18 is the full RunProcessAsync() with just such an update.

Listing 18.18. Implementing a Custom Asynchronous Method with Progress Support

Click here to view code image

using System;
using System.Diagnostics;
using System.Threading;
using System.Threading.Tasks;
class Program
{
 static public Task<Process> RunProcessAsync(
 string fileName,
 string arguments = null,
 CancellationToken cancellationToken =
 default(CancellationToken),

 IProgress<ProcessProgressEventArgs> progress =
 null,
 object objectState = null)

 {
 TaskCompletionSource<Process> taskCS =
 new TaskCompletionSource<Process>();

 Process process = new Process()
 {
 StartInfo = new ProcessStartInfo(fileName)
 {
 UseShellExecute = false,
 Arguments = arguments,

 RedirectStandardOutput =
 progress != null

 },
 EnableRaisingEvents = true,
 };

 process.Exited += (sender, localEventArgs) =>
 {
 taskCS.SetResult(process);
 };

 if(progress != null)
 {
 process.OutputDataReceived +=
 (sender, localEventArgs) =>
 {
 progress.Report(
 new ProcessProgressEventArgs(
 localEventArgs.Data,
 objectState));
 };
 }

 if(cancellationToken.IsCancellationRequested)
 {
 cancellationToken
 .ThrowIfCancellationRequested();
 }

 process.Start();

 if(progress != null)
 {
 process.BeginOutputReadLine();
 }

 cancellationToken.Register(() =>
 {
 process.CloseMainWindow();
 cancellationToken
 .ThrowIfCancellationRequested();
 });

 return taskCS.Task;
 }

 // ...
}

Advanced Topic: Awaiting Non-Task<T> Values

Generally, the expression that follows the await keyword is of type Task, or Task<T>. And in the examples of await shown so far, the expressions that follows the keyword all return Task<T>. From a syntax perspective, an await operating on type Task is essentially the equivalent of an expression that returns void. In fact, because the compiler does not even know whether the task has a result, much less what type it is, such an expression is classified the same as a call to a void-returning method; you can only use it in a statement context. Listing 18.19 shows some await expressions used as statement expressions.

Listing 18.19. An Await Expression May Be a Statement Expression

Click here to view code image

async Task<int> DoStuffAsync()
{
 await DoSomethingAsync();
 await DoSomethingElseAsync();
 return await GetAnIntegerAsync() + 1;
}

Here we presume that the first methods return a Task, rather than a Task<T>. Since there is no result value associated with the first two tasks, awaiting them produces no value, and therefore, the expression must appear as a statement. The third task is presumably of type Task<int>, and its value can be used in the computation of the value of the task returned by DoStuffAsync().

This Advanced Topic begins with the word Generally. In fact, the exact rule regarding the return type that await requires is more generic than just Task, or Task<T>. Rather, it requires that the type support a GetAwaiter. This method produces an object that has certain properties and methods needed by the compiler’s rewriting logic. This makes the system extensible by third parties;8 if you want to design your own non-Task-based asynchrony system that uses some other type to represent asynchronous work, you can do so and still use the await syntax.

Note, however, it is not possible to make async methods return something other than void, Task, or Task<T>, no matter what type is awaited inside the method.

Wrapping your head around precisely what is happening in an async method can be difficult, but it is far less difficult than trying to figure out what asynchronous code written with explicit continuations in lambdas is doing. The key points to remember are as follows.

• When control reaches an await keyword, the expression which follows it produces a task.9 Control then returns to the caller so that it can continue to do work while the task completes asynchronously.

• Some time after the task completes, control resumes at the point following the await. If the awaited task produces a result, that result is then obtained. If it faulted, the exception is thrown.

• A return statement in an async method causes the task associated with the method invocation to become completed; if the return statement has a value, the value returned becomes the result of the task.

Task Schedulers and the Synchronization Context

On occasion this chapter mentions the task scheduler and its role in determining how to assign work to threads efficiently. Programmatically, the task scheduler is an instance of the System.Threading.Tasks.TaskScheduler. This class, by default, uses thread pool to schedule tasks appropriately, determining how to safely and efficiently execute them—when to reuse them, dispose them, or create additional ones.

It is possible to create your own task scheduler that makes different choices about how to schedule tasks by deriving a new type from the TaskScheduler class. You can obtain a TaskScheduler that will schedule a task to the current thread (or, more precisely, to the synchronization context associated with the current thread), rather than to a different worker thread, by using the static FromCurrentSynchronizationContext() method.10

The synchronization context under which a task executes and, in turn, the continuation task(s) execute, is important because the awaiting task consults the synchronization context (assuming there is one) in order for a task to execute efficiently and safely. Listing 18.20 (along with Output 18.7) is similar to Listing 18.5 except that it also prints out the thread ID when it displays the message.

Listing 18.20. Calling Task.ContinueWith()

Click here to view code image

using System;
using System.Threading.Tasks;

public class Program
{
 public static void Main()
 {
 DisplayStatus("Before");
 Task taskA =
 Task.Run(() =>
 DisplayStatus("Starting..."))
 .ContinueWith(antecedent =>
 DisplayStatus("Continuing A..."));
 Task taskB = taskA.ContinueWith(antecedent =>
 DisplayStatus("Continuing B..."));
 Task taskC = taskA.ContinueWith(antecedent =>
 DisplayStatus("Continuing C..."));
 Task.WaitAll(taskB, taskC);
 DisplayStatus("Finished!");
 }

 private static void DisplayStatus(string message)
 {
 string text =
 string.Format("{0}: {1}",
 Thread.CurrentThread.ManagedThreadId,
 message);
 Console.WriteLine(text);
 }
}

Output 18.7.

1: Before
3: Starting...
4: Continuing A...
3: Continuing C...
4: Continuing B...
1: Finished!

What is noteworthy about the output is the fact that the thread ID changes sometimes and gets repeated other times. In a plain console application like this, the synchronization context (accessible from SynchronizationContext.Current) is null—the default synchronization context causes the thread pool to handle thread allocation instead. This explains why the thread ID changes between tasks; sometimes the thread pool determines that it is more efficient to use a new thread and sometimes to reuse an existing thread.

Fortunately, the synchronization context gets set automatically for types of applications where that is critical. For example, if the code creating tasks is running in a thread created by ASP.NET, the thread will have a synchronization context of type AspNetSynchronizationContext associated with it, whereas if your code is running in a thread created in a WPF application, the thread will have an instance of DispatcherSynchronizationContext associated with it. (And for console applications, there is no synchronization context by default.) Since the TPL consults the synchronization context and the synchronization context varies depending on the circumstances of the execution, the TPL is able to schedule continuations executing in contexts that are both efficient and safe.

To modify the code so that the synchronization context is leveraged instead requires first setting the synchronization context, and second, using async/await so that the synchronization context gets consulted.11

It is possible to define custom synchronization contexts, and to work with existing synchronization contexts to improve their performance in some specific scenarios. However, describing how to do so is beyond the scope of this text.

async/await with the Windows UI

One place that synchronization is especially important is in the context of UI and Web programming. With the Windows UI, for example, there is a message pump that processes messages such as mouse click and move events. Furthermore, the UI is single-threaded and interaction with any UI components (a text box, for example) must always occur from the single UI thread. One of the key advantages of the async/await pattern is the fact that it leverages the synchronization context so that continuation work—work that appears after the await statement—will always execute on the same synchronization task that invoked the await statement. This is of significant value because it eliminates the need to explicitly switch back to the UI thread in order to update a control.

To appreciate this, consider the example of a UI event for a button click in WPF, as follows in Listing 18.21.

Listing 18.21. Synchronous High-Latency Invocation in WPF

Click here to view code image

using System;

private void PingButton_Click(
 object sender, RoutedEventArgs e)
{
 StatusLabel.Content = "Pinging...";
 Ping ping = new Ping();
 PingReply pingReply =
 ping.Send("www.IntelliTect.com");
 StatusLabel.Content = pingReply.Status.ToString();
}

Given that StatusLabel is a WPF System.Windows.Label control and we have updated the Content property twice within the PingButton_Click() event subscriber, it would be a reasonable assumption that first “Pinging...” would be displayed until Ping.Send() returned, and then the label would be updated with the status of the Send() reply. As those experienced with WPF well know, this is not, in fact, what happens. Rather, a message is posted to the Windows message pump to update the content with “Pinging...” but, since the UI thread is busy executing the PingButton_Click() method, the Windows message pump is not processed. By the time the UI thread frees up to look at the Windows message pump, a second Content property update request has been queued and the only message that the user is able to observe is the final status.

To fix this problem using TAP, we change the code highlighted in Listing 18.22.

Listing 18.22. Synchronous High-Latency Invocation in WPF Using await

Click here to view code image

using System;
async private void PingButton_Click(
 object sender, RoutedEventArgs e)
{
 StatusLabel.Content = "Pinging...";
 Ping ping = new Ping();
 PingReply pingReply =

 await ping.SendPingAsync("www.IntelliTect.com");

 StatusLabel.Content = pingReply.Status.ToString();
}

There are two advantages to this change. First, the asynchronous nature of the ping call frees up the caller thread to return to the Windows message pump caller’s synchronization context, and processes the update to StatusLabel.Content so that “Pinging...” appears to the user. Second, when awaiting ping.SendTaskAsync() completes, it will always execute on the same synchronization context as the caller. And, since the synchronization context is specifically appropriate for WPF, it is single-threaded, and therefore, the return will always be to the same thread—the UI thread. In other words, rather than immediately executing the continuation task, the TPL consults the synchronization context, which instead posts a message regarding the continuation work to the message pump. Next, because the UI thread monitors the message pump, upon picking up the continuation work message, it invokes the code following the await call. (As a result, the invocation of the continuation code is on the same thread as the caller that processed the message pump.)

There is a key code readability feature built into the TAP language pattern. Notice in Listing 18.22 that the call to return pingReply.Status appears to flow naturally after the await, providing clear indication that it will execute immediately following the previous line. However, writing what really happens from scratch would be far less understandable for multiple reasons.

await Operators

There is no limitation on the number of times await can be placed into a single method. And in fact, they are not limited to appearing one after another. Rather, await can be placed into loops and processed consecutively one after the other, thereby following a natural control flow the way code appears. Consider the example in Listing 18.23.

Listing 18.23. Iterating over an Await Operation

Click here to view code image

using System;
async private void PingButton_Click(
 object sender, RoutedEventArgs e)
{
 List<string> urls = new List<string>()
 {
 "www.habitat-spokane.org",
 "www.partnersintl.org",
 "www.iassist.org",
 "www.fh.org",
 "www.worldvision.org"
 };
 IPStatus status;

 Func<string, Task<IPStatus>> func =
 async (localUrl) =>
 {
 Ping ping = new Ping();
 PingReply pingReply =
 await ping.SendPingAsync(localUrl);
 return pingReply.Status;
 };

 StatusLabel.Content = "Pinging...";

 foreach(string url in urls)
 {
 status = await func(url);
 StatusLabel.Content =
 string.Format("{0}: {1} ({2})",
 url, status.ToString(),
 Thread.CurrentThread.ManagedThreadId);
 }

}

Note that regardless of whether the awaits occur within an iteration or as separate entries they will execute serially, one after the other and in the same order they were invoked from the calling thread. The underlying implementation is to string them together in the semantic equivalent of Task.ContinueWith(), except the code between the await operators will all execute in the caller’s synchronization context.

Support for TAP from the UI is one of the key scenarios that led to TAP’s creation. A second scenario takes place on the server where a request comes in from a client to query an entire table’s worth of data from the database. Since querying the data could be time-consuming, a new thread should be created rather than consuming one from the limited number allocated to the thread pool. The problem with this approach is that the work to query from the database is executing entirely on another machine. There is no reason to block an entire thread since the thread is generally not active anyway.

To summarize, TAP was created to address these key problems:

• There is a need to allow long-running activities to occur without blocking the UI thread.

• Creating a new thread (or Task) for non-CPU-intensive work is relatively expensive when you consider that all the thread is doing is waiting for the activity to complete.

• When the activity completes (by either using a new thread or via a callback) it is frequently necessary to make a thread synchronization context switch back to the original caller that initiated the activity.

• It provides a new pattern that works for both CPU- and non-CPU-intensive asynchronous invocations—one that all .NET languages support explicitly.

Executing Loop Iterations in Parallel

Consider the following for loop statement and associated code (see Listing 18.24 and the corresponding output, Output 18.8). The listing calls a method for calculating a section of the decimal expansion of pi where the parameters are the number of digits and the digit to start with. The actual calculation is not germane to the discussion. What is interesting about this calculation is that it is embarrassingly parallelizable; that is, it is almost embarrassing how easy it is to split up a large task—say, computing 1 million decimal digits of pi—into any desired number of smaller tasks that can all be run in parallel. These types of computations are the easiest ones to speed up by adding parallelism.

Listing 18.24. For Loop Synchronously Calculating Pi in Sections

Click here to view code image

using System;
using AddisonWesley.Michaelis.EssentialCSharp.Shared;

class Program
{
 const int TotalDigits = 100;
 const int BatchSize = 10;

 static void Main()
 {
 string pi = null;
 int iterations = TotalDigits / BatchSize;
 for(int i = 0; i < iterations; i++)
 {
 pi += PiCalculator.Calculate(
 BatchSize, i * BatchSize);
 }

 Console.WriteLine(pi);
 }
}

using System;

class PiCalculator
{
 public static string Calculate(
 int digits, int startingAt)
 {
 // ...
 }

 // ...
}

Output 18.8.

Click here to view code image

>3.1415926535897932384626433832795028841971693993751058209749445923078
1640628620899862803482534211706798214808651328230664709384460955058223
1725359408128481117450284102701938521105559644622948954930381964428810
9756659334461284756482337867831652712019091456485669234603486104543266
4821339360726024914127372458700660631558817488152092096282925409171536
4367892590360011330530548820466521384146951941511609433057270365759591
9530921861173819326117931051185480744623799627495673518857527248912279
3818301194912

The for loop executes each iteration synchronously and sequentially. However, since the pi calculation algorithm splits the pi calculation into independent pieces, it is not necessary to compute the pieces sequentially just as long as the results are appended in the right order. Therefore, imagine if you could have all the iterations of this loop run concurrently: Each processor could take a single iteration and execute it in parallel with other processors executing other iterations. Given the simultaneous execution of iterations, we could decrease the execution time more and more based on the number of processors.

The TPL provides a convenient method, Parallel.For(), that does precisely that. Listing 18.25 shows how to modify the sequential, single-threaded program in Listing 18.24 to use the helper method.

Listing 18.25. For Loop Calculating Pi in Sections in Parallel

Click here to view code image

using System;

using System.Threading.Tasks;

using AddisonWesley.Michaelis.EssentialCSharp.Shared;

// ...

class Program
{
 static void Main()
 {
 string pi = null;
 int iterations = TotalDigits / BatchSize;
 string[] sections = new string[iterations];

 Parallel.For(0, iterations, (i) =>
 {
 sections[i] = PiCalculator.Calculate(
 BatchSize, i * BatchSize);
 });

 pi = string.Join("", sections);
 Console.WriteLine(pi);
}

The output for Listing 18.25 is identical to Output 18.8; however, the execution time is significantly faster if you have multiple CPUs (and possibly slower if you do not). The Parallel.For() API is designed to look similar to a standard for loop. The first parameter is the fromInclusive value, the second is the toExclusive value, and the last is the Action<int> to perform as the loop body. When using an expression lambda for the action, the code looks similar to a for loop statement except now each iteration may execute in parallel. As with the for loop, the call to Parallel.For() will not complete until all iterations are complete. In other words, by the time execution reaches the string.Join() statement, all sections of pi will have been calculated.

It is important to note that the code for combining the various sections of pi no longer occurs inside the iteration (action). Since sections of the pi calculation will very likely not complete sequentially, appending a section whenever an iteration completes will likely append them out of order. Even if sequence was not a problem, there is still a potential race condition because the += operator is not atomic. To address both of these problems, each section of pi is stored into an array and no two or more iterations will access a single element within the array simultaneously. Only once all sections of pi are calculated does string.Join() combine them. In other words, we postpone concatenating the sections until after the Parallel.For() loop has completed. This avoids any race condition caused by sections not yet calculated or sections concatenating out of order.

The TPL uses the same sorts of thread pooling techniques that it uses for task scheduling to ensure good performance of the parallel loop: It will try to ensure that CPUs are not overscheduled, and so on.

Guidelines

DO use parallel loops when the computations performed can be easily split up into many mutually independent processor-bound computations that can be executed in any order on any thread.

The TPL also provides a similar parallel version of the foreach statement, as shown in Listing 18.26.

Listing 18.26. Parallel Execution of a foreach Loop

Click here to view code image

using System;
using System.Collections.Generic;
using System.IO;

using System.Threading.Tasks;

class Program
{
 // ...
 static void EncryptFiles(
 string directoryPath, string searchPattern)
 {
 IEnumerable<string> files = Directory.GetFiles(
 directoryPath, searchPattern,
 SearchOption.AllDirectories);

 Parallel.ForEach(files, (fileName) =>
 {
 Encrypt(fileName);
 });

 }
 // ...
}

In this example, we call a method that encrypts each file within the files collection and it does so in parallel, executing as many threads as the TPL determines is efficient.

Advanced Topic: How the TPL Tunes Its Own Performance

The default scheduler within the TPL targets the thread pool, resulting in a variety of heuristics to try to ensure that the right number of threads are executing at any one time. Two of the heuristics it uses are hill climbing and work stealing.

The hill climbing algorithm involves creating threads to run tasks, and then monitoring the performance of those tasks to try to experimentally determine the point at which adding more threads is making performance worse. Once that point is reached, the number of threads can then be decreased back to the number that produced the best performance.

The TPL associates “top-level” tasks that are waiting to be executed with no particular thread. If, however, a task running on a thread itself creates another task, the newly created task is associated with that thread automatically. When the new “child” task is eventually scheduled to run, it usually runs on the same thread as the task that created it. The work stealing algorithm identifies threads that have an unusually large or unusually small amount of pending work; a thread that has too few tasks associated with it will sometimes “steal” not-yet-executed tasks from threads that have too many tasks waiting to run.

The key feature of these algorithms is that they enable the TPL to dynamically tune its own performance to mitigate processor overscheduling and underscheduling, and to balance the work among the available processors.

The TPL generally does a good job of tuning its own performance, but you can help it do a good job. Specifying the TPL TaskCreationOptions.LongRunning option described earlier in the section Long-Running Tasks is an example of such a hint. You can also explicitly tell the task scheduler how many threads you think would be best to service a parallel loop; see the Advanced Topic titled Parallel Loop Options for more details.

Beginner Topic: Parallel Loop Exception Handling with AggregateException

We know already that the TPL catches and saves exceptions associated with tasks in an AggregateException, because a given task might have several exceptions obtained from its subtasks. This is also the case with parallel execution of loops: Each iteration could have produced an exception, and therefore, the exceptions need to be gathered up into one aggregating exception. Consider the example in Listing 18.27 and its output in Output 18.9.

Listing 18.27. Unhandled Exception Handling for Parallel Iterations

Click here to view code image

using System;
using System.Collections.Generic;
using System.IO;

using System.Threading;
using System.Threading.Tasks;

class Program
{
 // ...
 static void EncryptFiles(
 string directoryPath, string searchPattern)
 {
 IEnumerable<string> files = Directory.GetFiles(
 directoryPath, searchPattern,
 SearchOption.AllDirectories);
 try
 {
 Parallel.ForEach(files, (fileName) =>
 {
 Encrypt(fileName);
 });
 }
 catch(AggregateException exception)
 {
 Console.WriteLine(
 "ERROR: {0}:",
 exception.GetType().Name);
 foreach(Exception item in
 exception.InnerExceptions)
 {
 Console.WriteLine(" {0} - {1}",
 item.GetType().Name, item.Message);
 }
 }
 }
 // ...
}

Output 18.9.

Click here to view code image

ERROR: AggregateException:
 UnauthorizedAccessException - Attempted to perform an unauthorized
operation.
 UnauthorizedAccessException - Attempted to perform an unauthorized
operation.
 UnauthorizedAccessException - Attempted to perform an unauthorized
operation.

Output 18.9 shows that three exceptions occurred while executing the Parallel.ForEach<T>(...) loop. However, in the code, there is only one catch of type System.AggregateException. The UnauthorizedAccessExceptions were retrieved from the InnerExceptions property on the AggregateException. With a Parallel.ForEach<T>() loop, each iteration could potentially throw an exception and so the System.AggregateException thrown by the method call will contain each of those exceptions within its InnerExceptions property.

Canceling a Parallel Loop

Unlike a task which requires an explicit call in order to block until it completes, a parallel loop executes iterations in parallel but does not itself return until the entire parallel loop completes. Canceling a parallel loop, therefore, generally involves invocation of the cancellation request from a thread other than the one executing the parallel loop. In Listing 18.28, we invoke Parallel.ForEach<T>() using Task.Run(). In this manner, not only does the query execute in parallel, but it also executes asynchronously, allowing the code to prompt the user to “Push ENTER to exit.”

Listing 18.28. Canceling a Parallel Loop

Click here to view code image

using System;
using System.Collections.Generic;
using System.Diagnostics;
using System.IO
using System.Threading;
using System.Threading.Tasks;

public class Program
{
 // ...

 static void EncryptFiles(
 string directoryPath, string searchPattern)
 {

 string stars =
 "*".PadRight(Console.WindowWidth-1, '*');

 IEnumerable<string> files = Directory.GetFiles(
 directoryPath, searchPattern,
 SearchOption.AllDirectories);

 CancellationTokenSource cts =
 new CancellationTokenSource();
 ParallelOptions parallelOptions =
 new ParallelOptions
 { CancellationToken = cts.Token };
 cts.Token.Register(
 () => Console.WriteLine("Cancelling..."));

 Console.WriteLine("Push ENTER to exit.");

 // Use Task.Factory.StartNew<string>() for
 // TPL prior to .NET 4.5
 Task task = Task.Run(() =>
 {
 try
 {
 Parallel.ForEach(
 files, parallelOptions,
 (fileName, loopState) =>
 {
 Encrypt(fileName);
 });
 }
 catch(OperationCanceledException){}
 });

 // Wait for the user's input
 Console.Read();

 // Cancel the query

 cts.Cancel();

 Console.Write(stars);
 task.Wait();
 }
}

The parallel loops use the same cancellation token pattern that tasks use. The token obtained from a CancellationTokenSource is associated with the parallel loop by calling an overload of the ForEach() method that has a parameter of type ParallelOptions. This object contains the cancellation token.

Note that if you cancel a parallel loop operation, any iterations that have not started yet are prevented from starting by checking the IsCancellationRequested property. Existing executing iterations will run to their respective termination points. Furthermore, calling Cancel() even after all iterations have completed will still cause the registered cancel event (via cts.Token.Register()) to execute.

The only means by which the ForEach() method is able to acknowledge that the loop has been canceled is via the OperationCanceledException. Given that cancellation in this example is expected, the exception is caught and ignored, allowing the application to display “Canceling...” followed by a line of stars before exiting.

Advanced Topic: Parallel Loop Options

Although not generally necessary, it is possible to control the maximum degree of parallelism (that is, the number of threads that are scheduled to run at the same time) via the ParallelOptions parameter on overloads of both the Parallel.For() and Parallel.ForEach<T>() loops. There are specific cases where the developer knows more about the particular algorithm or circumstance such that changing the maximum degree of parallelism makes sense. These circumstances include the following.

• Scenarios where you want to disable parallelism to make debugging or analysis easier. Setting the maximum degree of parallelism to 1 ensures that the loop iterations do not run concurrently.

• Scenarios where you know ahead of time that the degree of parallelism will be gated on an external factor such as a hardware constraint. For example, if your parallel operation involves using multiple USB ports, it is possible that there is no point in creating more threads than there are available ports.

• Scenarios with really long-running loop iterations (for example, minutes or hours). The thread pool can’t distinguish long-running iterations from blocked operations, and therefore could end up introducing many new threads, all of which will be consumed by the for loop. This can result in incremental thread growth over time, resulting in a huge number of threads in the process.

And so on. To control the maximum degree of parallelism, use the MaxDegreeOfParallelism property on the ParallelOptions object.

You can also use the ParallelOptions object’s TaskScheduler property to specify a custom task scheduler to use to schedule the tasks associated with each iteration. For example, you might have an asynchronous event handler that responds to the user’s clicks of a “Next” button. If the user clicks the button several times, you might want to use a custom task scheduler that prioritizes the most recently created task, rather than prioritizing the task that has waited the longest. The task scheduler provides a means of specifying how the tasks will execute in relation to one another.

The ParallelOptions object also has a CancellationToken property that provides a mechanism to communicate to the loop that no further iterations should start. Additionally, the body of an iteration can watch the cancellation token to determine if an early exit from the iteration is in order.

Advanced Topic: Breaking a Parallel Loop

Like a standard for loop, the Parallel.For() loop also supports the concept of “breaking” to exit the loop and canceling any further iterations. In the context of parallel for execution, however, a break signifies that no new iterations following the breaking iteration should start. All currently executing iterations will run to completion.

To break a parallel loop, you can provide a cancellation token and cancel it on another thread, as described in the preceding Advanced Topic. You can also use an overload of the Parallel.For() method whose body delegate takes two parameters: the index, and a ParallelLoopState object. An iteration that wishes to “break” the loop can call the Break() or Stop() method on the loop state object passed to the delegate. The Break() method indicates that no more iterations with index values higher than the current value need to execute; the Stop() method indicates that no more iterations need to run at all.

For example, suppose you have a Parallel.For() loop that is performing ten iterations in parallel. Some of those iterations might run faster than others, and the task scheduler does not guarantee that they run in any particular order. Suppose the first iteration has completed, iterations 3, 5, 7, and 9 are “in flight,” scheduled to four different threads, and iterations 5 and 7 both call Break(). In this scenario, iterations 6 and 8 will never start, but iterations 2 and 4 will still be scheduled to run. Iterations 3 and 9 will run to completion because they were already started when the break happened.

The Parallel.For() and Parallel.ForEach<T>() methods return a reference to a ParallelLoopResult object that contains useful information about what happened during the loop. This result object has the following properties.

• IsCompleted: returns a Boolean indicating whether all iterations started.

• LowestBreakIteration: identifies the lowest iteration that executed a break. The value is of type long?, where a value of null indicates no break statement was encountered.

Returning to the ten-iteration example, the IsCompleted property will return false and the LowestBreakIteration will return a value of 5.

Running LINQ Queries in Parallel

Just as it is possible to execute a loop in parallel using Parallel.For(), it is also possible to execute LINQ queries in parallel using the Parallel LINQ API (PLINQ for short). An example of a simple nonparallel LINQ expression is shown in Listing 18.29; in Listing 18.30 we’ll modify it to run in parallel.

Listing 18.29. LINQ Select()

Click here to view code image

using System.Collections.Generic;
using System.Linq;

class Cryptographer
{
 // ...
 public List<string>
 Encrypt(IEnumerable<string> data)
 {
 return data.Select(
 item => Encrypt(item)).ToList();
 }
 // ...
}

In Listing 18.29, we have a LINQ query using the Select() standard query operator to encrypt each string within a sequence of strings, and convert the resultant sequence to a list. This seems like an “embarrassingly parallel” operation; each encryption is likely to be a high-latency processor-bound operation that could be farmed out to a worker thread on another CPU.

Listing 18.30 shows how to modify Listing 18.29 so that the code that encrypts the strings is executed in parallel.

Listing 18.30. Parallel LINQ Select()

Click here to view code image

using System.Linq;

class Cryptographer
{
 // ...
 public List<string>
 Encrypt (IEnumerable<string> data)
 {
 return data.AsParallel().Select(
 item => Encrypt(item)).ToList();
 }
 // ...
}

As Listing 18.30 shows, the change to enable parallel support is extremely small! All that it uses is a .NET Framework 4.0–introduced standard query operator, AsParallel(), which can be found on the static class System.Linq.ParallelEnumerable. This simple extension method tells the runtime that it can execute the query in parallel. The result is that on machines with multiple available CPUs, the total time taken to execute the query can be significantly shorter.

System.Linq.ParallelEnumerable includes a superset of the query operators available on System.Linq.Enumerable, resulting in possible performance improvements for all of the common query operators, including those used for sorting, filtering (Where()), projecting (Select()), joining, grouping, and aggregating. Listing 18.31 shows how to do a parallel sort.

Listing 18.31. Parallel LINQ with Standard Query Operators

Click here to view code image

// ...
 OrderedParallelQuery<string> parallelGroups =
 data.AsParallel().OrderBy(item => item);

 // Show the total count of items still
 // matches the original count
 System.Diagnostics.Trace.Assert(
 data.Count == parallelGroups.Sum(
 item => item.Count()));
// ...

As Listing 18.31 shows, invoking the parallel version simply involves a call to the AsParallel() extension method. Notice that the type of the result returned by the parallel standard query operators is ParallelQuery<T>, or OrderedParallelQuery<T>, which informs the compiler that it should continue to use the parallel versions of the standard query operations that are available.

Since query expressions are simply a syntactic sugar for the method call form of the query used in the listings above, you can just as easily use AsParallel() with the expression form. Listing 18.32 shows an example of executing a grouping operation in parallel using query expression syntax.

Listing 18.32. Parallel LINQ with Query Expressions

Click here to view code image

// ...
 ParallelQuery<IGrouping<char, string>> parallelGroups;
 parallelGroups =

 from text in data.AsParallel()
 orderby text
 group text by text[0];

 // Show the total count of items still
 // matches the original count
 System.Diagnostics.Trace.Assert(
 data.Count == parallelGroups.Sum(
 item => item.Count()));
// ...

As you saw in the previous examples, converting a query or iteration loop to execute in parallel is simple. There is one significant caveat, however. As we will discuss in depth in the next chapter, you must take care not to allow multiple threads to inappropriately access and modify the same memory simultaneously. Doing so will cause a race condition.

As we saw earlier in this chapter, the Parallel.For() and Parallel.ForEach<T> 4() methods will gather up any exceptions thrown during the parallel iterations and then throw one aggregating exception containing all of the original exceptions. PLINQ operations are no different; they also have the potential of returning multiple exceptions for the exact same reason: When the query logic is run on each element in parallel, the code executing on each element can independently throw an exception. Unsurprisingly, PLINQ deals with this situation in exactly the same way as do parallel loops and the TPL: Exceptions thrown during parallel queries are accessible via the InnerExceptions property of the AggregateException. Therefore, wrapping a PLINQ query in a try/catch block with the exception type of System.AggregateException will successfully handle any exceptions within each iteration that were unhandled.

Canceling a PLINQ Query

As expected, the cancellation request pattern is also available on PLINQ queries. Listing 18.33 (with Output 18.10) provides an example. Like the parallel loops, canceled PLINQ queries will throw a System.OperationCanceledException. Like parallel loops, executing a PLINQ query is a synchronous operation on the invoking thread. Thus, a common technique is to wrap the parallel query in a task that runs on another thread so that the current thread can cancel it if necessary—the same solution that is used in Listing 18.28.

Listing 18.33. Canceling a PLINQ Query

Click here to view code image

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading;
using System.Threading.Tasks;

public class Program
{

 public static List<string> ParallelEncrypt(
 List<string> data,
 CancellationToken cancellationToken)
 {
 return data.AsParallel().WithCancellation(
 cancellationToken).Select(
 (item) => Encrypt(item)).ToList();
 }

 public static void Main()
 {
 List<string> data = Utility.GetData(1000000).ToList();

 CancellationTokenSource cts =
 new CancellationTokenSource();

 Console.WriteLine("Push ENTER to exit.");

 // Use Task.Factory.StartNew<string>() for
 // TPL prior to .NET 4.5
 Task task = Task.Run(() =>
 {
 data = ParallelEncrypt(data, cts.Token);
 }, cts.Token);

 // Wait for the user's input
 Console.Read();

 cts.Cancel();

 Console.Write(stars);

 try{ task.Wait(); }
 catch(AggregateException){}
 }

 // ...
}

Output 18.10.

ERROR: The operation was canceled.

As with a parallel loop or task, canceling a PLINQ query requires a CancellationToken, which is available from a CancellationTokenSource. However, rather than overloading every PLINQ query to support the cancellation token, the ParallelQuery<T> object returned by IEnumerable’s AsParallel() method includes a WithCancellation() extension method that simply takes a CancellationToken. As a result, calling Cancel() on the CancellationTokenSource object will request the parallel query to cancel—because it checks the IsCancellationRequested property on the CancellationToken.

As mentioned, canceling a PLINQ query will throw an exception in place of returning the complete result. One common technique for dealing with a possibly canceled PLINQ query is to wrap the query in a try block and catch the OperationCanceledException. A second common technique, used in Listing 18.33, is to pass the CancellationToken to both ParallelEncrypt() and as a second parameter on Run(). This will cause task.Wait() to throw an AggregateException whose InnerException property will be set to a TaskCanceledException. The aggregating exception can then be caught, as you would catch any other exception from a parallel operation.

Summary

In this chapter, we started with a look at the basic parts of multithreaded programs: the Thread class, which represents an independent “point of control” in a program, and the ThreadPool, which encourages efficient allocation and scheduling of threads to multiple CPUs. However, these APIs are low-level and difficult to work with directly; version 4.0 of the .NET Framework provides the Parallel Extensions library, which includes the Task Parallel Library (TPL) and Parallel LINQ (PLINQ). Both provide new APIs for creating and scheduling units of work represented by Task objects, executing loops in parallel using Parallel.For() and Parallel.ForEach(), and automatically parallelizing LINQ queries with AsParallel().

We also discussed how C# 5.0 makes programming complex workflows with Task objects much easier by automatically rewriting your programs to manage the continuation “wiring” that composes larger tasks out of smaller tasks.

At the beginning of this chapter, we briefly glossed over some of the difficult problems that developers often face when writing multithreaded programs: atomicity problems, deadlocks, and other “race conditions” that introduce uncertainty and bad behavior into multithreaded programs. We mentioned that the standard way to avoid these problems is to carefully write code that uses “locks” to synchronize access to shared resources; this is the topic of the next chapter.

19. Thread Synchronization

In the preceding chapter, we discussed the details of multithreaded programming using the Task Parallel Library (TPL) and Parallel LINQ (PLINQ). One topic we specifically avoided, however, was thread synchronization, which prevents race conditions while avoiding deadlocks. Thread synchronization is the topic of this chapter.

[image: Image]

We begin with a multithreaded example with no thread synchronization around shared data—resulting in a race condition in which data integrity is lost. This serves as the introduction for why we need thread synchronization followed by myriad mechanisms and best practices for doing it.

Prior editions of this book also included a significant section on additional multithreading patterns and another on various timer callback mechanisms. With the introduction of the async/await pattern, however, those approaches have essentially been replaced unless programming with frameworks prior to C# 5.0/.NET 4.5. In order to make the pre-C# 5.0 material still available, it has been moved to Appendix C, Interfacing with Multithreading Patterns prior to C# 5.0, and Appendix D, Timers prior to the Async/Await Pattern of C# 5.0.

This entire chapter uses the TPL, so the samples cannot be compiled on frameworks prior to .NET Framework 4. However, unless specifically identified as a .NET Framework 4 API, the only reason for the .NET Framework 4 restriction is the use of the System.Threading.Tasks.Task class to execute the asynchronous operation. Modifying the code to instantiate a System.Threading.Thread and use a Thread.Join() to wait for the thread to execute will allow the vast majority of samples to compile on earlier frameworks.

That being said, the specific API for starting tasks throughout this chapter is the .NET 4.5-specific System.Threading.Tasks.Task.Run(). As we discussed in the preceding chapter, this method is preferred over System.Threading.Tasks.Task.Factory.StartNew() because it is simpler and sufficient for the majority of scenarios. Those readers limited to .NET 4 can replace Task.Run() with Task.Factory.StartNew() without any additional modifications. (For this reason the chapter does not explicitly highlight such code as .NET 4.5-specific code when only this method is used.)

Furthermore, Microsoft released the Reactive Extensions to .NET (Rx), a separate download that adds support for the TPL and PLINQ within the .NET 3.5 Framework.1 This framework also includes the concurrent and synchronization types introduced in this chapter. For this reason, code listings that depend on Task or that introduce C# 4.0 synchronization classes are, in fact, available from .NET 3.5 using the functionality backported to the .NET 3.5 Framework via Rx and a reference to the System.Threading.dll assembly.

In summary, most of the samples in the chapter will require only minor modification to work with .NET prior to .NET 4.5 either by using Task.Factory.StartNew() or by relying on Thread.Start() if the TPL is not available.

Why Synchronization?

Running a new thread is a relatively simple programming task. What makes multithreaded programming difficult, however, is identifying which data multiple threads can safely access simultaneously. The program must synchronize such data to prevent simultaneous access, thereby creating the “safety.” Consider Listing 19.1.

Listing 19.1. Unsynchronized State

Click here to view code image

using System;
using System.Threading.Tasks;

public class Program
{
 const int _Total = int.MaxValue;
 static long _Count = 0;

 public static void Main()
 {
 // Use Task.Factory.StartNew for .NET 4.0
 Task task = Task.Run(()=>Decrement());

 // Increment
 for(int i = 0; i < _Total; i++)
 {
 _Count++;
 }

 task.Wait();
 Console.WriteLine("Count = {0}", _Count);
 }

 static void Decrement()
 {
 // Decrement
 for(int i = 0; i < _Total; i++)
 {
 _Count--;
 }
 }
}

One possible result of Listing 19.1 appears in Output 19.1.

Output 19.1.

Count = 113449949

The important thing to note about Listing 19.1 is that the output is not 0. It would have been if Decrement() was called directly (sequentially). However, when calling Decrement() asynchronously, a race condition occurs because the individual steps within _Count++ and _Count-- statements intermingle. (As discussed in the Beginner Topic titled Multithreading Jargon early in Chapter 18, a single statement in C# will likely involve multiple steps.) Consider the sample execution in Table 19.1.

Table 19.1. Sample Pseudocode Execution

[image: Image]

Table 19.1 shows a parallel execution (or a thread context switch) by the transition of instructions appearing from one column to the other. The value of _Count after a particular line has completed appears in the last column. In this sample execution, _Count++ executes twice and _Count-- occurs once. However, the resultant _Count value is 0, not 1. Copying a result back to _Count essentially wipes out any _Count value changes that occurred since the read of _Count on the same thread.

The problem in Listing 19.1 is a race condition, where multiple threads have simultaneous access to the same data elements. As this sample execution demonstrates, allowing multiple threads to access the same data elements likely undermines data integrity, even on a single-processor computer. To remedy this, the code needs synchronization around the data. Code or data synchronized for simultaneous access by multiple threads is thread-safe.

There is one important point to note about atomicity of reading and writing to variables. The runtime guarantees that a type whose size is no bigger than a native (pointer-size) integer will not be read or written partially. Assuming a 64-bit operating system, therefore, reads and writes to a long (64 bits) will be atomic. However, reads and writes to a 128-bit variable such as decimal may not be atomic. Therefore, write operations to change a decimal variable may be interrupted after copying only 32 bits, resulting in the reading of an incorrect value, known as a torn read.

Beginner Topic: Multiple Threads and Local Variables

Note that it is not necessary to synchronize local variables. Local variables are loaded onto the stack and each thread has its own logical stack. Therefore, each local variable has its own instance for each method call. By default, local variables are not shared across method calls; therefore, they are also not shared among multiple threads.

However, this does not mean local variables are entirely without concurrency issues since code could easily expose the local variable to multiple threads.2 A parallel for loop that shares a local variable between iterations, for example, will expose the variable to concurrent access and a race condition (see Listing 19.2).

Listing 19.2. Unsynchronized Local Variables

Click here to view code image

using System;
using System.Threading.Tasks;

public class Program
{
 public static void Main()
 {
 int x = 0;
 Parallel.For(0, int.MaxValue, i =>
 {
 x++;
 x--;
 });
 Console.WriteLine("Count = {0}", x);
 }
}

In this example, x (a local variable) is accessed within a parallel for loop and so multiple threads will modify it simultaneously, creating a race condition very similar to Listing 19.1. The output is unlikely to yield the value 0 even though x is incremented and decremented the same number of times.

Beginner Topic: Task Return with No await

Notice in Listing 19.1 that although Task.Run(()=>Decrement()) returns a Task, the await operator is not used. The reason for this is that await is only allowable in an async-decorated method and Main() doesn’t support using async. Refactoring the code outside of Main() would allow it to easily leverage the await/async pattern as shown in Listing 19.3.

Listing 19.3. Unsynchronized Local Variables

Click here to view code image

using System;
using System.Threading.Tasks;

public class Program
{
 // ...

 public static async void CountAsync()
 {
 // Use Task.Factory.StartNew for .NET 4.0
 Task task = Task.Run(()=>Decrement());

 // Increment
 for(int i = 0; i < _Total; i++)
 {
 _Count++;
 }

 await task;
 Console.WriteLine("Count = {0}", _Count);
 }
}

Synchronization Using Monitor

To synchronize multiple threads so that they cannot execute particular sections of code simultaneously, use a monitor to block the second thread from entering a protected code section before the first thread has exited that section. The monitor functionality is part of a class called System.Threading.Monitor, and the beginning and end of protected code sections are marked with calls to the static methods Monitor.Enter() and Monitor.Exit(), respectively.

Listing 19.4 demonstrates synchronization using the Monitor class explicitly. As this listing shows, it is important that all code between calls to Monitor.Enter() and Monitor.Exit() be surrounded with a try/finally block. Without this, an exception could occur within the protected section and Monitor.Exit() may never be called, thereby blocking other threads indefinitely.

Listing 19.4. Synchronizing with a Monitor Explicitly

Click here to view code image

using System;
using System.Threading;
using System.Threading.Tasks;

public class Program
{

 readonly static object _Sync = new object();

 const int _Total = int.MaxValue;
 static long _Count = 0;

 public static void Main()
 {
 // Use Task.Factory.StartNew for .NET 4.0
 Task task = Task.Run(()=>Decrement());

 // Increment
 for(int i = 0; i < _Total; i++)
 {

 bool lockTaken = false;
 try
 {
 Monitor.Enter(_Sync, ref lockTaken);
 _Count++;
 }
 finally
 {
 if (lockTaken)
 {
 Monitor.Exit(_Sync);
 }
 }

 }

 task.Wait();
 Console.WriteLine("Count = {0}", _Count);
 }

 static void Decrement()
 {
 for(int i = 0; i < _Total; i++)
 {

 bool lockTaken = false;
 try
 {
 Monitor.Enter(_Sync, ref lockTaken);
 _Count--;
 }
 finally
 {
 if(lockTaken)
 {
 Monitor.Exit(_Sync);
 }
 }

 }
 }
}

The results of Listing 19.4 appear in Output 19.2.

Output 19.2.

Count = 0

Note that calls to Monitor.Enter() and Monitor.Exit() are associated with one another by sharing the same object reference passed as the parameter (in this case, _Sync).

The Monitor.Enter() overload method that takes the lockTaken parameter was only added to the framework in .NET 4.0. Before that, no such lockTaken parameter was available and there was no way to reliably catch an exception that occurred between the Monitor.Enter() and the try block. Placing the try block immediately following the Monitor.Enter() call was reliable in release code because the JIT prevented any such asynchronous exception from sneaking in. However, anything other than a try block immediately following the Monitor.Enter(), including any instructions that the compiler may have injected within debug code, could prevent the JIT from reliably returning execution within the try block. Therefore, if an exception did occur, it would leak the lock (the lock remains acquired) rather than executing the finally block and releasing it—likely causing a deadlock when another thread tries to acquire the lock. In summary, prior to .NET 4.0, always follow Monitor.Enter() with a try/finally{Monitor.Exit(_Sync))} block.

Monitor also supports a Pulse() method for allowing a thread to enter the “ready queue,” indicating it is up next for execution. This is a common means of synchronizing producer-consumer patterns so that no “consume” occurs until there has been a “produce.” The producer thread that owns the monitor (by calling Monitor.Enter()) calls Monitor.Pulse() to signal the consumer thread (which may already have called Monitor.Enter()) that an item is available for consumption, so “get ready.” For a single Pulse() call, only one thread (consumer in this case) can enter the ready queue. When the producer thread calls Monitor.Exit(), the consumer thread takes the lock (Monitor.Enter() completes) and enters the critical section to begin “consuming” the item. Once the consumer processes the waiting item, it calls Exit(), thus allowing the producer (currently blocked with Monitor.Enter()) to produce again. In this example, only one thread can enter the ready queue at a time, ensuring that there is no “consumption” without “production” and vice versa.

Using the lock Keyword

Because of the frequent need for synchronization using Monitor in multithreaded code, and the fact that the try/finally block could easily be forgotten, C# provides a special keyword to handle this locking synchronization pattern. Listing 19.5 demonstrates the use of the lock keyword, and Output 19.3 shows the results.

Listing 19.5. Synchronization Using the lock Keyword

Click here to view code image

using System;
using System.Threading;
using System.Threading.Tasks;

public class Program
{

 readonly static object _Sync = new object();

 const int _Total = int.MaxValue;
 static long _Count = 0;

 public static void Main()
 {
 // Use Task.Factory.StartNew for .NET 4.0
 Task task = Task.Run(()=>Decrement());

 // Increment
 for(int i = 0; i < _Total; i++)
 {

 lock(_Sync)
 {
 _Count++;
 }

 }

 task.Wait();
 Console.WriteLine("Count = {0}", _Count);
 }

 static void Decrement()
 {
 for(int i = 0; i < _Total; i++)
 {

 lock(_Sync)
 {
 _Count--;
 }

 }
 }
}

Output 19.3.

Count = 0

By locking the section of code accessing _Count (using either lock or Monitor), you make the Main() and Decrement() methods thread-safe, meaning they can be safely called from multiple threads simultaneously. (Prior to C# 4.0 the concept was the same except the compiler-emitted code depended on the lockTaken-less Monitor.Enter() method and the Monitor.Enter() called was emitted before the try block.)

The price of synchronization is a reduction in performance. Listing 19.5, for example, takes an order of magnitude longer to execute than Listing 19.1 does, which demonstrates lock’s relatively slow execution compared to the execution of incrementing and decrementing the count.

Even when lock is insignificant in comparison with the work it synchronizes, programmers should avoid indiscriminate synchronization in order to avoid the possibility of deadlocks and unnecessary synchronization on multiprocessor computers that could instead be executing code in parallel. The general best practice for object design is to synchronize mutable static state and not any instance data. (There is no need to synchronize something that never changes.) Programmers who allow multiple threads to access a particular object must provide synchronization for the object. Any class that explicitly deals with threads is likely to want to make instances thread-safe to some extent.

Choosing a lock Object

Whether or not the lock keyword or the Monitor class is explicitly used, it is crucial that programmers carefully select the lock object.

In the previous examples, the synchronization variable, _Sync, is declared as both private and read-only. It is declared read-only to ensure that the value is not changed between calls to Monitor.Enter() and Monitor.Exit(). This allows correlation between entering and exiting the synchronized block.

Similarly, the code declares _Sync as private so that no synchronization block outside the class can synchronize the same object instance, causing the code to block.

If the data is public, the synchronization object may be public so that other classes can synchronize using the same object instance. This makes it harder to avoid deadlock. Fortunately, the need for this pattern is rare. For public data, it is preferable to leave synchronization entirely outside the class, allowing the calling code to take locks with its own synchronization object.

It’s important that the synchronization object not be a value type. If the lock keyword is used on a value type, the compiler will report an error. (In the case of accessing the System.Threading.Monitor class explicitly [not via lock], no such error will occur at compile time. Instead, the code will throw an exception with the call to Monitor.Exit(), indicating there was no corresponding Monitor.Enter() call.) The issue is that when using a value type, the runtime makes a copy of the value, places it in the heap (boxing occurs), and passes the boxed value to Monitor.Enter(). Similarly, Monitor.Exit() receives a boxed copy of the original variable. The result is that Monitor.Enter() and Monitor.Exit() receive different synchronization object instances so that no correlation between the two calls occurs.

Why to Avoid Locking on this, typeof(type), and string

One common pattern is to lock on the this keyword for instance data in a class, and on the type instance obtained from typeof(type) (for example, typeof(MyType)) for static data. Such a pattern provides a synchronization target for all states associated with a particular object instance when this is used, and all static data for a type when typeof(type) is used. The problem is that the synchronization target that this (or typeof(type)) points to could participate in the synchronization target for an entirely different synchronization block created in an unrelated block of code. In other words, although only the code within the instance itself can block using the this keyword, the caller that created the instance can pass that instance to a synchronization lock.

The result is that two different synchronization blocks that synchronize two entirely different sets of data could block each other. Although perhaps unlikely, sharing the same synchronization target could have an unintended performance impact and, in extreme cases, even cause a deadlock. Instead of locking on this or even typeof(type), it is better to define a private, read-only field on which no one will block except for the class that has access to it.

Another lock type to avoid is string due to string interning. If the same string constant appears within multiple locations it is likely that all locations will refer to the same instance, making the scope of the lock a lot greater than expected.

In summary, use a per-synchronization context instance of type object for the lock target.

Guidelines

AVOID locking on this, typeof(), or a string.

DO declare a separate, read-only synchronization variable of type object for the synchronization target.

Advanced Topic: Avoid Synchronizing with MethodImplAttribute

One synchronization mechanism that was introduced in .NET 1.0 was the MethodImplAttribute. Used in conjunction with the MethodImplOptions.Synchronized method, this attribute marks a method as synchronized so that only one thread can execute the method at a time. To achieve this, the just-in-time compiler essentially treats the method as though it was surrounded by lock(this) or locking on the type in the case of a static method. Such an implementation means that, in fact, the method and all other methods on the same class, decorated with the same attribute and enum parameter, are synchronized, not just each method relative to itself. In other words, given two or more methods on the same class decorated with the attribute, only one of them will be able to execute at a time and the one executing will block all calls by other threads to itself or to any other method in the class with the same decoration. Furthermore, since the synchronization is on this (or even worse, on the type), it suffers the same detriments as lock(this) (or worse, for the static) discussed in the preceding section. As a result, it is a best practice to avoid the attribute altogether.

Guidelines

AVOID using the MethodImplAttribute for synchronization.

Declaring Fields As volatile

On occasion, the compiler and/or CPU may optimize code in such a way that the instructions do not occur in the exact order they are coded, or some instructions are optimized out. Such optimizations are innocuous when code executes on one thread. However, with multiple threads, such optimizations may have unintended consequences because the optimizations may change the order of execution of a field’s read or write operations relative to an alternate thread’s access to the same field.

One way to stabilize this is to declare fields using the volatile keyword. This keyword forces all reads and writes to the volatile field to occur at the exact location the code identifies instead of at some other location that the optimization produces. The volatile modifier identifies that the field is susceptible to modification by the hardware, operating system, or another thread. As such, the data is “volatile,” and the keyword instructs the compilers and runtime to handle it more exactly.

In general, the use of the volatile modifier is rare and fraught with complications that will likely lead to incorrect usage. Using lock is preferred to the volatile modifier unless you are absolutely certain about the volatile usage.

Using the System.Threading.Interlocked Class

The mutual exclusion pattern described so far provides the minimum of tools for handling synchronization within a process (application domain). However, synchronization with System.Threading.Monitor is a relatively expensive operation, and an alternative solution that the processor supports directly targets specific synchronization patterns.

Listing 19.6 sets _Data to a new value as long as the preceding value was null. As indicated by the method name, this pattern is the compare/exchange pattern. Instead of manually placing a lock around behaviorally equivalent compare and exchange code, the Interlocked.CompareExchange() method provides a built-in method for a synchronous operation that does the same check for a value (null) and updates the first parameter if the value is equal to the second parameter. Table 19.2 shows other synchronization methods supported by Interlocked.

Listing 19.6. Synchronization Using System.Threading.Interlocked

Click here to view code image

public class SynchronizationUsingInterlocked
{
 private static object _Data;

 // Initialize data if not yet assigned.
 static void Initialize(object newValue)
 {
 // If _Data is null then set it to newValue.
 Interlocked.CompareExchange(
 ref _Data, newValue, null);
 }

 // ...
}

Table 19.2. Interlocked’s Synchronization-Related Methods

[image: Image]

Most of these methods are overloaded with additional data type signatures, such as support for long. Table 19.2 provides the general signatures and descriptions.

Note that you can use Increment() and Decrement() in place of the synchronized ++ and -- operators from Listing 19.6, and doing so will yield better performance. Also note that if a different thread accessed location using a non-interlocked method, the two accesses would not be synchronized correctly.

Event Notification with Multiple Threads

One area where developers often overlook synchronization is when firing events. The unsafe thread code for publishing an event is similar to Listing 19.7.

Listing 19.7. Firing an Event Notification

Click here to view code image

// Not thread-safe

if(OnTemperatureChanged != null)

{
 // Call subscribers
 OnTemperatureChanged(
 this, new TemperatureEventArgs(value));
}

This code is valid as long as there is no race condition between this method and modifying the event. However, the code is not atomic, so multiple threads could introduce a race condition. It is possible that between the time when OnTemperatureChange is checked for null and the event is actually fired, OnTemperatureChange could be set to null, thereby throwing a NullReferenceException. In other words, if multiple threads could possibly access a delegate simultaneously, it is necessary to synchronize the assignment and firing of the delegate.

Fortunately, the operators for adding and removing listeners are thread-safe and static (operator overloading is done with static methods). To correct Listing 19.7 and make it thread-safe, assign a copy, check the copy for null, and fire the copy (see Listing 19.8).

Listing 19.8. Thread-Safe Event Notification

Click here to view code image

// ...
TemperatureChangedHandler localOnChange =
 OnTemperatureChanged;
if(localOnChanged != null)
{
 // Call subscribers
 localOnChanged(
 this, new TemperatureEventArgs(value));
}
// ...

Given that a delegate is a reference type, it is perhaps surprising that assigning a local variable and then firing with the local variable is sufficient for making the null check thread-safe. Since localOnChange points to the same location that OnTemperatureChange points to, one would think that any changes in OnTemperatureChange would be reflected in localOnChange as well.

However, this is not the case because any calls to OnTemperatureChange += <listener> will not add a new delegate to OnTemperatureChange, but rather will assign it an entirely new multicast delegate without having any effect on the original multicast delegate to which localOnChange also points. This makes the code thread-safe because only one thread will access the localOnChange instance, and OnTemperatureChange will be an entirely new instance if listeners are added or removed.

Synchronization Design Best Practices

Along with the complexities of multithreaded programming come several best practices for handling those complexities.

Avoiding Deadlock

With the introduction of synchronization comes the potential for deadlock. Deadlock occurs when two or more threads wait for one another to release a synchronization lock. For example, Thread 1 requests a lock on _Sync1, and then later requests a lock on _Sync2 before releasing the lock on _Sync1. At the same time, Thread 2 requests a lock on _Sync2, followed by a lock on _Sync1, before releasing the lock on _Sync2. This sets the stage for the deadlock. The deadlock actually occurs if both Thread 1 and Thread 2 successfully acquire their initial locks (_Sync1 and _Sync2, respectively) before obtaining their second locks.

For a deadlock to occur, four fundamental conditions must be met:

1. Mutual exclusion: One thread (ThreadA) exclusively owns a resource such that no other thread (ThreadB) can acquire the same resource.

2. Hold and wait: One thread (ThreadA) with a mutual exclusion is waiting to acquire a resource held by another thread (ThreadB).

3. No preemption: The resource held by a thread (ThreadA) cannot be forcibly removed (ThreadA needs to release its own locked resource).

4. Circular wait condition: Two or more threads form a circular chain such that they lock on the same two or more resources and each waits on the resource held by the next thread in the chain.

Removing any one of these conditions will prevent the deadlock.

A scenario likely to cause a deadlock is when two or more threads request exclusive ownership on the same two or more synchronization targets (resources) and the locks are requested in different orders. This is avoided when developers are careful to ensure that multiple lock acquisitions are always in the same order. Another cause of a deadlock is locks that are not reentrant. When a lock from one thread can block the same thread—that is, it is re-requesting the same lock—the lock is not reentrant. For example, if ThreadA acquires a lock and then re-requests the same lock but is blocked because the lock is already owned (by itself), the lock is not reentrant and the additional request will deadlock. Therefore, locks that are not reentrant can occur only with a single thread.

The code generated by the lock keyword (with the underlying Monitor class) is reentrant. However, as we shall see in the More Synchronization Types section, there are lock types that are not reentrant.

When to Provide Synchronization

As we already discussed, all static data should be thread-safe. Therefore, synchronization needs to surround static data that is mutable. Generally, this means that programmers should declare private static variables and then provide public methods for modifying the data. Such methods should internally handle the synchronization.

In contrast, instance state is not expected to include synchronization. Synchronization may significantly decrease performance and increase the chance of a lock contention or deadlock. With the exception of classes that are explicitly designed for multithreaded access, programmers sharing objects across multiple threads are expected to handle their own synchronization of the data being shared.

Avoiding Unnecessary Locking

Without compromising data integrity, programmers should avoid unnecessary synchronization where possible. For example, use immutable types between threads so that no synchronization is necessary (this approach has proven invaluable in functional programming languages such as F#). Similarly, avoid locking on thread-safe operations such as simple reads and writes of values smaller than a native (pointer-size) integer as such operations are automatically atomic.

Guidelines

DO NOT request exclusive ownership on the same two or more synchronization targets in different orders.

DO ensure that code that concurrently holds multiple locks always acquires them in the same order.

DO encapsulate mutable static data in public APIs with synchronization logic.

AVOID synchronization on simple reading or writing of values no bigger than a native (pointer-size) integer as such operations are automatically atomic.

More Synchronization Types

In addition to System.Threading.Monitor and System.Threading.Interlocked, several more synchronization techniques are available.

Using System.Threading.Mutex

System.Threading.Mutex is similar in concept to the System.Threading.Monitor class (without the Pulse() method support), except that the lock keyword does not use it and Mutexes can be named so that they support synchronization across multiple processes. Using the Mutex class, you can synchronize access to a file or some other cross-process resource. Since Mutex is a cross-process resource, .NET 2.0 added support to allow for setting the access control via a System.Security.AccessControl.MutexSecurity object. One use for the Mutex class is to limit an application so that it cannot run multiple times simultaneously, as Listing 19.9 demonstrates.

Listing 19.9. Creating a Single Instance Application

Click here to view code image

using System;
using System.Threading;
using System.Reflection;

public class Program
{
 public static void Main()
 {
 // Indicates whether this is the first
 // application instance
 bool firstApplicationInstance;

 // Obtain the mutex name from the full
 // assembly name.
 string mutexName =
 Assembly.GetEntryAssembly().FullName;

 using(Mutex mutex = new Mutex(false, mutexName,
 out firstApplicationInstance))
 {

 if(!firstApplicationInstance)
 {
 Console.WriteLine(
 "This application is already running.");
 }
 else
 {
 Console.WriteLine("ENTER to shutdown");
 Console.ReadLine();
 }
 }
 }
}

The results from running the first instance of the application appear in Output 19.4.

Output 19.4.

ENTER to shutdown

The results of the second instance of the application while the first instance is still running appear in Output 19.5.

Output 19.5.

This application is already running.

In this case, the application can run only once on the machine, even if it is launched by different users. To restrict the instances to once per user, prefix Assembly.GetEntryAssembly().FullName with System.Windows.Forms.Application.UserAppDataPath.Replace("\\", "+") instead. This change requires a reference to the System.Windows.Forms assembly.

Mutex derives from System.Threading.WaitHandle, and therefore includes WaitAll(), WaitAny(), and SignalAndWait() methods, allowing it to acquire multiple locks automatically (something Monitor does not support).

WaitHandle

The base class for Mutex is a System.Threading.WaitHandle. This is a fundamental synchronization class used by the Mutex, EventWaitHandle, and Semaphore synchronization classes. The key methods on a WaitHandle are the WaitOne() methods. These methods block execution until the WaitHandle instance is signaled or set. The WaitOne() methods include several overloads allowing for an indefinite wait: void WaitOne(), a millisecond timed wait; bool WaitOne(int milliseconds); and bool WaitOne(TimeSpan timeout), a TimeSpan wait. The versions that return a Boolean will return a value of true whenever the WaitHandle is signaled before the timeout.

In addition to the WaitHandle instance methods, there are two key static members: WaitAll() and WaitAny(). Like their instance cousins, the static members also support timeouts. In addition, they take a collection of WaitHandles, in the form of an array, so that they can respond to signals coming from any within the collection.

One last point to note about WaitHandle is that it contains a handle (of type SafeWaitHandle) that implements IDisposable. As such, care is needed to ensure that WaitHandles are disposed when they are no longer needed.

Reset Events: ManualResetEvent and ManualResetEventSlim

One way to control uncertainty about when particular instructions in a thread will execute relative to instructions in another thread is with reset events. In spite of the term events, reset events have nothing to do with C# delegates and events. Instead, reset events are a way to force code to wait for the execution of another thread until the other thread signals. These are especially useful for testing multithreaded code because it is possible to wait for a particular state before verifying the results.

The reset event types are System.Threading.ManualResetEvent and the .NET Framework 4–added lightweight version, System.Threading.ManualResetEventSlim. (As discussed in the upcoming Advanced Topic, there is a third type, System.Threading.AutoResetEvent, but programmers should avoid it in favor of one of the first two—see the Advanced Topic, Favor ManualResetEvent and Semaphores over AutoResetEvent.) The key methods on the reset events are Set() and Wait() (called WaitOne() on ManualResetEvent). Calling the Wait() method will cause a thread to block until a different thread calls Set(), or until the wait period times out. Listing 19.10 demonstrates how this works, and Output 19.6 shows the results.

Listing 19.10. Waiting for ManualResetEventSlim

Click here to view code image

using System;
using System.Threading;
using System.Threading.Tasks;

public class Program
{
 static ManualResetEventSlim MainSignaledResetEvent;
 static ManualResetEventSlim DoWorkSignaledResetEvent;

 public static void DoWork()
 {
 Console.WriteLine("DoWork() started....");

 DoWorkSignaledResetEvent.Set();
 MainSignaledResetEvent.Wait();

 Console.WriteLine("DoWork() ending....");
 }

 public static void Main()
 {
 using(MainSignaledResetEvent =
 new ManualResetEventSlim())
 using (DoWorkSignaledResetEvent =
 new ManualResetEventSlim())
 {
 Console.WriteLine(
 "Application started....");
 Console.WriteLine("Starting task....");

 // Use Task.Factory.StartNew for .NET 4.0
 Task task = Task.Run(()=>DoWork());

 // Block until DoWork() has started.
 DoWorkSignaledResetEvent.Wait();
 Console.WriteLine(
 " Waiting while thread executes...");
 MainSignaledResetEvent.Set();
 task.Wait();
 Console.WriteLine("Thread completed");
 Console.WriteLine(
 "Application shutting down....");
 }
 }
}

Output 19.6.

Application started....
Starting thread....
DoWork() started....
Waiting while thread executes...
DoWork() ending....
Thread completed
Application shutting down....

Listing 19.10 begins by instantiating and starting a new Task. Table 19.3 shows the execution path in which each column represents a thread. In cases where code appears on the same row, it is indeterminate which side executes first.

Table 19.3. Execution Path with ManualResetEvent Synchronization

[image: Image]

Calling a reset event’s Wait() method (for a ManualResetEvent it is called WaitOne()) blocks the calling thread until another thread signals and allows the blocked thread to continue. Instead of blocking indefinitely, Wait()/WaitOne() overrides include a parameter, either in milliseconds or as a TimeSpan object, for the maximum amount of time to block. When specifying a timeout period, the return from WaitOne() will be false if the timeout occurs before the reset event is signaled. ManualResetEvent.Wait() also includes a version that takes a cancellation token, allowing cancellation requests as discussed in the preceding chapter.

The difference between ManualResetEventSlim and ManualResetEvent is the fact that the latter uses kernel synchronization by default whereas the former is optimized to avoid trips to the kernel except as a last resort. Thus, ManualResetEventSlim is more performant even though it could possibly use more CPU cycles. Therefore, use ManualResetEventSlim in general unless waiting on multiple events or across processes is required.

Notice that reset events implement IDisposable, so they should be disposed when they are no longer needed. In Listing 19.10, we do this via a using statement. (CancellationTokenSource contains a ManualResetEvent, which is why it too implements IDisposable.)

Although not exactly the same, System.Threading.Monitor’s Wait() and Pulse() methods provide similar functionality to reset events in some circumstances.

Advanced Topic: Favor ManualResetEvent and Semaphores over AutoResetEvent

There is a third reset event, System.Threading.AutoResetEvent, that, like ManualResetEvent, allows one thread to signal (with a call to Set()) another thread that this first thread has reached a certain location in the code. The difference is that the AutoResetEvent unblocks only one thread’s Wait() call because after the first thread passes through the auto-reset gate, it goes back to locked. With the auto-reset event, however, it is too easy to mistakenly code the producer thread with more iterations than the consumer thread. Therefore, it is generally preferred to favor using Monitor’s Wait()/Pulse() pattern or to use a semaphore (if fewer than n threads can participate in a particular block).

In contrast to an AutoResetEvent, the ManualResetEvent won’t return to the unsignaled state until Reset() is called explicitly.

Semaphore/SemaphoreSlim and CountdownEvent

Semaphore and SemaphoreSlim have the same performance differences as ManualResetEvent and ManualResetEventSlim. Unlike ManualResetEvent/ManualResetEventSlim, which provide a lock (like a gate) that is either open or closed, semaphores restrict only N calls to pass within a critical section simultaneously. The semaphore essentially keeps a count on a pool of resources. When the count reaches zero, it blocks any further access to the pool until one of the resources is returned, making it available for the next blocked request that is queued.

CountdownEvent is much like the semaphore except it achieves the opposite synchronization. Rather than protecting further access to a pool of resources that are all used up, the CountdownEvent allows access only once the count reaches zero. Consider, for example, a parallel operation that downloads a multitude of stock quotes. Only when all of the quotes are downloaded can a particular search algorithm execute. The CountdownEvent may be used for synchronizing the search algorithm, decrementing as each stock is downloading and then releasing the search to start once the count reaches zero.

Notice that SemaphoreSlim and CountdownEvent were introduced with .NET Framework 4. In .NET 4.5, the former includes a SemaphoreSlim.WaitAsync() method so that TAP can be used when waiting to enter the semaphore.

Concurrent Collection Classes

Another series of classes introduced with .NET Framework 4 is the concurrent collection classes. These classes are especially designed to include built-in synchronization code so that they can support simultaneous access by multiple threads without concern for race conditions. A list of the concurrent collection classes appears in Table 19.4.

Table 19.4. Concurrent Collection Classes

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

A common pattern enabled by concurrent collections is support for thread-safe access by producers and consumers. Classes that implement IProducerConsumerCollection<T> (identified by * in Table 19.4) are specifically designed to support this. This enables one or more classes to be pumping data into the collection while a different set reads it out, removing it. The order in which data is added and removed is determined by the individual collection classes that implement the IProducerConsumerCollection<T> interface.

Thread Local Storage

In some cases, using synchronization locks can lead to unacceptable performance and scalability restrictions. In other instances, providing synchronization around a particular data element may be too complex, especially when it is added after the original coding.

One alternative solution to synchronization is isolation and one method for implementing isolation is thread local storage. With thread local storage, each thread has its own dedicated instance of a variable. As a result, there is no need for synchronization, as there is no point in synchronizing data that occurs within only a single thread’s context. Two examples of thread local storage implementations are ThreadLocal<T> and ThreadStaticAttribute.

ThreadLocal<T>

Use of thread local storage with .NET Framework 4 involves declaring a field (or variable in the case of closure by the complier) of type ThreadLocal<T>. The result is a different instance of the field for each thread, as demonstrated in Listing 19.11 and Output 19.7. Note that a different instance exists even if the field is static.

Listing 19.11. Using ThreadLocal<T> for Thread Local Storage

Click here to view code image

using System;
using System.Threading;

public class Program
{

 static ThreadLocal<double> _Count =
 new ThreadLocal<double>(() => 0.01134);

 public static double Count
 {
 get { return _Count.Value; }
 set { _Count.Value = value; }
 }

 public static void Main()
 {
 Thread thread = new Thread(Decrement);
 thread.Start();

 // Increment
 for(double i = 0; i < short.MaxValue; i++)
 {
 Count++;
 }

 thread.Join();
 Console.WriteLine("Main Count = {0}", Count);
 }

 static void Decrement()
 {
 Count = -Count;
 for (double i = 0; i < short.MaxValue; i++)
 {
 Count--;
 }
 Console.WriteLine(
 "Decrement Count = {0}", Count);
 }
}

Output 19.7.

Decrement Count = -32767.01134
Main Count = 32767.01134

As Output 19.7 demonstrates, the value of Count for the thread executing Main() is never decremented by the thread executing Decrement(). For Main()’s thread the initial value is 0.01134 and the final value is 32767.01134. Decrement() has similar values except they are negative. Since Count is based on the static field of type ThreadLocal<T>, the thread running Main() and the thread running Decrement() have independent values stored in _Count.Value.

Thread Local Storage with ThreadStaticAttribute

Decorating a static field with a ThreadStaticAttribute, as in Listing 19.12, is a second way to designate a static variable as an instance per thread. This technique has a few caveats over ThreadLocal<T> but it also has the advantage that it is available prior to .NET Framework 4. (Also, since ThreadLocal<T> is based on the ThreadStaticAttribute, it would consume less memory and give a slight performance advantage given frequently enough repeated small iterations.)

Listing 19.12. Using ThreadStaticAttribute for Thread Local Storage

Click here to view code image

using System;
using System.Threading;

public class Program
{
 [ThreadStatic]
 static double _Count = 0.01134;
 public static double Count
 {
 get { return Program._Count; }
 set { Program._Count = value; }
 }

 public static void Main()
 {
 Thread thread = new Thread(Decrement);
 thread.Start();

 // Increment
 for(int i = 0; i < short.MaxValue; i++)
 {
 Count++;
 }

 thread.Join();
 Console.WriteLine("Main Count = {0}", Count);
 }

 static void Decrement()
 {
 for(int i = 0; i < short.MaxValue; i++)
 {
 Count--;
 }
 Console.WriteLine("Decrement Count = {0}", Count);
 }
}

The results of Listing 19.12 appear in Output 19.8.

Output 19.8.

Decrement Count = -32767
Main Count = 32767.01134

As in the preceding listing, the value of Count for the thread executing Main() is never decremented by the thread executing Decrement(). For Main()’s thread the initial value is a negative _Total and the final value is 0. In other words, with ThreadStaticAttribute the value of Count for each thread is specific to the thread and not accessible across threads.

Notice that unlike Listing 19.11, the value displayed for the “Decrement Count” does not have any decimal digits indicating it was never initialized to 0.01134. Although the value of _Count is assigned during declaration—private double _Count = 0.01134 in this example—only the thread static instance associated with the thread running the static constructor will be initialized. In Listing 19.12, only the thread executing Main() will have a thread local storage variable initialized to 0.01134. The value of _Count that Decrement() decrements will always be initialized to 0 (default(double) since _Count is an int). Similarly, if a constructor initializes a thread local storage field, only the constructor calling that thread will initialize the thread local storage instance. For this reason, it is a good practice to initialize a thread local storage field within the method that each thread initially calls. However, this is not always reasonable, especially in connection with async, in which different pieces of computation might run on different threads resulting in unexpectedly differing thread local storage values on each piece.

The decision to use thread local storage requires some degree of cost-benefit analysis. For example, consider using thread local storage for a database connection. Depending on the database management system, database connections are relatively expensive, so creating a connection for every thread could be costly. Similarly, locking a connection so that all database calls are synchronized places a significantly lower ceiling on scalability. Each pattern has its costs and benefits, and the correct choice depends largely on the individual implementation.

Another reason to use thread local storage is to make commonly needed context information available to other methods without explicitly passing the data via parameters. For example, if multiple methods in the call stack require user security information, you can pass the data using thread local storage fields instead of as parameters. This keeps APIs cleaner while still making the information available to methods in a thread-safe manner. This requires that you ensure that the thread local data is always set, and it is especially important on Tasks or other thread pool threads because the underlying threads are reused.

Timers

On occasion it is necessary to delay code execution for a specific period of time or to register for a notification after a specific period of time. Examples include refreshing the screen at a specific period rather than immediately when frequent data changes occur. One approach to implementing timers is to leverage the async/await pattern of C# 5.0 and the Task.Delay() method added in .NET 4.5. As we pointed out in the preceding chapter, one key feature of TAP is that the code executing after an async call will continue in a supported thread context, thereby avoiding any UI cross-threading issues. Listing 19.13 provides an example of how to use the Task.Delay() method.

Listing 19.13. Using Task.Delay() As a Timer

Click here to view code image

using System;
using System.Threading.Tasks;

public class Pomodoro
{
 // ...

 private static async Task TickAsync(
 System.Threading.CancellationToken token)
 {
 for(int minute = 0; minute < 25; minute++)
 {
 DisplayMinuteTicker(minute);
 for(int second = 0; second < 60; second++)
 {
 await Task.Delay(1000);
 if(token.IsCancellationRequested) break;
 DisplaySecondTicker();
 }
 if(token.IsCancellationRequested) break;
 }
 }
}

The call to Task.Delay(1000) will set a countdown timer that triggers after a second and executes the continuation code that appears after it.

Fortunately, in C# 5.0, TAP’s use of the synchronization context specifically addressed this issue. Prior to that, it was necessary to use specific timer classes that were UI-thread-safe—or could be configured as such. Timers such as System.Windows.Forms.Timer, System.Windows.Threading.DispatcherTimer, and System.Timers.Timer (if configured appropriately) are UI-thread-friendly. Others, such as System.Threading.Timer, are optimized for performance.

Additional details and sample code regarding timers prior to the availability of C# 5.0’s async/await are covered in Appendix D.

Advanced Topic: Controlling the COM Threading Model with the STAThreadAttribute

With COM, four different apartment-threading models determine the threading rules relating to calls between COM objects. Fortunately, these rules—and the complexity that accompanied them—have disappeared from .NET as long as the program invokes no COM components. The general approach to handling COM Interop is to place all .NET components within the main, single-threaded apartment by decorating a process’s Main method with the System.STAThreadAttribute. In so doing, it is not necessary to cross apartment boundaries to invoke the majority of COM components. Furthermore, apartment initialization does not occur, unless a COM Interop call is made. The caveat to this approach is that all other threads (including those of Task) will default to using a Multithreaded Apartment (MTA). The result is that care needs to be taken when invoking COM components from other threads besides the main one.

COM Interop is not necessarily an explicit action by the developer. Microsoft implemented many of the components within the .NET Framework by creating a runtime callable wrapper (RCW) rather than rewriting all the COM functionality within managed code. As a result, COM calls are often made unknowingly. To ensure that these calls are always made from a single-threaded apartment, it is generally a good practice to decorate the main method of all Windows Forms executables with the System.STAThreadAttribute.

Summary

In this chapter, we looked at various synchronization mechanisms and how a variety of classes are available to protect against race conditions. Coverage included the lock keyword, which leverages System.Threading.Monitor under the covers. Other synchronization classes include System.Threading.Interlocked, System.Threading.Mutext, System.Threading.WaitHandle, reset events, semaphores, and the concurrent collection classes.

In spite of all the progress to improving multithreaded programming between early versions of .NET and today, synchronization of multithreaded programming still comes with numerous pitfalls. To avoid these, there are numerous best practices to follow. These include consistently acquiring synchronization targets in the same order and wrapping static members with synchronization logic.

Before closing the chapter, we considered the Task.Delay() method, a .NET 4.5 API for implementing a timer based on TAP.

The next chapter investigates another complex .NET technology: that of marshalling calls out of .NET and into unmanaged code using P/Invoke. In addition, it introduces a concept known as unsafe code, which C# uses to access memory pointers directly, as unmanaged code does (for example, C++).

20. Platform Interoperability and Unsafe Code

C# has great capabilities, particularly when paired with the .NET libraries. Sometimes, however, you do need to escape out of all the safety that C# provides and step back into the world of memory addresses and pointers. C# supports this in four ways. The first is through the Windows Runtime (WinRT) API, which is exposing more and more of the operating system functions and making them directly available in C# 5.0. The second way is to go through Platform Invoke (P/Invoke) and calls into APIs exposed by unmanaged DLLs. The third approach is through unsafe code, which enables access to memory pointers and addresses. The last way, which is not covered in this text, is through COM interoperability.

[image: Image]

We begin this chapter by briefly discussing some of the quirks of WinRT that developers should be aware of before using it. The remainder of the chapter discusses interoperability with unmanaged code, and the use of unsafe code. This chapter culminates with a small program that determines whether the computer is a virtual computer. The code requires that you do the following.

1. Call into an operating system DLL and request allocation of a portion of memory for executing instructions.

2. Write some assembler instructions into the allocated area.

3. Inject an address location into the assembler instructions.

4. Execute the assembler code.

Aside from the P/Invoke and unsafe constructs covered here, the final listing demonstrates the full power of C# and the fact that the capabilities of unmanaged code are still accessible from C# and managed code.

Using the Windows Runtime Libraries from C#

Windows RT is the version of the Windows 8 operating system that supports only immersive “Metro-style” applications, not traditional “desktop” applications. The library of operating system APIs that support immersive applications is the Windows Runtime, or WinRT for short.

Though WinRT APIs are fundamentally unmanaged COM APIs, they are described using the same metadata format that the .NET runtime uses; thus WinRT supports development of immersive Windows applications written not only in unmanaged languages but also in managed languages such as C#, without using the P/Invoke tricks described in the remainder of this chapter.

The WinRT APIs have been carefully designed to seem natural to C# users. However, there are a few small “impedance mismatches” that you should be aware of when writing C# programs that target WinRT.

WinRT Events with Custom Add and Remove Handlers

There are many different ways to implement the “observer” pattern; in C#, as we have already discussed, events are typically implemented as a field of multicast delegate type. That is, there is a field of delegate type, and that delegate can refer to many different methods. When the event is fired, the delegate methods are invoked. To add an event handler to or remove an event handler from the event, you essentially create a new multicast delegate and replace the value of the field with the new delegate.

All those mechanisms are implemented for you automatically when you use the += and -= operators on an event. C# also allows you to run custom code when the user of your class adds or removes an event handler, via the add and remove event accessor methods.

From the consumer’s perspective, WinRT events are no different. You can use += and -= as usual in a C# program when adding or removing event handlers from a WinRT object; the C# compiler will take care of ensuring that the right WinRT mechanisms are used when the code is generated. However, WinRT uses a slightly different mechanism than traditional C# programs for custom event accessors, and this affects how you write custom event accessors for WinRT types in C#.

In a regular C# event, when you remove a delegate from an event, the delegate gets passed as the hidden value argument of the remove accessor. Neither the add nor the remove accessor returns a value. WinRT events with custom accessors use a slightly different mechanism: When you add a delegate to an event, the add accessor returns a “token.” To remove that delegate from the event you pass the token, not the delegate, to the remove accessor. Should you wish to write a custom accessor for a WinRT event you must follow the WinRT event pattern.

Fortunately, the WinRT library provides a special helper class to keep track of the tokens and their corresponding delegates for you. The pattern looks like the code shown in Listing 20.1.

Listing 20.1. The WinRT Event Pattern

Click here to view code image

using System;
class WinRTEvent
{
 EventRegistrationTokenTable<EventHandler> table = null;
 public event EventHandler MyEvent
 {
 add
 {
 return EventRegistrationTokenTable<EventHandler>
 .GetOrCreateEventRegistrationTokenTable(ref table)
 .AddEventHandler(value);
 }
 remove
 {
 return EventRegistrationTokenTable<EventHandler>
 .GetOrCreateEventRegistrationTokenTable(ref table)
 .RemoveEventHandler(value);
 }
 }
 void OnMyEvent()
 {
 EventHandler handler =
 EventRegistrationTokenTable<EventHandler>
 .GetOrCreateEventRegistrationTokenTable(ref table)
 .InvocationList;
 if (handler != null)
 handler(this, new EventArgs());
 }
}

As you can see, every time a handler is added to the event, removed from the event, or invoked, a table is created if one does not exist already. (There should be one table variable per event.) The table manages the relationship between the token returned from the adder and the multicast delegate in the table. Just replace the EventHandler type with the appropriate delegate type for your event, and add whatever code you want to the add and remove accessors.

Automatically Shimmed Interfaces

Another difference between WinRT invocation and regular .NET invocation code is that certain frequently used interfaces have slightly different names and members in WinRT. The C# compiler and .NET runtime know about these, and automatically generate code behind the scenes that “shims” one interface to another in order to minimize the impact on the developer. The two most notable examples are IEnumerable<T>, which is called IIterable<T> in WinRT, and IDisposable, which is called ICloseable in WinRT.

Because these are automatically shimmed, you can use a method that returns ICloseable in any context that requires an IDisposable, such as a using statement. Similarly, sequences and collections behave the same regardless of whether they use the C# standard interface or the WinRT version.

Task-Based Asynchrony

The WinRT APIs do not use Task<T> to represent asynchronous work. (See Chapter 18 for a detailed explanation of how to use Task<T> and the C# 5 await operator.) Rather, they use the IAsyncAction<T> interface. This type has many of the same features as Task<T>; for example, it supports a cancellation mechanism, a progress-reporting mechanism, and so on.

The C# 5 await operator works just as well with an operand of type IAsyncAction<T> as it does with Task<T>. However, a C# 5 method decorated with the async keyword that contains an await operator still must return Task or Task<T>, or be void-returning; it is not legal for an async method to return IAsyncAction<T>. To convert an IAsyncAction<T> to an equivalent Task<T>, just call the AsTask()method on it.

The vast majority of other issues related to WinRT are essentially API changes, and a detailed discussion of these is beyond the scope of this book. It is important to note, however, that in WinRT all high-latency synchronous methods previously available in .NET 4.5 and earlier have been dropped, leaving only the *Async asynchronous equivalents.

Platform Invoke

Whether a developer is trying to call a library of existing unmanaged code, accessing unmanaged code in the operating system not exposed in any managed API, or trying to achieve maximum performance for a particular algorithm by avoiding the runtime overhead of type checking and garbage collection, at some point there must be a call into unmanaged code. The CLI provides this capability through P/Invoke. With P/Invoke, you can make API calls into exported functions of unmanaged DLLs.

All of the APIs invoked in this section are Windows APIs. Although the same APIs are not available on other platforms, developers can still use P/Invoke for APIs native to their platform, or for calls into their own DLLs. The guidelines and syntax are the same.

Declaring External Functions

Once the target function is identified, the next step of P/Invoke is to declare the function with managed code. Just like all regular methods that belong to a class, you need to declare the targeted API within the context of a class, but by using the extern modifier. Listing 20.2 demonstrates how to do this.

Listing 20.2. Declaring an External Method

Click here to view code image

using System;
using System.Runtime.InteropServices;
class VirtualMemoryManager
{
 [DllImport("kernel32.dll", EntryPoint="GetCurrentProcess")]
 internal static extern IntPtr GetCurrentProcessHandle();
}

In this case, the class is VirtualMemoryManager, because it will contain functions associated with managing memory. (This particular function is available directly off the System.Diagnostics.Processor class, so there is no need to declare it in real code.) Note that the method returns an IntPtr; this type is explained in the next section.

extern methods never include any body and are (almost) always static. Instead of a method body, the DllImport attribute, which accompanies the method declaration, points to the implementation. At a minimum, the attribute needs the name of the DLL that defines the function. The runtime determines the function name from the method name. However, it is possible to override this default using the EntryPoint named parameter to provide the function name. (The .NET platform will automatically attempt calls to the Unicode [...W] or ASCII [...A] API version.)

It this case, the external function, GetCurrentProcess(), retrieves a pseudohandle for the current process which you will use in the call for virtual memory allocation. Here’s the unmanaged declaration:

HANDLE GetCurrentProcess();

Parameter Data Types

Assuming the developer has identified the targeted DLL and exported function, the most difficult step is identifying or creating the managed data types that correspond to the unmanaged types in the external function.1 Listing 20.3 shows a more difficult API.

Listing 20.3. The VirtualAllocEx() API

Click here to view code image

 LPVOID VirtualAllocEx(
 HANDLE hProcess, // The handle to a process. The
 // function allocates memory within
 // the virtual address space of this
 // process.
 LPVOID lpAddress, // The pointer that specifies a
 // desired starting address for the
 // region of pages that you want to
 // allocate. If lpAddress is NULL,
 // the function determines where to
 // allocate the region.
 SIZE_T dwSize, // The size of the region of memory to
 // allocate, in bytes. If lpAddress
 // is NULL, the function rounds dwSize
 // up to the next page boundary.
 DWORD flAllocationType, // The type of memory allocation.
 DWORD flProtect); // The type of memory allocation.

VirtualAllocEx() allocates virtual memory that the operating system specifically designates for execution or data. To call it, you also need corresponding definitions in managed code for each data type; although common in Win32 programming, HANDLE, LPVOID, SIZE_T, and DWORD are undefined in the CLI managed code. The declaration in C# for VirtualAllocEx(), therefore, is shown in Listing 20.4.

Listing 20.4. Declaring the VirtualAllocEx() API in C#

Click here to view code image

using System;
using System.Runtime.InteropServices;
class VirtualMemoryManager
{
 [DllImport("kernel32.dll")]
 internal static extern IntPtr GetCurrentProcess();

 [DllImport("kernel32.dll", SetLastError = true)]
 private static extern IntPtr VirtualAllocEx(
 IntPtr hProcess,
 IntPtr lpAddress,
 IntPtr dwSize,
 AllocationType flAllocationType,
 uint flProtect);
}

One distinct characteristic of managed code is the fact that primitive data types such as int do not change size based on the processor. Whether the processor is 16, 32, or 64 bits, int is always 32 bits. In unmanaged code, however, memory pointers will vary depending on the processor. Therefore, instead of mapping types such as HANDLE and LPVOID simply to ints, you need to map to System.IntPtr, whose size will vary depending on the processor memory layout. This example also uses an AllocationType enum, which we discuss in the section Simplifying API Calls with Wrappers, later in this chapter.

An interesting point to note about Listing 20.4 is that IntPtr is not just useful for pointers; it is also useful for other things such as quantities. IntPtr does not just mean “pointer stored in an integer”; it also means “integer that is the size of a pointer.” An IntPtr need not contain a pointer; it just needs to contain something the size of a pointer. Lots of things are the size of a pointer but are nevertheless not pointers.

Using ref Rather Than Pointers

Frequently, unmanaged code uses pointers for pass-by-reference parameters. In these cases, P/Invoke doesn’t require that you map the data type to a pointer in managed code. Instead, you map the corresponding parameters to ref (or out), depending on whether the parameter is in-out or just out. In Listing 20.5, lpflOldProtect, whose data type is PDWORD, is an example that returns the “pointer to a variable that receives the previous access protection of the first page in the specified region of pages.”2

Listing 20.5. Using ref and out Rather Than Pointers

Click here to view code image

class VirtualMemoryManager
{
 // ...
 [DllImport("kernel32.dll", SetLastError = true)]
 static extern bool VirtualProtectEx(
 IntPtr hProcess, IntPtr lpAddress,
 IntPtr dwSize, uint flNewProtect,
 ref uint lpflOldProtect);
}

In spite of the fact that lpflOldProtect is documented as [out] (even though the signature doesn’t enforce it), the description goes on to mention that the parameter must point to a valid variable and not NULL. The inconsistency is confusing, but common. The guideline is to use ref rather than out for P/Invoke type parameters since the callee can always ignore the data passed with ref, but the converse will not necessarily succeed.

The other parameters are virtually the same as VirtualAllocEx(), except that the lpAddress is the address returned from VirtualAllocEx(). In addition, flNewProtect specifies the exact type of memory protection: page execute, page read-only, and so on.

Using StructLayoutAttribute for Sequential Layout

Some APIs involve types that have no corresponding managed type. To call these requires redeclaration of the type in managed code. You declare the unmanaged COLORREF struct, for example, in managed code (see Listing 20.6).

Listing 20.6. Declaring Types from Unmanaged Structs

Click here to view code image

[StructLayout(LayoutKind.Sequential)]
struct ColorRef
{
 public byte Red;
 public byte Green;
 public byte Blue;
 // Turn off warning about not accessing Unused.
 #pragma warning disable 414
 private byte Unused;
 #pragma warning restore 414

 public ColorRef(byte red, byte green, byte blue)
 {
 Blue = blue;
 Green = green;
 Red = red;
 Unused = 0;
 }
}

Various Microsoft Windows color APIs use COLORREF to represent RGB colors (levels of red, green, and blue).

The key in this declaration is StructLayoutAttribute. By default, managed code can optimize the memory layouts of types, so layouts may not be sequential from one field to the next. To force sequential layouts so that a type maps directly and can be copied bit for bit (blitted) from managed to unmanaged code and vice versa, you add the StructLayoutAttribute with the LayoutKind.Sequential enum value. (This is also useful when writing data to and from filestreams where a sequential layout may be expected.)

Since the unmanaged (C++) definition for struct does not map to the C# definition, there is not a direct mapping of unmanaged struct to managed struct. Instead, developers should follow the usual C# guidelines about whether the type should behave like a value or a reference type, and whether the size is small (approximately less than 16 bytes).

Error Handling

One inconvenient characteristic of Win32 API programming is the fact that it frequently reports errors in inconsistent ways. For example, some APIs return a value (0, 1, false, and so on) to indicate an error, and others set an out parameter in some way. Furthermore, the details of what went wrong require additional calls to the GetLastError() API and then an additional call to FormatMessage() to retrieve an error message corresponding to the error. In summary, Win32 error reporting in unmanaged code seldom occurs via exceptions.

Fortunately, the P/Invoke designers provided a mechanism for handling this. To enable this, given the SetLastError named parameter of the DllImport attribute is true, it is possible to instantiate a System.ComponentModel.Win32Exception() that is automatically initialized with the Win32 error data immediately following the P/Invoke call (see Listing 20.7).

Listing 20.7. Win32 Error Handling

Click here to view code image

class VirtualMemoryManager
{
 [DllImport("kernel32.dll", ", SetLastError = true)]
 private static extern IntPtr VirtualAllocEx(
 IntPtr hProcess,
 IntPtr lpAddress,
 IntPtr dwSize,
 AllocationType flAllocationType,
 uint flProtect);

 // ...
 [DllImport("kernel32.dll", SetLastError = true)]
 static extern bool VirtualProtectEx(
 IntPtr hProcess, IntPtr lpAddress,
 IntPtr dwSize, uint flNewProtect,
 ref uint lpflOldProtect);

 [Flags]
 private enum AllocationType : uint
 {
 // ...
 }

 [Flags]
 private enum ProtectionOptions
 {
 // ...
 }

 [Flags]
 private enum MemoryFreeType
 {
 // ...
 }

 public static IntPtr AllocExecutionBlock(
 int size, IntPtr hProcess)
 {
 IntPtr codeBytesPtr;
 codeBytesPtr = VirtualAllocEx(
 hProcess, IntPtr.Zero,
 (IntPtr)size,
 AllocationType.Reserve | AllocationType.Commit,
 (uint)ProtectionOptions.PageExecuteReadWrite);

 if (codeBytesPtr == IntPtr.Zero)
 {

 throw new System.ComponentModel.Win32Exception();

 }

 uint lpflOldProtect = 0;
 if (!VirtualProtectEx(
 hProcess, codeBytesPtr,
 (IntPtr)size,
 (uint)ProtectionOptions.PageExecuteReadWrite,
 ref lpflOldProtect))
 {

 throw new System.ComponentModel.Win32Exception();

 }
 return codeBytesPtr;
 }

 public static IntPtr AllocExecutionBlock(int size)
 {
 return AllocExecutionBlock(
 size, GetCurrentProcessHandle());
 }
}

This enables developers to provide the custom error checking that each API uses while still reporting the error in a standard manner.

Listing 20.2 and Listing 20.4 declared the P/Invoke methods as internal or private. Except for the simplest of APIs, wrapping methods in public wrappers that reduce the complexity of the P/Invoke API calls is a good guideline that increases API usability and moves toward object-oriented type structure. The AllocExecutionBlock() declaration in Listing 20.7 provides a good example of this.

Guidelines

DO create public managed wrappers around unmanaged methods that use the conventions of managed code, such as structured exception handling.

Using SafeHandle

Frequently, P/Invoke involves a resource, such as a window handle, that code needs to clean up after using it. Instead of requiring developers to remember this and manually code it each time, it is helpful to provide a class that implements IDisposable and a finalizer. In Listing 20.8, for example, the address returned after VirtualAllocEx() and VirtualProtectEx() requires a follow-up call to VirtualFreeEx(). To provide built-in support for this, you define a VirtualMemoryPtr class that derives from System.Runtime.InteropServices.SafeHandle.

Listing 20.8. Managed Resources Using SafeHandle

Click here to view code image

public class VirtualMemoryPtr :
 System.Runtime.InteropServices.SafeHandle
{
 public VirtualMemoryPtr(int memorySize) :
 base(IntPtr.Zero, true)
 {
 ProcessHandle =
 VirtualMemoryManager.GetCurrentProcessHandle();
 MemorySize = (IntPtr)memorySize;
 AllocatedPointer =
 VirtualMemoryManager.AllocExecutionBlock(
 memorySize, ProcessHandle);
 Disposed = false;
 }

 public readonly IntPtr AllocatedPointer;
 readonly IntPtr ProcessHandle;
 readonly IntPtr MemorySize;
 bool Disposed;

 public static implicit operator IntPtr(
 VirtualMemoryPtr virtualMemoryPointer)
 {
 return virtualMemoryPointer.AllocatedPointer;
 }

 // SafeHandle abstract member
 public override bool IsInvalid
 {
 get
 {
 return Disposed;
 }
 }

 // SafeHandle abstract member
 protected override bool ReleaseHandle()
 {
 if (!Disposed)
 {
 Disposed = true;
 GC.SuppressFinalize(this);
 VirtualMemoryManager.VirtualFreeEx(ProcessHandle,
 AllocatedPointer, MemorySize);
 }
 return true;
 }
}

System.Runtime.InteropServices.SafeHandle includes the abstract members IsInvalid and ReleaseHandle(). In the latter, you place your cleanup code; the former indicates whether the cleanup code has executed yet.

With VirtualMemoryPtr, you can allocate memory simply by instantiating the type and specifying the needed memory allocation.

Advanced Topic: Using IDisposable Explicitly in Place of SafeHandle

In C# 1.0, System.Runtime.InteropServices.SafeHandle is not available. Instead, a custom implementation of IDisposable, as shown in Listing 20.9, is necessary.

Listing 20.9. Managed Resources without SafeHandle but Using IDisposable

Click here to view code image

public struct VirtualMemoryPtr : IDisposable
{
 public VirtualMemoryPtr(int memorySize)
 {
 ProcessHandle =
 VirtualMemoryManager.GetCurrentProcessHandle();
 MemorySize = (IntPtr)memorySize;
 AllocatedPointer =
 VirtualMemoryManager.AllocExecutionBlock(
 memorySize, ProcessHandle);
 Disposed = false;
 }

 public readonly IntPtr AllocatedPointer;
 readonly IntPtr ProcessHandle;
 readonly IntPtr MemorySize;
 bool Disposed;

 public static implicit operator IntPtr(
 VirtualMemoryPtr virtualMemoryPointer)
 {
 return virtualMemoryPointer.AllocatedPointer;
 }

 #region IDisposable Members
 public void Dispose()
 {
 if (!Disposed)
 {
 Disposed = true;
 GC.SuppressFinalize(this);
 VirtualMemoryManager.VirtualFreeEx(ProcessHandle,
 AllocatedPointer, MemorySize);
 }
 }
 #endregion
}

In order for VirtualMemoryPtr to behave with value type semantics, you need to implement it as a struct. However, the consequence of this is that there can be no finalizer, since the garbage collector does not manage value types. This means the developer using the type must remember to clean up the code. There is no fallback mechanism if he doesn’t.

The second restriction is not to pass or copy the instance outside the method. This is a common guideline of IDisposable implementing types. Their scope should be left within a using statement and they should not be passed as parameters to other methods that could potentially save them beyond the life of the using scope.

Calling External Functions

Once you declare the P/Invoke functions, you invoke them just as you would any other class member. The key, however, is that the imported DLL must be in the path, including the executable directory, so that it can be successfully loaded. Listing 20.7 and Listing 20.8 provide demonstrations of this. However, they rely on some constants.

Since flAllocationType and flProtect are flags, it is a good practice to provide constants or enums for each. Instead of expecting the caller to define these, encapsulation suggests you provide them as part of the API declaration, as shown in Listing 20.10.

Listing 20.10. Encapsulating the APIs Together

Click here to view code image

class VirtualMemoryManager
{
 // ...

 /// <summary>
 /// The type of memory allocation. This parameter must
 /// contain one of the following values.
 /// </summary>
 [Flags]
 private enum AllocationType : uint
 {
 /// <summary>
 /// Allocates physical storage in memory or in the
 /// paging file on disk for the specified reserved
 /// memory pages. The function initializes the memory
 /// to zero.
 /// </summary>
 Commit = 0x1000,
 /// <summary>
 /// Reserves a range of the process's virtual address
 /// space without allocating any actual physical
 /// storage in memory or in the paging file on disk.
 /// </summary>
 Reserve = 0x2000,
 /// <summary>
 /// Indicates that data in the memory range specified by
 /// lpAddress and dwSize is no longer of interest. The
 /// pages should not be read from or written to the
 /// paging file. However, the memory block will be used
 /// again later, so it should not be decommitted. This
 /// value cannot be used with any other value.
 /// </summary>
 Reset = 0x80000,
 /// <summary>
 /// Allocates physical memory with read-write access.
 /// This value is solely for use with Address Windowing
 /// Extensions (AWE) memory.
 /// </summary>
 Physical = 0x400000,
 /// <summary>
 /// Allocates memory at the highest possible address.
 /// </summary>
 TopDown = 0x100000,
 }

 /// <summary>
 /// The memory protection for the region of pages to be
 /// allocated.
 /// </summary>
 [Flags]
 private enum ProtectionOptions : uint
 {
 /// <summary>
 /// Enables execute access to the committed region of
 /// pages. An attempt to read or write to the committed
 /// region results in an access violation.
 /// </summary>
 Execute = 0x10,
 /// <summary>
 /// Enables execute and read access to the committed
 /// region of pages. An attempt to write to the
 /// committed region results in an access violation.
 /// </summary>
 PageExecuteRead = 0x20,
 /// <summary>
 /// Enables execute, read, and write access to the
 /// committed region of pages.
 /// </summary>
 PageExecuteReadWrite = 0x40,
 // ...
 }

 /// <summary>
 /// The type of free operation
 /// </summary>
 [Flags]
 private enum MemoryFreeType : uint
 {
 /// <summary>
 /// Decommits the specified region of committed pages.
 /// After the operation, the pages are in the reserved
 /// state.
 /// </summary>
 Decommit = 0x4000,
 /// <summary>
 /// Releases the specified region of pages. After this
 /// operation, the pages are in the free state.
 /// </summary>
 Release = 0x8000
 }

 // ...
}

The advantage of enums is that they group together each value. Furthermore, they can limit the scope to nothing else besides these values.

Simplifying API Calls with Wrappers

Whether it is error handling, structs, or constant values, one goal of good API developers is to provide a simplified managed API that wraps the underlying Win32 API. For example, Listing 20.11 overloads VirtualFreeEx() with public versions that simplify the call.

Listing 20.11. Wrapping the Underlying API

Click here to view code image

class VirtualMemoryManager
{
 // ...

 [DllImport("kernel32.dll", SetLastError = true)]
 static extern bool VirtualFreeEx(
 IntPtr hProcess, IntPtr lpAddress,
 IntPtr dwSize, IntPtr dwFreeType);
 public static bool VirtualFreeEx(
 IntPtr hProcess, IntPtr lpAddress,
 IntPtr dwSize)
 {
 bool result = VirtualFreeEx(
 hProcess, lpAddress, dwSize,
 (IntPtr)MemoryFreeType.Decommit);
 if (!result)
 {
 throw new System.ComponentModel.Win32Exception();
 }
 return result;
 }
 public static bool VirtualFreeEx(
 IntPtr lpAddress, IntPtr dwSize)
 {
 return VirtualFreeEx(
 GetCurrentProcessHandle(), lpAddress, dwSize);
 }

 [DllImport("kernel32", SetLastError = true)]
 static extern IntPtr VirtualAllocEx(
 IntPtr hProcess,
 IntPtr lpAddress,
 IntPtr dwSize,
 AllocationType flAllocationType,
 uint flProtect);

 // ...
}

Function Pointers Map to Delegates

One last P/Invoke key is that function pointers in unmanaged code map to delegates in managed code. To set up a Microsoft Windows timer, for example, you would provide a function pointer that the timer could call back on, once it had expired. Specifically, you would pass a delegate instance that matched the signature of the callback.

Guidelines

Given the idiosyncrasies of P/Invoke, there are several guidelines to aid in the process of writing such code.

Guidelines

DO NOT unnecessarily replicate existing managed classes that already perform the function of the unmanaged API.

DO declare extern methods as private or internal.

DO provide public wrapper methods that use managed conventions such as structured exception handling, use of enums for special values, and so on.

DO simplify the wrapper methods by choosing default values for unnecessary parameters.

DO use the SetLastErrorAttribute to turn APIs that use SetLastError error codes into methods that throw Win32Exception.

DO extend SafeHandle or implement IDisposable and create a finalizer to ensure that unmanaged resources can be cleaned up effectively.

DO use delegate types that match the signature of the desired method when an unmanaged API requires a function pointer.

DO use ref parameters rather than pointer types when possible.

Pointers and Addresses

On occasion, developers will want to be able to access and work with memory, and with pointers to memory locations, directly. This is necessary for certain operating system interaction as well as with certain types of time-critical algorithms. To support this, C# requires use of the unsafe code construct.

Unsafe Code

One of C#’s great features is the fact that it is strongly typed and supports type checking throughout the runtime execution. What makes this feature especially great is that it is possible to circumvent this support and manipulate memory and addresses directly. You would do this when working with things such as memory-mapped devices, or if you wanted to implement time-critical algorithms. The key is to designate a portion of the code as unsafe.

Unsafe code is an explicit code block and compilation option, as shown in Listing 20.12. The unsafe modifier has no effect on the generated CIL code itself. It is only a directive to the compiler to permit pointer and address manipulation within the unsafe block. Furthermore, unsafe does not imply unmanaged.

Listing 20.12. Designating a Method for Unsafe Code

Click here to view code image

class Program
{
 unsafe static int Main(string[] args)
 {
 // ...
 }
}

You can use unsafe as a modifier to the type or to specific members within the type.

In addition, C# allows unsafe as a statement that flags a code block to allow unsafe code (see Listing 20.13).

Listing 20.13. Designating a Code Block for Unsafe Code

class Program
{
 static int Main(string[] args)
 {
 unsafe
 {
 // ...
 }
 }
}

Code within the unsafe block can include unsafe constructs such as pointers.

Note

It is important to note that it is necessary to explicitly indicate to the compiler that unsafe code is supported.

From the command line, this requires the /unsafe switch. For example, to compile the preceding code, you need to use the command shown in Output 20.1.

Output 20.1.

csc.exe /unsafe Program.cs

With Visual Studio you can activate this by checking the Allow Unsafe Code checkbox from the Build tab of the Project Properties window.

You need to use the /unsafe switch because unsafe code opens up the possibility of buffer overflows and similar possibilities that expose the potential for security holes. The /unsafe switch includes the ability to directly manipulate memory and execute instructions that are unmanaged. Requiring /unsafe, therefore, makes the choice of potential exposure explicit.

Pointer Declaration

Now that you have marked a code block as unsafe, it is time to look at how to write unsafe code. First, unsafe code allows the declaration of a pointer. Consider the following example:

byte* pData;

Assuming pData is not null, its value points to a location that contains one or more sequential bytes; the value of pData represents the memory address of the bytes. The type specified before the * is the referent type, or the type located where the value of the pointer refers. In this example, pData is the pointer and byte is the referent type, as shown in Figure 20.1.

[image: Image]

Figure 20.1. Pointers Contain the Address of the Data

Because pointers are simply integers that happen to refer to a memory address, they are not subject to garbage collection. C# does not allow referent types other than unmanaged types, which are types that are not reference types, are not generics, and do not contain reference types. Therefore, the following is not valid:

string* pMessage;

Neither is this:

ServiceStatus* pStatus;

where ServiceStatus is defined as shown in Listing 20.14; the problem again is that ServiceStatus includes a string field.

Language Contrast: C/C++—Pointer Declaration

In C/C++, multiple pointers within the same declaration are declared as follows:

int *p1, *p2;

Notice the * on p2; this makes p2 an int* rather than an int. In contrast, C# always places the * with the data type:

int* p1, p2;

The result is two variables of type int*. The syntax matches that of declaring multiple arrays in a single statement:

int[] array1, array2;

Pointers are an entirely new category of type. Unlike structs, enums, and classes, pointers don’t ultimately derive from System.Object and are not even convertible to System.Object. Instead, they are convertible (explicitly) to System.IntPtr (which does convert to System.Object).

Listing 20.14. Invalid Referent Type Example

Click here to view code image

struct ServiceStatus
{
 int State;
 string Description; // Description is a reference type
}

In addition to custom structs that contain only unmanaged types, valid referent types include enums, predefined value types (sbyte, byte, short, ushort, int, uint, long, ulong, char, float, double, decimal, and bool), and pointer types (such as byte**). Lastly, valid syntax includes void* pointers, which represent pointers to an unknown type.

Assigning a Pointer

Once code defines a pointer, it needs to assign a value before accessing it. Just like reference types, pointers can hold the value null; this is their default value. The value stored by the pointer is the address of a location. Therefore, in order to assign it, you must first retrieve the address of the data.

You could explicitly cast an integer or a long into a pointer, but this rarely occurs without a means of determining the address of a particular data value at execution time. Instead, you need to use the address operator (&) to retrieve the address of the value type:

byte* pData = &bytes[0]; // Compile error

The problem is that in a managed environment, data can move, thereby invalidating the address. The error message is “You can only take the address of [an] unfixed expression inside a fixed statement initializer.” In this case, the byte referenced appears within an array and an array is a reference type (a movable type). Reference types appear on the heap and are subject to garbage collection or relocation. A similar problem occurs when referring to a value type field on a movable type:

int* a = &"message".Length;

Either way, to assign an address of some data requires the following.

• The data must be classified as a variable.

• The data must be an unmanaged type.

• The variable needs to be classified as fixed, not movable.

If the data is an unmanaged variable type but is not fixed, use the fixed statement to fix a movable variable.

Fixing Data

To retrieve the address of a movable data item, it is necessary to fix, or pin, the data, as demonstrated in Listing 20.15.

Listing 20.15. Fixed Statement

Click here to view code image

byte[] bytes = new byte[24];
fixed (byte* pData = &bytes[0]) // pData = bytes also allowed
{
 // ...
}

Within the code block of a fixed statement, the assigned data will not move. In this example, bytes will remain at the same address, at least until the end of the fixed statement.

The fixed statement requires the declaration of the pointer variable within its scope. This avoids accessing the variable outside the fixed statement, when the data is no longer fixed. However, it is your responsibility to ensure that you do not assign the pointer to another variable that survives beyond the scope of the fixed statement—possibly in an API call, for example. Unsafe code is called “unsafe” for a reason; you are required to ensure that you use the pointers safely rather than relying on the runtime to enforce safety for you. Similarly, using ref or out parameters will be problematic for data that will not survive beyond the method call.

Since a string is an invalid referent type, it would appear invalid to define pointers to strings. However, as in C++, internally a string is a pointer to the first character of an array of characters, and it is possible to declare pointers to characters using char*. Therefore, C# allows declaring a pointer of type char* and assigning it to a string within a fixed statement. The fixed statement prevents the movement of the string during the life of the pointer. Similarly, it allows any movable type that supports an implicit conversion to a pointer of another type, given a fixed statement.

You can replace the verbose assignment of &bytes[0] with the abbreviated bytes, as shown in Listing 20.16.

Listing 20.16. Fixed Statement without Address or Array Indexer

byte[] bytes = new byte[24];
fixed (byte* pData = bytes)
{
 // ...
}

Depending on the frequency and time to execute, fixed statements have the potential to cause fragmentation in the heap because the garbage collector cannot compact fixed objects. To reduce this problem, the best practice is to pin blocks early in the execution and to pin fewer large blocks rather than many small blocks. Unfortunately, this has to be tempered with pinning as little as possible for as short a time as possible, to minimize the chance that a collection will happen during the time that the data is pinned. To some extent, .NET 2.0 reduces the problem, due to some additional fragmentation-aware code.

It is possible that you might need to fix an object in place in one method body and have it remain fixed until another method is called; this is not possible with the fixed statement. If you are in this unfortunate situation, you can use methods on the GCHandle object to fix an object in place indefinitely. You should only do so if it is absolutely necessary, however; fixing an object for a long time makes it highly likely that the garbage collector will be unable to efficiently compact memory.

Allocating on the Stack

You should use the fixed statement on an array to prevent the garbage collector from moving the data. However, an alternative is to allocate the array on the call stack. Stack allocated data is not subject to garbage collection or to the finalizer patterns that accompany it. Like referent types, the requirement is that the stackalloc data is an array of unmanaged types. For example, instead of allocating an array of bytes on the heap, you can place it onto the call stack, as shown in Listing 20.17.

Listing 20.17. Allocating Data on the Call Stack

byte* bytes = stackalloc byte[42];

Because the data type is an array of unmanaged types, it is possible for the runtime to allocate a fixed buffer size for the array and then to restore that buffer once the pointer goes out of scope. Specifically, it allocates sizeof(T) * E, where E is the array size and T is the referent type. Given the requirement of using stackalloc only on an array of unmanaged types, the runtime restores the buffer back to the system simply by unwinding the stack, eliminating the complexities of iterating over the f-reachable queue (see, in Chapter 9, the section titled Garbage Collection and the discussion of finalization) and compacting reachable data. Therefore, there is no way to explicitly free stackalloc data.

Note that the stack is a precious resource and, although small, running out of stack space will result in a program crashing; every effort should be taken to avoid running out. If a program does run out of stack space, the best thing that can happen is for the program to shut down/crash immediately. Generally, programs have less than 1MB of stack space (possibly a lot less). Therefore, take great care to avoid allocating arbitrarily sized buffers on the stack.

Dereferencing a Pointer

Accessing the data stored in a variable of a type referred to by a pointer requires that you dereference the pointer, placing the indirection operator prior to the expression. byte data = *pData;, for example, dereferences the location of the byte referred to by pData and produces a variable of type byte. The variable provides read/write access to the single byte at that location.

Using this principle in unsafe code allows the unorthodox behavior of modifying the “immutable” string, as shown in Listing 20.18. In no way is this recommended, but it does expose the potential of low-level memory manipulation.

Listing 20.18. Modifying an Immutable String

Click here to view code image

string text = "S5280ft";
Console.Write("{0} = ", text);
unsafe // Requires /unsafe switch.
{
 fixed (char* pText = text)
 {
 char* p = pText;
 *++p = 'm';
 *++p = 'i';
 *++p = 'l';
 *++p = 'e';
 *++p = ' ';
 *++p = ' ';
 }
}
Console.WriteLine(text);

The results of Listing 20.18 appear in Output 20.2.

Output 20.2.

S5280ft = Smile

In this case, you take the original address and increment it by the size of the referent type (sizeof(char)), using the preincrement operator. Next, you dereference the address using the indirection operator and then assign the location with a different character. Similarly, using the + and – operators on a pointer changes the address by the * sizeof(T) operand, where T is the referent type.

Similarly, the comparison operators (==, !=, <, >, <=, and =>) work to compare pointers translating effectively to the comparison of address location values.

One restriction on the dereferencing operator is the inability to dereference a void*. The void* data type represents a pointer to an unknown type. Since the data type is unknown, it can’t be dereferenced to produce a variable. Instead, to access the data referenced by a void*, you must convert it to any other pointer type and then dereference the later type.

You can achieve the same behavior as Listing 20.18 by using the index operator rather than the indirection operator (see Listing 20.19).

Listing 20.19. Modifying an Immutable String with the Index Operator in Unsafe Code

Click here to view code image

string text;
text = "S5280ft";
Console.Write("{0} = ", text);

unsafe // Requires /unsafe switch.
{
 fixed (char* pText = text)
 {
 pText[1] = 'm';
 pText[2] = 'i';
 pText[3] = 'l';
 pText[4] = 'e';
 pText[5] = ' ';
 pText[6] = ' ';
 }
}
Console.WriteLine(text);

The results of Listing 20.19 appear in Output 20.3.

Output 20.3.

S5280ft = Smile

Modifications such as those in Listing 20.18 and Listing 20.19 lead to unexpected behavior. For example, if you reassigned text to "S5280ft" following the Console.WriteLine() statement and then redisplayed text, the output would still be Smile because the address of two equal string literals is optimized to one string literal referenced by both variables. In spite of the apparent assignment

text = "S5280ft";

after the unsafe code in Listing 20.18, the internals of the string assignment are an address assignment of the modified "S5280ft" location, so text is never set to the intended value.

Accessing the Member of a Referent Type

Dereferencing a pointer produces a variable of the pointer’s underlying type. You can then access the members of the underlying type using the member access “dot” operator normally. However, the rules of operator precedence require that *x.y means *(x.y) which is probably not what you intended. If x is a pointer, the correct code is (*x).y, which is an unpleasant syntax. To make it easier to access members of a dereferenced pointer, C# provides a special member access operator: x->y is a shorthand for (*x).y, as shown in Listing 20.20.

Listing 20.20. Directly Accessing a Referent Type’s Members

Click here to view code image

unsafe
{
 Angle angle = new Angle(30, 18, 0);
 Angle* pAngle = ∠
 System.Console.WriteLine("{0}° {1}' {2}\"",
 pAngle->Hours, pAngle->Minutes, pAngle->Seconds);
}

The results of Listing 20.20 appear in Output 20.4.

Output 20.4.

30° 18' 0

Executing Unsafe Code via a Delegate

As promised at the beginning of this chapter, we finish up with a full working example of pretty much the most “unsafe” thing you can do in C#: Obtain a pointer to a block of memory, fill it with the bytes of machine code, make a delegate that refers to the new code, and execute it. This particular bit of assembly code determines if the machine that is executing the code is a virtual machine or a real machine. If the machine is virtual, it outputs “Inside Matrix!” Listing 20.21 shows how to do it.

Beginner Topic: What Is a Virtual Computer?

A virtual computer (or virtual machine), also called a guest computer, is virtualized or emulated through software running on the host operating system and interacting with the host computer’s hardware. For example, virtual computer software (such as VMware Workstation and Microsoft Virtual PC) can be installed on a computer running a recent version of Windows. Once the software is installed, users can configure a guest computer within the software, boot it, and install an operating system as though it were a real computer, not just one virtualized with software.

Listing 20.21. Designating a Block for Unsafe Code

Click here to view code image

using System.Runtime.InteropServices;

class Program
{
 unsafe static int Main(string[] args)
 {
 // Assign redpill
 byte[] redpill = {
 0x0f, 0x01, 0x0d, // asm SIDT instruction
 0x00, 0x00, 0x00, 0x00, // placeholder for an address
 0xc3}; // asm return instruction

 unsafe
 {

 fixed (byte* matrix = new byte[6],
 redpillPtr = redpill)
 {
 // Move the address of matrix immediately
 // following the SIDT instruction of memory.
 (uint)&redpillPtr[3] = (uint)&matrix[0];

 using (VirtualMemoryPtr codeBytesPtr =
 new VirtualMemoryPtr(redpill.Length))
 {
 Marshal.Copy(
 redpill, 0,
 codeBytesPtr, redpill.Length);

 MethodInvoker method =
 (MethodInvoker)Marshal.GetDelegateForFunctionPointer(
 codeBytesPtr, typeof(MethodInvoker));

 method();
 }
 if (matrix[5] > 0xd0)
 {
 Console.WriteLine("Inside Matrix!\n");
 return 1;
 }
 else
 {
 Console.WriteLine("Not in Matrix.\n");
 return 0;
 }
 } // fixed

 } // unsafe

 }
}

The results of Listing 20.21 appear in Output 20.5.

Output 20.5.

Inside Matrix!

Summary

This book has demonstrated the power, flexibility, consistency, and fantastic structure of C#. This chapter demonstrated the ability of C# programs to perform very low-level machine-code operations.

Before we end the book, the next chapter briefly describes the underlying execution platform and shifts the focus from the C# language to the broader platform in which C# programs execute.

21. The Common Language Infrastructure

One of the first items that C# programmers encounter beyond the syntax is the context under which a C# program executes. This chapter discusses the underpinnings of how C# handles memory allocation and de-allocation, type checking, interoperability with other languages, cross-platform execution, and support for programming metadata. In other words, this chapter investigates the Common Language Infrastructure (CLI) on which C# relies both at compile time and during execution. It covers the execution engine that governs a C# program at runtime and how C# fits into a broader set of languages that are governed by the same execution engine. Because of C#’s close ties with this infrastructure, most of the features that come with the infrastructure are made available to C#.

[image: Image]

Defining the Common Language Infrastructure (CLI)

Instead of generating instructions that a processor can interpret directly, the C# compiler generates instructions in an intermediate language, the Common Intermediate Language (CIL). A second compilation step occurs, generally at execution time, converting the CIL to machine code that the processor can understand. Conversion to machine code is still not sufficient for code execution, however. It is also necessary for a C# program to execute under the context of an agent. The agent responsible for managing the execution of a C# program is the Virtual Execution System (VES), generally more casually referred to as the runtime. (Note that the runtime in this context does not refer to a time, such as execution time; rather, the runtime—the Virtual Execution System—is an agent responsible for managing the execution of a C# program.) The runtime is responsible for loading and running programs and providing additional services (security, garbage collection, and so on) to the program as it executes.

The specification for the CIL and the runtime is contained within an international standard known as the Common Language Infrastructure (CLI). This is a key specification for understanding the context in which a C# program executes and how it can seamlessly interact with other programs and libraries, even when they are written in alternate languages. Note that the CLI does not prescribe the implementation for the standard, but rather identifies the requirements for how a CLI platform should behave once it conforms to the standard. This provides CLI implementers with the flexibility to innovate where necessary, while still providing enough structure that programs created by one platform can execute on a different CLI implementation, and even on a different operating system.

Note

Note the similarity between these two acronyms and the names they stand for. Take care to understand these upfront to avoid confusion later on.

Contained within the CLI standard are specifications for the following:

• The Virtual Execution System (VES, or runtime)

• The Common Intermediate Language (CIL)

• The Common Type System (CTS)

• The Common Language Specification (CLS)

• Metadata

• And the framework

This chapter broadens your view of C# to include the CLI, which is critical to how C# programs operate and interact with programs and with the operating system.

CLI Implementations

There are currently seven predominant implementations of the CLI (four of which are from Microsoft), each with an accompanying implementation of a C# compiler. Table 21.1 (on the next page) describes these implementations.

Table 21.1. Primary C# Compilers

[image: Image]

Although none of these platforms and compilers would have any problems with the source code shown in Chapter 1, note that each CLI and C# compiler implementation is at a different stage of compliance with the specifications. For example, some implementations will not compile all the newer syntax. All implementations, however, are intended to comply with the ECMA-334 specification for C# 1.01 and the ECMA-335 specification for the CLI 1.2.2 Furthermore, many implementations include prototype features prior to the establishment of those features in standards.

C# Compilation to Machine Code

The HelloWorld program listing in Chapter 1 is obviously C# code, and you compiled it for execution using the C# compiler. However, the processor still cannot directly interpret compiled C# code. An additional compilation step is required to convert the result of C# compilation into machine code. Furthermore, the execution requires the involvement of an agent that adds additional services to the C# program, services that it was not necessary to code for explicitly.

All computer languages define syntax and semantics for programming. Since languages such as C and C++ compile to machine code, the platform for these languages is the underlying operating system and machine instruction set, be it Microsoft Windows, Linux, Unix, or others. Languages such as C# are different; the underlying platform is the runtime (or VES).

CIL is what the C# compiler produces after compiling. It is termed a “common intermediate language” (CIL) because an additional step is required to transform the CIL into something that processors can understand. Figure 21.1 shows the process.

[image: Image]

Figure 21.1. Compiling C# to Machine Code

In other words, C# compilation requires two steps:

1. Conversion from C# to CIL by the C# compiler

2. Conversion from CIL to instructions that the processor can execute

The runtime is able to understand CIL statements and compile them to machine code. Generally, a component within the runtime performs this compilation from CIL to machine code. This component is the just-in-time (JIT) compiler, and jitting can occur when the program is installed or executed. Most CLI implementations favor execution-time compilation of the CIL, but the CLI does not specify when the compilation needs to occur. In fact, the CLI even allows the CIL to be interpreted rather than compiled, similar to the way many scripting languages work. In addition, .NET includes a tool called NGEN that enables compilation to machine code prior to actually running the program. This preexecution-time compilation needs to take place on the computer on which the program will be executing because it will evaluate the machine characteristics (processor, memory, and so on) in order to generate more efficient code. The advantage of using NGEN at installation (or at any time prior to execution) is that you can reduce the need for the jitter to run at startup, thereby decreasing startup time.

Runtime

Even after the runtime converts the CIL code to machine code and starts to execute, it continues to maintain control of its execution. The code that executes under the context of an agent such as the runtime is managed code, and the process of executing under control of the runtime is managed execution. The control over execution transfers to the data; this makes it managed data because memory for the data is automatically allocated and de-allocated by the runtime.

Somewhat inconsistently, the term Common Language Runtime (CLR) is not technically a generic term that is part of the CLI. Rather, CLR is the Microsoft-specific implementation of the runtime for the .NET platform. Regardless, CLR is casually used as a generic term for runtime, and the technically accurate term, Virtual Execution System, is seldom used outside the context of the CLI specification.

Because an agent controls program execution, it is possible to inject additional services into a program, even though programmers did not explicitly code for them. Managed code, therefore, provides information to allow these services to be attached. Among other items, managed code enables the location of metadata about a type member, exception handling, access to security information, and the capability to walk the stack. The remainder of this section includes a description of some additional services made available via the runtime and managed execution. The CLI does not explicitly require all of them, but the established CLI platforms have an implementation of each.

Garbage Collection

Garbage collection is the process of automatically de-allocating memory based on the program’s needs. This is a significant programming problem for languages that don’t have an automated system for doing this. Without the garbage collector, programmers must remember to always free any memory allocations they make. Forgetting to do so, or doing so repeatedly for the same memory allocation, introduces memory leaks or corruption into the program, something exacerbated by long-running programs such as web servers. Because of the runtime’s built-in support for garbage collection, programmers targeting runtime execution can focus on adding program features rather than “plumbing” related to memory management.

Language Contrast: C++—Deterministic Destruction

The exact mechanics for how the garbage collector works are not part of the CLI specification; therefore, each implementation can take a slightly different approach. (In fact, garbage collection is one item not explicitly required by the CLI.) One key concept that may take C++ programmers a little getting used to is that garbage-collected objects are not necessarily collected deterministically (at well-defined, compile-time-known locations). In fact, objects can be garbage-collected anytime between when they are last accessed and when the program shuts down. This includes collection prior to falling out of scope, or waiting until well after an object instance is accessible by the code.

It should be noted that the garbage collector only takes responsibility for handling memory management. It does not provide an automated system for managing resources unrelated to memory. Therefore, if an explicit action to free a resource (other than memory) is required, programmers using that resource should utilize special CLI-compatible programming patterns that will aid in the cleanup of those resources (see Chapter 9).

Garbage Collection on .NET

The .NET platform implementation of garbage collection uses a generational, compacting, mark-and-sweep-based algorithm. It is generational because objects that have lived for only a short period will be cleaned up sooner than objects that have already survived garbage collection sweeps because they were still in use. This conforms to the general pattern of memory allocation that objects that have been around longer will continue to outlive objects that have only recently been instantiated.

Additionally, the .NET garbage collector uses a mark-and-sweep algorithm. During each garbage collection execution, it marks objects that are to be de-allocated and compacts together the objects that remain so that there is no “dirty” space between them. The use of compression to fill in the space left by de-allocated objects often results in faster instantiation of new objects (than with unmanaged code), because it is not necessary to search through memory to locate space for a new allocation. This also decreases the chance of paging because more objects are located in the same page, which improves performance as well.

The garbage collector takes into consideration the resources on the machine and the demand on those resources at execution time. For example, if memory on the computer is still largely untapped, the garbage collector is less likely to run and take time to clean up those resources. This is an optimization rarely taken by platforms and languages that are not based on garbage collection.

Type Safety

One of the key advantages the runtime offers is checking conversions between types, or type checking. Via type checking, the runtime prevents programmers from unintentionally introducing invalid casts that can lead to buffer overrun vulnerabilities. Such vulnerabilities are one of the most common means of breaking into a computer system, and having the runtime automatically prevent these is a significant gain.3 Type checking provided by the runtime ensures the following.

• Both the variables and the data that the variables refer to are typed, and the type of the variable is compatible with the data that it refers to.

• It is possible to locally analyze a type (without analyzing all of the code in which the type is used) to determine what permissions will be required to execute that type’s members.

• Each type has a compile-time-defined set of methods and the data they contain. The runtime enforces rules about what classes can access those methods and data. Methods marked as “private,” for example, are accessible only by the containing type.

Advanced Topic: Circumventing Encapsulation and Access Modifiers

Given appropriate permissions, it is possible to circumvent encapsulation and access modifiers via a mechanism known as reflection. Reflection provides late binding by enabling support for browsing through a type’s members, looking up the names of particular constructs within an object’s metadata, and invoking the type’s members.

Code Access Security

The runtime can make security checks as the program executes, allowing and disallowing the specific types of operations depending on permissions. Permission to execute a specific function is not restricted to authentication of the user running the program. The runtime also controls execution based on who created the program and whether she is a trusted provider. Similarly, you might want to note that code access security (CAS) also applies security policy based on the location of the code—by default, code installed on the local machine is more trusted than code from the LAN, which is much more trusted than code on the Internet. Permissions can be tuned such that partially trusted providers can read and write files from controlled locations on the disk, but they are prevented from accessing other locations (such as email addresses from an email program) for which the provider has not been granted permission. Identification of a provider is handled by certificates that are embedded into the program when the provider compiles the code.

Platform Portability

One theoretical feature of the runtime is the opportunity it provides for C# code and the resultant programs to be platform-portable, capable of running on multiple operating systems and executing on different CLI implementations. Portability in this context is not limited to the source code such that recompiling is necessary. A single CLI module compiled for one platform should run on any CLI-compatible platform without needing to be recompiled. This portability occurs because the work of porting the code lies in the hands of the runtime implementation rather than the application developer.

The restriction is, of course, that no platform-specific APIs are used. Because of this restriction, many developers forgo CLI platform-neutral code in favor of accessing the underlying platform functionality, rather than writing it all from scratch.

The platform portability offered by .NET, WinRT, DotGNU, Rotor, and Mono varies depending on the goals of the platform developers.

• .NET was originally targeted to run only on the Microsoft series of operating systems.

• Rotor, also produced by Microsoft, was primarily designed as a means for teaching and fostering research into future CLI development. Its inclusion of support for FreeBSD proves the portability characteristics of the CLI. Some of the libraries included in .NET (such as WinForms, ASP.NET, ADO.NET, and more) are considered proprietary, and therefore are not available in Rotor.

• DotGNU and Mono were initially targeted at Linux but have since been ported to many different operating systems (including iOS and Android). Furthermore, the goal of these CLIs was to provide a means for porting .NET applications to operating systems in addition to those controlled by Microsoft. In so doing, there is a large overlap between the APIs found in .NET and those available in Mono and DotGNU.

• WinRT was a reset for Microsoft in many ways, and as such, compatibility was intentionally dropped in favor of an improved API both for .NET and for access to the underlying operating system. For example, .NET/BCL APIs that previously might have taken longer than 50 milliseconds were dropped in favor of asynchronous equivalents. Win32 access was similarly abandoned and replaced with a much-improved WinRT API.

Unfortunately, the variance in the Based Class Library alone (even just within the Microsoft-developed CLI platforms) makes portability difficult at best. Even the APIs between WinRT, the Desktop .NET Framework, and Silverlight are not the same. To achieve portability, the best option is to use Visual Studio 2012 to create a Portable Class Library project (also available in Visual Studio 2010 using the Portable Library Tools; http://msdn.microsoft.com/en-us/library/gg597391.aspx). By no means is this solution perfect, however, as it is liable to disable the use of some more recent C# language features, including the await and dynamic, keywords, for example. This is to be expected, though, if backward compatibility prior to the availability of such features is to be supported.

Performance

Many programmers accustomed to writing unmanaged code will correctly point out that managed environments impose overhead on applications, no matter how simple. The trade-off is one of increased development productivity and reduced bugs in managed code versus runtime performance. The same dichotomy emerged as programming went from assembler to higher-level languages such as C, and from structured programming to object-oriented development. In the vast majority of scenarios, development productivity wins out, especially as the speed and reduced price of hardware surpass the demands of applications. Time spent on architectural design is much more likely to yield big performance gains than the complexities of a low-level development platform. In the climate of security holes caused by buffer overruns, managed execution is even more compelling.

Undoubtedly, certain development scenarios (device drivers, for example) may not yet fit with managed execution. However, as managed execution increases in capability and sophistication, many of these performance considerations will likely vanish. Unmanaged execution will then be reserved for development where precise control or circumvention of the runtime is deemed necessary.4

Furthermore, the runtime introduces several factors that can contribute to improved performance over native compilation. For example, because translation to machine code takes place on the destination machine, the resultant compiled code matches the processor and memory layout of that machine, resulting in performance gains generally not leveraged by nonjitted languages. Also, the runtime is able to respond to execution conditions that direct compilation to machine code rarely takes into account. If, for example, there is more memory on the box than is required, unmanaged languages will still de-allocate their memory at deterministic, compile-time-defined execution points in the code. Alternatively, jit-compiled languages will need to de-allocate memory only when it is running low or when the program is shutting down. Even though jitting can add a compile step to the execution process, code efficiencies that a jitter can insert lead to performance rivaling that of programs compiled directly to machine code. Ultimately, CLI programs are not necessarily faster than non-CLI programs, but their performance is competitive.

Application Domains

By introducing a layer between the program and the operating system, it is possible to implement virtual processes or applications known as application domains (app domains). An application domain behaves like an operating system process in that it offers a level of isolation between other application domains. For example, an app domain has its own virtual memory allocation, and communication between application domains requires distributed communication paradigms, just as it would between two operating system processes. Similarly, static data is not shared between application domains, so static constructors run for each application domain, and assuming a single thread per application domain, there is no need to synchronize the static data because each application has its own instance of the data. Furthermore, each application domain has its own threads, and just like with an operating system process, threads cannot cross application domain boundaries.

The point of an application domain is that processes are considered relatively expensive. With application domains, you can avoid this additional expense by running multiple application domains within a single process. For example, you can use a single process to host a series of web sites. However, you can isolate the web sites from one another by placing them in their own application domain. In summary, application domains represent a virtual process on a layer between an operating system process and the threads.

Assemblies, Manifests, and Modules

Included in the CLI is the specification of the CIL output from a source language compiler, usually an assembly. In addition to the CIL instructions themselves, an assembly includes a manifest that is made up of the following:

• The types that an assembly defines and imports

• Version information about the assembly itself

• Additional files the assembly depends on

• And security permissions for the assembly

The manifest is essentially a header to the assembly, providing all the information about what an assembly is composed of, along with the information that uniquely identifies it.

Assemblies can be class libraries or the executables themselves, and one assembly can reference other assemblies (which, in turn, can reference more assemblies), thereby establishing an application composed of many components rather than one large, monolithic program. This is an important feature that modern programming platforms take for granted, because it significantly improves maintainability and allows a single component to be shared across multiple programs.

In addition to the manifest, an assembly contains the CIL code within one or more modules. Generally, the assembly and the manifest are combined into a single file, as was the case with HelloWorld.exe in Chapter 1. However, it is possible to place modules into their own separate files and then use an assembly linker (al.exe) to create an assembly file that includes a manifest that references each module.5 This not only provides another means of breaking a program into components, but it also enables the development of one assembly using multiple source languages.

Casually, the terms module and assembly are somewhat interchangeable. However, the term assembly is predominant for those talking about CLI-compatible programs or libraries. Figure 21.2 depicts the various component terms.

[image: Image]

Figure 21.2. Assemblies with the Modules and Files They Reference

Note that both assemblies and modules can also reference files such as resource files that have been localized to a particular language. Although it is rare, two different assemblies can reference the same module or file.

In spite of the fact that an assembly can include multiple modules and files, there is only one version number for the entire group of files and it is placed in the assembly manifest. Therefore, the smallest versionable component within an application is the assembly, even if that assembly is composed of multiple files. If you change any of the referenced files—even to release a patch—without updating the assembly manifest, you will violate the integrity of the manifest and the entire assembly itself. As a result, assemblies form the logical construct of a component or unit of deployment.

Note

Assemblies form the smallest unit that can be versioned and installed, not the individual modules that comprise them.

Even though an assembly (the logical construct) could consist of multiple modules, most assemblies contain only one. Furthermore, Microsoft now provides an ILMerge.exe utility for combining multiple modules and their manifests into a single file assembly.

Because the manifest includes a reference to all the files an assembly depends on, it is possible to use the manifest to determine an assembly’s dependencies. Furthermore, at execution time, the runtime needs to examine only the manifest to determine what files it requires. Only tool vendors distributing libraries shared by multiple applications (Microsoft, for example) need to register those files at deployment time. This makes deployment significantly easier. Often, deployment of a CLI-based application is referred to as xcopy deployment, after the Windows xcopy command that simply copies files to a selected destination.

Language Contrast: COM DLL Registration

Unlike Microsoft’s COM files of the past, CLI assemblies rarely require any type of registration. Instead, it is possible to deploy applications by copying all the files that comprise a program into a particular directory, and then executing the program.

Common Intermediate Language (CIL)

Considering the Common Language Infrastructure (CLI) name, another important feature of the CIL and the CLI is to support the interaction of multiple languages within the same application (instead of portability of source code across multiple operating systems). As a result, the CIL is the intermediate language not only for C#, but also for many other languages, including Visual Basic .NET, the Java-like language of J#, some incantations of Smalltalk, C++, and a host of others (more than 20 at the time of this writing, including versions of COBOL and FORTRAN). Languages that compile to the CIL are source languages and each has a custom compiler that converts the source language to the CIL. Once compiled to the CIL, the source language is insignificant. This powerful feature enables the development of libraries by different development groups across multiple organizations, without concern for the language choice of a particular group. Thus, the CIL enables programming language interoperability as well as platform portability.

Note

A powerful feature of the CLI is support for multiple languages. This enables the creation of programs using multiple languages and the accessibility of libraries written in one language from code written in a different language.

Common Type System (CTS)

Regardless of the programming language, the resultant program operates internally on data types; therefore, the CLI includes the Common Type System (CTS). The CTS defines how types are structured and laid out in memory, as well as the concepts and behaviors that surround types. It includes type manipulation directives alongside the information about the data stored within the type. The CTS standard applies to how types appear and behave at the external boundary of a language because the purpose of the CTS is to achieve interoperability between languages. It is the responsibility of the runtime at execution time to enforce the contracts established by the CTS.

Within the CTS, types are broken down into two categories.

• Values are bit patterns used to represent basic types, such as integers and characters, as well as more complex data in the form of structures. Each value type corresponds to a separate type designation not stored within the bits themselves. The separate type designation refers to the type definition that provides the meaning of each bit within the value and the operations that the value supports.

• Objects contain within them the object’s type designation. (This helps in enabling type checking.) Objects have identity that makes each instance unique. Furthermore, objects have slots that can store other types (either values or object references). Unlike values, changing the contents of a slot does not change the identity of the object.

These two categories of types translate directly to C# syntax that provide a means of declaring each type.

Common Language Specification (CLS)

Since the language integration advantages provided by the CTS generally outweigh the costs of implementing it, the majority of source languages support the CTS. However, there is also a subset of CTS language conformance called the Common Language Specification (CLS). Its focus is toward library implementations. It targets library developers, providing them with standards for writing libraries that are accessible from the majority of source languages, regardless of whether the source languages using the library are CTS-compliant. It is called the Common Language Specification because it is intended to also encourage CLI languages to provide a means of creating interoperable libraries, or libraries that are accessible from other languages.

For example, although it is perfectly reasonable for a language to provide support for an unsigned integer, such a type is not included as part of the CLS. Therefore, developers implementing a class library should not externally expose unsigned integers because doing so would cause the library to be less accessible from CLS-compliant source languages that do not support unsigned integers. Ideally, therefore, any development of libraries that is to be accessible from multiple languages should conform to the CLS. Note that the CLS is not concerned with types that are not exposed externally to the assembly.

Also note that it is possible to have the compiler issue a warning when you create an API that is not CLS-compliant. To accomplish this use the assembly attribute System.CLSCompliant and specify a value of true for the parameter.

Base Class Library (BCL)

In addition to providing a platform in which CIL code can execute, the CLI also defines a core set of class libraries that programs may employ, called the Base Class Library (BCL). These libraries provide foundational types and APIs, allowing the program to interact with the runtime and underlying operating system in a consistent manner. The BCL includes support for collections, simple file access, some security, fundamental data types (string, and so on), streams, and the like.

Similarly, there is a Microsoft-specific library called the Framework Class Library (FCL) that adds to this and includes support for rich client user interfaces, web user interfaces, database access, distributed communication, and more.

Metadata

In addition to execution instructions, CIL code includes metadata about the types and files included in a program. The metadata includes the following:

• Descriptions of each type within a program or class library

• The manifest information containing data about the program itself, along with the libraries it depends on

• And custom attributes embedded in the code, providing additional information about the constructs the attributes decorate

The metadata is not a cursory, nonessential add-on to the CIL. Instead, it forms a core part of the CLI implementation. It provides the representation and the behavior information about a type and includes location information about which assembly contains a particular type definition. It serves a key role in saving data from the compiler and making it accessible at execution time to debuggers and the runtime. This data not only is available in the CIL code, but also is accessible during machine code execution so that the runtime can continue to make any necessary type checks.

Metadata provides a mechanism for the runtime to handle a mixture of native and managed code execution. Also, it increases code and execution robustness because it smoothes the migration from one library version to the next, replacing compile-time-defined binding with a load-time implementation.

All header information about a library and its dependencies is in a portion of the metadata known as the manifest. As a result, the manifest portion of the metadata enables developers to determine a module’s dependencies, including information about particular versions of the dependencies and signatures of who created the module. At execution time, the runtime uses the manifest to determine what dependent libraries to load, whether the libraries or the main program has been tampered with, and whether assemblies are missing.

The metadata also contains custom attributes that may decorate the code. Attributes provide additional metadata about CIL instructions that are accessible via the program at execution time.

Metadata is available at execution time by a mechanism known as reflection. With reflection, it is possible to look up a type or its member at execution time and then invoke that member or determine whether a construct is decorated with a particular attribute. This provides late binding, determining what code to execute at execution time rather than at compile time. Reflection can even be used for generating documentation by iterating through metadata and copying it into a help document of some kind (see Chapter 17).

Summary

This chapter described many new terms and acronyms that are important to understanding the context under which C# programs run. The preponderance of three-letter acronyms can be confusing. Table 21.2 provides a summary list of the terms and acronyms that are part of the CLI.

Table 21.2. Common C#-Related Acronyms

[image: Image]

[image: Image]

A. Downloading and Installing the C# Compiler and CLI Platform

To compile and run C# programs, it is necessary to install a version of the compiler and the CLI platform.

Microsoft’s .NET

The predominant CLI platform is Microsoft .NET and this is the platform of choice for development on Microsoft Windows.

• The minimum installation that includes the compiler and the .NET Framework with C# 2.0 syntax support is the redistributable package for the .NET Framework 2.0 or later. This is available at http://www.microsoft.com/net.

• For a rich IDE that includes IntelliSense and support for project files, install a version of the Visual Studio IDE, for which there are free and trial versions available at http://www.microsoft.com/visualstudio/eng/downloads.

For command-line compilation, regardless of a Visual Studio install or only the runtime, you must set the PATH environment variable to include the C# compiler, CSC.EXE.

Setting Up the Compiler Path with Microsoft .NET

If Visual Studio .NET is installed on your computer, open the command prompt from the Start menu by selecting All Programs, Microsoft Visual Studio 2012, Visual Studio Tools, Developer Command Prompt for VS2012. This command prompt places CSC.EXE in the path to be available for execution from any directory.

Without Visual Studio .NET installed, no special compiler command prompt item appears in the Start menu. Instead, you need to reference the full compiler pathname explicitly or add it to the path. The compiler is located at %Windir%\Microsoft.NET\Framework\<version>, where <version> is the version of the .NET Framework (v1.0.3705, v1.1.4322, v2.0.50727, and so on) and %Windir% is the environment variable that points to the location of the Windows directory. To add this location to the path use Set PATH=%PATH%;%Windir%\Microsoft.NET\Framework\<version>, again substituting the value of <version> appropriately. Output A.1 provides an example.

Output A.1.

Set PATH=%PATH%;%Windir%\Microsoft.NET\Framework\v2.0.50727

Once the path includes the framework, it is possible to use the .NET C# compiler, CSC.EXE, without providing the full path to its location.

Mono

For CLI development on platforms other than Microsoft Windows, consider Mono, which is a platform you can download at www.mono-project.com. As with the .NET platform, Mono requires the full path to the C# compiler if it is not already in the search path. The default installation path on Linux is /usr/lib/mono/<version> and the compiler is gmcs.exe or mcs.exe, depending on the version. (If Mono is installed on Microsoft Windows, the default path is %ProgramFiles%\Mono-<version>\lib\mono\<version>\.)

One option for a Linux version that includes an installation of Mono is Monoppix. This builds on the CD-bootable Linux distribution known as Knoppix and is available for download at www.monoppix.com.

Instead of CSC.EXE, the Mono platform’s compiler is MCS.EXE or GMCS.EXE, depending on the compiler version. Therefore, the command for compiling HelloWorld.cs is as shown in Output A.2.

Output A.2.

C:\SAMPLES>msc.exe HelloWorld.cs

Unfortunately, the Linux environment cannot run the resultant binaries directly; instead, it requires explicit execution of the runtime using mono.exe, as shown in Output A.3.

Output A.3.

C:\SAMPLES>mono.exe HelloWorld.exe
Hello. My name is Inigo Montoya.

B. Tic-Tac-Toe Source Code Listing

Listing B.1. Tic-Tac-Toe

Click here to view code image

#define CSHARP2

using System;

#pragma warning disable 1030 // Disable user-defined warnings

// The TicTacToe class enables two players to
// play tic-tac-toe.
class TicTacToeGame // Declares the TicTacToeGame class
{
 static void Main() // Declares the entry point to the program
 {
 // Stores locations each player has moved.
 int[] playerPositions = { 0, 0 };

 // Initially set the currentPlayer to Player 1;
 int currentPlayer = 1;

 // Winning player
 int winner = 0;

 string input = null;

 // Display the board and prompt the current player
 // for his next move.
 for (int turn = 1; turn <= 10; ++turn)
 {
 DisplayBoard(playerPositions);

 #region Check for End Game
 if (EndGame(winner, turn, input))
 {
 break;
 }
 #endregion Check for End Game

 input = NextMove(playerPositions, currentPlayer);

 winner = DetermineWinner(playerPositions);

 // Switch players
 currentPlayer = (currentPlayer == 2) ? 1 : 2;
 }
 }

 private static string NextMove(int[] playerPositions,
 int currentPlayer)
 {
 string input;

 // Repeatedly prompt the player for a move
 // until a valid move is entered.
 bool validMove;
 do
 {
 // Request a move from the current player.
 System.Console.Write("\nPlayer {0} - Enter move:",
 currentPlayer);
 input = System.Console.ReadLine();
 validMove = ValidateAndMove(playerPositions,
 currentPlayer, input);
 } while (!validMove);

 return input;
 }

 static bool EndGame(int winner, int turn, string input)
 {
 bool endGame = false;
 if (winner > 0)
 {
 System.Console.WriteLine("\nPlayer {0} has won!!!!",
 winner);
 endGame = true;
 }
 else if (turn == 10)
 {
 // After completing the 10th display of the
 // board, exit out rather than prompting the
 // user again.
 System.Console.WriteLine("\nThe game was a tie!");
 endGame = true;
 }
 else if (input == "" || input == "quit")
 {
 // Check if user quit by hitting Enter without
 // any characters or by typing "quit".
 System.Console.WriteLine("The last player quit");
 endGame = true;
 }
 return endGame;
 }

 static int DetermineWinner(int[] playerPositions)
 {
 int winner = 0;

 // Determine if there is a winner
 int[] winningMasks = {
 7, 56, 448, 73, 146, 292, 84, 273};

 foreach (int mask in winningMasks)
 {
 if ((mask & playerPositions[0]) == mask)
 {
 winner = 1;
 break;
 }
 else if ((mask & playerPositions[1]) == mask)
 {
 winner = 2;
 break;
 }
 }
 return winner;
 }

 static bool ValidateAndMove(
 int[] playerPositions, int currentPlayer, string input)
 {
 bool valid = false;

 // Check the current player's input.
 switch (input)
 {
 case "1":
 case "2":
 case "3":
 case "4":
 case "5":
 case "6":
 case "7":
 case "8":
 case "9":
 #warning "Same move allowed multiple times."
 int shifter; // The number of places to shift
 // over in order to set a bit.
 int position; // The bit which is to be set.

 // int.Parse() converts "input" to an integer.
 // "int.Parse(input) – 1" because arrays
 // are zero-based.
 shifter = int.Parse(input) - 1;

 // Shift mask of 00000000000000000000000000000001
 // over by cellLocations.
 position = 1 << shifter;

 // Take the current player cells and OR them
 // to set the new position as well.
 // Since currentPlayer is either 1 or 2 you
 // subtract one to use currentPlayer as an
 // index in a 0-based array.
 playerPositions[currentPlayer - 1] |= position;

 valid = true;
 break;

 case "":
 case "quit":
 valid = true;
 break;

 default:
 // If none of the other case statements
 // is encountered, then the text is invalid.
 System.Console.WriteLine(
 "\nERROR: Enter a value from 1-9. "
 + "Push ENTER to quit");
 break;
 }

 return valid;
 }

 static void DisplayBoard(int[] playerPositions)
 {
 // This represents the borders between each cell
 // for one row.
 string[] borders = {
 "|", "|", "\n---+---+---\n", "|", "|",
 "\n---+---+---\n", "|", "|", ""
 };

 // Display the current board;
 int border = 0; // set the first border (border[0] = "|")

#if CSHARP2
 System.Console.Clear();
#endif

 for (int position = 1;
 position <= 256;
 position <<= 1, border++)
 {
 char token = CalculateToken(
 playerPositions, position);

 // Write out a cell value and the border that
 // comes after it.
 System.Console.Write(" {0} {1}",
 token, borders[border]);
 }
 }

 static char CalculateToken(
 int[] playerPositions, int position)
 {
 // Initialize the players to 'X' and 'O'
 char[] players = {'X', 'O'};

 char token;
 // If player has the position set,
 // then set the token to that player.
 if ((position & playerPositions[0]) == position)
 {
 // Player 1 has that position marked
 token = players[0];
 }
 else if ((position & playerPositions[1]) == position)
 {
 // Player 2 has that position marked
 token = players[1];
 }
 else
 {
 // The position is empty.
 token = ' ';
 }
 return token;
 }

 #line 113 "TicTacToe.cs"
 // Generated code goes here
 #line default
}

C. Interfacing with Mutithreading Patterns Prior to the TPL and C# 5.0

From Chapter 18 readers will recall that multithreading patterns are used to address the multithreading complexities of monitoring an asynchronous operation, thread pooling, avoiding deadlocks, and implementing atomicity and synchronization across operations and data access. In the ten years prior to .NET 4.5 and C# 5.0 there have been six versions of the .NET Framework and four versions of the C# language, and a similar number of corresponding multithreading patterns has emerged. During that time, however, there have been numerous improvements in multithreading and, as is frequently the case with frameworks and even languages, some patterns from those earlier versions are suboptimal. Suboptimal or not, however, as a C# developer you are likely to encounter these patterns either because you are developing for a .NET/C# version prior to .NET 4.5/C# 5.0 or because you are using an API from another framework that is still exposing one of the earlier patterns. The purpose of this appendix is to discuss these patterns. If you are lucky enough to be working with the most recent version of .NET and C# only, consider this appendix an Advanced Topic, only reading it so as to gain familiarity with the details of multithreading in the past. Alternatively, if you are still programming without the Task Programming Library (TPL) and the Task-based Asynchronous Pattern (TAP) and its async/await keywords, treat the remaining topics as an important part of the multithreading API available to you. Perhaps most importantly, this content includes how to effectively interact with the earlier patterns using the TPL and C# 5.0.

Throughout these examples, exception handling has been eliminated for the purposes of elucidation.

Asynchronous Programming Model

One particularly prominent pattern established prior to the TPL is the Asynchronous Programming Model (APM) pattern. Given a long-running synchronous method X(), the APM pattern uses a BeginX() method to start X() equivalent work asynchronously and an EndX() method to conclude it. (Henceforth we will name these methods X, BeginX, and EndX.)

Using the APM Pattern

Listing C.1 demonstrates the pattern using the System.Net.WebRequest class to download a Web page. The functionality is the same as that found in the section titled The Task-Based Asynchrony Pattern in C# 5.0, in Chapter 18; however, this time we assume that the TPL and TAP are not available, and instead we use the APM pattern. To maintain backward compatibility prior to TPL-related asynchronous methods being added, WebRequest also supports the APM pattern with the methods BeginGetResponse() (BeginX) and EndGetResponse() (EndX)—asynchronous versions of the synchronous GetResponse() (X) method.

Listing C.1. Using the APM Pattern with WebRequest

Click here to view code image

using System;
using System.IO;
using System.Net;
using System.Linq;

public class Program
{
 public static void Main(string[] args)
 {
 string url = "http://www.IntelliTect.com";
 if (args.Length > 0)
 {
 url = args[0];
 }

 Console.Write(url);
 WebRequest webRequest =
 WebRequest.Create(url);

 IAsyncResult asyncResult =
 webRequest.BeginGetResponse(null, null);

 // Indicate busy using dots Ideally (at least in a non-Console
 // implementation) should use a callback rather than a wait.

 while (
 !asyncResult.AsyncWaitHandle.WaitOne(100))

 {
 Console.Write('.');
 }

 // Retrieve the results when finished downloading

 WebResponse response =
 webRequest.EndGetResponse(asyncResult);

 using (StreamReader reader =
 new StreamReader(response.GetResponseStream()))
 {
 // Note: ReadToEnd() is blocking. A production implementation
 //should offload this to another thread.
 int length = reader.ReadToEnd().Length;
 Console.WriteLine(FormatBytes(length));
 }
 }

 static public string FormatBytes(long bytes)
 {
 string[] magnitudes =
 new string[] { "GB", "MB", "KB", "Bytes" };
 long max =
 (long)Math.Pow(1024, magnitudes.Length);

 return string.Format("{1:##.##} {0}",
 magnitudes.FirstOrDefault(
 magnitude =>
 bytes > (max /= 1024))?? "0 Bytes",
 (decimal)bytes / (decimal)max).Trim();
 }
}

The results of Listing C.1 appear in Output C.1.

Output C.1.

http://www.IntelliTect.com..........29.36 KB

As mentioned, the key aspect of the APM pattern is the pair of BeginX and EndX methods with well-established signatures. The BeginX method returns a System.IAsyncResult object providing access to the state of the asynchronous call in order to wait or poll for completion. The EndX method then takes this return as an input parameter. This pairs up the two methods so that it is clear which BeginX method call pairs with which EndX method call. The APM pattern requires that for all BeginX invocations there must be exactly one EndX invocation, so no two calls to EndX for the same IAsyncResult instance should occur.

In Listing C.1, we also use the IAsyncResult’s WaitHandle to determine when the asynchronous method completes. As we iteratively poll the WaitHandle we print out periods to the console indicating that the download is running. Following that, we call EndGetResponse().

The EndX method serves four purposes. First, calling EndX will block further execution until the work requested completes successfully (or errors out with an exception). Second, if method X returns data, this data is accessible from the EndX method call. Third, if an exception occurs while performing the requested work, the exception will be rethrown on the call to EndX, ensuring that the exception is visible to the calling code as though it had occurred on a synchronous invocation. Finally, if any resource needs cleanup due to X’s invocation, EndX will be responsible for cleaning up these resources.

APM Signatures

Together, the combination of the BeginX and EndX APM methods should match the synchronous version of the signature. Therefore, the return parameter on EndX should match the return parameters on the X method (GetReponse() in this case). Furthermore, the input parameters on the BeginX method also need to match. In the case of WebRequest.GetResponse() there are no parameters, but let’s consider a fictitious synchronous method, bool TryDoSomething(string url, ref string data, out string[] links). The parameters map from the synchronous method to the APM methods as shown in Figure C.1.

[image: Image]

Figure C.1. APM Parameter Distribution

All input parameters map to the BeginX method. Similarly, the return parameter maps to the EndX return parameter. Also, notice that since ref and out parameters return results, these are included in the EndX method signature. In contrast, since url is only an input parameter, it is not included in the EndX method.

Continuation Passing Style (CPS) with AsyncCallback

There are two additional parameters on the BeginX method that were not included in the synchronous method. These are the callback parameter, a System.AsyncCallback delegate to be called when the method completes, and a state parameter of type object. Listing C.2 demonstrates how they are used. (The Output is the same as Output C.1.)

Listing C.2. Invoking an APM Method with Callback and State

Click here to view code image

using System;
using System.IO;
using System.Net;
using System.Linq;
using System.Threading;

public class Program
{
 public static void Main(string[] args)
 {
 string url = "http://www.intelliTechture.com";
 if (args.Length > 0)
 {
 url = args[0];
 }

 Console.Write(url);
 WebRequest webRequest = WebRequest.Create(url);
 WebRequestState state =
 new WebRequestState(webRequest);

 IAsyncResult asyncResult =
 webRequest.BeginGetResponse(
 GetResponseAsyncCompleted, state);

 // Indicate busy using dots
 while (
 !asyncResult.AsyncWaitHandle.WaitOne(100))
 {
 Console.Write('.');
 }
 state.ResetEvent.Wait();
 }

 // Retrieve the results when finished downloading

 private static void GetResponseAsyncCompleted(
 IAsyncResult asyncResult)

 {

 WebRequestState completedState =
 (WebRequestState)asyncResult.AsyncState;
 HttpWebResponse response =
 (HttpWebResponse)completedState.WebRequest
 .EndGetResponse(asyncResult);

 Stream stream = response.GetResponseStream();
 StreamReader reader = new StreamReader(stream);
 // Note: ReadToEnd() is blocking. A production implementation
 //should offload this to another thread.
 int length = reader.ReadToEnd().Length;

 Console.WriteLine(FormatBytes(length));
 completedState.ResetEvent.Set();
 completedState.Dispose();
 }
 // ...
}

class WebRequestState : IDisposable
{
 public WebRequestState(WebRequest webRequest)
 {
 WebRequest = webRequest;
 }
 public WebRequest WebRequest { get; private set; }
 private ManualResetEventSlim _ResetEvent =
 new ManualResetEventSlim();
 public ManualResetEventSlim ResetEvent
 { get { return _ResetEvent; } }

 public void Dispose()
 {
 ResetEvent.Dispose();
 GC.SuppressFinalize(this);
 }
}

Notice that in Listing C.2, we pass data for both of the parameters on BeginGetResponse(). The first parameter is a delegate of type System.AsyncCallback that takes a single parameter of type System.AsyncResult. The AsyncCallback identifies the code that will execute once the asynchronous call completes. Registering a callback enables a fire-and-forget calling pattern called continuation passing style (CPS) rather than placing the EndGetResponse() and Console.WriteLine() code sequentially below BeginGetResponse(). With CPS we can “register” the code that will execute upon completion of the asynchronous method. Note that it is still necessary to call EndGetResponse(), but by placing it in the callback we ensure that it doesn’t block the main thread while the asynchronous call completes.

Passing State between APM Methods

In addition to the AsyncCallback parameter, there is the state parameter, which is used to pass additional data to the callback when it executes. Listing C.2 includes a WebRequestState class for passing additional data into the callback, and it includes the WebRequest itself in this case so that we can use it to call EndGetResponse(). One alternative to the WebRequestState class itself would be to use an anonymous method (including a lambda expression) with closures for the additional data, as shown in Listing C.3.

Listing C.3. Passing State Using Closure on an Anonymous Method

Click here to view code image

using System;
using System.IO;
using System.Net;
using System.Linq;
using System.Threading;

public class Program
{
 public static void Main(string[] args)
 {
 string url = "http://www.intelliTechture.com";
 if (args.Length > 0)
 {
 url = args[0];
 }

 Console.Write(url);
 WebRequest webRequest = WebRequest.Create(url);

 ManualResetEventSlim resetEvent =
 new ManualResetEventSlim();

 IAsyncResult asyncResult =
 webRequest.BeginGetResponse(

 (completedAsyncResult) =>
 {
 HttpWebResponse response =
 (HttpWebResponse)webRequest.EndGetResponse(
 completedAsyncResult);

 Stream stream =
 response.GetResponseStream();
 StreamReader reader =
 new StreamReader(stream);
 int length = reader.ReadToEnd().Length;

 Console.WriteLine(FormatBytes(length));

 resetEvent.Set();
 resetEvent.Dispose();

 },

 null);

 // Indicate busy using dots
 while (
 !asyncResult.AsyncWaitHandle.WaitOne(100))
 {
 Console.Write('.');
 }

 resetEvent.Wait();

 }

 // ...
}

Regardless of whether we pass the state via closures or not, notice that we are using a ManualResetEvent to signal when the AsyncCallback has completed. This is somewhat peculiar because IAsyncResult includes a WaitHandle already. The difference, however, is that the IAsyncResult’s WaitHandle is set when the asynchronous method completes but before the AsyncCallback executes. If we only blocked on the IAsyncResult’s WaitHandle we are likely to exit the program before the AsyncCallback has executed. For this reason we use a separate ManualResetEvent.

Resource Cleanup

Another important APM rule is that no resource leaks should occur, even if the EndX method is mistakenly not called. Since WebRequestState owns the ManualResetEvent, it specifically owns a resource that requires such cleanup. To handle this the state object uses the standard IDisposable pattern with the IDispose() method.

Calling APM Methods Using the TPL

Even though the TPL greatly simplifies making an asynchronous call on a long-running method, it is generally better to use the API-provided APM methods than to code the TPL against the synchronous version. The reason for this is that the API developer best understands the most efficient threading code to write, which data to synchronize, and what type of synchronization to use. Fortunately, there are special methods on the TPL’s TaskFactory that are designed specifically for invoking the APM methods. As a result, if you have access to the TPL but you are using APM-related APIs, you can still use the TPL to invoke them.

APM with the TPL and CPS

The TPL includes a set of overloads on FromAsync for invoking APM methods. Listing C.4 provides an example. The same listing expands on the other APM examples to support downloading of multiple URLs; see Output C.2.

Listing C.4. Using the TPL to Call the APM

Click here to view code image

using System;
using System.IO;
using System.Net;
using System.Linq;
using System.Threading.Tasks;

public class Program
{
 static private object ConsoleSyncObject =
 new object();

 public static void Main(string[] args)
 {
 string[] urls = args;
 if (args.Length == 0)
 {
 urls = new string[]
 {
 "http://www.habitat-spokane.org",
 "http://www.partnersintl.org",
 "http://www.iassist.org",
 "http://www.fh.org",
 "http://www.worldvision.org"
 };
 }

 Task[] tasks = new Task[urls.Length];
 for (int line = 0; line < urls.Length; line++)
 {
 tasks[line] = DisplayPageSizeAsync(
 urls[line], line);
 }

 while (!Task.WaitAll(tasks, 50))
 {
 DisplayProgress(tasks);
 }
 Console.SetCursorPosition(0, urls.Length);
 }

 private static Task<WebResponse>
 DisplayPageSizeAsync(string url, int line)
 {
 WebRequest webRequest = WebRequest.Create(url);
 WebRequestState state =
 new WebRequestState(webRequest, line);
 Write(state, url + " ");

 return Task<WebResponse>.Factory.FromAsync(
 webRequest.BeginGetResponse,
 GetResponseAsyncCompleted, state);

 }

 private static WebResponse GetResponseAsyncCompleted(
 IAsyncResult asyncResult)

 {
 WebRequestState completedState =
 (WebRequestState)asyncResult.AsyncState;
 HttpWebResponse response =
 (HttpWebResponse)completedState.WebRequest
 .EndGetResponse(asyncResult);
 Stream stream =
 response.GetResponseStream();
 using (StreamReader reader =
 new StreamReader(stream))
 {
 int length = reader.ReadToEnd().Length;
 Write(
 completedState, FormatBytes(length));
 }
 return response;
 }

 private static void Write(
 WebRequestState completedState, string text)
 {
 lock (ConsoleSyncObject)
 {
 Console.SetCursorPosition(
 completedState.ConsoleColumn,
 completedState.ConsoleLine);
 Console.Write(text);
 completedState.ConsoleColumn +=
 text.Length;
 }
 }

 private static void DisplayProgress(
 Task[] tasks)
 {
 for (int i = 0; i < tasks.Length; i++)
 {
 if (!tasks[i].IsCompleted)
 {
 DisplayProgress(
 (WebRequestState)tasks[i]
 .AsyncState);
 }
 }
 }

private static void DisplayProgress(
 WebRequestState state)
 {
 lock (ConsoleSyncObject)
 {
 int left = state.ConsoleColumn;
 int top = state.ConsoleLine;
 if (left >= Console.BufferWidth -
 int.MaxValue.ToString().Length)
 {
 left = state.Url.Length;

 Console.SetCursorPosition(left, top);
 Console.Write("".PadRight(
 Console.BufferWidth –
 state.Url.Length));

 state.ConsoleColumn = left;
 }

 Write(state, ".");
 }
 }

 static public string FormatBytes(long bytes)
 {
 string[] magnitudes =
 new string[] { "GB", "MB", "KB", "Bytes" };
 long max =
 (long)Math.Pow(1024, magnitudes.Length);

 return string.Format("{1:##.##} {0}",
 magnitudes.FirstOrDefault(
 magnitude =>
 bytes > (max /= 1024))?? "0 Bytes",
 (decimal)bytes / (decimal)max).Trim();
 }
}

class WebRequestState
{
 public WebRequestState(
 WebRequest webRequest, int line)
 {
 WebRequest = webRequest;
 ConsoleLine = line;
 ConsoleColumn = 0;
 }
 public WebRequestState(WebRequest webRequest)
 {
 WebRequest = webRequest;
 }
 public WebRequest WebRequest { get; private set; }
 public string Url
 {
 get
 {
 return WebRequest.RequestUri.ToString();
 }
 }
 public int ConsoleLine { get; set; }
 public int ConsoleColumn { get; set; }
}

Output C.2.

Click here to view code image

http://www.habitat-spokane.org ..9.18 KB
http://www.partnersintl.org14.74 KB
http://www.iassist.org .17.12 KB
http://www.fh.org35.09 KB
http://www.worldvision.org54.56 KB

Connecting a Task with the APM method pair is relatively easy. The overload used in Listing C.4 takes three parameters. First, there is the BeginX method delegate (webRequest.BeginGetResponse). Next is a delegate that matches the EndX method. Although the EndX method (webRequest.EndGetResponse) could be used directly, passing a delegate (GetResponseAsyncCompleted) and using the CPS allows additional completion activity to execute. The last parameter is the state parameter similar to what the BeginX method accepts.

One of the advantages of invoking a pair of APM methods using the TPL is that we don’t have to worry about signaling the conclusion of the AsyncCallback method. Instead, we monitor the Task for completion. As a result, WebRequestState no longer needs to contain a ManualResetEventSlim.

Using the TPL and ContinueWith() to Call an APM Method

Another option when calling TaskFactory.FromAsync() is to pass the EndX method directly and then to use ContinueWith() for any follow-up code. The result is that you have a single object to represent any kind of asynchronous operation, and therefore, you can start composing task-based operations together, even if the underlying implementation is APM-based. In addition, you can query the continue-with-Task parameter (see continueWithTask in Listing C.5) for the result (continueWithTask.Result) rather than storing a means to access the EndX method via an async-state object or using closure and an anonymous delegate (we store WebRequest in Listing C.4).

Listing C.5. Using the TPL to Call an APM Method Using ContinueWith()

Click here to view code image

// ...

 private static Task
 DisplayPageSizeAsync(string url, int line)
 {

 WebRequest webRequest = WebRequest.Create(url);
 WebRequestState state =
 new WebRequestState(webRequest, line);
 Write(state, url + " ");
 return Task<WebResponse>.Factory.FromAsync(
 webRequest.BeginGetResponse,
 webRequest.EndGetResponse, state)
 .ContinueWith(
 (antecedent, antecedentState) =>
 {
 Stream stream =
 antecedent.Result.
 GetResponseStream();
 using (StreamReader reader =
 new StreamReader(stream))
 {
 int length =
 reader.ReadToEnd().Length;
 Write(state,
 FormatBytes(length).ToString());
 }
 }, state);

 }

// ...

Notice that in order for the state to be passed into the Task returned from ContinueWith(), the ContinueWith() call explicitly includes antecedentState in the delegate in addition to having it as a parameter.

Using TAP to Call an APM Method

Given that TAP is essentially designed for handling the continuation tasks, an obvious enhancement (albeit depending on C# 5.0) is to use async/await rather than ContinueWith(), as shown in Listing C.6.

Listing C.6. Using TAP to Call the APM

Click here to view code image

// ...

 private async static Task
 DisplayPageSizeAsync(string url, int line)
 {
 WebRequestState state =
 new WebRequestState(url, line);
 Write(state, url + " ");
 WebRequest webRequest = WebRequest.Create(url);
 WebResponse webResponse =
 await Task<WebResponse>.Factory.FromAsync(
 webRequest.BeginGetResponse,
 webRequest.EndGetResponse, state);
 Stream stream =
 webResponse.GetResponseStream();
 using (StreamReader reader =
 new StreamReader(stream))
 {
 int length = reader.ReadToEnd().Length;
 Write(state,
 FormatBytes(length).ToString());
 }
 }

// ...

Beginner Topic: Synchronizing Console Using lock

In Listing C.4, we repeatedly change the location of the console’s cursor and then proceed to write text to the console. Since multiple threads are executing that are also writing to the console, possibly changing the cursor location as well, we need to synchronize changes to the cursor location with write operations so that together they are atomic.

Listing C.4 includes a ConsoleSyncObject of type object as the synchronization lock identifier. Using this within a lock construct whenever we are moving the cursor or writing to the console prevents an interim update between move and write operations to the console. Notice that even one-line Console.WriteLine() statements are surrounded with lock. Although they will be atomic, we don’t want them interrupting a different block that is not atomic. Therefore, all console changes require the synchronization as long as there are multiple threads of execution.

Asynchronous Delegate Invocation

One specific implementation of the APM pattern is the “asynchronous delegate invocation,” which leverages special C# compiler-generated code on all delegate data types. Given a delegate instance of Func<string, int>, for example, there is an APM pair of methods available on the instance:

Click here to view code image

System.IAsyncResult BeginInvoke(
 string arg, AsyncCallback callback, object @object)
int EndInvoke(IAsyncResult result)

The result is that you can call any delegate (and therefore any method) synchronously just by using the C# compiler-generated methods.

Unfortunately, the underlying technology used by the asynchronous delegate invocation pattern is an end-of-further-development technology for distributed programming known as remoting. And although Microsoft still supports the use of asynchronous delegate invocation and for the foreseeable future it will continue to function as it does today, the performance characteristics are suboptimal given other approaches—namely Thread, ThreadPool, and the TPL. Therefore, developers should tend to favor one of these alternatives rather than implementing new development using the asynchronous delegate invocation API. Further discussion of the pattern is included in the Advanced Topic text that follows so that developers who encounter it will understand how it works.

Advanced Topic: Asynchronous Delegate Invocation in Detail

With asynchronous delegate invocation, you do not code using an explicit reference to Task or Thread. Instead, you use delegate instances and the compiler-generated BeginInvoke() and EndInvoke() methods—whose implementation requests threads from the ThreadPool. Consider the code in Listing C.7.

Listing C.7. Asynchronous Delegate Invocation

Click here to view code image

using System;

public class Program
{
 public static void Main(string[] args)
 {
 Console.WriteLine("Application started....");

 Console.WriteLine("Starting thread....");

 Func<int,string> workerMethod =
 PiCalculator.Calculate;
 IAsyncResult asyncResult =
 workerMethod.BeginInvoke(500, null, null);

 // Display periods as progress bar.

 while(!asyncResult.AsyncWaitHandle.WaitOne(

 100, false))
 {
 Console.Write('.');
 }
 Console.WriteLine();

 Console.WriteLine("Thread ending....");

 Console.WriteLine(
 workerMethod.EndInvoke(asyncResult));

 Console.WriteLine(
 "Application shutting down....");
 }
}

The results of Listing C.7 appear in Output C.3.

Output C.3.

Click here to view code image

Application started....
Starting thread....
.........................
Thread ending....
3.14159265358979323846264338327950288419716939937510582097494459230781
6406286208998628034825342117067982148086513282306647093844609550582231
7253594081284811174502841027019385211055596446229489549303819644288109
7566593344612847564823378678316527120190914564856692346034861045432664
8213393607260249141273724587006606315588174881520920962829254091715364
3678925903600113305305488204665213841469519415116094330572703657595919
5309218611738193261179310511854807446237996274956735188575272489122793
818301194912
Application shutting down....

Main() begins by assigning a delegate of type Func<int, string> that is pointing to PiCalculator.Calculate(int digits).

Next, the code calls BeginInvoke(). This method will start the PiCalculator.Calculate() method on a thread from the thread pool and then return immediately. This allows other code to run in parallel with the pi calculation. In this example, we print periods while waiting for the PiCalculator.Calculate() method to complete.

We poll the status of the delegate using IAsyncResult.AsyncWaitHandle.WaitOne() on asyncResult—the same mechanism available on APM. As a result, the code prints periods to the screen each second during which the PiCalculator.Calculate() method is executing.

Once the wait handle signals, the code calls EndInvoke(). As with all APM implementations, it is important to pass to EndInvoke() the same IAsyncResult reference returned when calling BeginInvoke(). In this example, EndInvoke() doesn’t block because we poll the thread’s state in the while loop and call EndInvoke() only after the thread has completed.

The example in Listing C.5 passed an integer and received a string—the signature of Func<int, string>. The key feature of the asynchronous delegate invocation is the fact that passing data in and out of the target invocation is trivial; it just lines up with the synchronous method signature as it did in the APM pattern. Consider a delegate type that includes out and ref parameters, as shown in Figure C.2. (Although more common, this example intentionally doesn’t use Func or Action since generics don’t allow ref and out modifiers on type parameters.)

[image: Image]

Figure C.2. Delegate Parameter Distribution to BeginInvoke() and EndInvoke()

The BeginInvoke() method matches the delegate signature except for the additional AsyncCallback and object parameters. Like the IAsyncResult return, the additional parameters correspond to the standard APM parameters specifying a callback and passing state object. Similarly, the EndInvoke() method matches the original signature except only outgoing parameters appear. Since object[] data is only incoming, it doesn’t appear in the EndInvoke() method. Also, since the EndInvoke() method concludes the asynchronous call, its return matches the original delegate’s return as well.

Since all delegates include the C# compiler-generated BeginInvoke() and EndInvoke() methods used by the asynchronous delegate invocation pattern, invoking any method synchronously—especially given Func and Action delegates—becomes relatively easy. Furthermore, it makes it simple for the caller to invoke a method asynchronously regardless of whether the API programmer explicitly implemented it.

And before the TPL, the asynchronous delegate invocation pattern was significantly easier than the alternatives, making it a common practice when an API didn’t provide explicit asynchronous calling patterns. However, apart from support for .NET 3.5 and earlier frameworks, the advent of the TPL diminishes the need for using the asynchronous delegate invocation approach if it occurs at all.

The Event-based Asynchronous Pattern (EAP)1

Thus far we’ve made the assumption that an asynchronous method will return a task; the caller is notified that the asynchronous work is completed when the status and result of the task become set. Doing so may in turn cause completions of the task to execute asynchronously as well. Though this pattern is common and powerful, it is not the only common pattern for dealing with asynchrony. Another common pattern is the Event-based Asynchronous Pattern (EAP). This pattern is particularly common for long-running asynchronous work.

A method that uses the EAP typically has a name that ends in Async, returns void, and has no out parameters. It is common for EAP methods to also take an object or generic parameter that contains caller-determined state that is associated with the asynchronous work, and sometimes also to take a cancellation token if the asynchronous work is cancellable. For example, if we had an EAP method that computes a given number of digits of pi and returns them in a string, the signature of the method might be

 void CalculateAsync(int digits)

or

Click here to view code image

 void CalculateAsync(
 int digits, object state, CancellationToken ct)

What is clearly missing from these signatures is the result. The asynchronous methods we’ve seen so far would return a Task<string> that could be used to fetch the asynchronously computed value after the computation has finished. In contrast, the EAP methods have no return value at all.

We have not yet seen the “event” part of the Event-based Asynchronous Pattern. The method is associated with an event; the caller of the EAP method registers an event handler on the associated event and then calls the method. The method starts the asynchronous work and returns; when the asynchronous work completes the event is fired and the handler executes. The event arguments passed to the handler contain the computed string and any other information that the asynchronous method feels would be useful to the listener, such as the caller-provided state, information about any exceptions or cancellations that occurred during the asynchronous operation, and so on. (Unsurprisingly, the exact information that would be available on a task object is instead made available in the event handler arguments.)

In Listing C.8 we show one way to use task-based asynchrony as an implementation detail of an EAP method. The EAP method CalculateAsync<TState>() has associated with it the CalculateCompleted event. The asynchronous method creates a task (which, by default, will run on a thread obtained from the thread pool) to do the calculation. The continuation of that task triggers the event when the task completes.

Like with async/await, we wish to ensure that the continuation that fires the event is always run on the same thread on which the original asynchronous method was run. To achieve this we request the synchronization context from the TaskScheduler class. Since this is a console application, the current thread has no synchronization (causing it to depend on the thread pool by default), so Listing C.8 shows creation of the default context first.

Listing C.8. Event-Based Asynchronous Pattern

Click here to view code image

using System;
using System.ComponentModel;
using System.Threading;
using System.Threading.Tasks;
using AddisonWesley.Michaelis.EssentialCSharp.Shared;

partial class PiCalculation
{

 public void CalculateAsync<TState>(
 int digits,
 CancellationToken cancelToken
 = default(CancellationToken),
 TState userState
 = default(TState))

 {
 SynchronizationContext.
 SetSynchronizationContext(
 AsyncOperationManager.
 SynchronizationContext);

 // Ensure the continuation runs on the current thread, and that
 // therefore the event will be raised on the same thread that
 // called this method in the first place.
 TaskScheduler scheduler =
 TaskScheduler.
 FromCurrentSynchronizationContext();
 Task.Run(
 () =>
 {
 return PiCalculator.Calculate(digits);
 }, cancelToken)
 .ContinueWith(
 continueTask =>
 {
 Exception exception =
 continueTask.Exception == null ?
 continueTask.Exception :
 continueTask.Exception.
 InnerException;
 CalculateCompleted(
 typeof(PiCalculator),
 new CalculateCompletedEventArgs(
 continueTask.Result,
 exception,
 cancelToken.IsCancellationRequested,
 userState));
 }, scheduler);
 }

 public event
 EventHandler<CalculateCompletedEventArgs>
 CalculateCompleted = delegate { };

 public class CalculateCompletedEventArgs
 : AsyncCompletedEventArgs

 {
 public CalculateCompletedEventArgs(
 string value,
 Exception error,
 bool cancelled,
 object userState) : base(
 error, cancelled, userState)
 {
 Result = value;
 }
 public string Result { get; private set; }
 }
}

As we mentioned above, EAP methods are often used for long-running asynchronous operations. Long-running operations frequently provide not only notification when the task completes, fails, or is canceled, but also occasional progress updates. This is particularly useful if the user interface is displaying the progress of the long-running asynchronous operation with some sort of progress bar or other indicator. The standard way to do so in an EAP method is to associate the method with a second event named ProgressChanged of type ProgressChangedEventHandler.

Note that the EAP method and its associated event (or events, if the method produces progress updates) are typically instance members, not static members. This makes it easier to support multiple concurrent operations because each separate operation can be associated with a different instance.

Background Worker Pattern

Another pattern that provides operation status and the possibility of cancellation is the background worker pattern, a specific implementation of EAP. The .NET Framework 2.0 (or later) includes a BackgroundWorker class for programming this type of pattern.

Listing C.9 is an example of this pattern—again calculating pi to the number of digits specified.

Listing C.9. Using the Background Worker API

Click here to view code image

using System;
using System.Threading;
using System.ComponentModel;
using System.Text;

public class PiCalculator
{

 public static BackgroundWorker calculationWorker =
 new BackgroundWorker();

 public static AutoResetEvent resetEvent =
 new AutoResetEvent(false);

 public static void Main()
 {
 int digitCount;

 Console.Write(
 "Enter the number of digits to calculate:");
 if (int.TryParse(
 Console.ReadLine(), out digitCount))
 {
 Console.WriteLine("ENTER to cancel");
 // C# 2.0 Syntax for registering delegates

 calculationWorker.DoWork += CalculatePi;
 // Register the ProgressChanged callback
 calculationWorker.ProgressChanged +=
 UpdateDisplayWithMoreDigits;
 calculationWorker.WorkerReportsProgress =
 true;
 // Register a callback for when the calculation completes
 calculationWorker.RunWorkerCompleted +=
 new RunWorkerCompletedEventHandler(
 Complete);
 calculationWorker.
 WorkerSupportsCancellation = true;

 // Begin calculating pi for up to digitCount digits
 calculationWorker.RunWorkerAsync(
 digitCount);

 Console.ReadLine();
 // If cancel is called after the calculation
 // has completed it doesn't matter.
 calculationWorker.CancelAsync();
 // Wait for Complete() to run.

 resetEvent.WaitOne();
 }
 else
 {
 Console.WriteLine(
 "The value entered is an invalid integer.");
 }
 }

 private static void CalculatePi(
 object sender, DoWorkEventArgs eventArgs)
 {
 int digits = (int)eventArgs.Argument;

 StringBuilder pi =
 new StringBuilder("3.", digits + 2);
 calculationWorker.ReportProgress(
 0, pi.ToString());

 // Calculate rest of pi, if required
 if (digits > 0)
 {
 for (int i = 0; i < digits; i += 9)
 {
 // Calculate next i decimal places
 int nextDigit =
 PiDigitCalculator.StartingAt(
 i + 1);
 int digitCount =
 Math.Min(digits - i, 9);
 string ds =
 string.Format("{0:D9}", nextDigit);
 pi.Append(ds.Substring(0, digitCount));

 // Show current progress
 calculationWorker.ReportProgress(
 0, ds.Substring(0, digitCount));

 // Check for cancellation
 if (
 calculationWorker.CancellationPending)
 {
 // Need to set Cancel if you need to
 // distinguish how a worker thread completed
 // i.e., by checking
 //RunWorkerCompletedEventArgs.Cancelled
 eventArgs.Cancel = true;
 break;
 }
 }
 }

 eventArgs.Result = pi.ToString();
 }

 private static void UpdateDisplayWithMoreDigits(
 object sender,
 ProgressChangedEventArgs eventArgs)
 {
 string digits = (string)eventArgs.UserState;

 Console.Write(digits);
 }

 static void Complete(
 object sender,
 RunWorkerCompletedEventArgs eventArgs)
 {
 // ...
 }
}

public class PiDigitCalculator
{
 // ...
}

Establishing the Pattern

The process of hooking up the background worker pattern is as follows.

1. Register the long-running method with the BackgroundWorker.DoWork event. In this example, the long-running task is the call to CalculatePi().

2. To receive progress or status notifications, hook up a listener to BackgroundWorker.ProgressChanged and set BackgroundWorker.WorkerReportsProgress to true. In Listing C.9, the UpdateDisplayWithMoreDigits() method takes care of updating the display as more digits become available.

3. Register a method (Complete()) with the BackgroundWorker .RunWorkerCompleted event.

4. Assign the WorkerSupportsCancellation property to support cancellation. Once this property is assigned the value true, a call to BackgroundWorker.CancelAsync will set the DoWorkEventArgs.CancellationPending flag.

5. Within the DoWork-provided method (CalculatePi()), check the DoWorkEventArgs.CancellationPending property and exit the method when it is true.

6. Once everything is set up, you can start the work by calling BackgroundWorker.RunWorkerAsync() and providing a state parameter that is passed to the specified DoWork() method.

When you break it into steps, the background worker pattern is relatively easy to follow and, true to EAP, it provides explicit support for progress notification. The drawback is that you cannot use it arbitrarily on any method. Instead, the DoWork() method has to conform to a System.ComponentModel.DoWorkEventHandler delegate, which takes arguments of type object and DoWorkEventArgs. If this isn’t the case, a wrapper function is required—something fairly trivial using anonymous methods. The cancellation- and progress-related methods also require specific signatures, but these are in control of the programmer setting up the background worker pattern.

Exception Handling

If an unhandled exception occurs while the background worker thread is executing, the RunWorkerCompletedEventArgs parameter of the RunWorkerCompleted delegate (Completed’s eventArgs) will have an Error property set with the exception. As a result, checking the Error property within the RunWorkerCompleted callback in Listing C.10 provides a means of handling the exception.

Listing C.10. Handling Unhandled Exceptions from the Worker Thread

Click here to view code image

 // ...
 static void Complete(
 object sender, RunWorkerCompletedEventArgs eventArgs)
 {
 Console.WriteLine();
 if (eventArgs.Cancelled)
 {
 Console.WriteLine("Cancelled");
 }
 else if (eventArgs.Error != null)
 {
 // IMPORTANT: check error to retrieve any exceptions.
 Console.WriteLine(
 "ERROR: {0}", eventArgs.Error.Message);
 }

 else
 {
 Console.WriteLine("Finished");
 }
 resetEvent.Set();
 }
 // ...

It is important that the code check eventArgs.Error inside the RunWorkerCompleted callback. Otherwise, the exception will go undetected; it won’t even be reported to AppDomain.

Dispatching to the Windows UI

One more important threading concept relates to user interface development using the System.Windows.Forms and System.Windows namespaces. As already discussed in the UI-related content of Chapter 18, the Microsoft Windows suite of operating systems uses a single-threaded, message-processing-based user interface. This means that only one thread at a time should access the user interface, and code should marshal any alternate thread interaction via the Windows message pump. Fortunately, thanks to the fact that TAP uses the synchronization context when executing the continuation task, calls following an await expression call can freely invoke the UI API without concern for dispatching invocations to the UI thread. Unfortunately, in prior versions of C# this was not the case. Instead, invoking a UI method on the UI thread required special invocation logic both for Windows Forms and the Windows Presentation Framework API, as we discuss in the following sections.

Windows Forms

When programming against Windows Forms, the process of checking whether UI invocation is allowable from a thread involves calling a component’s InvokeRequired property to determine whether marshalling is necessary. If InvokeRequired returns true, marshalling is necessary and can be implemented via a call to Invoke(). Internally, Invoke() will check InvokeRequired anyway, but it can be more efficient to do so beforehand explicitly. Listing C.11 demonstrates this pattern.

Listing C.11. Accessing the User Interface via Invoke()

Click here to view code image

using System;
using System.Drawing;
using System.Threading;
using System.Windows.Forms;

class Program : Form
{
 private System.Windows.Forms.ProgressBar _ProgressBar;

 [STAThread]
 static void Main()
 {
 Application.Run(new Program());
 }

 public Program()
 {
 InitializeComponent();
 // Use Task.Factory.StartNew for .NET 4.0
 Task task = Task.Run((Action)Increment);
 }

 void UpdateProgressBar()
 {

 if (_ProgressBar.InvokeRequired)
 {
 MethodInvoker updateProgressBar =
 UpdateProgressBar;
 _ProgressBar.BeginInvoke(updateProgressBar);
 }
 else
 {
 _ProgressBar.Increment(1);
 }

 }

 private void Increment()
 {
 for (int i = 0; i < 100; i++)
 {
 UpdateProgressBar();
 Thread.Sleep(100);
 }

 if (InvokeRequired)
 {
 // Close cannot be called directly from a non-UI thread.
 Invoke(new MethodInvoker(Close));
 }
 else
 {
 Close();
 }

 }

 private void InitializeComponent()
 {
 _ProgressBar = new ProgressBar();
 SuspendLayout();

 _ProgressBar.Location = new Point(13, 17);
 _ProgressBar.Size = new Size(267, 19);

 ClientSize = new Size(292, 53);
 Controls.Add(this._ProgressBar);
 Text = "Multithreading in Windows Forms";
 ResumeLayout(false);
 }
}

This program displays a window that contains a progress bar that automatically starts incrementing. Once the progress bar reaches 100 percent, the dialog box closes.

Notice from Listing C.11 that you have to check InvokeRequired twice, and then the marshal calls across to the user interface thread if it returns true. In both cases, the marshalling involves instantiating a MethodInvoker delegate that is then passed to Invoke(). Since marshalling across to another thread could be relatively slow, an asynchronous invocation of the call is also available via BeginInvoke() and EndInvoke().

Invoke(), BeginInvoke(), EndInvoke(), and InvokeRequired comprise the members of the System.ComponentModel.ISynchronizeInvoke interface which is implemented by System.Windows.Forms.Control, from which Windows Forms controls derive.

Windows Presentation Foundation (WPF)

Achieving the same marshalling check on the Windows Presentation Foundation (WPF) platform involves a slightly different approach. WPF includes a static member property called Current of type DispatcherObject on the System.Windows.Application class. Calling CheckAccess() on the dispatcher serves the same function as InvokeRequired on controls in Windows Forms.

Listing C.12 demonstrates the approach with a static UIAction object. Anytime a developer wants to call a method that might interact with the user interface she simply calls UIAction.Invoke() and passes a delegate for the UI code she wishes to call. This, in turn, checks the dispatcher to see if marshalling is necessary and then responds accordingly.

Listing C.12. Safely Invoking User Interface Objects

Click here to view code image

using System;
using System.Windows;
using System.Windows.Threading;

public static class UIAction
{
 public static void Invoke<T>(
 Action<T> action, T parameter)
 {
 Invoke(() => action(parameter));
 }
 public static void Invoke(Action action)
 {
 DispatcherObject dispatcher =
 Application.Current;
 if (dispatcher == null
 || dispatcher.CheckAccess()
 || dispatcher.Dispatcher == null
)
 {
 action();
 }
 else
 {
 SafeInvoke(action);
 }
 }

 // We want to catch all exceptions here so we can rethrow
 private static void SafeInvoke(Action action)
 {
 Exception exceptionThrown = null;
 Action target = () =>
 {
 try
 {
 action();
 }
 catch (Exception exception)
 {
 exceptionThrown = exception;
 }
 };
 Application.Current.Dispatcher.Invoke(target);
 if (exceptionThrown != null)
 {
 // Use ExceptionDispatchInfo.Throw() for .NET 4.5+
 throw exceptionThrown;
 }
 }
}

One additional feature in the UIAction of Listing C.12 is the “marshalling” of any exceptions on the UI thread that may have occurred. SafeInvoke() wraps all requested delegate calls in a try/catch block and, if an exception is thrown, it saves the exception off and then rethrows it once context returns back to the calling thread. In this way, UIAction avoids throwing unhandled exceptions on the UI thread.

D. Timers Prior to the Async/Await Pattern of C# 5.0

Chapter 19 introduced the use of Task.Delay() when a timer was required. For scenarios prior to .NET 4.5, several timer classes are available, including System.Windows.Forms.Timer, System.Timers.Timer, and System.Threading.Timer.

The development team designed System.Windows.Forms.Timer specifically for use within a rich client user interface. Programmers can drag it onto a form as a nonvisual control and regulate the behavior from within the Properties window. Most importantly, it will always safely fire an event from a thread that can interact with the user interface.

The other two timers are very similar. System.Timers.Timer is a wrapper for System.Threading.Timer, abstracting and layering on functionality. Specifically, System.Threading.Timer does not derive from System.ComponentModel.Component, and therefore, you cannot use it as a component within a component container, something that implements System.ComponentModel.IContainer. Another difference is that System.Threading.Timer enables the passing of state, an object parameter, from the call to start the timer and then into the call that fires the timer notification. The remaining differences simply concern API usability, with System.Timers.Timer supporting a synchronization object and having calls that are slightly more intuitive. Both System.Timers.Timer and System.Threading.Timer are designed for use in server-type processes, but System.Timers.Timer includes a synchronization object to allow it to interact with the UI. Furthermore, both timers use the system thread pool. Table D.1 provides an overall comparison of the various timers.

Table D.1. Overview of the Various Timer Characteristics

[image: Image]

[image: Image]

Using System.Windows.Forms.Timer is a relatively obvious choice for user interface programming with Windows Forms. The only caution is that a long-running operation on the user interface thread may delay the arrival of a timer’s expiration.1 Choosing between the other two options is less obvious, and generally, the difference between the two is insignificant. If hosting within an IContainer is necessary, System.Timers.Timer is the right choice. However, if no specific System.Timers.Timer feature is required, choose System.Threading.Timer by default, simply because it is a slightly lighter-weight implementation.

Listing D.1 and Listing D.2 provide sample code for using System.Timers.Timer and System.Threading.Timer, respectively. Their code is very similar, including the fact that both support instantiation within a using statement because both support IDispose. The output for both listings is identical, and it appears in Output D.1. The purpose of each is to display a timestamp in association with a counting value indicating the number of times the timer fired. Once complete, the output verifies that the timer thread is not the same as the Main thread along with the final value of the count.

Listing D.1. Using System.Timers.Timer

Click here to view code image

 using System;
 using System.Timers;
 using System.Threading;
// Because Timer exists in both the System.Timers and
// System.Threading namespaces, you disambiguate "Timer"
// using an alias directive.

 using Timer = System.Timers.Timer;

 class UsingSystemTimersTimer
 {
 private static int _Count=0;
 private static readonly ManualResetEvent _ResetEvent =
 new ManualResetEvent(false);
 private static int _AlarmThreadId;

 public static void Main()
 {

 using(Timer timer = new Timer())
 {
 // Initialize Timer
 timer.AutoReset = true;
 timer.Interval = 1000;
 timer.Elapsed +=
 new ElapsedEventHandler(Alarm);

 timer.Start();

 // Wait for Alarm to fire for the 10th time.
 _ResetEvent.WaitOne();
 }

 // Verify that the thread executing the alarm
 // Is different from the thread executing Main
 if(_AlarmThreadId ==
 Thread.CurrentThread.ManagedThreadId)
 {
 throw new ApplicationException(
 "Thread Ids are the same.");
 }

 if(_Count < 9)
 {
 throw new ApplicationException(
 " _Count < 9");
 };

 Console.WriteLine(
 "(Alarm Thread Id) {0} != {1} (Main Thread Id)",
 _AlarmThreadId,
 Thread.CurrentThread.ManagedThreadId);
 Console.WriteLine(
 "Final Count = {0}", _Count);
 }

 static void Alarm(
 object sender, ElapsedEventArgs eventArgs)

 {
 _Count++;

 Console.WriteLine("{0}:- {1}",

 eventArgs.SignalTime.ToString("T"),

 _Count);

 if (_Count >= 9)
 {
 _AlarmThreadId =
 Thread.CurrentThread.ManagedThreadId;
 _ResetEvent.Set();
 }
 }
 }

In Listing D.1, you have using directives for both System.Threading and System.Timers. This makes the Timer type ambiguous. Therefore, use an alias to explicitly associate Timer with System.Timers.Timer.

One noteworthy characteristic of System.Threading.Timer is that it takes the callback delegate and interval within the constructor.

Listing D.2. Using System.Threading.Timer

Click here to view code image

using System;
using System.Threading;

class UsingSystemThreadingTimer
{
 private static int _Count=0;
 private static readonly AutoResetEvent _ResetEvent =
 new AutoResetEvent(false);
 private static int _AlarmThreadId;

 public static void Main()
 {

 // Timer(callback, state, dueTime, period)
 using(Timer timer =
 new Timer(Alarm, null, 0, 1000))

 {
 // Wait for Alarm to fire for the 10th time.
 _ResetEvent.WaitOne();
 }

 // Verify that the thread executing the alarm
 // Is different from the thread executing Main
 if(_AlarmThreadId ==
 Thread.CurrentThread.ManagedThreadId)
 {
 throw new ApplicationException(
 "Thread Ids are the same.");
 }
 if(_Count < 9)
 {
 throw new ApplicationException(
 " _Count < 9");
 };

 Console.WriteLine(
 "(Alarm Thread Id) {0} != {1} (Main Thread Id)",
 _AlarmThreadId,
 Thread.CurrentThread.ManagedThreadId);
 Console.WriteLine(
 "Final Count = {0}", _Count);
 }

 static void Alarm(object state)

 {
 _Count++;

 Console.WriteLine("{0}:- {1}",

 DateTime.Now.ToString("T"),

 _Count);

 if (_Count >= 9)
 {
 _AlarmThreadId =
 Thread.CurrentThread.ManagedThreadId;
 _ResetEvent.Set();
 }
 }
}

Output D.1.

Click here to view code image

12:19:36 AM:- 1
12:19:37 AM:- 2
12:19:38 AM:- 3
12:19:39 AM:- 4
12:19:40 AM:- 5
12:19:41 AM:- 6
12:19:42 AM:- 7
12:19:43 AM:- 8
12:19:44 AM:- 9
(Alarm Thread Id) 4 != 1 (Main Thread Id)
Final Count = 9

You can change the interval or time due after instantiation on System.Threading.Timer via the Change() method. However, you cannot change the callback listeners after instantiation. Instead, you must create a new instance.

Index

NOTE: Page references marked with an n are footnotes

! logical negation operator, 118–119

!=, <, <=, ==, >= relational operators, 386

&&, ||, ^ logical Boolean operators, 116–118, 122–126

with flag enums, 365

() (cast/conversion) operators, 61–64,

custom conversion operators, 391–393

%=, *=, /=, +=, -= (compound assignment) operators, 97

overloading compound assignment operators, 387–389

%, *, +, -, / (arithmetic) operators, 87

+ (string) operator, 90–91

%, *, +, -, / operator overloading 387–389

++/-- (increment/decrement) operators, 97–102

+, - (unary plus/minus) operators, 86–87

+, +=, -, -= delegate operators, 540–542

= assignment operators, 15

?: (conditional) operators, 119–120

?? (null coalescing) operators, 120–121

@ characters, 8, 47

[] (square brackets), 67–75

attributes, 687–692

indexers, 655–657

\ (escape sequence), 44

\n (newline) characters, 46, 50

^ (exclusive OR) operators, 118, 122

{} (curly braces), 2, 10, 110–114

|| (OR) operators, 116, 117, 122

constraints, 473–474

with flag enums, 365

~ (bitwise complement) operators, 127, 64

Abort() method, 740

aborting threads, 741–743

abstract classes

inheritance, 302–308

compared to interfaces, 337

abstract members, 302, 303–304, 305

access modifiers, 227–229, 397–398

internal, 396–398

private, 227–229, 284–285, 397–398

public, 227–229, 398

protected, 285–286, 397–398

protected internal, 398

on property getters/setters, 239–240

on classes, 397

array accessors, 74

Active Template Library. See ATL

Add() method, 249, 352, 473, 568–569, 641

add/remove event handlers, customizing, 558

aliases qualifiers

addition (+) operators, 87, 387, 541

guidelines, 91

strings, 90–91

overloading, 387–389

delegate operators, 540–542

addresses, 862–872

advanced parameters, methods, 175–184

AggregateException, 547, 757–764, 768, 779, 798–800

aggregation for multiple inheritance, 287–290

algorithms

hill climbing, 798

mark-and-compact, 407

mark-and-sweep-based, 882

work stealing, 798

aliasing with using, 171, 401–402

allocating

data on call stacks, 868

virtual memory, 851

AllocExecutionBlock() method, 855

AllowMultipleAttribute parameter, 700

alternative statements, 107

AND (&&) operator, 117–118, 122–126

with flag enums, 365

anonymous methods, 495, 512–514

internals, 517–518

anonymous types, 56–57, 562–564, 566–568

array initialization, 570–571

constructors, 253–255

projecting to, 583

antecedent tasks, 753

APIs (application programming interfaces), 27

APM (Asynchronous Programming Model), 908–921

AppDomain, 762

application programming interfaces. See APIs

Appointment class, 278

ArgumentException, 424

ArgumentNullException, 424

ArgumentOutOfRangeException, 424

arguments

command-line, passing, 173

methods, 161–162

named, 191

arithmetic (binary) operators, 87–96,

overloading, 387–389

arity, 460–461

ArrayList method, 350, 352

arrays, 67–82

access, 68

applying, 74–79

assigning, 68, 70–74

command-line options, 80

covariance, support, 488–489

declaring, 68, 69–70

errors, 72, 81–82

foreach loops, 571–572

instantiation, 70–74

jagged, 73, 75

length, 75–76

literal values, 71

methods, 77–79

parameters, 181–184

redimensioning, 78

runtime, defining size at, 72

strings, 79–81, 80–81

three-dimensional, 73

two-dimensional, 69, 72, 74–75

as operator, conversions, 310–311

AsParallel() method, 584

assemblies, 4. See also libraries

CLI, 887–890

metadata, viewing, 678. See also reflection

targets, modifying, 394–395

versioning, 889

well-formed types, referencing, 393–398

Assert() method, 95

assigning

arrays, 68

indexers, 657–658

null to strings, 54

pointers, 866–869

text, 42

variables, 13, 15–16

assignment operators

applying, 548

binary operators, combining with, 389

compound, 96–103

events, 541

associating

classes, 259

data types, 57

relationships, 217

XML comments, 403–405

associativity, 88

async keyword, 777–781, 937–942

asynchronous delegate invocation, 921–924

asynchronous programming, 732

high-latency operations, 772–777

lambda expressions, 782–783

methods, customizing, 783–786

models, 908–921

System.Threading.Thread class, 737–739

Task-based Asynchronous Pattern (TAP), 770–794

task-based asynchrony, 848–849

asynchronous tasks, 745–764

ATL (Active Template Library), 287

atomic operation, 734, 745, 829

attributes, 677, 688–714

backward compatibility, 712

constructors, initializing, 694–699

customizing, 692–693, 893

FlagsAttribute class, 367, 701–702

IndexerNameAttribute, 657

interfaces, comparing, 337–338

named parameters, 700–714

naming, 692

predefined, 703

searching, 693–694

serialization, 706–714

System.AttributeUsageAttribute class, 699–700

System.ConditionalAttribute class, 703–705

System.ObsoleteAttribute class, 705–706

System.SerializableAttribute class, 438, 713–714

automatically shimmed interfaces, 848

automatically implemented properties, 232–234

Average() method, 609

await keyword, 741, 777–781, 937–942

background worker patterns, 928–932

backing field declarations, 232, 244

backslash (\) escape sequence, 44

Base Class Library. See BCL

base classes

base member, 300–301

finalizers in, 412

inheritance, overriding, 290–302

new modifier, 295–299

refactoring, 279

sealed modifiers, 299–301

virtual modifiers, 290–295

base members, 300–301

base types, 212

BCL (Base Class Library), 25, 34, 743, 885, 892, 894

BeginGetResponse() method, 908

BeginX() method, 908

behaviors

boxing, 349–357

dynamic objects, 716–718

implementation-defined, 101

polymorphism, data types, 310

best practices, thread synchronization design, 827–829

binary floating-point types, 37, 92–96

binary (arithmetic) operators, 87–96, 387–389

BinarySearch() method, 643, 644

BinaryTree<T> class, 462–463, 658

binding

dynamic objects, 719–720

late, 893

methods, 714

runtime, XML elements, 719–720

bits, 121–122

bitwise

complement () operators, 127, 644

compound assignment operators, 126

operators, 121–127, 140

blocks

catch, 199–200, 203, 204, 428–432

code blocks ({}), 110–114

finally, 199–200

try, 197

unsafe, 863, 864

Boolean

expressions, 107, 114–121

number conversions, 64

types, 43

boxing

avoiding, 356–357

value types, 349–357

Break() method, 803

break statements, 139–141

breaking parallel loops, 803–804

brittle base classes, 295

BubbleSort() method, 496–497

buffers, overrun, 76, 883

bugs, runtime performance, 885–886

building custom collections, 635. See also collections, customizing

bytes, 121–122

C language, 1

pointers, declaring, 865

C++ language, 1, 890

arrays, declaring, 69

buffer overrun, 76

delete operator, 216

deterministic destruction, 418, 882

evaluation order of operands, 90

global methods, 164

global variables/functions, 256

header files, 168

implementation-defined behavior, 101

implicit overriding, 292

implicitly typed variables, 565

local variable scope, 114

Main method, 10

methods, calling, 295

multiple inheritance, 287

operator errors, 115

operator-only statements, 87

pointers, declaring, 865

preprocessors, 145

pure virtual functions, 305

short data types, 35

string concatenation at compile time, 48

struct, defining with public members, 348

switch statements, 138

templates, 466

void, 55

C# without generics, 444–449

caches, avoiding repeated, 590

calculating

compound assignment operators, 96–103

financial, 36

operators, 86. See also operators

pi, 794–795

values, bytes, 122

callers, 157

variables, matching with parameter names, 176

calling

APM methods, 915–921

constructors, 245

methods, 11, 156–163, 295

avoiding boxing, 356–357

statements, 163

P/Invoke

APIs, 861–86–

external functions, 858–861

SelectMany() method, 604–606

sites, 175

stacks, 175, 868

Task.ContinueWith method, 752, 789

camelCase, 7, 15

Cancel() method, 766

CancellationToken class, 764, 767

CancellationTokenSource class, 767

cancelling

parallel loops, 800

PLINQ queries, 807

tasks, 764–770

Capacity() method, 639

capitalizing variables, 15

capturing

loop variables, 521–522

variables, 518

Cartesian products, 598, 631

CAS (code access security), 884

permissions, 686

case-sensitivity, 2

multiple strings, 43

cast (()) operators, 61, 391–392

casting

inheritance, chaining, 282–283

multicast delegates, 533

operators, defining, 283

types, 65–66, 281–282

catch blocks, 199–200, 203, 204, 428–432

catch clause, 779

catching exceptions, 196–197, 426–427

categories of types, 57–60, 340

centralizing initialization, 252–253

chaining

constructors, 251–253

inheritance

casting, 282–283

exceptions, 437

multicast delegates, 544

change() method, 942

char data types, 92

characteristics of parameter arrays, 183

characters

@, 47

escape, 45

newline (\n), 46, 50

operators, applying, 91–92

Unicode, 43–46, 98

checking

conversions, 62–64, 440

for null, 538–539

types, 883

child collections, formatting, 602

Church, Alonzo, 513

CIL (Common Intermediate Language), 24, 876, 877, 894

boxing, 350

CLI, 890. See also CLI

dynamic objects, 718–719

empty catch blocks, 432

events, 556–557

extension methods, 266

generics, 490–491

best practices, 452–453

HelloWorld output, 29–30

ILDASM, 28–29

indexers, 657

iterators, defining, 661

machine code, compilation to, 879–880

objects

deriving, 309

initializers, 248

outer variables, implementing, 520–521

properties, 243–244

runtime, 881–886

Stack<T> class, 490

System.SerializableAttribute class, 713–714

circumventing encapsulation, 883

class keyword constraints, 468–469

classes, 209–210

abstract, 302–308, 337

access modifiers, 227–229, 397

associating, 259

base. See also base classes

base member, 300–301

new modifier, 295–299

overriding, 290–302

refactoring, 279

sealed modifiers, 299–301

constructors, 244–255

anonymous types, 253–255

chaining, 251–253

common initializers, 249

declaring, 245–246

defaults, 247

finalizers, 249–250

object initializers, 247–248

overloading, 250–251

declaring, 8, 213–216

definitions, 214

encapsulation, 215, 267–269

extension methods, 265–266

finalizers, 416

generics, 450–452

hierarchies, 212, 324

inheritance, 277. See also inheritance

initializers, 247–248

instances

fields, 217–219

methods, 219–220

instantiation, 213–216

interfaces

comparing, 336–337

conversions, 326

Java inner classes, 272

locations, 408

members, 216

memory, garbage collection, 408

methods, 157. See also methods

naming, 4, 8

nested, 269–272

object-oriented programming, 210–213

partial, 272–273, 272–276

properties, 229–244

access modifiers on getters/setters, 239–240

guidelines, 234–235

parameter values, 242–244

read-only/write-only, 237–239

validation, 236–237

virtual fields, 240–242

sealed, inheritance, 290

static members, 255–265

this keyword, 220–227

types, constraints, 467–468

cleanup

collection interfaces after iteration, 575

resources

APM, 914

using statements, 575

well-formed types, 410–419

CLI (Common Language Infrastructure), 1, 24–26, 894, xxvii

application domains, 887

assemblies, 887–890

BCL, 892

CIL, 890

CLS, 891–892

CTS, 891

manifests, 887–890

metadata, 892–893

modules, 887–890

closed over variables, 518

CLR (Common Language Runtime), 881, 894

CLS (Common Language Specification), 25, 877, 891–892, 895

CLU language, 660

COBOL, 890

code, xxiii

access security, 25, 884

blocks, 110–114

machine, 24, 876, 879–880

managed, 24, 881

native, 24

preprocessor directives, excluding/including, 146–147

reuse, 394

runtime performance, 885–886

unsafe, 845–846, 863–864, 867, 872–873

whitespace, formatting, 13

collections

child, formatting, 602

classes, 638–655

concurrency, 835–837

customizing, 635

dictionaries, 636, 646–650, 696

empty, 659–660

filtering, 614

generics, 637

indexers, 655–659

initializers, 568–571

interfaces, 249, 561–562, 636–638

iterators, 660–674

compiling, 671–672

creating multiple in single classes, 673–674

defining, 661

examples of, 666–667

recursive, 669

state, 664–666

syntax, 661–662

yield break statements, 670–671

yield return statements, 674

yielding values, 662–664

linked lists, 654–655

lists, 639–641, 643–644

multiple items, searching, 645

projecting, 614

queues, 654

sorting, 641, 652

stacks, 652–654

total ordering, 643

yield return statements, placing in loops, 667–669

collisions, type names, 158

COM (Component Object Model)

DLL registration, 890

STAThreadAttribute class, 842–843

combining assignment operators with binary operators, 389

command-line

arguments, passing, 173

array options, 80

CommandLine class, 270

CommandLineAliasAttribute class, 694

CommandLineInfo class, 681, 684, 688, 689

CommandLineSwitchRequired-Attribute class, 692, 694

commands

preprocessor directives, 145

xcopy, 889

commas (,), 165

comments

code, 21–23

well-formed types, 402–407

XML, 678

Common Intermediate Language. See CIL

Common Language Infrastructure. See CLI

Common Language Runtime. See CLR

Common Language Specification. See CLS

Common Type System. See CTS

Compare() method, 495

CompareTo() method, 323, 641

generics, 463

comparison operators, 386–387

ComparisonHandler delegate, 499

comparisons

equality, requirements of, 651

interfaces

attributes, 337–338

classes, 336–337

compilers, 878

installing, 897–899

paths, configuring, 898

compiling

applications, 3–4

checked/unchecked conversions, 63

just-in-time compilation, 24, 466, 879

keywords, 4. See also keywords

machine code, 879–880

static compilation versus dynamic programming, 720–721

components, 1

composite formatting, 20

compound assignment operators, 96–103

Concat() method, 608

concatenation, strings

addition (+) operators, 90–91

at compile time, 48

concrete classes, 302, 305

concurrency, 732, 835–837

conditional logical operators, 389

conditional (?:) operators, 119–120

consequence statements, 107

consistency, integers, 35

console executable assemblies, 394

ConsoleListControl class, 316–317, 320

consoles

input, 17–19

output, 19–21

synchronization, 920–921

Console.WriteLine() method, 340, 352, 871

const values, 267

constants

expressions, 102–103

fields, declaring, 267

math, 112

public, 268

constraints, 462–476

class keyword, 468–469

class types, 467–468

constructors, 470

defaults, 474–476

inheritance, 471–472

interfaces, 465–467

limitations, 472–473

multiple, 469

specifying, 479–480

struct keyword, 468–469

constructors

attributes, initializing, 694–699

base, specifying base, 301–302

classes, 244–255

anonymous types, 253–255

chaining, 251–253

common initializers, 249

declaring, 245–246

defaults, 247

finalizers, 249–250

object initializers, 247–248

overloading, 250–251

constraints, 470, 474–476

exceptions, 418, 437

generics, defining, 457

static, 261–262

Contains() method, 643

context

switches, 732

synchronization, 788–790

contextual keywords, 6, 672–673

continuation

passing style. See CPS

query expressions, 629–630

tasks, 789

continue statement, 141–143

ContinueWith() method, 753, 775, 919–920

contravariance

enabling, 485–488

generics, 481–489

control flow

asynchronous tasks, 751

await keyword, 792–794

statements, 85, 103–110, 127–139

do/while loops, 127–129

exception-handling, 198

foreach loops, 133–136

if statements, 107–110

for loops, 120–133

switch statements, 135–139

while loops, 127–129

tasks, 780

conversions

as operator, 310–311

Boolean types, numbers, 64

boxing, 349–357

checked, 62–64, 440

CIL, 879

classes, interfaces, 326

covariant, 482. See also covariance

customizing, 283–283

data types, 60–67

enums, strings, 362–364

exception handling without, 207

explicit, 392

implicit, 64, 392

objects, deriving, 282

operators, 391, 393

strings, 65

types

checking, 883

without casting, 65–66

unchecked, 62–64, 440

cooperative cancellation, 764

coordinates, 388–389, 395

CopyTo() method, 638

cores, 730n2

Count() method, 585–586, 609, 622

Count property, 638

CountdownEvent class, 835

counting items, 585–586

CountLines() method, 157

covariance

enabling, 483–485

generics, 481–489

support, 488–489

CPS (continuation passing style), 911–913, 915

CPUs (central processing units), 730

LINQ queries, running in parallel, 584

CTS (Common Type System), 25, 877, 891, 895

curly braces ({}), 2, 10

code blocks, 110–114

customizing

add/remove handlers, 558

attributes, 692–693, 893

collections, 635. See also collections

classes, 638–655

dictionaries, 646–650

empty, 659–660

indexers, 655–659

interfaces, 636–638

iterators, 660–674

linked lists, 654–655

List<T> class, 639–641

queues, 654

searching items, 645

searching List<T> class, 643–644

sorting, 641, 652

stacks, 652–654

total ordering, 643

conversions, 283–283

dictionaries, equality, 649–650

dynamic objects, 721–724

events, implementing, 558–559

exceptions, defining, 435–438

LINQ, providers, 609

methods, asynchronous, 783–786

serialization, 708–710

synchronization contexts, 790

cycles, processors, 728, 741

data

managed, 881

persistence to files, 224

retrieval from files, 225

types, 14, 33–34

DataStorage class, 403

de-allocating objects, 882. See also allocating

deadlocks, 736, 745, 827–828

decimal types, 36–37

declaration spaces, 112–114

decrement (--) operators, 97–102

default

keyword, 68

operator, 348, 458

default constructors, 247

default constructor constraints, 474–476

deferred execution

implementing, 623

query expressions, 619

standard query operators, 586–590

#define preprocessor directive, 147–148

delegate keyword, 542

delegates, 495

asynchronous delegate invocation, 921–924

data types, 498–500

events, 554–555

operators, 540–542

sequential invocation, 542

expression trees, 527–528

generics, declaring types, 552

instances, returning, 539

instantiation, 500–502

internals, 503–506

invoking

events, 537–538

pass-by references, 547–548

returning methods, 547–548

thread-safe, 539–540

multicast, 533

internals, 542–544

observer patterns, 534–548

overview of, 496–506

P/Invoke, 862

passing, 510

sequence diagrams, 545

synchronous, 747

syntax, 502

System.Func/System.Action, 514–530

types, declaring, 500

unsafe code, executing via, 872–873

delete (C++) operator, 216

delimited comments, 22

denominators, 35

deployment, xcopy, 889

Dequeue() method, 654

dereferencing pointers, 869–871

deriving

inheritance, 278–290

casting between types, 281–282

customizing conversions, 283–283

private access modifiers, 284–285

protected access modifiers, 285–286

System.Object class, 308–309

types, 212

deserialization, 711. See also serialization

deterministic destruction (C++), 418, 882

deterministic finalization, 412–415

device drivers, 886

dictionaries

collections, 636, 646–650, 696

equality, customizing, 649–650

Dictionary<T> class, 646–650

directives. See also commands

preprocessor, 145–152

code editors, 151–152

errors/warnings, 148–150

#pragma preprocessor directive, 149

specifying line numbers, 150

symbols, 147–148

using, 168–172

DirectoryCountLines() method, 185, 187, 191

Directory.GetFiles() method, 617

DirectoryInfoExtension.Copy() methods, 260

DirectoryInfo.GetFiles() method, 597

disabling parallelism, 802

disambiguating multiple Main() methods, 174

Dispose() method, 6n6, 413, 416, 575

tasks, 770

distinct members, 631–632

Distinct() method, 608, 613

distribution, APM parameters, 911

division (/) operators, 87

DLL (Dynamic Link Library), 4

COM registration, 890

do/while loops, control flow statements, 127–129

documents

saving, 706–708

XML, 402–407, 678

domains, applications, 887

dot (.) operator, 871

DotGNU, 878

dotPeek, 30

double quotes ("), 47

double.TryParse() method, 207

downloading .NET (Microsoft), 897–899

drivers, devices, 886

duck typing, 576

Dump() method, 325

Dynamic Link Library. See DLL

dynamic objects

behaviors/principles, 716–718

binding, 719–720

CIL, 718–719

customizing, 721–724

programming, 714–724

reflection, invoking, 714–716

static compilation versus, 720–721

dynamic programming, 677

EAP (Event-based Asynchronous Pattern), 924–927

editors, code, 151–152

elements

deleting, 641

indexes, retrieving, 640

XML, runtime binding, 719–720

#elif preprocessor directive, 146–147

else clauses, 107

#else preprocessor directive, 146–147

empty catch blocks, 432. See also catch blocks

empty collections, 659–660

empty memory, retrieving, 246

Empty<T> method, 659

encapsulation, 211, 215

APIs, 859–860

circumventing, 883

classes, 267–269

publishers, 549–550

subscribers, 548–549

of types, 396

encryption. See also security

serialization, 708

strings, 804

EndGetResponse() method, 908

#endif preprocessor directive, 146–147

#endregion preprocessor directive, 151–152

EndX() method, 908

Enqueue() method, 654

Enter() method, 353

EntityBase, EntityBase<T> class, 468, 471

EntityDictionary, EntityDic-tionary<T> class, 469, 476

enumeration, values, 702

enums, 358–368

Enum.Parse() method, 363, 680

flags, 364–368

string conversions, 362–364

type compatibility, 361–362

equality, 93. See also inequality

dictionaries, customizing, 649–650

operators, 115–116

structural, delegates, 516–517

Equals() method, 349, 651

overriding, 376–385

equals (==) operator, 386

#error preprocessor directive, 148–150

errors

arrays, 72, 81–82

buffer overrun, 76

handling

platform interoperability/unsafe code, 854–856

sequential notification, 544–547

using statements, 575

infinite recursion, 186

methods, 194–208

namespace alias qualifiers, 401

operators, 115

preprocessor directives, 148–150

reporting, 204–207

rounding, 37

trapping, 195–201

Windows Error Reporting, 425

escape sequences, 44

verbatim string literals, 47

Etch A Sketch, 444

evaluation, 89

order of operands, 90

Event-based Asynchronous Pattern. See EAP

event keyword, 550, 551

events, 533–534

CIL code, 556–557

code conventions, 552–554

declaring, 550–551

delegates, 554–555

invoking, 537–538

operators, 540–542

sequential invocation, 542

generics, 554–555

handlers

adding, 846–848

removing, 846–848

implementing, customizing, 558–559

internals, 556–558

multicast delegates, 534–548

notifications

firing, 553

multiple threads, 826–827

null, checking for, 538–539

publishers

connecting subscribers and, 536–537

defining, 536

resetting, 831–837

WinRT, 846–848

examples of iterators, 666–667

exceptions

AggregateException, 547, 757–764, 768

parallel loop exception handling, 798–800

ArgumentException, 424

ArgumentNullException, 424

ArgumentOutOfRangeException, 424

asynchronous high-latency operations, 775–776

catching, 196–197, 426–427

classes, inheritance, 201

common exception types, 202

constructors, 418, 437

defining custom exceptions, 435–438

handling, 423

general catch blocks, 428–432

guidelines, 432–435

multiple exception types, 424–425

hiding, 432

InnerExceptions property, 760

InvalidAddressException, 435

InvalidCastException, 353, 464

InvalidOperationException, 427, 439

NotImplementedException, 321

NullReferenceException, 424, 538, 551, 659, 826

OperationCanceledException, 807

OutOfMemoryException, 433

reporting, 433

rethrowing, 206, 438–442

sequences, diagrams, 545

serializable, 438

specifiers, 427

SqlException, 437

StackOverflowException, 433

suffixes, 437

System.ComponentModel.Win32Exception, 854

System.FormatException, 198, 199

System.InvalidCastException, 393

System.Runtime.Serialization.Serialization-Exception, 710

TaskCancelledException, 767, 768

ThreadAbortException, 741, 742

throwing, 195, 204–205, 321

arrays, 75

checked/unchecked conversions, 63

deserialization, 711

UnauthorizedAccessException, 438

unhandled, 195, 761–764

wrapping, 438–442

excluding code, preprocessor directives, 146–147

exclusive OR (^) operator, 118, 122

execution

agents, 881

deferred

implementing, 623

query expressions, 619

standard query operators, 586–590

delegates, unsafe code, 872–873

managed, 881

managing, 24–26

Exit() method, 353

explicit conversions, 392

explicit deterministic resource cleanup, 216

explicit member implementation, 322–323

exponential notation, 40

expressions

Boolean, 107, 114–121

constants, 102–103

generics, 6n6

lambda, 495, 506–512

asynchronous programming, 782–783

expression trees, 524

internals, 517–518

lazy loading, 420

statements, 507–510

queries

continuation, 629–630

filtering, 623–624

flattening sequences, 630–622

grouping, 626–629

invoking methods, 632–634

let clause, 625–626

LINQ, 561, 613

overview of, 614–632

projecting, 616–619

sorting, 624–625

trees, 496, 523–530

Extensible Markup Language. See XML

extensions

methods, 265–266

IEnumerable<T> interface, 562

inheritance, 287

interfaces, 330–331

Reactive Extensions library, 729

external functions

declaring, 849–850

P/Invoke, calling, 858–861

f-reachable queues, 416

factory interfaces, 475

factory methods, 461

FCL (Framework Class Library), 892, 895

features, adding, 278. See also inheritance

Fibonacci numbers/series, 128, 351

fields, 51

backing, declaring, 232, 244

constants, declaring, 267

guidelines, 234–235

instances, 217–219

readonly modifiers, declaring, 268, 269

static, 256–258

virtual, properties, 240–242

volatile, declaring as, 823–824

FileInfo object, 625–626

files

data

persistence to, 224

retrieval from, 225

headers, 168

loading, 224

metadata, 892–893

references, assemblies, 889

storing, 224

XML, 23, 402–407. See also XML

FileSettingsProvider, 329

FileStream property, 419

filtering

collections, 614

query expressions, 623–624

System.Linq.Enumerable.Where(), 568–569

WHERE clause, 623–624

finalizers, 249–250, 347, 410–412

finally blocks, 199–200

FindAll() method, 645

firing events, 548, 553

first in, first out (FIFO), collections, 654

fixed statements, 867, 868

flags

enums, 364–368

values, 702

FlagsAttribute class, 367, 701–702

flattening sequences, 630–622

floating-point types, 35–36, 92–96, 351

flow control, 730. See also control flow statements

for loops, 120–133

foreach loops, 133–136

arrays, 571–572

IEnumerable<T> interface, 572–577

ForEach() method, 801

foreground threads, 739

formal declaration, methods, 165–166

format items, 20

Format() method, 48

format strings, 20

formatting

comments, 21–23

if/else statement sequences, 109

indentation, code blocks, 111

numbers as hexadecimal, 41

round-trip, 42–43

string length, 51

variables, 15

whitespace, 12–13

forms, Windows Forms, 932–934

FORTRAN, 890

fractions, 35

fragile base classes, 295

frames, removing activation, 175

Framework (Microsoft .NET), 878

Framework Class Library. See FCL

frameworks, 877

FROM clause, 615

from clause, flattening sequences, 630–632

FromCurrentSynchronizationContext() method, 788

full outer joins, 594

functionality, CLI, 888n5

functions

external

declaring, 849–850

P/Invoke, 858–861

global, 256

pointers, 862

fundamental numeric types, 34–43

garbage collection, 25, 215

.NET (Microsoft), 882–883

resource cleanup, 415–418

runtime, 881–882

value types, 347

well-formed types, 407–410

gating parallelism, 802

GC.ReRegisterFinalize() method, 419

general catch blocks, 203, 428–432

general-purpose delegates, System.Func/System.Action, 514–530

generating

anonymous types, 568

XML documentation files, 405–407

generics, 443

arity, 460–461

benefits of, 452–453

C# without, 444–449

CIL, 490–491

classes, 450–452

collections, interface hierarchies, 637

constraints, 462–476

constructors, defining, 457

contravariance, 481–489

covariance, 481–489

default values, specifying, 458–459

delegates, declaring types, 552

events, 554–555

expressions, 6n6

finalizers, defining, 457

instantiation

reference types, 492–493

value types, 491–492

interfaces, 454–455, 456–457

internals, 489–493

Java, 493

lazy loading, 420

methods, 476–481

casting inside, 480–481

type inference, 478–479

multiple type parameters, 459–460

nested types, 461–462

structs, 454–455

types, 449–462, 686–688

GetCustomAttributes() method, 694

GetDynamicMemberNames() method, 724

GetEnumerator() method, 576, 577, 610, 661, 662, 664, 787n8

GetFiles() method, 157

GetFirstName() method, 232

GetFullName() method, 166

GetGenericArguments() method, 687

GetHashCode() method, 349, 373–376, 651

GetInvocationList() method, 547, 548

GetLength() method, 79

GetName() method, 219

GetResponse() method, 772

GetResponseAsync() method, 779

GetReverseEnumerator() method, 673

GetSetting() method, 327

GetSummary() method, 305

GetSwitches() method, 696

getters, 51

access modifiers, 239–240

accessibility, modifying, 237–239

declaring, 230

GetType() method, 679–680

GetUserInput() method, 166

GetValue() method, 685

GhostDoc, 406n3

global functions, 256

global methods, 164

global variables, 256

goto statements, 143–145

graphs, expression trees, 525–527

GreaterThan method, 507

groupby clause, 627

GroupBy() method, grouping results, 600–601

grouping

encapsulation, 215

methods, 502

namespaces, 158

query expressions, 626–629

results, 600–601

statements into methods, 156–157

types, defining namespaces, 398–402

GroupJoin() method, 613

guest computers, 872

guidelines

addition (+) operators, 91

anonymous methods, 513

attributes

assemblies, 692

AttributeUsageAttribute class, 700

constructors, 699

custom, 693

catch blocks, 204

classes

access modifiers, 240

naming, 8, 214

collections, 649

comments, 23

constants, fields, 267

constructors

defaults, 248

naming, 251

conversion operators, 393

Count() method, 586

covariance, 489

curly braces ({}), 112

custom collections, 643

delegates, types, 515

empty collections, 660

Equals() method, 385

events, declaring, 554

exceptions

customizing, 437

handling, 207, 432–435

multiple exception types, 425

reporting, 435

throwing, 106, 201

wrapping, 439

extension methods, 266

fields, 234–235

finalizers, 417

floating-point types, 93, 95

generics

implementing multiple interfaces, 457

methods, 481

type parameters, 462

goto statements, 145

identifiers, 7

if/else statements, 120

increment/decrement operators, 101

integers, 35

interfaces

adding members, 335

attributes, 338

comparing to classes, 337

explicit/implicit implementations, 324–325

implementations, 326

multiple inheritance, 333

naming, 315

lambda parameters, 509

literal suffixes, 40

local variables, 15

locking, avoiding, 823

long-running tasks, 770

for loops, 132, 133

managed wrappers/unmanaged methods, 856

methods, naming, 157

multiple type parameters, 460

multithreading, 733, 736

aborting threads, 743

thread pools, 745

Thread.Sleep() method, 741

unhandled exceptions, 764

namespaces, 161, 401

nested classes, 272

.NET (Microsoft), 6

null, invoking delegates, 539

OrderBy()/ThenBy() methods, 592

P/Invoke, 862

parallel loops, 797

parameters, 166, 191, 192

parentheses (()), 90

properties, 234–235

get-only, 239

validating, 237

query expressions, 634

static initialization, 262

switch statements, 137

synchronization, avoiding, 823

System.EventHandler<T> class, 555

thread synchronization, 811–841

best practices, 827–829

Monitor, 817–819

ToString() method, 373

types, naming parameters, 453–454

value types

avoiding mutable types, 355

creating enums, 361

defaults, 347

defining structs, 369

direct enum/string conversions, 365

enum underlying types, 360

flag enums, 366

immutable, 345

memory, 341

overloading equality operators, 349

XML comments, 407

Handle() method, 760

handlers, events

adding, 846–848

removing, 846–848

handling

aliasing, 697–699

errors

platform interoperability/unsafe code, 854–856

sequential notification, 544–547

using statements, 575

exceptions, 423

asynchronous high-latency operations, 775–776

avoiding, 206–207

background worker patterns, 931–932

catching, 426–427

defining custom exceptions, 435–438

general catch blocks, 428–432

guidelines, 432–435

multiple exception types, 424–425

rethrowing, 438–442

wrapping, 438–442

exceptions, parallel loops, 798–800

hard coding values, 38–40

hash codes, 651

headers, files, 168

heaps

memory, 349

reference types, 59, 342

Heater objects, 534–535

HelloWorld program, 1, 2–4

output, 29–30

static keyword, 255

Help property, 689

hexadecimal notation, 40–41

hiding exceptions, 432

hierarchies

classes, 212, 324

interfaces, generic collections, 637

organizing, 161

high-latency operations, invoking, 771–772, 772–777

hill climbing, 798

hot tasks, 748. See also tasks

Hyper-Threading, 730

I/O-bound latency, 728, 732

IAngle.MoveTo interface, 354

IAsyncAction<T> interface, 848, 849

ICollection<T> interface, 638

IComparable interface, 323, 324

IComparable<T> interface, constraints, 465

IComparer<T> class, 495

identifiers, 6–7

keywords as, 8

namespaces, nesting, 400

IDictionary<T> interface, 636–638

IDisposable interface

finalization, 415–418

resource cleanup with, 413

tasks, 770

IDispose() method, 915

IDistributedSettingsProvider interface, 335

IEnumable<T> interface, 571–577

IEnumerable interface, 331

IEnumerable<T> interface, 616n1

extension methods, 562

query expressions, 616

standard query operators, 577–610

if/else statements, guidelines, 120

#if preprocessor directive, 146–147

if statements, 80, 107–110

Boolean expressions, 114–121

IFileCompression interface, 314, 315

IFormattable interface, 357

ILDASM, CIL, 28–29

IListable interface, 331

IList<T> interface, 636–638

ILMerge utility, 889

ILSpy, 30

immutable strings, 17, 51, 52

modifying, 869–870

implementation-defined behavior, 101

implementing

CIL, outer variables, 520–521

CLI, 877–878

conversion operators, 392

deferred execution, 623

dynamic objects, 714

Equals() method, 382

events, customizing, 558–559

GetHashCode() method, 375–376

interfaces, 313–315, 316–319, 320–326, 456–457

members

explicit, 322–323

implicit, 323–326

multiple inheritance, interfaces, 331–334

new operator, 246

object-oriented programming, 210–213

one-to-many relationships, 601–604

outer joins, 603–604

properties, automating, 232–234

System.Runtime.Serialization.ISerializable class, 709–710

implicit base type casting, 281

implicit conversions, 64, 392

implicit deterministic resource cleanup, 216

implicit local variables, 562–568

implicit members, implementing, 323–326

implicit nondeterministic resource cleanup, 216

implicit overriding, Java, 292

implicitly typed local variables, 55–57

in type parameter, 485–488

including code, preprocessor directives, 146–147

Increment() method, 825

increment (++) operators, 97–102

indenting

code blocks, 111

whitespace, 12

IndexerNameAttribute, 657

indexers

assigning, 657–658

collections, 655–659

indexes, retrieving elements, 640

IndexOf() method, 643

inequality, floating-point types, 93–96

inferences, types, 478–479

infinity

negative, 96

recursion errors, 186

infrastructure, CLI, 875–877. See also CLI

inheritance, 211–212, 277, 310–311

abstract classes, 302–308

aggregation, 289

base classes

base member, 300–301

new modifier, 295–299

overriding, 290–302

sealed modifiers, 299–301

chaining

casting, 282–283

exceptions, 437

classes, exceptions, 201

constraints, 471–472

definitions, 277–278

derivation, 278–290

casting between types, 281–282

customizing conversions, 283–283

private access modifiers, 284–285

protected access modifiers, 285–286

extension methods, 287

interfaces, 326–329

multiple, 329–330, 331–334

value types, 348–349

is operator, verifying underlying type, 309–310

multiple, 287

polymorphism, 306

sealed classes, 290

single, 287–289

System.object, deriving classes, 308–309

virtual modifiers, 290–295

initialization

anonymous types, arrays, 570–571

centralizing, 252–253

clauses, 132

collection initializers, 568–571

lazy, 419–421

NextId, 261

static, 262

static fields, 257

structs, 346–347

Initialize() methods, 236

initializers

common, 249

constructors, 251

objects, 247–248

initializing attributes, constructors, 694–699

inner classes, Java, 272

inner joins, 593

Join() method, 597–600

InnerExceptions property, 437, 439, 760

input, consoles, 17–19

inserting newline (\n) characters, 46

installing .NET (Microsoft), 897–899

instances

applications, formatting single, 829–830

delegates, returning, 539

fields, 217–219. See also static fields

methods, 48, 78–79, 219–220

polymorphism, 321

instantiation, 10

arrays, 70–74

classes, 213–216

delegates, 500–502

generics

reference types, 492–493

value types, 491–492

integers, 34–35

42 as, 195

adding, 351

values, overflowing, 62, 440

integral types, 91

IntelliSense, enabling, 615

interfaces, 313–315

APIs, 27, 438, 439

attributes, comparing, 337–338

automatically shimmed, 848

classes

comparing, 336–337

conversions, 326

collection, 561–562, 636–638

anonymous types, 562–564

implicit local variables, 564–565, 566–568

constraints, 465–467

diagrams, 333–334

extension methods, 330–331

factory, 475

generics, 454–455, 456–457

hierarchies, generic collections, 637

IAngle.MoveTo, 354

IAsyncAction<T>, 848, 849

ICollection<T>, 638

IComparable, 323, 324

IComparable<T>, 465

IDictionary<T>, 636–638

IDisposable

finalization, 415–418

resource cleanup with, 413

tasks, 770

IEnumable<T>, 571–577

IEnumerable, 331

IEnumerable<T>

extension methods, 562

query expressions, 616

standard query operators, 577–610

IFileCompression, 314, 315

IFormattable, 357

IList<T>, 636–638

implementing, 316–319, 320–326

inheritance, 326–329

multiple, 329–330, 331–334

value types, 348–349

IObsolete, 338

IOrderedEnumerable<T>, 592

IQueryable<T>, 609–610

IReadOnlyPair<T>, 484

ISerializable, 709

ITrace, 325

multithreading, prior to TPL and C# 5.0, 907–936

naming, 315

PairInitializer<T>, 487

parameters, 192

polymorphism, 315–320

versioning, 334–336

Windows UIs, 790–792, 932–936

internal access modifier, 397

internals

anonymous methods, 517–518

delegates, 503–506

events, 556–558

generics, 489–493

lambda expressions, 517–518

multicast delegates, 542–544

interoperability, 25

CIL, 890. See also CIL

languages, 25

platforms, 845–846, 862–872

Intersect() method, 608

into keyword, 629–630

InvalidAddressException, 435

InvalidCastException, 353, 464

InvalidOperationException, 427, 439

Invoke() method, 685, 932

InvokeRequired property, 932

invoking

asynchronous delegate invocation, 921–924

asynchronous tasks, 747–748

delegates

events, 537–538

exception sequence diagrams, 545

pass-by references, 547–548

returning methods, 547–548

sequences, 542

thread-safe, 539–540

finalizers, 412

high-latency operations, 771–777

members, reflection, 681–686

methods, query expressions, 632–634

reflection, dynamic objects, 714–716

type members, 678. See also reflection

IObsolete interface, 338

IOrderedEnumerable<T> interface, 592

IProducerConsumer-Collection<T> class, 835

IQueryable<T> interface, 609–610

IReadableSettingsProvider interface, 327

IReadOnlyPair<T> interface, 484

is operator, verifying underlying types, 309–310

IsAlive property, 740

IsBackground property, 739

IsCancellationRequested property, 766, 767, 801

IsCompleted property, 750, 804

ISerializable interface, 709

ISettingsProvider interface, 327

IsKeyword() method, 620

items

collections, searching, 645

counting, 585–586

format, 20

grouping, 600–601

Items property, 456

iterations

collection interfaces, 573

continue statements, 141

long-running loops, 802

loops, 129, 794–804

iterators

collections, 660–674

compiling, 671–672

contextual keywords, 672–673

creating multiple in single classes, 673–674

defining, 661

examples of, 666–667

state, 664–666

struct versus class, 670

syntax, 661–662

yield break statements, 670–671

yield return statements, 674

yielding values, 662–664

recursive, 669

ITrace interface, 325

IWriteableSettingsProvider interface, 329

jagged arrays, 73, 75

Java, 1

arrays, declaring, 69

classes, naming, 4

exceptions, specifiers, 427

generics, 493

implicit overriding, 292

inner classes, 272

Main method, 10

virtual methods, 291

JavaScript, implicitly typed variables, 565

jitting, 879

Join() method, 739, 748

inner joins, 597–600

joining

collections, 593

data types, 57

jump statements, 139–145

break statements, 139–141

continue statement, 141–143

goto statement, 143–145

just-in-time compilation, 24, 466, 879

JustDecompile, 30

keys, 637

keywords, 2, 4–6

into, 629–630

async, 777–781, 937–942

await, 741, 777–781, 937–942

class, constraints, 468

contextual, iterators, 672–673

default, 68

delegate, 542

event, 550, 551

as identifiers, 8

integers, 34

lock

applying, 819–821

selecting objects, 821–822

new, 71, 205

null, 53–54

operator, 392

override, 292, 323

private, 229

properties, defining, 232

static, 264

string, avoiding locking, 822–823

struct, 343, 468

this, 220–227

avoiding locking, 822–823

chaining constructors, 251–253

try, 197

typeof, 363, 822–823

unchecked, 442

void, 53, 54–55

where, 465

lambda expressions, 495, 506–512

asynchronous programming, 782–783

expression trees, 524

internals, 517–518

lazy loading, 420

statements, 507–510

tables, 511–512

languages

CIL, 876

CLI. See CLI

CLR, 881

CLS, 25, 891–892

CLU, 660

COBOL, 890

FORTRAN, 890

overview of, 1–2

Pascal, 7

source, 890

XML, 23–24. See also XML

last in, first out (LIFO), 444, 652

LastIndexOf() method, 643

late binding, 893

latency, 728

invoking high-latency operations, 771–777

lazy initialization, 419–421

left outer joins, 593

length

arrays, 75–76

strings, 51

let clause, 625–626

libraries

assemblies, 394

ATL, 287

BCL, 25, 26, 34, 885, 892, 894

classes, 394

code, creating, 4

DLL, 4

FCL, 892, 895

Reactive Extensions library, 729

Task Parallel Library (TPL), 729, 790. See also TPL

WinRT, 846–849

limitations, constraints, 472–473

line-based statements (Visual Basic), 11

#line preprocessor directive, 150

lines, specifying numbers, 150

linked lists, collections, 654–655

LinkedListNode<T> class, 655

LinkedList<T> class, 654–655

links, DLL, 4

LINQ

expression trees, 527

providers, customizing, 609

queries. See also queries

expressions, 561, 613

running in parallel, 584–585, 804–808

support, 27

Linux, installing platforms, 898

Liskov, Barbara, 660

listings

anonymous methods, passing, 512

APM patterns

accessing user interfaces, 933–934

asynchronous delegate invocation, 922–923

background worker patterns, 928–929

ContinueWith() method, 919

EAP, 926–927

invoking user interface objects, 935–936

invoking with callback/state, 911–912

passing state, 913–914

System.Net.WebRequest class, 908–909

using TPL to call, 915–918

arrays

accessing, 74

assigning, 70

command-line options, 80

declaring, 69

defining size at runtime, 72

errors, 72

initializing two-dimensional arrays of integers, 72

jagged, 73, 75

length, 75, 76

literal values, 71

methods, 77

new keyword, 71

retrieving dimension size, 79

reversing strings, 80–81

swapping data, 74

three-dimensional, 73

throwing exceptions, 75

two-dimensional arrays, 69, 72, 74–75

attributes

applying named parameters, 700

assembles within AssemblyInfo.cs, 690–691

AttributeUsageAttribute, 699–700

backward compatibility, 712

constructors, 695

decorating properties with, 689, 690

defining custom, 693

FlagsAttribute class, 701–702

implementing System.Runtime.Serialization.ISerializable class, 709–710

restricting constructs, 699

retrieving custom, 693–694

retrieving specific attributes, 695–696

saving documents, 706–708

specifying return attributes, 691

System.AttributeUsage-Attribute class, 699–700

System.ConditionalAttribute class, 703–705

System.ObsoleteAttribute class, 705–706

System.SerializableAttribute class, 713

updating CommandLineHandler.TryParse(), 697–699

break statements, 139–140

case-sensitivity of multiple strings, 43

checked blocks, 62–63

classes

access modifiers, 229

accessing fields, 218, 219–220

accessing static fields, 257–258

assigning static fields at declaration, 257

automatically implemented properties, 233–234

avoiding ambiguity, 221–222

calling constructors, 245–246, 251–252

calling object initializers, 248, 249

CIL code from properties, 243–244

data persistence to files, 224

data retrieval from files, 225

declaring, 8

declaring constant fields, 267

declaring fields, 217

declaring getter/setter methods, 230

declaring static classes, 263–264

declaring static constructors, 261

declaring static fields, 256

declaring static properties, 262

declaring variables of class types, 214

defining, 213

defining constructors, 245

defining nested classes, 270–271, 273, 274–275

defining partial classes, 272–273

defining properties, 231, 240–242

defining read-only properties, 238

defining static methods, 259–260

explicit construct properties, 244

implicit local variables, 254

initialization methods, 253

instantiation, 215

overloading constructors, 250

passing this keyword in method calls, 223

placing access modifiers on setters, 239–240

readonly modifiers, 268, 269

setting initial values of fields, 217

this keyword, 220–221, 222

validating properties, 236

code blocks

if statements, 110

indentation, 111

collection interfaces

filtering with System.Linq.Enumerable.Where(), 568–569

foreach with arrays, 572

implicit local variables with anonymous types, 562–563

initializing anonymous type arrays, 570–571

iterating, 573

resource cleanup with using statements, 575

results of foreach, 575–576

separate enumerators during iteration, 574–575

type safety, 566–567

comments, 21

continue statement, 141–143

control flow statements

do/while loops, 129

foreach loops, 134

if/else formatted sequentially, 109

if/else statements, 107

if statements, 135

multiple expressions (for loops), 132

nested if statements, 108

while loops, 127

custom collections

adding items to Diction-ary<T> class, 647

applying Pair<T>.Get-Enumeator() method, 667

applying yield statements, 666

bitwise complement () operator, 644

compiling iterators, 671–672

defining index operators, 658–659

defining indexers, 655–657

FindAll() method, 645

implementing IComparer<T> interface, 642

implementing IEquality-Comparer<T> interface, 650

inserting items to Dictionary<T> class using index operators, 647

iterating over Dictionary<T> class with foreach, 648–649

iterator interface patterns, 661–662

List<T> class, 640

modifying indexer default names, 658

yield break statements, 670–671

yield return statements, 673

yielding C# keywords sequentially, 663–664

delegates

applying method names as arguments, 501–502

applying variance, 516–517

BubbleSort() method, 496–497

BubbleSort() method, ascending/descending, 497–498

BubbleSort() method, parameters, 498–499

capturing loop variables, 521–522, 523

CIL code for outer variables, 520

CIL for lambda expressions, 517–518

declaring Comparison-Handler, 501

declaring Func/Action, 514–515

declaring nested types, 500

declaring types, 500

expression trees, 525

outer variables, 518–519

passing as parameters, 502

viewing expression trees, 528–530

dynamic objects

customizing, 721–723

overriding members, 723–724

runtime binding, 719–720

equality operators, overriding, 376–380

Equals() method, overriding, 383–384

escape sequences, 44

events

applying assignment operators, 548

CIL code, 556–557

connecting publishers/subscribers, 536–537

custom add/remove handlers, 558

custom delegate types, 554–555

declaring generic delegate types, 552

declaring OnTemperature-Change event, 556

defining Heater/Cooler objects, 534–535

defining publishers, 536

delegate operators, 540, 541

event keyword, 550–551

firing, 549

firing notifications, 553

handling exceptions from subscribers, 546–547

invoking delegates, 537–538

OnTemperatureChanged() method, 544

exceptions

catching, 426, 428–431

checked blocks, 440–441

customizing, 436

defining serializable, 438

overflowing integer values, 440

throwing, 424

unchecked blocks, 441–442

explicit casts, 61

generics

arity, 460

BinaryTree<T> class, 462–463, 480

CIL code for Stack<T> class, 490

CIL with Exclamation Point Notation, 491

combining constraints, 473–474

combining covariance and contravariance, 487

ComparisonHandler, 504–505

compile errors, 458

compiler validation of variance, 488

constraint expressions, 473

contravariance, 486

converting generics, 482

covariance, 482, 483–484

covariance using out type parameter modifier, 484

Create() method, 461

declaring class type constraints, 467

declaring constructors, 457

declaring generic classes, Stack<T>, 452

declaring interface constraints, 465

declaring interfaces, 454

declaring nullable types, 449

declaring variables of type scatter<T>, 491

declaring versions of value types, 448

default constructor constraints, 470, 475

default operator, 458

defining methods, 477

defining specialized stack classes, 447

duplicating interface implementations, 456

EntityDictionary<T> class, 476

factory interfaces, 475

implementing interfaces, 455

implementing Undo with Stack class, 450–451

inferring type arguments, 478

inheritance constraints, 474

inheritance constraints, specified explicitly, 471

interface support, 463

multiple constraints, 469

multiple type parameters, 459, 460

nested types, 462

repeating inherited constraints, 472

specifying constraints, 479–480

specifying type parameters, 478

struct/class keywords, 468

supporting Undo, 444–445

System.Collections.Stack method signatures, 444

System.Delegate class, 504

type parameter support, 464

GetHashCode() method, overriding, 375

goto statements, 143–144

HelloWorld, 2

breaking apart, 9

output, 29–30

hexadecimal notation, 41

implicit conversions, 64

implicit local variables, 56–57

inheritance

accessing base members, 300

accessing private members, 284

accessing protected members, 285–286

applying methods, 280

applying polymorphism, 306–307

defining abstract classes, 303

defining abstract members, 303–304

defining cast operators, 283

deriving classes, 279, 280

implicit base type casting, 281

is operator determining underlying type, 309

new modifier, 297–298

as operator conversions, 310–311

overriding properties, 291

preventing derivation, 290

Run() method, 294

sealing members, 299

single using aggregation, 288

specifying base constructors, 301–302

System.Object derivation, 309

virtual methods, 292, 293

integers, overflowing values, 62

interfaces

applying base interfaces in class declarations, 328

calling explicit member implementations, 322

declaring explicit members, 327

defining, 315

deriving, 326–327, 335

explicit interface implementation, 322–323

implementing, 316–319, 320–321

multiple inheritance, 329

single inheritance using aggregation, 331–332

lambda expressions

omitting parameter types, 508

parameterless statements, 509

passing delegates, 510

single input parameters, 509

statements, 507

literal values, 38, 39

for loops, 130

Main() method, 10

methods

aliasing, 171–172

calling, 158

catching exceptions, 196–197

converting a string to an int, 194

counting lines, 184–185, 187–189

declaring, 163–164

finally blocks without catch blocks, 199–200

general catch blocks, 203

grouping statements, 156–157

optional parameters, 189–191

passing command-line arguments, 173

passing return values, 162

passing variable parameter lists, 181–182

passing variables by reference, 177–178

passing variables by values, 175–176

passing variables out only, 179–180

rethrowing exceptions, 206

return statements, 167

specifying parameters by names, 191–192

throwing exceptions, 204–205

using directive, 170–171

multiple statements on one line, 12

multithreading

applying Task.Factory.StartNew() method, 769

asynchronous Web requests, 773–774, 777–778

await keyword, 787–788

calling Task.ContinueWith method, 752, 789

cancelling parallel loops, 800–801

cancelling PLINQ queries, 807–808

cancelling tasks, 765–766

customizing asynchronous methods, 784–785, 785–786

handling tasks, unhandled exceptions, 758–759

invoking asynchronous tasks, 747–748

iterating over await operations, 792–793

lambda expressions, 782–783

LINQ Select() method, 804

long-running tasks, 769–770

for loops, 794–795, 796

observing unhandled exceptions, 760–761

parallel execution of foreach loops, 797

PLINQ Select() method, 805

PLINQ with query expressions, 806

polling Task<T> classes, 749

registering for notifications, 756

registering for unhandled exceptions, 762–763

starting methods, 737–738

synchronous high-latency invocation with WPF, 791–792

synchronous Web requests, 772–773

ThreadPool, 743–744

unhandled exception handling, parallel iterations, 799

\n character, 46

no indentation formatting, 12

nullable modifiers, 60

operators, 86

AND (&&), 118

binary, 87–88

bitwise, 124

char data types, 92

character differences, 92

common increment calculations, 97

conditional, 119

constants, 103

decrement (- -), 98

dividing a float by zero, 95

equality, 116

examples of assignment, 97

increment (++), 97

inequality with floating-point types, 94–95

logical assignment, 126

negative values, 87

non-numeric types, 91

NOT, 118

null coalescing, 120

overflowing bounds of float, 96

post-increment, 99

pre-increment, 99

prefix/postfix, 100

relational, 116

Unicode values in descending order, 98

Parse() method, 65

placeholders, 20

platform interoperability/unsafe code

accessing referent type members, 871–872

allocating data on call stacks, 868

applying ref/out rather than pointers, 852

declaring external methods, 849–850

declaring types, 853

designating unsafe code, 863, 872–873

encapsulating APIs, 859–860

fixed statements, 867, 868

invalid referent types, 866

managed resources, 857–858

modifying immutable strings, 869–870

SafeHandle, 856–857

Win32 error handling, 854–855

WinRT patterns, 847–848

wrapping APIs, 861

#pragma preprocessor directive, 149

preprocessor directives, 147

#define, 147

excluding/including code, 147

#region/#endregion, 151

#warning, 148

query expressions, 614–615, 632–633

anonymous types, 618

continuation, 630

deferred execution, 619–622

distinct members, 631–632

filtering, 623–624

grouping, 626–627

multiple selection, 630

ordering results, 616

projection using, 617

selecting anonymous types, 628–629

sorting, 624

sorting by file size, 625

standard query operator syntax, 633

reflection

declaring Stack<T> class, 686

dynamic programming using, 715

dynamically invoking members, 681–684

generics, 687, 688

using Type.GetProperties() method, 679–680

using typeof() method, 680

round-trip formatting, 42

single statements, splitting, 12

standard query operators

calling SelectMany() method, 604–605

classes, 578–580

counting items, 585

creating child collections, 602

executing LINQ queries in parallel, 584

filtering with System.Linq.Enumerable.Where() method, 581, 586–587

grouping items, 600–601

inner joins, 597–598, 599

ordering, 590–591

outer joins, 603–604

projection to anonymous types, 583

projection with System.Linq.Enumerable.Select() method, 582

sample employee/department data, 594–596

System.Linq.Enumerable() method calls, 606–607

strings

applying, 52–53

assigning null to, 54

binary displays, 125

immutable, 52

implicitly typed local variables, 55–56

length, 51

switch statements, 137–138

System.Console.ReadLine() method, 17–18

System.Console.WriteLine() method, 19–20

System.Convert class, 65

System.Threading.Timer class, 941–942

System.Timers.Timer class, 939–940

thread synchronization, 811–841

best practices, 827–829

creating single instance applications, 829–830

firing event notifications, 826

lock keyword, 820

ManualResetEventSlim, 832–833

Monitor class, 817–818

System.Threading.Interlocked class, 824–825

Task.Delay() method, 842

thread-safe event notification, 826

ThreadLocal<T> class, 838

ThreadStaticAttribute class, 839–840

unsynchronized local variables, 815–816

unsynchronized state, 813

Tic-Tac-Toe source code, 901–905

timers, 939–942

ToString() method, 65, 372–373

unchecked blocks, 63

Unicode characters (smiley faces), 45–46

value types

accessing properties, 346

avoiding copying/unboxing, 357

boxing idiosyncrasies, 353

boxing/unboxing instructions, 351

casting between arrays/enums, 362

comparing integer switches/enum switches, 358

converting strings to enums, 363

declaring enums, 359

declaring structs, 344–345

default operator, 348

defining enum values, 366

defining enums, 359

enums as flags, 364

FlagsAttribute, 367

initializing structs, 346

OR/AND operators with flag enums, 365

referencing Equals() method, 381

unboxing to underlying types, 353

variables

assigning, 16

declaring, 13

modifying values, 15

one statement, declaring with, 15

scopes, 113

verbatim string literals, 47

well-formed types

adding operators, 387–388

applying alias directives, 402

calling binary operators, 388

comparison operators, 386

conversion operators, 392

defining finalizers, 411

defining namespaces, 399

invoking using statements, 415

lazy loading properties, 419, 420

making types available, 396

nesting namespaces, 400

overloading unary operators, 390, 391

resource cleanup, 413

weak references, 409

XML comments, 403–406

whitespace, removing, 12

lists

collections, 640

formal parameters, 165

linked, collections, 654–655

type parameters, 165

List<T> class, 482, 639–641

searching, 643–644

literals

strings, 46–48

values, 37–38

arrays, 71

readonly fields, 269

loading

files, 224

lazy. See lazy initialization

local negation (!) operator, 118–119

local storage, threads, 837–841

local variables, 14

anonymous types, 562–563

declaring, 165–166

implicit, 564–565, 566–568

implicitly typed, 55–57

multiple threads, 815–816

scope, 114

locations

keywords, 4

objects, 408

reference types, 341–345

lock keyword

applying, 819–821

objects, selecting, 821–822

lock statements, 736

value types, 353–255

locking, 828–829

avoiding, 822–823

consoles, synchronization, 920–921

multithreading, 736

lockTaken parameter, 819

logical Boolean operators, 116–121, 122–126

Logon() method, 228

long-running

loops, 802

tasks, 769–770

loops

for, 120–133

decrement (--) operators, 98

do/while, control flow statements, 127–129

executing, iterations in parallel, 794–804

foreach, 133–136

arrays, 571–572

IEnumerable<T> interface, 572–577

iterations, 129

parallel

breaking, 803–804

executing iterations in, 794–804

options, 802–803

variables, capturing, 521–522

while, control flow statements, 127–129

yield return statements, placing in, 667–669

LowestBreakIteration property, 804

machine code, 24, 876

compilation to CIL, 879–880

macros, preprocessors, 145

Main() method, 8, 9, 156, 821

declaring, 10

methods, refactoring, 165

multiple, disambiguating, 174

returns and parameters, 172–175

_makeref keyword, 8

MakeValue() method, 470

managed code, 24, 881

runtime performance, 885–886

managed data, 881

managed execution, 881

managing

execution, 24–26

hierarchies, 161

memory, 412. See also garbage collection

object-oriented programming, 210–213

threading, 739–740

manifests, CLI, 887–890

many-to-many relationships, 594

mark-and-compact algorithms, 407

mark-and-sweep-based algorithms, 882

masks, 125

matching parameter names, 176

math constants, 112

Max() method, 609

Max<T> method, 479

MemberInfo class, 685

members

abstract, 302, 303–304, 305

base, 300–301

classes, 216

distinct, 631–632

dynamic objects, overriding, 723–724

explicit, implementing, 322–323

implicit, implementing, 323–326

interfaces, adding, 335

object, overriding, 371–385

overloading, 292

referent types, accessing, 871–872

reflection, invoking, 681–686

sealing, 299

static, classes, 255–265

of System.Object, 308

types

access modifiers, 397–398

invoking, 678. See also reflection

variables, 217

memory

garbage collection, 408

heaps, 349

managing, 412. See also garbage collection

models, 735

retrieving, 246

virtual, allocating, 851

messages

exceptions, 426. See also exceptions

warnings, turning off, 149–150

metadata, 23, 25, 877

CLI, 892–893

reflection, 678

System.Type class, accessing using, 679–680

MethodImplAttribute, avoiding with synchronization, 823

methods, 155, xxiii

Abort(), 740

Add(), 249, 352, 473, 568–569, 641

adding, 476, 544

AllocExecutionBlock(), 855

anonymous, 495, 512–514, 517–518

APM, calling, 915–921

arguments, 161–162

arrays, 77–79

AsParallel(), 584

Assert(), 95

asynchronous, customizing, 783–786

Average(), 609

BeginGetResponse(), 908

BeginX(), 908

BinarySearch(), 643, 644

binding, 714

boxing, avoiding, 356–357

Break(), 803

BubbleSort(), 496–497

calling, 11, 156–163, 295

Cancel(), 766

Capacity(), 639

change(), 942

Clear(), 78

Close(), 412, 416

Collect(), 408

Combine(), 175, 178, 182, 542

Compare(), 495

CompareTo(), 323, 463, 641

Compress(), 325

Concat(), 608

Console.WriteLine(), 340, 352

Contains(), 643

ContinueWith(), 753, 775, 919–920

CopyTo(), 638

Count(), 585–586, 609, 622

CountLines(), 157

Create(), 461

declaring, 163–168

Decrement(), 814, 821, 825

default(), 71

DefaultIfEmpty(), 603

definitions, 9

delegates, returning, 547–548

Dequeue(), 654

DirectoryCountLines(), 185, 187, 191

Directory.GetFiles(), 617

DirectoryInfoExtension.Copy(), 260

DirectoryInfo.GetFiles(), 597

Dispose(), 6n6, 413, 416, 575, 770

Distinct(), 608, 613, 631–632

DoStuffAsync(), 787

double.TryParse(), 207

Dump(), 325

EAP, 925

Empty<T>, 659

encapsulation, 215

EndGetResponse(), 908

EndX(), 908

Enqueue(), 654

Enter(), 353

Enum.Parse(), 363, 680

Equals(), 349, 376–385, 651

errors, 194–208

Event(), 474

exceptions, 194–208

Exit(), 353

extension, 265–266

inheritance, 287

interfaces, 330–331

extensions, IEnumerable<T> interface, 562

factory, 461

FindAll(), 645

ForEach(), 801

Format(), 48

FromCurrentSynchronizationContext(), 788

GC.ReRegisterFinalize(), 419

generics, 476–481

casting inside, 480–481

type inference, 478–479

GetCustomAttributes(), 694

GetDynamicMemberNames(), 724

GetEnumerator(), 576, 577, 610, 661, 662, 664, 787n8

GetFiles(), 157

GetFirstName(), 232

GetFullName(), 166

GetGenericArguments(), 687

GetHashCode(), 349, 373–376, 651

GetInvocationList(), 547, 548

GetLength(), 79

GetName(), 219

GetResponse(), 772

GetResponseAsync(), 779

GetReverseEnumerator(), 673

GetSetting(), 327

GetSummary(), 305

GetSwitches(), 696

GetType, 679–680

GetUserInput(), 166

GetValue(), 685

global, 164

GreaterThan, 507

GroupBy(), grouping results, 600–601

GroupJoin(), 601–604, 613

groups, 502

Handle(), 760

IDispose(), 915

Increment(), 825

IndexOf(), 643

Initialize(), 236

instances, 48, 219–220

Intersect(), 608

Invoke(), 685, 932

invoking, 632–634

IsKeyword(), 620

Join(), 597–600, 739, 748

LastIndexOf(), 643

Logon(), 228

Main(), 8, 9, 156, 821

declaring, 10

refactoring, 165

returns and parameters, 172–175

MakeValue(), 470

Max(), 609

Max<T>, 479

Min(), 609

Monitor.Enter(), 818

Monitor.Exit(), 818

Move(), 345

MoveNext(), 573, 576, 664

NameChanging(), 276

namespaces, 158–160

naming, 161

OfType<T>(), 608

OnFirstNameChanging(), 276

OnLastNameChanging(), 276

OnTemperatureChanged(), 535, 544

OrderBy(), 590–596

overloading, 186–189

Parallel.For(), 795, 803

parameters, 161–162

advanced, 175–184

formal declaration, 165–166

optional, 189–193

Parse(), 65, 195

partial, 273–276

person.NonExistentMethodCallStillCompiles (), 717

PiCalculator.Calculate(), 749

Ping.Send(), 791

Pop(), 444, 652

Print(), 306

ProcessKill(), 785

Program.MethodB(), 704

Pulse(), 819

Push(), 444, 652

ReadToEnd(), 772

ReadToEndAsync(), 775

recursion, 184–186

refactoring, 165

ReferenceEquals(), 380, 387

Remove(), 542, 641

RemoveAt(), 641

Reset(), 573, 834

resolution, 193

Reverse(), 608

Run(), 293, 294, 748

Save(), 310

scope, 161

Select(), 582–584, 804

SelectMany(), 603, 604–606, 613

SendTaskAsync(), 792

SequenceEquals(), 608

SetName(), 221, 222

Sleep(), 740

standard query operators, 577–610

Start(), 293, 737

StartX(), 908

statements

calling, 163

grouping, 156–157

static, 259–261

Stop(), 293, 803

strings, 48–50

subscriber, defining, 534–535

Sum(), 609

SuppressFinalize(), 416

Swap(), 178

System.Console.Clear(), 147

System.Console.ReadLine(), 17, 18

System.Console.WriteLine(), 19–20, 30, 157

System.Enum.IsDefined(), 366

System.Linq.Enumerable.Where(), filtering with, 568–569

Task.ContinueWith(), 793

Task.ContinueWith, calling, 752, 789

TaskDelay(), 741

Task.Delay(), 843

Task.Factory(), 768

Task.Factory.StartNew(), 769

Task.Run(), 768, 785

TextNumberParser.Parse(), 424

ThenBy(), 590–596

Thread.Sleep(), 740–741

ThrowIfCancellationRequested(), 768

ToArray(), 588

ToCharArray(), 80

ToLookup(), 588

ToString(), 65, 357

enum conversions, 362

overriding, 372–373

TrimToSize(), 639

TryGetMember(), 723

TryGetPhoneButton(), 179, 180

TryParse(), 66–67, 207–208, 684

TrySetMember(), 723

typeof(), 680

types

inference, 478

naming, 160–161

Undo(), 446

Union(), 608

using directive, 168–172

values, returns, 162

VerifyCredentials(), 333

virtual, defaults, 291

Wait(), 750

WaitAll(), 831

WaitAny(), 831

WaitForExit(), 784

WebRequest.GetResponse-Async(), 774

Where(), 509, 580–591

WriteLine(), 157

WriteWebRequestSizeAsync(), 779

Microsoft

FCL, 892, 895

ILMerge utility, 889

.NET, 894, 897–899, xxvii

compilers, 878

delegates, 503

garbage collection, 882–883

guidelines, 6

platform portability, 885, 886

regions, 152

versioning, 26–28

Silverlight, 878

XNA, 878

Min() method, 609

mind maps, xxix

mod operator. See remainder (%) operators

models

asynchronous programming, 908–921

COM, STAThreadAttribute class, 842–843

memory, 735

structured programming model definitions, xxiii

threading, 730

modifiers

access, 227–229. See also access modifiers

classes, 397

runtime, 883

type members, 397–398

new, 295–299

nullable, 60

readonly, 268, 269

sealed, 299–301

virtual, 290–295

volatile, declaring fields as, 823–824

modifying

access, 237–239

assemblies, targets, 394–395

collections, 577

immutable strings, 869–870

strings, 53

modules

assemblies, 395

CLI, 887–890

Monitor class, synchronization, 817–819

Monitor.Enter() method, 818

Monitor.Exit() method, 818

monitoring asynchronous operation state for completion, 745

Mono Project, 3n4, 878, 898, xxvii

Move() method, 345

MoveNext() method, 573, 576, 664

moving objects, 408

multicast delegates, 533

internals, 542–544

observer patterns, 534–548

multidimensional arrays, errors, 72

multiple constraints, 469

multiple definitions, adding, 148

multiple exception types, 424–425

multiple inheritance, 287

aggregation, 289

interfaces, 329–330, 331–334

multiple items, searching collections, 645

multiple iterators, creating single classes, 673–674

multiple Main() methods, disambiguating, 174

multiple selection, query expressions, 631

multiple threads

event notification, 826–827

local variables, 815–816

multiple type parameters, 459–460

multiplication (*) operators, 87

multithreading, 727–729

asynchronous tasks, 745–764

interfaces, prior to TPL and C# 5.0, 907–936

LINQ queries, running in parallel, 804–808

loops, executing iterations in parallel, 794–804

overview of, 730–736

performance, 732–733

System.Threading class, 737–745

Task-based Asynchronous Pattern (TAP), 770–794

tasks

AggregateException, 757–764

canceling, 764–770

continuation, 751–757

troubleshooting, 734–736

Name property, 240

NameChanging() method, 276

named arguments, 191

namespaces, 168

aliasing, 171, 401–402

defining, 398–402

methods, 158–160

System.Collections.Generic, 638

naming. See also aliasing; naming

_FirstName, conventions, 234n3

attributes, 692

classes, 4, 8

IndexerNameAttribute, 657

indexers, 657–658

integer types, 34

interfaces, 315

methods, 157, 161

parameters, 166, 176, 453–454

PascalCasing, 235

types, 160–161

native code, 24

NDoc, 406n4

negative

infinity, 96

values, 87

nesting

classes, 269–272

if statements, 108

types, generics, 461–462

.NET (Microsoft), 894, 897–899, xxvii

compilers, 878

delegates, 503

garbage collection, 407–408, 882–883

guidelines, 6

platform portability, 885, 886

regions, 152

versioning, 26–28

new keyword, 71

throwing exceptions, 205

new modifier, 295–299

new operator

implementing, 246

value types, 347–348

newline (\n) characters, 50

NextId initialization, 261

no-op, 703

non-numeric operands, 90–91

nonprimitive value types, 71

nonstatic fields, 257. See also static fields

normalization, 597

not equals (!=) operator, 386

NOT (local negation) operators, 118–119

notation

Alonzo Church, 513

exponential, 40

hexadecimal, 40–41

notifications

events

firing, 553

multiple threads, 826–827

registering for, 756

sequential, error handling, 544–547

NotImplementedException, 321

nowarn:<warn list> option, 149–150

null, 53–54

events, checking for, 538–539

returning, 659–660

null coalescing (??) operators, 120–121

nullable

modifiers, 60

value types, 447–448

NullReferenceException, 424, 538, 551, 659, 826

numbers

Boolean type conversions, 64

Fibonacci, 128, 351

hexadecimal, formatting as, 41

lines, specifying, 150

numeric types, 34–43

object, overriding members, 371–385

object-oriented programming, 210–213

objects

associating, 259

COM, STAThreadAttribute class, 842–843

de-allocating, 882

deterministic destruction, 882

lock keyword, selecting, 821–822

observer patterns, 846

multicast delegates, 534–548

OfType<T>() method, 608

one-to-many relationships, 594

implementing, 601–604

OnFirstNameChanging() method, 276

OnLastNameChanging() method, 276

OnTemperatureChanged() method, 535, 544

operands, 86

non-numeric, 90–91

order of, evaluation, 90

operational polymorphism, 187

OperationCanceledException, 807

operator keyword, 392

operators, 85, 86–103, 117–118, 122–126, 310–311, 365

+=, 97, 540

-=, 539, 540

adding, 387–388

addition (+), 87, 387, 541

guidelines, 91

strings, 90–91

arithmetic binary, 87–96

assignment

applying, 548

events, 541

await, 741

binary (arithmetic), 387–389

bitwise, 121–127, 140

bitwise complement (), 127, 644

cast (()), 61, 283, 391–392

characters, applying, 91–92

comparison, 386–387

compound assignment, 96–103

conditional (?:), 119–120

conditional logical, 389

constraints, 473

conversions, 391, 393

decrement (- -), 97–102

default, 348, 458

delegates, 540–542

delete, 216

division (/), 87

dot (.), 871

equality, 115–116, 376–380

equals (==), 386

errors, 115

exclusive OR (^), 118

floating-point types, 92–96

increment (++), 97–102

index, defining, 658–659

is, verifying underlying types, 309–310

local negation (!), 118–119

logical Boolean, 116–121, 122–126

multiplication (*), 87

new

implementing, 246

value types, 347–348

not equals (!=), 386

null coalescing (??), 120–121

OR (||), 116, 117, 122

constraints, 473–474

with flag enums, 365

order of precedence, 153

postfix, 100

prefix, 100

queries, 561–562, 577–610

relational, 115–116

remainder (%), 87

shift, 122–123

simple assignment (=), 15

standard query. See also standard query operators

subtraction (-), 541

unary, 390

minus (-), 86–87, 387

plus (+), 86–87

well-formed types, overloading, 385–393

options

command-line, arrays, 80

methods, parameters, 189–193

nowarn:<warn list>, 149–150

parallel loops, 802–803

TaskCreationOptions.LongRunning, 798

OR (||) operators, 116, 117, 122

constraints, 473–474

with flag enums, 365

order of precedence, operators, 153

orderby clause, 624–625

OrderBy() method, 590–596

ordering total collections, 643

organizing

hierarchies, 161

object-oriented programming, 210–213

out parameter values, 242–244

Out property, 689

out type parameter, 483–485

outer joins, 593, 603–604

outer variables, 518–519

CIL implementations, 520–521

OutOfMemoryException, 433

output

consoles, 19–21

HelloWorld, 29–30

parameters, 178–181

overflowing

floating-points numbers, 95

integer values, 440

overloading

constructors, 250–251

members, 292

methods, 186–189

operators, well-formed types, 385–393

types, applying arity, 460

override keyword, 292, 323

overriding

abstract members, 305

base classes, 290–302

equality operators, 376–380

Equals() method, 376–385

GetHashCode() method, 373–376

implicit, 292

members, dynamic objects, 723–724

object members, 371–385

properties, 291

ToString() method, 372–373

virtual modifiers, 290–295

overrun, buffers, 76, 883

P/Invoke (Platform Invoke), 849–862

API calls with wrappers, 861

external functions, calling, 858–861

guidelines, 862

PairInitializer<T> interface, 487

Pair<T> class, 482

palindrome, 79

Parallel LINQ. See PLINQ

parallel programming, 732

Parallel.For() method, 795, 803

parallelism

disabling, 802

LINQ queries, running in, 804–808

loops

breaking, 803–804

executing iterations in, 794–804

options, 802–803

TPL. See TPL

ParallelOptions parameter, 802

ParallelOptions type, 801

ParallelQuery<T> class, 806

parameters, 155

advanced, methods, 175–184

AllowMultiple, 700

arrays, 181–184

data types, 850–852

distribution, APM, 911

IListable, 331

lockTaken, 819

Main() method, 172–175

methods, 161–162

formal declaration, 165–166

optional, 189–193

named, attributes, 700–714

naming, 166

output, 178–181

ParallelOptions, 802

parameterless anonymous methods, 513

references, 177–178

types, 449, 452

in, 485–488

multiple, 459–460

naming, 453–454

out, 483–485

values, 175–176, 242–244

variables, defining index operators, 658–659

parentheses (()), 89, 90

Parse() method, 65, 195

parsing values, 702

partial classes, 272–276

partial methods, 273–276

Pascal, 7

PascalCase, 6, 8, 161, 235, 251. See also naming

pass-by references, 547–548

passing

anonymous methods, 512

arguments, values, 175–176

command-line arguments, 173

CPS, 911–913

delegates, 510

method return values, 162

state, APM, 913–914

paths, configuring compilers, 898

patterns

APM, 908–910

async/await, timers prior to, 937–942

background worker, 928–932

EAP, 924–927

event-coding, 550

multicast delegates, 534–548

observer, 846

publish-subscribe, 533

TAP, 729, 770–794, 920

token cancellation, 801

PDAs (Personal Digital Assistants), 278

performance

multithreading, 732–733

runtime, 885–886

synchronization, 828

Task Parallel Library (TPL), 798

permissions, CAS, 686

persistence, 224

Personal Digital Assistants. See PDAs

person.NonExistentMethodCallStillCompiles () method, 717

pi, calculating, 794–795

PiCalculator.Calculate() method, 749

Ping.Send() method, 791

placeholders

formatting, 20

values, 121

placing yield return statements in loops, 667–669

platforms

addresses/pointers, 862–872

CLI. See CLI

installing, 897–899

interoperability, 845–846

.NET (Microsoft), 897–899

portability, 25, 884–885

WPF, 934–936

PLINQ (Parallel LINQ), 729, 804–808

pointers, 862–872

assigning, 866–869

declaring, 864–866

dereferencing, 869–871

functions, 862

polling

cancellation tasks, 766

Task<T> classes, 749

polymorphism, 213, 306

behavior, data types, 310

interfaces, 315–320

operational, 187

pools

temporary storage, 341

threading, 731, 743–745, 746

Pop() method, 444, 652

portability of platforms, 25, 884–885

positions, bitwise operators for, 140

post-increment operators, 99

#pragma preprocessor directive, 149

pre-increment operators, 99

precedence, operators, 88, 89, 153

predefined

attributes, 703

types, 33

predicates, 510

query expressions, 623

Where() method, 580

prefixes

@ as, 8

hexadecimal notation, 41

operators, 100

preprocessor directives, 145–152

code

editors, 151–152

excluding/including, 146–147

errors/warnings, 148–150

line numbers, specifying, 150

#pragma preprocessor directive, 149

symbols, 147–148

primitives, 33

principles, dynamic objects, 716–718

Print() method, 306

private access modifiers, 229, 284–285

private keyword, 229

processes, 730

ProcessKill() method, 785

processors

cycles, 741

processor-bound latency, 728

products, Cartesian, 598, 631

Program class, 264

Program.MethodB() method, 704

programming

asynchronous, 732, 908–921

comments, 21–23

constructs, associating XML comments, 403–405

dynamic, 677, 714–724

object-oriented, 210–213

parallel, 732

sequential programming structure definitions, xxiii

syntax, overview of, 4–17

programs

HelloWorld, 1, 2–4

multithreading, 729. See also multithreading

Tic-Tac-Toe, 901–905

Project Wizard (Visual Studio), 690

projecting

to anonymous types, 583

collections, 614

query expressions, 616–619

with Select() method, 582–584

propagating exceptions from constructors, 418

properties, 50–51

access modifiers, getters/setters, 239–240

automating, implementing, 232–234

classes, 229–244

Count, 638

declaring, 230–232

FileStream, 419

guidelines, 234–235

Help, 689

InnerExceptions, 437, 439, 760

InvokeRequired, 932

IsAlive, 740

IsBackground, 739

IsCancellationRequested, 766, 767, 801

IsCompleted, 750, 804

Items, 456

lazy loading, 419

LowestBreakIteration, 804

Out, 689

overriding, 291

parameter values, 242–244

read-only, 51, 237–239

static, 262

System.Reflection.MethodInfo, 503

Type.ContainsGenericParameters, 687

validation, 236–237

virtual fields, 240–242

protected access modifiers, 285–286

providers, customizing LINQ, 609

pseudocode. See also code

execution, 814

loop execution, 131

public

constants, 268

getter/setter methods, 230

publish-subscribe pattern, 533

publishers

encapsulation, 549–550

events

connecting subscribers and, 536–537

defining, 536

Pulse() method, 819

punctuation

identifiers, 7

syntax, 2

variables, 15

pure virtual functions, 305

Push() method, 444, 652

qualifiers, aliasing namespaces, 401–402

quantum, 732

queries

expressions

continuation, 629–630

deferred execution, 619

filtering, 623–624

flattening sequences, 630–622

grouping, 626–629

invoking methods, 632–634

let clause, 625–626

LINQ, 561, 613

overview of, 614–632

projecting, 616–619

sorting, 624–625

IQueryable<T> interface, 609–610

LINQ, running in parallel, 584–585, 804–808

operators, 561–562, 577–610. See also standard query operators

queues

collections, 654

f-reachable, 416

Queue<T> class, 654

race conditions, 734–735

ranges, variables, 615

rank, identifying, 69

Reactive Extensions library, 729n1

read-only properties, 51, 237–239

readonly modifiers, 268, 269

ReadToEnd() method, 772

ReadToEndAsync() method, 775

recursion methods, 184–186

recursive iterators, 669

Redeem statement, 78

redimensioning arrays, 78

redundancy, avoiding, 478

reentrant deadlocks, 828

ref parameter values, 242–244, 852

refactoring

base classes, 279

classes, 278

methods, 165

ReferenceEquals() method, 380, 387

references

files, assemblies, 889

instantiation generics, 492–493

NullReferenceException, 659

parameters, 177–178

pass-by, 547–548

pointers, declaring, 864

types, 58–60, 177, 341–345

referencing

assemblies, well-formed types, 393–398

root references, 407

strong references, 408

weak references, 408–410

referent types, accessing members, 871–872

reflection, 677–688, 883

dynamic objects, invoking, 714–716

on generic types, 686–688

members, invoking, 681–686

metadata, 893

System.Type class, accessing using, 679–680

Reflector, 30

_reftype keyword, 8

_refvalue keyword, 8

#region preprocessor directive, 151–152

regions, .NET (Microsoft), 152

registering

COM DLL, 890

for notifications, 756

relational operators, 115–116

relationships

associating, 217

many-to-many, 594

one-to-many, 594, 601–604

remainder (%) operators, 87

remoting, 921

remove handlers, customizing, 558

Remove() method, 542, 641

RemoveAt() method, 641

removing

activation frames, 175

elements, 641

event handlers, 846–848

reporting

errors, 204–207

exceptions, 433

Windows Error Reporting, 425

requests

asynchronous Web, 773–774

cancellation, 768. See also cancelling

synchronous Web, 772–773

requirements of equality comparisons, 651

reserved keywords, 6, 8. See also keywords

Reset() method, 573, 834

resetting events, 831–837

resolution, methods, 193

resources

cleanup

APM, 914

using statements, 575

well-formed types, 410–419

explicit deterministic cleanup, 216

implicit deterministic cleanup, 216

implicit nondeterministic cleanup, 216

results, grouping, 600–601

resurrecting objects, 418–419

rethrowing exceptions, 206, 433, 438–442

retrieving

data from files, 225

elements from indexes, 640

empty memory, 246

return statements, methods, 167

returning, 17

dictionaries, collections, 696

instances, delegates, 539

Main() method, 172–175

methods, delegates, 547–548

null, 659–660

types, declaring methods, 166–168

values, 157, 162

reuse

assemblies, 393

code, 394

Reverse() method, 608

right outer joins, 593

root references, 407

Rotor, 878, xxvii

round-trip formatting, 42–43

rounding

errors, 37

inequality with floating-point types, 93–96

rules, keywords, 4. See also guidelines

Run() method, 293, 294, 748

running

applications, 3–4

LINQ queries in parallel, 584–585, 804–808

runtime, 25. See also WinRT

arrays, defining size at, 72

buffer overrun, 76

CIL, 881–886

CLR, 894. See CLR

exceptions, 200. See also exceptions

garbage collection, 881–882

Main() method, 173

members, overloading, 292

performance, 885–886

WinRT, 895

XML elements, binding, 719–720

SafeHandle class, 856–857

safety

thread-safe. See thread-safe

types, 25, 883

unsafe code. See unsafe code

Save() method, 310

saving documents, 706–708

schedulers, tasks, 746, 788–790

scopes, 112–114, 161

sealed classes, inheritance, 290

sealed modifiers, 299–301

sealing members, 299

searching

attributes, 693–694

List<T> class, 643–644

multiple items, collections, 645

security

CAS permissions, 686

code access, 25, 884

SELECT clause, 615

Select() method, 804

projecting with, 582–584

selecting

multiple query expressions, 631

objects, lock keyword, 821–822

SelectMany() method, 603, 604–606, 613, 630

Semaphore class, 835

semaphores, System.Threading.AutoResetEvent class, 834

SemaphoreSlim class, 835

semicolons (;), 2

statements without, 11

SendTaskAsync() method, 792

SequenceEquals() method, 608

sequences

delegates, invoking, 542

escape, 44, 47

exceptions, diagrams, 545

flattening, 630–622

if/else statements, formatting, 109

notification, error handling, 544–547

programming structures, definitions, xxiii

SelectMany, 630

yield return statement, 665

serializable exceptions, 438

serialization, 678

attributes, 706–714

customizing, 708–710

System.SerializableAttribute class, 713–714

versioning, 710–713

series, Fibonacci, 128

ServiceStatus, 865

SetName() method, 221, 222

sets, keys, 637

setters, 51

access modifiers, 239–240

accessibility, modifying, 237–239

declaring, 230

shadowing type parameters, 462

sharing

assemblies, 395

state, collection interfaces, 574

shift operators, 122–123

short data types, 35

signatures, APM, 910–911

Silverlight (Microsoft), 878

simple assignment (=) operator, 15

simultaneous multithreading, 730

single classes, creating multiple iterators, 673–674

single inheritance, 287–289

single instance applications, formatting, 829–830

single-line comments, 22

single-threaded programs, 730. See also programs

sites, calling, 175

Sleep() method, 740

slicing time, 732

Smalltalk, 890

software

multithreading, 729. See also multithreading

virtual, 872

SortedDictionary<T> class, 652, 653

SortedList class, 653

sorting

collections, 641, 652

OrderBy() method/ ThenBy() method, 590–596

query expressions, 624–625

source languages, 890. See also languages

spaces

declaration, 112–114

dirty, 882

specialization, types, 213

specifiers

exceptions, 427

round-trip formatting, 42

specifying

constraints, 479–480

line numbers, 150

SqlException, 437

square brackets ([]), 68, 69, 367

attributes, 689

indexers, 655

Stack class, 450–451

stackalloc data, 868

StackOverflowException, 433

stacks

calling, 175, 868

collections, 652–654

temporary storage pools, 341

unwinding, 175

Stack<T> class, 652–654

CIL, 490

standard query operators, 577–610

Count() method, counting items with, 585–586

deferred execution, 586–590

GroupBy() method, grouping results with, 600–601

GroupJoin() method, implementing one-to-many relationships, 601–604

IQueryable<T> interface, 609–610

Join() method, inner joins, 597–600

LINQ queries, running in parallel, 584–585

OrderBy() method/ ThenBy() method, 590–596

Select() method, projecting with, 582–584

SelectMany() method, 604–606

Where() method, filtering with, 580–591

star (*), 756

Start() method, 293, 737

StartX() method, 908

state

APM, passing, 913–914

collection interfaces, 574

iterators, 664–666

statements, xxiii

alternative, 107

block, 110

break, 139–141

consequence, 107

Console.WriteLine(), 871

continue, 141–143

control flow, 85, 103–110, 127–139, 198. See also control flow statements

definitions, 11–12

fixed, 867, 868

goto, 143–145

if, 80, 107–110, 114–121

if/else guidelines, 120

jump, 139–145. See also jump statements

lambda expressions, 507–510

line-based, Visual Basic, 11

lock, 353–255, 736

methods

calling, 163

grouping, 156–157

nested if, 108

operator-only, 87

Redim, 78

return, methods, 167

string.join, 796

switch, 135–139, 426

throw, reporting errors, 204–207

using, 6n6, 185n3, 412–415, 575

yield break, 670–671

yield return, 665, 667–669, 674

STAThreadAttribute class, 842–843

static

classes, 263–265

compilation versus dynamic programming, 720–721

constructors, 261–262

fields, 256–258

initialization, 262

members, classes, 255–265

methods, 48, 259–261

properties, 262

static keyword, 264

Stop() method, 293, 803

storing

files, 224

local threads, 837–841

reference types, 341

static fields, 257

temporary storage pools, 341

string keyword, avoiding locking, 822–823

string.join statement, 796

strings, 46–53

42 as a, 195

addition (+) operator, 90–91

applying, 52–53

arrays, 79–81, 80–81

concatenation at compile time, 48

conversions, 65

encryption, 804

enum conversions, 362–364

format, 20

immutable, 17, 51, 52, 869–870

length, 51

methods, 48–50

round-trip formatting, 42

System.Text.StringBuilder, 53

strong references, 408

struct keyword, 343, 468–469

StructLayoutAttribute, 853

structs, 340–349

defining, 369

generics, 454–455

initialization, 346–347

structural equality, delegates, 516–517

structured programming model definitions, xxiii

structures

object-oriented programming, 210–213

sequential programming definitions, xxiii

styles

ambiguity, avoiding, 221

CPS, 911–913

subscriber methods, defining, 534–535

subscribers

encapsulation, 548–549

publishers, connecting, 536–537

subtraction (-) operators, 541

subtypes, 212

suffixes, 39

exceptions, 437

literals, 40

Sum() method, 609

super types, 212

support

covariance, 488–489

delegates, syntax, 502

finalizers, 347

generics, 491

LINQ, 27

OR (||) operators, 473–474

SuppressFinalize() method, 416

Swap() method, 178

switch statements, 135–139

exceptions, 426

switches

context, 732

unsafe, 864

symbols, preprocessor directives, 147–148

synchronization

consoles, 920–921

context, 788–790

delegates, 747

Monitor class, 817–819

operations, invoking high-latency, 771–772

threading, 811–812

applying lock keywords, 819–821

avoiding locking, 822–823

avoiding with Method-ImplAttribute, 823

declaring fields as volatile, 823–824

design best practices, 827–829

event notification, 826–827

local storage, 837–841

overview of, 813–841

resetting events, 831–837

selecting lock objects, 821–822

System.Threading.Interlocked class, 824–826

timers, 841–843

types, 829–837

syntax

delegates, support, 502

iterators, 661–662

overview of, 4–17

properties, 230

punctuation, 2

System.Action delegate, 514–530

System.ApplicationException class, 425

System.Array class, 362, 474

System.AsyncCallback class, 911–913

System.Attribute class, 692

System.AttributeUsage-Attribute class, 699–700

System.Collection.Generic.Stack class, 451

System.Collections.Generic namespace, 638

System.Collections.Generic.IEnumerator<T> class, 572

System.ComponentModel.Win32Exception method, 854

System.ConditionalAttribute class, 703–705

System.Console.Clear() method, 147

System.Console.ReadLine() method, 17, 18, 195

System.Delegate class, 474, 503, 542

System.Enum class, 363, 474

System.Enum.IsDefined() method, 366

System.Environment class, 425

System.EventArgs class, 552

System.EventHandler<T> class, 555

System.Exception class, 424, 425, 433

System.FormatException, 198, 199

System.Func delegate, 514–530

System.GC class, 408

System.InvalidCastException, 393

System.IO.FileAttributes class, 364

System.Lazy<T> class, 420

System.Linq.Enumerable class, 577

System.Linq.Enumerable.Where() method, filtering, 568–569

System.MulticastDelegate class, 474, 503, 542

System.Net.WebRequest class, 908

System.NonSerializable class, 708–710

System.Nullable<T> class, 468

System.Object class

deriving, 308–309

interfaces, 336n2

System.ObsoleteAttribute class, 705–706

System.Reflection.MethodInfo property, 503

System.Runtime.Serialization.ISerializable class, 709–710

System.Runtime.Serialization.SerializationException, 710

System.SerializableAttribute class, 438, 706–708, 713–714

System.Text.StringBuilder class, 53

System.Threading class, 730, 737–745, 812

System.Threading.AutoReset-Event class, semaphores, 834

System.Threading.Interlocked class, 824–826

System.Threading.Manual-ResetEvent class, 831–834

System.Threading.ManualResetEventSlim class, 831–834

System.Threading.Monitor class, 353

System.Threading.Mutex class, 829–830

System.Threading.WaitHandle class, 831

System.Timer class, 937–942

System.Timer.Timer type, 171

System.Type class, accessing metadata using, 679–680

System.ValueType class, 348–349. See also types; values

System.WeakReference class, 409

T type parameter, 461

tables

accessibility modifiers, 398

acronyms, 894–895

aggregate functions on System.Linq.Enumerable, 609

arrays, 68

boxing code in CIL, 350

common exception types, 202

common namespaces, 159–160

compilers, 878

concurrent collection classes, 836–837

control flow statements, 104–106

control flow within tasks, 780

decimal types, 36

deserialization, 711

equality/relational operators, 116

escape characters, 45

floating point types, 36

integer types, 34

interfaces, comparing abstract classes, 337

keywords, 5

lambda expressions, 511–512

ManualResetEvent synchronization, 833

members of System.Object, 308

.NET versions, 27

new modifiers, 296

operators, order of precedence, 153

preprocessor directives, 146

sample pseudocode execution, 814

standard query operators, 608

strings

methods, 50

static methods, 49

System.Threading.Interlocked class, 825

TaskContinuationOptions enums, 754–755

types of comments, 22

XOR operator values, 118

TAP (Task-based Asynchronous Pattern), 729

APM methods, 920

multithreading, 770–794

targets, modifying assemblies, 394–395

Task-based Asynchronous Pattern. See TAP

task-based asynchrony, 848–849

Task Parallel Library (TPL). See TPL

TaskCanceledException, 767, 768

TaskCompletionSource<T> class, 784

TaskContinuationOptions enums, 754–755

Task.ContinueWith() method, 752, 789, 793

TaskCreationOptions.LongRunning option, 798

TaskDelay() method, 741

Task.Delay() method, 843

Task.Factory() method, 768

Task.Factory.StartNew() method, applying, 769

Task.Run() method, 768, 785

tasks, 731

AggregateException, 757–764

antecedent, 753

asynchronous, 745–764

canceling, 764–770

continuation, 751–757, 789

control flow, 780

IDisposable interface, 770

long-running, 769–770

schedulers, 746, 788–790

TaskScheduler class, 788

Task<T> class, 731, 779

await keyword, 787–788

polling, 749

templates, 449

ATL, 287

C++ language, 466

temporary storage pools, 341

TemporaryFileStream, 412, 419

text

assigning, 42

XML comments, 402–407

TextNumberParser.Parse() method, 424

ThenBy() method, 590–596

Thermostat class, 535

this keyword, 220–227

constructors, chaining, 251–253

locking, avoiding, 822–823

thread-safe, 730, 815

delegates, invoking, 539–540

event notification, 826

incrementing/decrementing, 101–102

ThreadAbortException, 741, 742

threading, 727, 730. See also multithreading

foreground threads, 739

managing, 739–740

multiple threads, local variables, 815–816

pools, 731, 743–745, 746

synchronization, 811–812

applying lock keywords, 819–821

avoiding locking, 822–823

avoiding with Method-ImplAttribute, 823

declaring fields as volatile, 823–824

design best practices, 827–829

event notification, 826–827

local storage, 837–841

Monitor class, 817–819

overview of, 813–841

resetting events, 831–837

selecting lock objects, 821–822

System.Threading.Interlocked class, 824–826

timers, 841–843

types, 829–837

troubleshooting, 734–736

unhandled exceptions, 761–764

ThreadLocal<T> class, 838

Thread.Sleep() method, 740–741

ThreadStaticAttribute class, 839

three-dimensional arrays, 73

three-forward-slash delimiters (///), 405

throw statements, reporting errors, 204–207

ThrowIfCancellation-Requested() method, 768

throwing exceptions, 195, 204–205, 321

arrays, 75

checked/unchecked conversions, 63

deserialization, 711

Tic-Tac-Toe source code, 901–905

time slicing, 732

timers

prior to async/await patterns, 937–942

threading, 841–843

ToArray() method, 588

ToCharArray() method, 80

token cancellation, 801

ToLookup() method, 588

ToString() method, 65, 357

enum conversions, 362

overriding, 372–373

total ordering, collections, 643

TPL (Task Parallel Library), 729, 790

interfaces, multithreading prior to C# 5.0, 907–936

performance, 798

trapping errors, 195–201

trees, expressions, 496, 523–530

triggering events, 548

TrimToSize() method, 639

troubleshooting. See also errors

arrays, 81–82

multithreading, 734–736

try blocks, 197

TryGetMember() method, 723

TryGetPhoneButton() method, 179, 180

TryParse() method, 66–67, 207–208, 684

TrySetMember() method, 723

Tuple class, 461

turning off warning messages, 149–150

two-dimensional arrays, 69, 74–75

Type.ContainsGenericParameters property, 687

typeof keyword, 363

locking, avoiding, 822–823

typeof() method, 680

types

aliasing, 171

anonymous, 56–57, 562–564, 564–565, 566–568. See also anonymous types

constructors, 253–255

initializing arrays, 570–571

ArrayList, 350

of assemblies, 394–395

base, 212

casting, 65–66, 281–282

categories of, 57–60, 340

checking, 883

classes, 157, 467–468. See also classes

compatibility, enums, 361–362

ConnectionState, 360

conversions without casting, 65–66

CSharpBuiltInTypes, 665

CTS, 25, 891

data, 14. See also data types

delegates, 498–500

parameters, 850–852

definitions, 8–9

delegates, declaring, 500

derived, 212

duck typing, 576

encapsulation of, 396

exceptions, 202

floating-point, 92–96, 351

fundamental numeric, 34–43

generics, 449–462, 686–688

grouping, defining namespaces, 398–402

inference, 478–479

integral, 91

interface constraints, 467

members

access modifiers, 397–398

invoking, 678. See also reflection

metadata, 892–893

multiple exception, 424–425

namespaces, grouping, 158

naming, 160–161

nested, generics, 461–462

overloading, applying arity, 460

ParallelOptions, 801

parameters, 449, 452

in, 485–488

lists, 165

multiple, 459–460

naming, 453–454

out, 483–485

predefined, 33

references, 58–60, 177, 341–345, 492–493

referent, accessing members, 871–872

returns, declaring methods, 166–168

safety, 25, 883

specialization, 213

subtypes, 212

super, 212

thread synchronization, 829–837

underlying, verifying, 309–310

unmanaged, 864

values, 57–58, 177, 339–340

avoiding boxing, 356–357

boxing, 349–357

default operator, 348

enums, 358–368

instantiation generics, 491–492

interface inheritance, 348–349

lock statements, 353–255

new operator, 347–348

nullable, 447–448

structs, 340–349

well-formed, 371–385

defining namespaces, 398–402

garbage collection, 407–410

lazy initialization, 419–421

overloading operators, 385–393

overriding object members, 371–385

referencing assemblies, 393–398

resource cleanup, 410–419

XML comments, 402–407

UIs (user interfaces), Windows, 790–792, 932–936

unary minus (-) operators, 86–87

unary operators, 390

minus (-), 387

plus (+), 86–87

UnauthorizedAccessException, 438

unboxing, 350. See also boxing

unchecked conversions, 62–64, 440

unchecked keyword, 442

#undef preprocessor directive, 147–148

underlying types

enums, 360

verifying, 309–310

underscore (_), 15

Undo() method, 446

unhandled exceptions, 195

threading, 761–764

Unicode characters, 43–46. See also characters

values, descending order, 98

Union() method, 608

unmanaged

code, 24

types, 864

unsafe blocks, 863, 864

unsafe code, 845–846, 863–864, 867

delegates, executing via, 872–873

unsafe covariance in arrays, support, 488–489

unwinding stacks, 175

using directives, 168–172

using statements, 6n6, 185n3, 575

deterministic finalization, 412–415

utilities, ILMerge, 889

validation

constructors, 244. See also constructors

properties, 236–237

values

byte calculations, 122

const, 267

flags, enumeration, 702

generics, defaults, 458–459

hardcoding, 38–40

integers, overflowing, 62, 440

iterators, yielding, 662–664

literals, 37–38

arrays, 71

readonly fields, 269

negative, 87

parameters, 175–176, 242–244

placeholders, 121

public constants, 268

returns, 157, 162

types, 57–58, 177, 339–340

avoiding boxing, 356–357

boxing, 349–357

default operator, 348

enums, 358–368

instantiation generics, 491–492

interface inheritance, 348–349

lock statements, 353–255

new operator, 347–348

nullable, 447–448

structs, 340–349

Unicode characters, descending order, 98

XOR operators, 118

variables

applying, 16–17

assigning, 15–16

callers, matching with parameter names, 176

declaring, 11, 13, 14–15

global, 256

instances, 217

local, 14. See also local variables

declaring, 165–166

implicitly typed, 55–57

multiple threads, 815–816

scope, 114

loops, 130, 521–522

outer, 518–519, 520–521

parameters, defining index operators, 658–659

ranges, 615

reference types, 341–345

Venn diagrams, join operations, 593

verbatim string literals, 47

VerifyCredentials() method, 333

verifying underlying types, 309–310

versioning

assemblies, 889

.NET (Microsoft), 26–28

serialization, 710–713

VES (Virtual Execution System), 24, 876, 877, 881, 895

viewing assemblies, metadata, 678. See also reflection

Virtual Execution System. See VES

virtual fields, properties, 240–242

virtual memory, 851

virtual method defaults, 291

virtual modifiers, 290–295

virtual software, 872

VirtualAllocEx API, 850–852

Visual Basic

arrays, redimensioning, 78

classes, accessing, 222

global methods, 164

global variables/functions, 256

implicitly typed variables, 565

line-based statements, 11

void, 55

Visual Studio Project Wizard, 690

void, 53, 54–55

volatile modifier, declaring fields as, 823–824

vulnerabilities, buffer overruns, 883

Wait() method, 750

WaitAll() method, 831

WaitAny() method, 831

WaitForExit() method, 784

WaitHandle finalizer, 770

#warning preprocessor directive, 148–150

warnings

nowarn:<warn list> option, 149–150

preprocessor directives, 148–150

WCF (Windows Communication Foundation), 27

weak references, 408–410

WebRequest.GetResponse-Async() method, 774

well-formed types, 371–385

assemblies, referencing, 393–398

garbage collection, 407–410

lazy initialization, 419–421

namespaces, defining, 398–402

object, overriding members, 371–385

operators, overloading, 385–393

resource cleanup, 410–419

XML comments, 402–407

WF (Windows Workflow), 27

WHERE clause, 615

filtering, 623–624

where keyword, 465

Where() method, 509

filtering with, 580–591

while loops, control flow statements, 127–129

whitespace, definitions, 12–13

Win32, error handling, 854–855

Windows

Communication Foundation. See WCF

Error Reporting, 425

executable assemblies, 394

Forms, 932–934

Presentation Foundation. See WPF

UIs (user interfaces), 790–792, 932–936

Workflow. See WF

WinRT (Windows Runtime), 27, 845, 895

libraries, 846–849

wizards, Project Wizard (Visual Studio), 690

work stealing, 798

WPF (Windows Presentation Foundation), 27, 934–936

wrappers, APIs (P/Invoke), 861

wrapping exceptions, 438–442

write-only properties, 237–239

WriteLine() method, 157

WriteWebRequestSizeAsync() method, 779

xcopy deployment, 889

XML (Extensible Markup Language)

comments, 402–407, 678

delimited comments, 22

elements, runtime binding, 719–720

overview of, 23–24

single-line comments, 22

XNA (Microsoft), 878

XOR (exclusive OR) operators, 118, 122

yield break statements, 670–671

yield keyword, 6n5

yield return statements, 665, 667–669, 674

yielding values from iterators, 662–664

ZipCompression class, 325

Index of 5.0 Topics

APIs (application programming interfaces), runtime, 27–28

applying Task.Factory.StartNew() method, 769

capturing loop variables, 521–522

classes

Semaphore, 835

SemaphoreSlim, 835

closure, 521

common keywords, 5

CountdownEvent, 835

events, CountdownEvent, 835

guidelines, capturing loop variables, 523

interfaces, APIs at runtime, 27–28

keywords, 5

listings

delegates, capturing loop variables, 521–522, 523

multithreading, Task.Factory.StartNew() method, 769

thread synchronization

Task.Delay() method, 842

unsynchronized local variables, 816–817

local variables, unsynchronized, 816–817

loops, variables, 521–522

methods, Task.Factory.StartNew(), 769

patterns, TAP, 920

runtime, WinRT, 27–28

Semaphore class, 835

SemaphoreSlim class, 835

synchronization, threading

timers, 841–843

unsynchronized local variables, 816–817

System.Threading.AutoResetEvent class, semaphores, 834

tables, keywords, 5

TAP (Task-based Asynchronous Pattern), APM methods, 920

TaskCanceledException, 768

Task.Factory() method, 768

Task.Factory.StartNew() method, applying, 769

Task.Run() method, 768

threading, synchronization

timers, 841–843

unsynchronized local variables, 816–817

ThrowIfCancellation-Requested() method, 768

timers, threading, 841–843

unsynchronized local variables, 816–817

variables

local, unsynchronized, 816–817

loops, 521–522

WinRT (Windows Runtime), 27–28

Index of 4.0 Topics

* (star), 756

. (dot) operators, 871

access

code, 884

members, referent types, 871–872

runtime, 883

thread-safe, 815

acronyms, 894–895

adding event handlers, 846–848

addresses, 862–872

agents, execution, 881

AggregateException, 757–764, 768

asynchronous Web requests, 779

parallel loop exception handling, 798–800

algorithms

hill climbing, 798

mark-and-sweep-based, 882

work stealing, 798

allocating

data on call stacks, 868

virtual memory, 851

AllocExecutionBlock() method, 855

antecedent tasks, 753

APIs (application programming interfaces)

encapsulation, 859–860

parameters, 192

APM (Asynchronous Programming Model), 908–921

AppDomain, 762

applicable, 193

applications

domains, 887

instances, formatting single, 829–830

Tic-Tac-Toe, 901–905

virtual, 872

applying

APM patterns, 908–910

lock keywords, 819–821

SafeHandle class, 856–857

StructLayoutAttribute, 853

Task.Factory.StartNew() method, 769

arguments, named, 191

arity, 460–461

arrays, covariance, 488–489

AsParallel() method, 584

assemblies

CLI, 887–890

versioning, 889

assigning pointers, 866–869

async keyword, 777–781, 937–942

asynchronous delegate invocation, 921–924

asynchronous programming

high-latency operations, invoking, 772–777

lambda expressions, 782–783

methods, customizing, 783–786

models, 908–921

Task-based Asynchronous Pattern (TAP), 770–794

task-based asynchrony, 848–849

asynchronous tasks, 745–764

atomic operation, 829

attributes, customizing, 893

automatically shimmed interfaces, 848

avoiding

deadlocks, 827–828

locking, 822–823, 828–829

synchronization with MethodImplAttribute, 823

await keyword, 777–781, 937–942

background worker patterns, 928–932

BCL (Base Class Library), 885, 892, 894

BeginGetResponse() method, 908

BeginX() method, 908

behaviors, dynamic objects, 716–718

binding

dynamic objects, 719–720

late, 893

methods, 714

runtime, XML elements, 719–720

blocks, unsafe, 863, 864

Break() method, 803

breaking parallel loops, 803–804

buffers, overrun, 883

bugs, runtime performance, 885–886

C language pointers, declaring, 865

C++ language, 890

deterministic destruction, 882

pointers, declaring, 865

calculating pi, 794–795

calling

APM methods, 915–921

P/Invoke

APIs, 861

external functions, 858–861

stacks, 868

Task.ContinueWith method, 752, 789

Cancel() method, 766

CancellationToken class, 764, 767

CancellationTokenSource class, 767

cancelling

parallel loops, 800

PLINQ queries, 807

tasks, 764–770

CAS (code access security), 884

catch clause, 779

change() method, 942

checking types, 883

CIL (Common Intermediate Language), 876, 877, 894

CLI, 890

dynamic objects, 718–719

machine code, compilation to, 879–880

runtime, 881–886

circumventing encapsulation, 883

classes

BCL, 892, 894

CancellationToken, 764, 767

CancellationTokenSource, 767

concurrent collections, 835–837

CountdownEvent, 835

dynamic, 714–724

FCL, 892, 895

IProducerConsumer-Collection<T>, 835

Monitor, thread synchronization, 817–819

ParallelQuery<T>, 806

SafeHandle, 856–857

Semaphore, 835

SemaphoreSlim, 835

STAThreadAttribute, 842–843

System.AsyncCallback, 911–913

System.Exception, 433

System.Lazy<T>, 420

System.Net.WebRequest, 908

System.Threading, 812

System.Threading.AutoReset-Event, semaphores, 834

System.Threading.Interlocked, 824–826

System.Threading.ManualResetEvent, 831–834

System.Threading.ManualResetEventSlim, 831–834

System.Threading.Mutex, 829–830

System.Threading.WaitHandle, 831

System.Timer, 937–942

TaskCompletionSource<T>, 784

TaskScheduler, 788

Task<T>, 779

await keyword, 787–788

polling, 749

ThreadLocal<T>, 838

ThreadStaticAttribute, 839

Tuple, 461

clauses, catch, 779

cleanup, resources (APM), 914

CLI (Common Language Infrastructure), 894

application domains, 887

assemblies, 887–890

BCL, 892

CIL, 890

CLS, 891–892

CTS, 891

implementing, 877–878

infrastructure, 875–877

installing, 897–899

manifests, 887–890

metadata, 892–893

modules, 887–890

CLR (Common Language Runtime), 881, 894

CLS (Common Language Specification), 877, 891–892, 895

COBOL, 890

code

access security, 884

machine, 876, 879–880

managed, 881

runtime performance, 885–886

Tic-Tac-Toe, 901–905

unsafe, 845–846, 863–864, 867, 872–873

collections, concurrency, 835–837

COM (Component Object Model)

DLL registration, 890

STAThreadAttribute class, 842–843

commands, xcopy, 889

common namespaces, 159–160

compilers, 878

installing, 897–899

paths, configuring, 898

compiling

just-in-time compilation, 879

machine code, 879–880

static compilation vs. dynamic programming, 720–721

compression, 882

computers, guest, 872

concurrency, 835–837

configuring

background worker patterns, 930–931

compiler paths, 898

consoles, synchronization, 920–921

Console.WriteLine() method, 871

context, synchronization, 788–790

continuation, tasks, 789

ContinueWith() method, 753, 775, 919–920

contravariance, enabling, 485–488

control flow

asynchronous tasks, 751

await keyword, 792–794

tasks, 780

conversions

CIL, 879

types, checking, 883

cooperative cancellation, 764

CountdownEvent class, 835

covariance

enabling, 483–485

support, 488–489

CPS (continuation passing style), 911–913, 915

CPUs (central processing units), running LINQ queries in parallel, 584

Create() method, 461

CTS (Common Type System), 877, 891, 895

customizing

attributes, 893

dynamic objects, 721–724

methods, asynchronous, 783–786

synchronization contexts, 790

data

managed, 881

types

dynamic, 716

parameters, 850–852

de-allocating objects, 882

deadlocks, 827–828

declaring

external functions, 849–850

fields as volatile, 823–824

pointers, 864–866

Decrement() method, 814, 821, 825

delegates

asynchronous delegate invocation, 921–924

P/Invoke, 862

structural equality, 516–517

synchronous, 747

System.Func/System.Action, 514–530

unsafe code, executing via, 872–873

deleting event handlers, 846–848

deployment, xcopy, 889

dereferencing pointers, 869–871

deterministic destruction, 882

development, 886

device drivers, 886

diagrams, CancellationToken class, 767

DirectoryCountLines() method, 191

dirty space, 882

disabling parallelism, 802

Dispose() method, tasks, 770

distribution, APM parameters, 911

DLL (Dynamic Link Library), COM registration, 890

domains, applications, 887

DoStuffAsync() method, 787

dot (.) operator, 871

DotGNU, 878

downloading .NET, 897–899

drivers, devices, 886

dynamic objects

behaviors/principles, 716–718

binding, 719–720

CIL, 718–719

customizing, 721–724

programming, 714–724

reflection, invoking, 714–716

static compilation vs., 720–721

EAP (Event-based Asynchronous Pattern), 924–927

elements, runtime binding, 719–720

enabling

contravariance, 485–488

covariance, 483–485

encapsulation

APIs, 859–860

circumventing, 883

encryption, strings, 804

EndGetResponse() method, 908

EndX() method, 908

enums, TaskContinuation-Options, 754–755

equality, structural, 516–517

error handling, platform interoperability/unsafe code, 854–856

events

handlers

adding, 846–848

removing, 846–848

notifications, multiple threads, 826–827

resetting, 831–837

WinRT, 846–848

exceptions

AggregateException, 757–764, 768

asynchronous Web requests, 779

parallel loop exception handling, 798–800

handling

asynchronous high-latency operations, 775–776

background worker patterns, 931–932

InnerExceptions property, 760

NullReferenceException, 826

OperationCanceledException, 807

OutOfMemoryException, 433

reporting, 433

StackOverflowException, 433

System.ComponentModel.Win32Exception, 854

TaskCanceledException, 767, 768

unhandled, 761–764

execution

agents, 881

delegates, unsafe code, 872–873

loops, iterations in parallel, 794–804

managed, 881

pseudocode, 814

VES, 895

expressions, lambda

asynchronous programming, 782–783

lazy loading, 420

external functions

declaring, 849–850

P/Invoke, calling, 858–861

factory methods, 461

FCL (Framework Class Library), 892, 895

fields, declaring as volatile, 823–824

files

metadata, 892–893

references, assemblies, 889

finalizers, WaitHandle, 770

fixed statements, 867, 868

ForEach() method, 801

formatting single instance applications, 829–830

forms, Windows Forms, 932–934

FORTRAN, 890

Framework (Microsoft .NET), 878

frameworks, 877

FromCurrentSynchronizationContext() method, 788

functionality, CLI, 888n5

functions

external

declaring, 849–850

P/Invoke, 858–861

pointers, 862

garbage collection

.NET (Microsoft), 882–883

runtime, 881–882

gating parallelism, 802

general-purpose delegates, System.Func/System.Action, 514–530

generics

arity, 460–461

lazy loading, 420

GetDynamicMemberNames() method, 724

GetEnumerator() method, 787n8

GetResponse() method, 772

GetResponseAsync() method, 779

guest computers, 872

guidelines

covariance, 489

delegates, types, 515

locking, avoiding, 823

long-running tasks, 770

managed wrappers/unmanaged methods, 856

multiple type parameters, 460

multithreading, unhandled exceptions, 764

P/Invoke, 862

parallel loops, 797

parameters, 191, 192

synchronization, avoiding, 823

thread synchronization design, 829

Handle() method, 760

handlers, events

adding, 846–848

removing, 846–848

handling

errors, platform interoperability/unsafe code, 854–856

exceptions

asynchronous high-latency operations, 775–776

background worker patterns, 931–932

parallel loops, 798–800

high-latency operations, invoking, 771–777

hill climbing, 798

hot tasks, 748

IAsyncAction<T> interface, 848, 849

IDisposable interface, tasks, 770

IDispose() method, 915

ILMerge utility, 889

immutable strings, modifying, 869–870

implementing

CLI, 877–878

dynamic objects, 714

in type parameter, 485–488

Increment() method, 825

infrastructure, CLI, 875–877

InnerExceptions property, 760

installing .NET, 897–899

instances, formatting single, 829–830

interfaces

automatically shimmed, 848

IAsyncAction<T>, 848, 849

IDisposable, 770

IReadOnlyPair<T>, 484

multithreading, prior to TPL and C# 5.0, 907–936

PairInitializer<T>, 487

parameters, 192

Windows UIs, 790–792, 932–936

interoperability

CIL, 890

platforms, 845–846, 862–872

Invoke() method, 932

InvokeRequired property, 932

invoking

asynchronous

delegate invocation, 921–924

tasks, 747–748

high-latency operations, 771–777

reflection, dynamic objects, 714–716

IProducerConsumer-Collection<T> class, 835

IReadOnlyPair<T> interface, 484

IsCancellationRequested property, 766, 767, 801

IsCompleted property, 750, 804

iterations

long-running loops, 802

loops, 794–804

jitting, 879

Join() method, 748

just-in-time compilation, 879

keywords, 5

async, 777–781, 937–942

await, 777–781

lock

applying, 819–821

selecting objects, 821–822

string, avoiding locking, 822–823

this, avoiding locking, 822–823

typeof, 822–823

lambda expressions

asynchronous programming, 782–783

lazy loading, 420

languages

CIL, 876

CLR, 881

CLS, 891–892

COBOL, 890

FORTRAN, 890

source, 890

late binding, 893

latency, invoking high-latency operations, 771–777

libraries

BCL, 885, 892, 894

FCL, 892, 895

Task Parallel Library (TPL), 790

WinRT, 846–849

LINQ queries, running in parallel, 584–585, 804–808

Linux, installing platforms, 898

listings

APM patterns

accessing user interfaces, 933–934

asynchronous delegate invocation, 922–923

background worker patterns, 928–929

ContinueWith() method, 919

EAP, 926–927

invoking user interface objects, 935–936

invoking with callback/state, 911–912

passing state, 913–914

System.Net.WebRequest class, 908–909

using TPL to call, 915–918

delegates

applying variance, 516–517

declaring Func/Action, 514–515

dynamic objects

customizing, 721–723

overriding members, 723–724

runtime binding, 719–720

generics

arity, 460

combining covariance and contravariance, 487

compiler validation of variance, 488

contravariance, 486

covariance, 483–484

covariance using out type parameter modifier, 484

Create() method, 461

multiple type parameters, 460

methods

optional parameters, 189–191

specifying parameters by names, 191–192

multithreading

applying Task.Factory.StartNew() method, 769

asynchronous Web requests, 773–774, 777–778

await keyword, 787–788

calling Task.ContinueWith method, 752, 789

cancelling parallel loops, 800–801

cancelling PLINQ queries, 807–808

cancelling tasks, 765–766

customizing asynchronous methods, 784–786

handling tasks, unhandled exceptions, 758–759

invoking asynchronous tasks, 747–748

iterating over await operations, 792–793

lambda expressions, 782–783

LINQ Select() method, 804

long-running tasks, 769–770

for loops, 794–795, 796

observing unhandled exceptions, 760–761

parallel execution of foreachloops, 797

PLINQ Select() method, 805

PLINQ with query expressions, 806

polling Task<T> classes, 749

registering for notifications, 756

registering for unhandled exceptions, 762–763

synchronous high-latency invocation with WPF, 791–792

synchronous Web requests, 772–773

unhandled exception handling, parallel iterations, 799

platform interoperability/unsafe code

accessing referent type members, 871–872

allocating data on call stacks, 868

applying ref/out rather than pointers, 852

declaring external methods, 849–850

declaring types, 853

designating unsafe code, 863, 872–873

encapsulating APIs, 859–860

fixed statements, 867, 868

invalid referent types, 866

managed resources, 857–858

modifying immutable strings, 869–870

SafeHandle, 856–857

Win32 error handling, 854–855

WinRT patterns, 847–848

wrapping APIs, 861

reflection, dynamic programming using, 715

standard query operators, executing LINQ queries in parallel, 584

System.Threading.Timer class, 941–942

System.Timers.Timer class, 939–940

thread synchronization

creating single instance applications, 829–830

firing event notifications, 826

lock keyword, 820

ManualResetEventSlim, 832–833

Monitor class, 817–818

System.Threading.Interlocked class, 824–825

Task.Delay() method, 842

thread-safe event notification, 826

ThreadLocal<T> class, 838

ThreadStaticAttribute class, 839–840

unsynchronized local variables, 815–816

unsynchronized state, 813

Tic-Tac-Toe source code, 901–905

timers, 939–942

well-formed types, lazy loading properties, 420

local storage, threads, 837–841

local variables, multiple threads, 815–816

lock keyword

applying, 819–821

objects, selecting, 821–822

locking, 828–829

avoiding, 822–823

consoles, synchronization, 920–921

lockTaken parameter, 819

long-running

loops, 802

tasks, 769–770

loops

executing, iterations in parallel, 794–804

parallel

breaking, 803–804

executing iterations in, 794–804

options, 802–803

LowestBreakIteration property, 804

machine code, 876

compilation to CIL, 879–880

Main() method, 821

managed code, 881

runtime performance, 885–886

managed data, 881

managed execution, 881

manifests, CLI, 887–890

mark-and-sweep-based algorithms, 882

members

dynamic objects, overriding, 723–724

referent types, accessing, 871–872

memory, allocating virtual, 851

metadata, 877

CLI, 892–893

MethodImplAttribute, avoiding with synchronization, 823

methods

AllocExecutionBlock(), 855

APM, calling, 915–921

AsParallel(), 584

asynchronous, customizing, 783–786

BeginGetResponse(), 908

BeginX(), 908

binding, 714

Break(), 803

Cancel(), 766

change(), 942

ContinueWith(), 753, 775, 919–920

Create(), 461

Decrement(), 814, 821, 825

DirectoryCountLines(), 191

Dispose(), 770

DoStuffAsync(), 787

EAP, 925

EndGetResponse(), 908

EndX(), 908

factory, 461

ForEach(), 801

FromCurrentSynchronizationContext(), 788

GetDynamicMemberNames(), 724

GetEnumerator(), 787n8

GetResponse(), 772

GetResponseAsync(), 779

Handle(), 760

IDispose(), 915

Increment(), 825

Invoke(), 932

Join(), 748

Main(), 821

Monitor.Enter(), 818

Monitor.Exit(), 818

Parallel.For(), 795, 803

parameters, optional, 189–193

person.NonExistentMethodCallStillCompiles (), 717

PiCalculator.Calculate(), 749

Ping.Send(), 791

ProcessKill(), 785

Pulse(), 819

ReadToEnd(), 772

ReadToEndAsync(), 775

Reset(), 834

Run(), 748

Select(), 804

SendTaskAsync(), 792

StartX(), 908

Stop(), 803

Task.ContinueWith(), 793

Task.ContinueWith, calling, 752, 789

Task.Delay(), 843

Task.Factory(), 768

Task.Factory.StartNew(), 769

Task.Run(), 768, 785

ThrowIfCancellationRequested(), 768

TryGetMember(), 723

TrySetMember(), 723

Wait(), 750

WaitAll(), 831

WaitAny(), 831

WaitForExit(), 784

WebRequest.GetResponseAsync(), 774

WriteWebRequestSizeAsync(), 779

Microsoft

FCL, 892, 895

ILMerge utility, 889

.NET, 894, 897–899

compilers, 878

garbage collection, 882–883

platform portability, 885, 886

Silverlight, 878

XNA, 878

mind maps

CLI infrastructure, 875

platform interoperability/unsafe code, 845

thread synchronization, 811

models

asynchronous programming, 908–921

COM, STAThreadAttribute class, 842–843

modifiers

access, runtime, 883

volatile, declaring fields as, 823–824

modifying immutable strings, 869–870

modules, CLI, 887–890

Monitor class, synchronization, 817–819

Monitor.Enter() method, 818

Monitor.Exit() method, 818

Mono Project, 878, 898

multiple threads

event notification, 826–827

local variables, 815–816

multithreading

asynchronous tasks, 745–764

interfaces, prior to TPL and C# 5.0, 907–936

LINQ queries, running in parallel, 804–808

loops, executing iterations in parallel, 794–804

Task-based Asynchronous Pattern (TAP), 770–794

tasks

AggregateException, 757–764

canceling, 764–770

continuation, 751–757

named arguments, 191

namespaces, common, 159–160

.NET (Microsoft), 894, 897–899

compilers, 878

garbage collection, 882–883

platform portability, 885, 886

notifications

events, multiple threads, 826–827

registering for, 756

NullReferenceException, 826

objects

COM, STAThreadAttribute class, 842–843

de-allocating, 882

deterministic destruction, 882

lock keyword, selecting, 821–822

observer patterns, 846

OperationCanceledException, 807

operators, dot (.), 871

options

methods, parameters, 189–193

parallel loops, 802–803

TaskCreationOptions.LongRunning, 798

out type parameter, 483–485

OutOfMemoryException, 433

overloading types, applying arity, 460

overriding members, dynamic objects, 723–724

overrun, buffers, 883

P/Invoke (Platform Invoke), 849–862

API calls with wrappers, 861–86–

external functions, calling, 858–861

guidelines, 862

PairInitializer<T> interface, 487

Parallel.For() method, 795, 803

parallelism

disabling, 802

LINQ queries, running in, 804–808

loops

breaking, 803–804

executing iterations in, 794–804

options, 802–803

ParallelOptions parameter, 802

ParallelOptions type, 801

ParallelQuery<T> class, 806

parameters

data types, 850–852

distribution, APM, 911

lockTaken, 819

methods, optional, 189–193

ParallelOptions, 802

types

in, 485–488

out, 483–485

passing

CPS, 911–913

state, APM, 913–914

paths, configuring compilers, 898

patterns

APM, 908–910

async/await, timers prior to, 937–942

background worker, 928–932

EAP, 924–927

observer, 846

TAP, 770–794, 920

token cancellation, 801

performance

runtime, 885–886

synchronization, 828

Task Parallel Library (TPL), 798

person.NonExistentMethodCallStillCompiles () method, 717

pi, calculating, 794–795

PiCalculator.Calculate() method, 749

Ping.Send() method, 791

platforms

addresses/pointers, 862–872

installing, 897–899

interoperability, 845–846

.NET (Microsoft), 897–899

portability, 884–885

WPF, 934–936

PLINQ (Parallel LINQ), 804–808

pointers, 862–872

assigning, 866–869

declaring, 864–866

dereferencing, 869–871

functions, 862

polling

cancellation tasks, 766

Task<T> classes, 749

pools, threading, 746

portability of platforms, 884–885

principles, dynamic objects, 716–718

ProcessKill() method, 785

programming

asynchronous, 908–921

dynamic, 714–724

programs, Tic-Tac-Toe, 901–905

properties

InnerExceptions, 760

InvokeRequired, 932

IsCancellationRequested, 766, 767, 801

IsCompleted, 750, 804

LowestBreakIteration, 804

pseudocode execution, 814

Pulse() method, 819

queries, running LINQ in parallel, 584–585, 804–808

ReadToEnd() method, 772

ReadToEndAsync() method, 775

reentrant deadlocks, 828

references

files, assemblies, 889

pointers, declaring, 864

referent types, accessing members, 871–872

reflection, 883

dynamic objects, invoking, 714–716

metadata, 893

registering

COM DLL, 890

for notifications, 756

remoting, 921

removing event handlers, 846–848

reporting exceptions, 433

requests

asynchronous Web, 773–774

cancellation, 768

synchronous Web, 772–773

Reset() method, 834

resetting events, 831–837

resources, cleanup (APM), 914

rethrowing exceptions, 433

Rotor, 878

Run() method, 748

running LINQ queries in parallel, 584–585, 804–808

runtime

CIL, 881–886

CLR, 894

garbage collection, 881–882

performance, 885–886

WinRT, 895

XML elements, binding, 719–720

SafeHandle class, 856–857

safety, types, 883

schedulers, tasks, 746, 788–790

security, code access, 884

Select() method, 804

selecting objects, lock keyword, 821–822

Semaphore class, 835

semaphores, System.Threading.AutoResetEvent class, 834

SemaphoreSlim class, 835

SendTaskAsync() method, 792

ServiceStatus, 865

signatures, APM, 910–911

Silverlight (Microsoft), 878

single instance applications, formatting, 829–830

Smalltalk, 890

software, virtual, 872

source code, Tic-Tac-Toe, 901–905

source languages, 890

spaces, dirty, 882

stackalloc data, 868

StackOverflowException, 433

stacks, calling, 868

standard query operators, running LINQ queries in parallel, 584–585

star (*), 756

StartX() method, 908

state, passing (APM), 913–914

statements

Console.WriteLine(), 871

fixed, 867, 868

string.join, 796

STAThreadAttribute class, 842–843

static compilation vs. dynamic programming, 720–721

Stop() method, 803

storing local threads, 837–841

string keyword, avoiding locking, 822–823

string.join statement, 796

strings

encryption, 804

immutable, 869–870

StructLayoutAttribute, 853

structural equality, delegates, 516–517

styles, CPS, 911–913

support, covariance, 488–489

switches, unsafe, 864

synchronization

consoles, 920–921

context, 788–790

delegates, 747

Monitor class, 817–819

operations, invoking high-latency, 771–772

threading, 811–812

applying lock keywords, 819–821

avoiding locking, 822–823

avoiding with MethodImplAttribute, 823

declaring fields as volatile, 823–824

design best practices, 827–829

event notification, 826–827

local storage, 837–841

overview of, 813–841

resetting events, 831–837

selecting lock objects, 821–822

System.Threading.Interlocked class, 824–826

timers, 841–843

types, 829–837

System.Action delegate, 514–530

System.AsyncCallback class, 911–913

System.ComponentModel.Win32Exception method, 854

System.Exception class, 433

System.Func delegate, 514–530

System.Lazy<T> class, 420

System.Net.WebRequest class, 908

System.Threading class, 812

System.Threading.AutoResetEvent class, semaphores, 834

System.Threading.Interlocked class, 824–826

System.Threading.ManualResetEvent class, 831–834

System.Threading.ManualResetEventSlim class, 831–834

System.Threading.Mutex class, 829–830

System.Threading.WaitHandle class, 831

System.Timer class, 937–942

T type parameter, 461

tables

acronyms, 894–895

common namespaces, 159–160

compilers, 878

concurrent collection classes, 836–837

control flow within tasks, 780

keywords, 5

ManualResetEvent synchronization, 833

sample pseudocode execution, 814

System.Threading.Interlocked class, 825

TaskContinuationOptions enums, 754–755

TAP (Task-based Asynchronous Pattern)

APM methods, 920

multithreading, 770–794

task-based asynchrony, 848–849

TaskCanceledException, 767, 768

TaskCompletionSource<T> class, 784

TaskContinuationOptions enums, 754–755

Task.ContinueWith() method, 752, 789, 793

TaskCreationOptions.LongRunning option, 798

Task.Delay() method, 843

Task.Factory() method, 768

Task.Factory.StartNew() method, 769

Task.Run() method, 768, 785

tasks

AggregateException, 757–764

antecedent, 753

asynchronous, 745–764

canceling, 764–770

continuation, 751–757, 789

control flow, 780

IDisposable interface, 770

long-running, 769–770

schedulers, 746, 788–790

TaskScheduler class, 788

Task<T> class, 779

await keyword, 787–788

polling, 749

this keyword, avoiding locking, 822–823

thread-safe, 815

event notification, 826

threading

multiple threads, local variables, 815–816

pools, 746

synchronization, 811–812

applying lock keywords, 819–821

avoiding locking, 822–823

avoiding with MethodImplAttribute, 823

declaring fields as volatile, 823–824

design best practices, 827–829

event notification, 826–827

local storage, 837–841

Monitor class, 817–819

overview of, 813–841

resetting events, 831–837

selecting lock objects, 821–822

System.Threading.Interlocked class, 824–826

timers, 841–843

types, 829–837

unhandled exceptions, 761–764

ThreadLocal<T> class, 838

ThreadStaticAttribute class, 839

ThrowIfCancellationRequested() method, 768

Tic-Tac-Toe source code, 901–905

timers

prior to async/await patterns, 937–942

threading, 841–843

token cancellation, 801

TPL (Task Parallel Library), 790

interfaces, multithreading prior to C# 5.0, 907–936

performance, 798

TryGetMember() method, 723

TrySetMember() method, 723

Tuple class, 461

typeof keyword, avoiding locking, 822–823

types

checking, 883

CTS, 891

data, parameters, 850–852

metadata, 892–893

overloading, applying arity, 460

ParallelOptions, 801

parameters

in, 485–488

out, 483–485

referent, accessing members, 871–872

safety, 883

thread synchronization, 829–837

unmanaged, 864

UIs (user interfaces), Windows, 790–792, 932–936

unhandled exceptions, threading, 761–764

unmanaged types, 864

unsafe blocks, 863, 864

unsafe code, 845–846, 863–864, 867

delegates, executing via, 872–873

unsafe covariance in arrays, support, 488–489

utilities, ILMerge, 889

variables, local, 815–816

versioning assemblies, 889

VES (Virtual Execution System), 876, 877, 881, 895

virtual memory, 851

virtual software, 872

VirtualAllocEx API, 850–852

volatile modifier, declaring fields as, 823–824

vulnerabilities, buffer overruns, 883

Wait() method, 750

WaitAll() method, 831

WaitAny() method, 831

WaitForExit() method, 784

WaitHandle finalizer, 770

WebRequest.GetResponseAsync() method, 774

Win32, error handling, 854–855

Windows

Forms, 932–934

UIs (user interfaces), 790–792, 932–936

WinRT (Windows Runtime), 845, 895

libraries, 846–849

work stealing, 798

WPF (Windows Presentation Foundation), 934–936

wrappers, APIs (P/Invoke), 861–86–

WriteWebRequestSizeAsync() method, 779

xcopy deployment, 889

XML (Extensible Markup Language) elements, runtime binding, 719–720

XNA (Microsoft), 878

Index of 3.0 Topics

accessing code, 25

accessors, properties, 232

Add() method, 249, 566–567

aggregation, 287

anonymous methods, internals, 515–516

anonymous types, 56–57, 560–562, 564–566

array initialization, 568–569

constructors, 253–255

projecting to, 581

APIs (application programming interfaces), 27

AsParallel() method, 582

associating data types, 57

ATL (Active Template Library), 287

automating properties, implementing, 232–234

Average() method, 607

avoiding repeated execution, 588

backing field declarations, 232, 244

BCL (Base Class Library), 25

C++ language

implicitly typed variables, 563

multiple inheritance, 287

caches, avoiding repeated, 588

calling SelectMany() method, 602–604

capturing

loop variables, 519–520

variables, 516

Cartesian products, 596, 629

child collections, formatting, 600

CIL (Common Intermediate Language)

extension methods, 266

objects, initializers, 248

outer variables, implementing, 518–519

classes

BCL, 25, 26

constructors

anonymous types, 253–255

common initializers, 249

defaults, 247

object initializers, 247–248

extension methods, 265–266

FileInfo, 623–624

graphs, expression trees, 523–525

initializers, 247–248

System.Linq.Enumerable, 575

clauses

FROM, 613

from, 628–630

groupby, 625

let, 623–624

orderby, 622–623

SELECT, 613

WHERE, 613, 621–622

CLI (Common Language Infrastructure), 26

closed over variables, 516

CLS (Common Language Specification), 25

Code Access Security (CAS), 25

collections

child, formatting, 600

filtering, 612

initializers, 566–569

interfaces

anonymous types, 560–562

implicit local variables, 562–563, 564–566

projecting, 612

common initializers, 249

Concat() method, 606

constructors

anonymous types, 253–255

common initializers, 249

defaults, 247

object initializers, 247–248

continuation, query expressions, 627–628

Count() method, 583–584, 607, 620

counting items, 583–584

CPUs (central processing units) running LINQ queries in parallel, 582

CTS (Common Type System), 25

customizing LINQ, providers, 607

data types

associating, 57

implicitly typed local variables, 55–57

declaring backing field declarations, 232, 244

DefaultIfEmpty() method, 601

defaults, constructors, 247

deferred execution

implementing, 621

query expressions, 617

standard query operators, 584–588

definitions, default constructors, 247

delegates

exception sequence diagrams, 543

expression trees, 525–526

passing, 508

structural equality, 514–515

System.Func/System.Action, 512–528

diagrams

exceptions, sequences, 543

Venn, join operations, 591

Directory.GetFiles() method, 615

DirectoryInfo.GetFiles() method, 595

distinct members, 629–630

Distinct() method, 606, 611

enabling IntelliSense, 613

equality, structural, 514–515

error handling, sequential notification, 542–545

exception sequences, diagrams, 543

execution

caches, avoiding repeated, 588

deferred

implementing, 621

query expressions, 617

standard query operators, 584–588

managing, 26

expressions

lambda

expression trees, 522

internals, 515–516

statements, 505–508

queries

continuation, 627–628

filtering, 621–622

flattening sequences, 628–620

grouping, 624–627

invoking methods, 630–632

let clause, 623–624

LINQ, 611

overview of, 612–630

projecting, 614–617

sorting, 622–623

trees, 521–528

extensions, methods, 265–266

inheritance, 287

interfaces, 330–331

fields, backing, 232, 244

FileInfo object, 623–624

filtering

collections, 612

query expressions, 621–622

System.Linq.Enumerable.Where(), 566–567

WHERE clause, 621–622

flattening sequences, 628–620

formatting child collections, 600

FROM clause, 613

from clause, flattening sequences, 628–630

full outer joins, 592

garbage collection, 25

general-purpose delegates, System.Func/System.Action, 512–528

generating anonymous types, 566

GetEnumerator() method, 575, 608

GetFirstName() method, 232

graphs, expression trees, 523–525

GreaterThan method, 505

groupby clause, 625

GroupBy() method, grouping results, 598–599

grouping

query expressions, 624–627

results, 598–599

GroupJoin() method, 611

guidelines

constructors, defaults, 248

Count() method, 584

delegates, types, 513

extension methods, 266

lambda parameters, 507

OrderBy()/ThenBy() methods, 590

query expressions, 632

handling errors, sequential notification, 542–545

IEnumerable interface, 331

IEnumerable<T> interface, 614n1

query expressions, 614

standard query operators, 575–608

IListable interface, 331

implementing

CIL, outer variables, 518–519

deferred execution, 621

one-to-many relationships, 599–602

outer joins, 601–602

properties, automating, 232–234

implicit local variables, 562–563, 564–566

anonymous types, 560–561

implicitly typed local variables, 55–57

inheritance

extension methods, 287

interfaces, 329–330

multiple, 287

initialization

anonymous types, arrays, 568–569

collection initializers, 566–569

initializers

common, 249

objects, 247–248

inner joins, 591

Join() method, 595–598

IntelliSense, enabling, 613

interfaces

APIs, 27

collection

anonymous types, 560–562

implicit local variables, 562–563, 564–566

extension methods, 330–331

IEnumerable, 331

IEnumerable<T>

query expressions, 614

standard query operators, 575–608

inheritance, multiple, 329–330

IOrderedEnumerable<T>, 590

IQueryable<T>, 607–608

internals

anonymous methods, 515–516

lambda expressions, 515–516

interoperability, 25

Intersect() method, 606

into keyword, 627–628

invoking

delegates, exception sequence diagrams, 543

methods, query expressions, 630–632

IOrderedEnumerable<T> interface, 590

IQueryable<T> interface, 607–608

IsKeyword() method, 618

items

counting, 583–584

grouping, 598–599

JavaScript, implicitly typed variables, 563

Join() method, inner joins, 595–598

joining

collections, 591

data types, 57

keywords

into, 627–628

properties, defining, 232

lambda expressions, 504–510

expression trees, 522

internals, 515–516

statements, 505–508

tables, 509–510

languages, CLS, 25

left outer joins, 591

let clause, 623–624

libraries

ATL, 287

BCL, 25, 26

LINQ

expression trees, 525

providers, customizing, 607

queries

expressions, 611

running in parallel, 582–583

support, 27

listings

classes

automatically implemented properties, 233–234

calling object initializers, 248, 249

defining nested classes, 274–275

implicit local variables, 254

initialization methods, 253

collection interfaces

filtering with System.Linq.Enumerable.Where(), 566–567

implicit local variables with anonymous types, 560–561

initializing anonymous type arrays, 568–569

type safety, 564–565

delegates

applying variance, 514–515

capturing loop variables, 519–520, 521

CIL code for outer variables, 518

CIL for lambda expressions, 515–516

declaring Func/Action, 512–513

expression trees, 523

outer variables, 516–517

viewing expression trees, 526–528

implicit local variables, 56–57

lambda expressions

omitting parameter types, 506

parameterless statements, 507

passing delegates, 508

single input parameters, 507

statements, 505

query expressions, 612–613, 630–631

anonymous types, 616

continuation, 628

deferred execution, 617–620

distinct members, 629–630

filtering, 621–622

grouping, 624–625

multiple selection, 628

ordering results, 614

projection using, 615

selecting anonymous types, 626–627

sorting, 622

sorting by file size, 623

standard query operator syntax, 631

standard query operators

calling SelectMany() method, 602–603

classes, 576–578

counting items, 583

creating child collections, 600

executing LINQ queries in parallel, 582

filtering with System.Linq.Enumerable.Where() method, 579, 584–585

grouping items, 598–599

inner joins, 595–596, 597

ordering, 588–589

outer joins, 601–602

projection to anonymous types, 581

projection with System.Linq.Enumerable.Select() method, 580

sample employee/department data, 592–594

System.Linq.Enumerable() method calls, 604–605

strings, implicitly typed local variables, 55–56

local variables

anonymous types, 560–561

implicit, 562–563, 564–566

implicitly typed, 55–57

loops, capturing variables, 519–520

managing execution, 26

many-to-many relationships, 592

Max() method, 607

members, distinct, 629–630

metadata, 25

methods

Add(), 249, 566–567

anonymous, 515–516

AsParallel(), 582

Average(), 607

Concat(), 606

Count(), 583–584, 607, 620

DefaultIfEmpty(), 601

Directory.GetFiles(), 615

DirectoryInfo.GetFiles(), 595

Distinct(), 606, 611, 629–630

extension, 265–266

inheritance, 287

interfaces, 330–331

GetEnumerator(), 575, 608

GetFirstName(), 232

GreaterThan, 505

GroupBy(), grouping results, 598–599

GroupJoin(), 599–602, 611

Intersect(), 606

invoking, 630–632

IsKeyword(), 618

Join(), 595–598

Max(), 607

Min(), 607

NameChanging(), 276

OfType<T>(), 606

OnFirstNameChanging(), 276

OnLastNameChanging(), 276

OrderBy(), 588–594

partial, 273–276

Reverse(), 606

Select(), 580–582

SelectMany(), 601, 602–604, 611

SequenceEquals(), 606

standard query operators, 575–608

Sum(), 607

System.Linq.Enumerable.Where(), filtering with, 566–567

ThenBy(), 588–594

ToArray(), 586

ToLookup(), 586

Union(), 606

Where(), 507, 578–589

Microsoft .NET, versioning, 26–27

Min() method, 607

mind maps, query expressions, 611

modifying collections, 575

multiple inheritance, interfaces, 329–330

multiple selection, query expressions, 629

NameChanging() method, 276

.NET (Microsoft), versioning, 26–27

normalization, 595

notifications, sequential, 542–545

OfType<T>() method, 606

one-to-many relationships, 592

implementing, 599–602

OnFirstNameChanging() method, 276

OnLastNameChanging() method, 276

operators, queries, 575–608

orderby clause, 622–623

OrderBy() method, 588–594

outer joins, 591, 601–602

outer variables, 516–517

CIL implementations, 518–519

parameters, IListable, 331

partial methods, 273–276

passing delegates, 508

portability of platforms, 25

predicates, 508

query expressions, 621

Where() method, 578

products, Cartesian, 596, 629

projecting

to anonymous types, 581

collections, 612

query expressions, 614–617

with Select() method, 580–582

properties, automating, 232–234

providers, customizing LINQ, 607

query expressions

continuation, 627–628

deferred execution, 617

filtering, 621–622

flattening sequences, 628–620

grouping, 624–627

invoking methods, 630–632

IQueryable<T> interface, 607–608

let clause, 623–624

LINQ, 582–583, 611

operators, 575–608

overview of, 612–630

projecting, 614–617

sorting, 622–623

ranges, variables, 613

relationships

many-to-many, 592

one-to-many, 592, 599–602

results, grouping, 598–599

Reverse() method, 606

right outer joins, 591

running LINQ queries in parallel, 582–583

runtime, 25

safety, types, 25

security, code access, 25

SELECT clause, 613

Select() method, projecting with, 580–582

selecting multiple query expressions, 629

SelectMany() method, 601, 602–604, 611, 628

SequenceEquals() method, 606

sequences

exceptions, diagrams, 543

flattening, 628–620

notification, error handling, 542–545

SelectMany, 628

sorting

OrderBy() method/ ThenBy() method, 588–594

query expressions, 622–623

standard query operators, 575–608

Count() method, counting items with, 583–584

deferred execution, 584–588

GroupBy() method, grouping results with, 598–599

GroupJoin() method, implementing one-to-many relationships, 599–602

IQueryable<T> interface, 607–608

Join() method, inner joins, 595–598

LINQ queries, running in parallel, 582–583

OrderBy() method/ ThenBy() method, 588–594

Select() method, projecting with, 580–582

SelectMany() method, 602–604

Where() method, filtering with, 578–589

statements, lambda expressions, 505–508

structural equality, delegates, 514–515

Sum() method, 607

support, LINQ, 27

System.Action delegate, 512–528

System.Func delegate, 512–528

System.Linq.Enumerable class, 575

System.Linq.Enumerable.Where() method, filtering, 566–567

tables

aggregate functions on System.Linq.Enumerable, 607

keywords, 5

lambda expressions, 509–510

.NET versions, 27

standard query operators, 606

ThenBy() method, 588–594

ToArray() method, 586

ToLookup() method, 586

trees, expressions, 521–528

types

anonymous, 56–57, 560–566

constructors, 253–255

CTS, 25

safety, 25

Union() method, 606

validating constructors, 244

variables

local, implicitly typed, 55–57

loops, 519–520

outer, 516–517, 518–519

ranges, 613

Venn diagrams, join operations, 591

versioning, .NET (Microsoft), 26–27

Visual Basic, implicitly typed variables, 563

WCF (Windows Communication Foundation), 27

WF (Windows Workflow), 27

WHERE clause, 613

filtering, 621–622

Where() method, 507

filtering with, 578–589

WinRT (Windows Runtime), 27

WPF (Windows Presentation Foundation), 27

IntelliTect [image: Image]

IntelliTect Corporation is a high-end software architecture and development consulting firm based in Spokane, Washington. The company hires the best and brightest engineers and focuses on providing architecture consulting, software development, and training to enable their customers to solve the most challenging of problems. IntelliTect has principal and senior engineers specializing in the latest Microsoft technologies—including Microsoft .NET (WCF/WPF/WF), Visual Studio VSTS/TFS, SharePoint, and BizTalk Server.

IntelliTect uses best practice application life-cycle management (ALM) to deliver quality software solutions on time, on scope, and within budget. IntelliTect specializes in the following services:

• From concept phase to deployment, IntelliTect offers and delivers training, consulting and implementation using state of the art software—Visual Studio Team System (VSTS) and Team Foundation Server (TFS).

• IntelliTect enables companies to achieve efficient and effective collaboration, corporate publishing and enterprise content management (ECM) using Microsoft SharePoint. SharePoint services include consulting, training, deployment/upgrading, internet/intranet portals and application development.

• IntelliTect conducts software architecture workshops to design service oriented architectures (SOA), security solutions, solution scoping, solution architecture, and production deployment blueprints.

• For the integration and migration of large enterprise applications as well as business-to-business transactions, IntelliTect offerings include BizTalk and SQL Server Integration Services (SSIS) solutions. BizTalk integrations include the use of line-of-business adapters and the Enterprise Service Bus (ESB).

IntelliTect personnel serve on numerous software advisory boards at Microsoft, publish frequently, and present at conferences such as TechEd, DevConnections, and VSLive.

IntelliTect has extensive industry experience in Utilities, Manufacturing, Healthcare Integration, and Insurance Services. IntelliTect has the capability and experience to quickly identify and understand its customer’s needs and then develop strategies to address the identified needs.

IntelliTect is committed to devoting a significant portion of its profits to the fight against extreme poverty around the world.

[image: Image]

[image: Image]

Footnotes

Chapter 1

1. The first C# design meeting took place in 1998.

2. Refer to the movie The Princess Bride if you’re confused about the Inigo Montoya references.

3. When creating C#, the language creators sat down with the specifications for C/C++, literally crossing out the features they didn’t like and creating a list of the ones they did like. The group also included designers with strong backgrounds in other languages.

4. Compilation using the Mono compiler, an open source compiler now available from www.mono-project.com, is virtually identical, except that the compiler name is mcs.exe rather than csc.exe. Although I would very much have liked to place instructions for each platform here, doing so detracts from the topic of introducing C#. See Appendix A for details on Mono.

5. For example, early in the design of C# 2.0, the language designers designated yield as a keyword, and Microsoft released alpha versions of the C# 2.0 compiler, with yield as a designated keyword, to thousands of developers. However, the language designers eventually determined that by using yield return rather than yield, they could ultimately avoid adding yield as a keyword because it would have no special significance outside its proximity to return.

6. There are some rare and unfortunate incompatibilities, such as the following:

• C# 2.0 requiring implementation of IDisposable with the using statement, rather than simply a Dispose() method

• Some rare generic expressions such as F(G<A,B>(7)); in C# 1.0, that means F((G<A) , (B>7)) and in C# 2.0, that means to call generic method G<A,B> with argument 7 and pass the result to F

7. max does not mean the math function here, but rather is used as a variable name.

8. A third term for CIL is Microsoft IL (MSIL). This book uses the term CIL because it is the term adopted by the CLI standard. IL is prevalent in conversation among people writing C# code because they assume that IL refers to CIL rather than other types of intermediate languages.

9. Miller, J., and S. Ragsdale. 2004. The Common Language Infrastructure Annotated Standard. Boston: Addison-Wesley.

Chapter 2

1. As of January 12, 2012, according to www.treasurydirect.gov.

2. The unary + operator is defined to take operands of type int, uint, long, ulong, float, double, and decimal (and nullable versions of those types). Using it on other numeric types such as short will convert its operand to one of these types as appropriate.

3. Known as noughts and crosses to readers outside the United States.

4. The typical hours that programmers work.

Chapter 4

1. Or base class.

2. I prefer the string keyword, but whichever representation a programmer selects, the code within a project ideally should be consistent.

3. This code could be improved with a using statement, a construct that we have avoided because it has not yet been introduced.

4. This code could be improved with a using statement, a construct that we have avoided because it has not yet been introduced.

5. Technically it could be caught by a compatible catch filter as well.

6. In general, developers should expect their users to perform unexpected actions, and therefore they should code defensively to handle “stupid user tricks.”

Chapter 5

1. This code could be improved with a using statement, a construct that we have avoided because it has not yet been introduced.

2. This code could be improved with a using statement, a construct that we have avoided because it has not yet been introduced.

3. We prefer _FirstName because the m in front of the name is unnecessary when compared with simply _, and by using the same casing as the property, it is possible to have only one string within the Visual Studio code template expansion tools, instead of having one for both the property name and the field name.

4. Apologies to Teller, Cher, Sting, Madonna, Bono, Prince, Liberace, et al.

5. Technically the application domain lifetime; the CLR’s virtual equivalent of an operating system process.

Chapter 6

1. Except for the corner case when the derived class is also a nested class of the base class.

Chapter 7

1. Unified Modeling Language (UML), a standard specification for modeling object design using graphical notation.

2. The others being pointer types and type parameter types. However, every interface type is convertible to System.Object, and it is permissible to call the methods of System.Object on any instance of an interface, so this is perhaps a hairsplitting distinction.

Chapter 9

1. Excluding nested types, which are private by default.

2. The C# standard does not specify whether the C# compiler or a separate utility takes care of extracting the XML data. However, all mainstream C# compilers include the functionality via a compile switch instead of within an additional utility.

3. See http://submain.com/ to learn more about GhostDoc.

4. See http://ndoc.sourceforge.net to learn more about NDoc.

Chapter 13

1. In this example, we use the term thermostat because people more commonly think of it in the context of heating and cooling systems. Technically, however, thermometer would be more appropriate.

Chapter 14

1. In fact, in both Silverlight and WinRT, the nongeneric collections have been removed.

Chapter 15

1. The result of a query expression is, as a practical matter, almost always IEnumerable<T> or a type derived from it. It is legal, though somewhat perverse, to create an implementation of the query methods that return other types; there is no requirement in the language that the result of a query expression be convertible to IEnumerable<T>.

Chapter 17

1. You cannot use a space in the FirstName property call, but if XML supported spaces in element names, this would be a potential disadvantage, so let’s ignore this fact.

Chapter 18

1. These libraries are available in .NET 3.5 by downloading the Reactive Extensions library for .NET 3.5, but this is not officially supported.

2. Technically we ought to say that “CPU” always refers to the physical chip and “core” may refer to a physical or virtual CPU. This distinction is unimportant for the purposes of this book and we will therefore use the terms interchangeably.

3. Exercise caution when using this polling technique. When creating a task from a delegate, as we have here, the task will be scheduled to run on a worker thread from the thread pool. This means that the current thread will loop until the work is complete on the worker thread. This technique works, but it might consume CPU resources unnecessarily. This polling technique is dangerously broken if, instead of scheduling the task to run on a worker thread, you schedule the task to execute in the future on the current thread. Since the current thread is in a loop polling the task, it will loop forever because the task will not complete until the current thread exits the loop.

4. Be careful when using tasks to asynchronously mutate collections. The tasks might be running on worker threads, and the collection might not be thread-safe. It is safer to fill in the collection from the main thread after the tasks are completed.

5. MSDN .NET Framework Developer Center, http://msdn.microsoft.com/en-us/library/system.threading.tasks.taskcontinuationoptions(v=vs.110).aspx.

6. In version 1.0 of the CLR, an unhandled exception on a worker thread terminated the thread but not the application. As a result, it was possible for a buggy program to have all its worker threads die, but the main thread would continue to run, even though the program was no longer doing any work. This is a confusing situation for users to be in; it is better to signal to the user that the application is in a bad state and terminate it before it can do any more harm.

7. As we discussed earlier, waiting for a fault continuation to complete is a strange thing to do because most of the time it will never be scheduled to run in the first place. This code is for illustrative purposes.

8. This technique of allowing third-party extension by looking for a particular method by its signature is used in two other C# features: LINQ looks for methods like Select() and Where() by name to implement the select and where contextual keywords, and the foreach loop does not require that the collection implement IEnumerable, just that it have an appropriate GetEnumerator() method.

9. Technically, it is an awaitable type as described in the Advanced Topic titled Awaiting Non-Task<T> Values.

10. For an example see Listing C.8 in Appendix C.

11. For a simple example of how to set the synchronization context of a thread, and how to use a task scheduler to schedule a task to that thread, see Listing C.8 in Appendix C.

Chapter 19

1. See http://bit.ly/Rx3point5

2. While at the C# level it’s a local, at the IL level it’s a field, and fields can be accessed from multiple threads.

Chapter 20

1. One particularly helpful resource for declaring Win32 APIs is www.pinvoke.net. This provides a great starting point for many APIs, helping to avoid some of the subtle problems that can arise when coding an external API call from scratch.

2. MSDN documentation

Chapter 21

1. This is available for free via mail, or via download at www.ecma-international.org/publications/standards/Ecma-334.htm.

2. This is available for free via mail, or via download at www.ecma-international.org/publications/standards/Ecma-335.htm.

3. Assuming you are not the unscrupulous type that is looking for such vulnerabilities.

4. Indeed, Microsoft has indicated that managed development will be the predominant means of writing applications for its Windows platform in the future, even those applications that integrate with the operating system.

5. This is partly because one of the primary CLI IDEs, Visual Studio .NET, lacks functionality for working with assemblies composed of multiple modules. Current implementations of Visual Studio .NET do not have integrated tools for building multimodule assemblies, and when they use such assemblies, IntelliSense does not fully function.

Appendix C

1. See Concurrent Programming on Windows by Joe Duffy (Addison-Wesley, 2009), pp. 421–426, for more information.

Appendix D

1. In theory, a similar delay is possible with timers that depend on a thread pool as well because the thread pool may already be busy.

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

OEBPS/html/graphics/18lis15a.jpg
i

catch(IOException)

{

YZATS
}
catch(NotSupportedException)
{

Y/
}

public static void Main(string[] args)

{

string url = "http://www. IntelliTect.con";
if(args.Length > 0)
{
url = args[e];
}

Console.Write(url);
Task task = WritelebRequestSizeAsync(url);

while(!task.Wait(160))
{

Console.Write(".

)
¥

"o

OEBPS/html/graphics/04fig01.jpg
System.Console.Write ("Enter your first name:
firstName = System.Console.ReadlLine ();

System.Console.Write ("Enter your age: ");
ageText = System.Console.ReadLine ();

Try Block:
age = int.Parse (ageText);
System.Console.WriteLine (
"Hi {@}! You are {1} months old.",
firstName, age*12);

!

FormatException Catch Block:
System.Console.WritelLine (
"The age entered \"{@}\" is not valid .",

ageText);
result = 1;
Exception Catch Block:
System.Console.WritelLine (
"Unexpected error: {@}",
exception.Message);

Yes

result = 1;
Finally Block:
System.Console.WritelLine (

"Goodbye {0@}",
firstName);

return result;

FormatException
exception thrown?

Exception
exception thrown?,

OEBPS/html/graphics/16lis09a.jpg
public T First
{
get{ return _first; }
private set{ _first = value; }
¥
private T _first;
public T Second
{
get{ return _second; }
private set{ _second = value; }

}
private T _second;

public T this[PairItem index]
{
get
{
switch (index)
{
case PairTtem.First:
return First;
case PairItem.Second:
return Second;
default :
throw new NotImplementedException(
string.Format (
"The enum {6} has not been implemented”,
index.Tostring()));

OEBPS/html/graphics/16lis09b.jpg
set

switch (index)
{
case PairItem.First:
First = value;
break;
case PairTtem.Second:
Second = value;
break;
default:
throw new NotImplementedException(
string. Format(
“"The enum {0} has not been implemented”,
index.Tostring()));

OEBPS/html/graphics/21fig01.jpg
class HelloWorld

{
static void Main()
{
System.Console.WriteLine(
“Hello. My name is Inigo Montoya");
}
}

C# Code

!

C# Compiler

)

.method private hidebysig static void Main() cil

managed
{
.entrypoint
//Code size 11 (oxb)
.maxstack 8
IL_geee: ldstr “Hello. My name is Inigo Montoya"
IL_pee5: call void

[mscorlib]System.Console: :WriteLine(string)
IL_0e0a: ret
} // end of method HelloWorld: :Main

CIL Code

!

Runtime

)

00000000 push ebp

00000001 mov ebp,esp

00000003 sub esp,28h

00000006 mov dword ptr [ebp-4],0
0000000d mov dword ptr [ebp-ech],e
00000014 Cmp dword ptr ds:[001833E6h],8
0000001 je 00000022

og0e001d call 75F9C9E0

00000022 mov ecx,dword ptr ds:[@1C31418h]
00000028 call dword ptr ds: [@3C8E854h]
0000002¢ nop

0000002f mov esp,ebp

00000031 pop ebp

00000032 ret

Machine Code

OEBPS/html/graphics/14lis01.jpg
using System;

class Program

{
static void Main()
{
var patenti =
new
it

Title = "Bifocals",
YearOfPublication = "1784"
b
var patent2 =
new
{
Title = "Phonograph”,
YearOfpublication = "1877"

14
var patent3 =
new
{
patentl.Title,
// Renamed to show property naming.

OEBPS/html/graphics/0727fig01.jpg
Multithreaded

~Thread| Programming
Thread Parallel Loops | Parallel.For()
ThreadPool before TPL @ L Parallel.ForEach<T>()

Executing
Canceling a Task Loop ®
Canceling Iterations N . Unhandled Exceptions
Parallel Loops Multithreading
Canceling
—PLING Quenys | Multithreaded
Task Basics Programming
Continuanitn)] (@) with Tasks @ Parallel LING
Unhandled Exceptions

OEBPS/html/graphics/21fig02.jpg
«subsystem»
Compress.ULdIl

«subsystem»System.dIl

«subsystem»
Compress.Algorithms.Netmodule

[

«subsystem» (e— «subsystem>
COmp|¥ess dil Compress.
: Resource

Assembly Boundary
——— File Boundary
————— Process/Appdomain Boundary

OEBPS/html/graphics/14lis04.jpg
using System;
using System.Collections.Generic;
using System.Ling;

class Program

{
static void Main()
{
var worldCup2006Finalists = new[]
{
new
{

TeanName = "France”,
Players = new string[]

{
“Fabien Barthez", "Gregory Coupet”,
“Mickael Landreau”, "Eric Abidal",
o
¥
3
new
{

TeamName = "Italy",

OEBPS/html/graphics/05lis15a.jpg
class Program

{

static void Main()

{
Employee employee = new Employee();
employee.FirstName = "Inigo”;
employee.LastName = "Montoya"
V72
// Password is private, so it cannot be
// accessed from outside the class.
// Console.riteLine(
// ("Password = {6}", employee.Password);

}

/"

OEBPS/html/graphics/14lis05.jpg
int[] array = new int[]{1, 2, 3, 4, 5, 6};

foreach (int item in array)

{
}

Console.WriteLine(item);

OEBPS/html/graphics/14lis02.jpg
class Program

{

static void Main()
{
var patentl =
new

{
Title = "Bifocals”,

Year0fPublication

1784"
b

var patent2 =
new

{

YearOfpublication
Title = "Phonograph”

“1g777,
b

var patent3 =
new

{

OEBPS/html/graphics/14lis03.jpg
using System;
using System.Collections.Generic;
class Program

{
static void Main()
{
Listcstrings seveniorldBlunders;
seventorldBlunders = new Listcstring>()
{
// Quotes from Ghandi
ealth without work”,
“Pleasure without conscience",
“Knowledge without character”,
“Commerce without morality",
“Science without humanity”,
orship without sacrifice,
"Politics without principle”
b
Print(sevenWorldBlunders);
}

private static void Print<T>(IEnumerable<T> items)

{
foreach (T item in items)
{

Console.WriteLine(item);

OEBPS/html/graphics/14lis08.jpg
System.Collections.Generic.Stack<int> stack =
new System.Collections.Generic.Stack<int>();
int number;

System.Collections.Generic.Stack<int>.Enumerator
enumerator;

s

// If IEnumerable<T> is implemented explicitly,
// then a cast is required.
// ((IEnumerablecint>)stack).GetEnumerator();
enumerator = stack.GetEnumerator();
while (enumerator.MoveNext())
{

number enumerator.Current;

Console. WriteLine(number)

}

OEBPS/html/graphics/14lis09.jpg
System.Collections.Generic. Stackcint> stack =
new System.Collections.Generic.Stackcint>();
System.Collections.Generic. Stack<int> . Enumerator

enumerator;
Ibisposable disposable;

enumerator = stack.GetEnumerator();
try
{

int number;
while (enumerator.MoveNext())

{
number = enumerator.Current;
Console.WriteLine(number) ;
¥
3
finally
{

// Explicit cast used for IEnumerator<T>.
disposable = (IDisposable) enumerator;
disposable.Dispose();

// IEnumerator will use the as operator unless IDisposable
// support is known at compile time.

// disposable = (enumerator as IDisposable);

// if (disposable != null)

/L

// disposable.Dispose();

/Y

OEBPS/html/graphics/14lis06.jpg
int number;
int[] tempArray;
int[] array = new int[1{1, 2, 3, 4, 5, 6};

tempArray = array;
for (int counter

{

int item = tempArray[counter];

; (counter < tempArray.Length); counter++)

Console.WriteLine(item);
}

OEBPS/html/graphics/14lis07.jpg
System.Collections.Generic.Stackcint> stack =
new System.Collections.Generic.Stack<int>();

int number;

e

// This code is conceptual, not the actual code.
while (stack.MoveNext())
{
number = stack.Current;
Console.WriteLine(number) ;

i

OEBPS/html/graphics/11lis06a.jpg
Console.SetCursorPosition(
currentPosition.X, currentPosition.Y);
Undo();
}

break;

case ConsoleKey .DownArrow:

case ConsoleKey.UpArrow:

case ConsoleKey.LeftArron:

case ConsoleKey.RightArrow:
// Savestate()
currentPosition = new Cell(

Console.CursorLeft, Console.CursorTop);

// Only type Cell allowed in call to Push().
path.Push(currentPosition);
break;

default:

Console.Beep(); // Added in C# 2.0
break;

Y

} while (key.Key != Consolekey.X); // Use X to quit.

OEBPS/html/graphics/14lis11.jpg
using System;
using System.Collections.Generic;
using System.Ling;

public class Patent

{
// Title of the published application
public string Title { get; set; }

// The date the application was officially published
public string YearOfPublication { get; set; }

// A unique number assigned to published applications
public string ApplicationNumber { get; set; }

public long[] InventorIds { get; set; }

public override string Tostring()
{
return string.Format("{8}({1})",
Title, YearOfPublication);
}
}

public class Inventor

{
public long Id { get; set; }
public string Name { get; set; }

OEBPS/html/graphics/14lis12.jpg
using System;
using System.Collections.Generic;
using System.Ling;

class Program

{

static void Main()

{
TEnumerablecPatent> patents = PatentData.Patents;
patents = patents.Where(

patent => patent.YearOfPublication.StartsKith("18"));

Print(patents);

}

I s

OEBPS/html/graphics/14lis10.jpg
System.Collections.Generic.Stack<int> stack =
new System.Collections.Generic.Stack<int>();
int number;

using(
System.Collections.Generic.Stack<int> . Enumerator
enumerator = stack.GetEnumerator())

{
while (enumerator.MoveNext())
{
nunber = enumerator. Current ;
Console.WriteLine(number) ;
}

OEBPS/html/graphics/05lis16a.jpg
private string LastName;
// LastName getter

public string GetLastName()
{

¥
// LastName setter
public void SetLastName(string newlLastName)

{

return LastName;

if(newLastName != null 8& newLastName != ")

{
}

LastName = newLastName;

OEBPS/html/graphics/14lis15.jpg
s

IEnumerablecstring> filelist = Directory.GetFiles(
rootDirectory, searchPattern);

var items = filelist.Select(
file =>

{

FileInfo fileInfo = new FileInfo(file);
return new

{

FileName = fileInfo.Name,
size = fileInfo.Length
35
hH
/o

OEBPS/html/graphics/14lis16.jpg
Vie

IEnumerablecstring> fileList = Directory.GetFiles(
rootDirectory, searchPattern);

var items = fileList.AsParallel().Select(

file =>
{
FileInfo fileInfo = new FileInfo(file);
return new
{
FileName fileInfo.Name,

size = fileInfo.Length
¥
b
s

OEBPS/html/graphics/14lis13.jpg
using System;
using System.Collections.Generic;
using System.Ling;

class Program

{
static void Main()
{
IEnumerablecPatent> patents = PatentData.Patents;
IEnumerablecPatent> patentsOf1800 = patents.Where(
patent => patent.YearOfPublication.StartsWith("18"));
IEnumerablecstring> items = patents0f1808.Select(
patent => patent.ToString());
Print(items);
¥
s

OEBPS/html/graphics/14lis14.jpg
s

IEnumerablecstring> filelist = Directory.GetFiles(
rootDirectory, searchPattern);

IEnumerable<FileInfo> files = filelist.Select(
file => new FileInfo(file));

s

OEBPS/html/graphics/14lis19.jpg
using System;
using System.Collections.Generic;
using System.Ling;

/o

TEnumerablecPatent> items;

Patent[] patents = PatentData.Patents;

items = patents.OrderBy(
patent => patent.YearOfPublication).ThenBy(
patent patent.Title);

Print(items);

Console.WriteLine();

items = patents.OrderByDescending(

patent => patent.YearOfPublication).ThenByDescending(
patent => patent.Title);
Print(items);

/.

OEBPS/html/graphics/14lis17.jpg
using System;
using System.Collections.Generic;
using System.Ling;

class Program

{

static void Main()

{
IEnumerable<Patent> patents = PatentData.Patents;
Console.WriteLine("Patent Count: {@}", patents.Count());
Console.WriteLine("Patent Count in 1800s: {0}",

patents.Count(patent =>
patent.Year0fPublication.StartsWith("18")));
¥
s

OEBPS/html/graphics/14lis18.jpg
using System;
using System.Collections.Generic;
using System.Ling;

s

IEnumerablecPatent> patents = PatentData.Patents;
bool result;
patents = patents.Where(

patent =>
{
if (result =
patent.Year0fPublication.StartsWith("18"))
{
// Side effects Like this in a predicate
// are used here to demonstrate a
// principle and should generally be
// avoided.
Console.Writeline("\t" + patent);
}
return result;

D

Console.Writeline("1. Patents prior to the 1900s ar
foreach (Patent patent in patents)

{

¥

OEBPS/html/graphics/18lis14a.jpg
try

{
exception.Handle(innerException =>
{
// Rethrowing rather than using
// if condition on the type.
ExceptionDispatchInfo.Capture(
exception. InnerException)
_Throw();
return true;
s
}
catch(WebException)
{
Ve
¥
catch(IOException)
{
e
}
catch(NotSupportedException)
{
11 ...
}

private static Task WriteWebRequestSizeAsync(
string url)

OEBPS/html/graphics/18lis14b.jpg
StreanReader reader = null;
WebRequest webRequest =
WebRequest .Create(url);

Task task =
webRequest .GetResponseAsync()
.ContinueWith(antecedent =>

{
WebResponse response =
antecedent.Result;
reader =
new StreanReader(
response. GetResponseStrean()) ;
return reader.ReadToEndAsync();
H
~Unwrap()
.Continuewith(antecedent =>
{
if(reader 1= null) reader.Dispose();
string text = antecedent.Result;
Console. WriteLine(
FormatBytes(text.Length));
s

return task;

s

OEBPS/html/graphics/08lis09a.jpg
ConnectionState connectionState;
s
switch (connectionState)
{
case ConnectionState.Connected:
s
break;
case ConnectionState.Connecting:
YZasn
break;
case ConnectionState.Disconnected:
7.
break;
case ConnectionState.Disconnecting:
s
break;

OEBPS/html/graphics/04out04.jpg
>Dounloader-exe

ERROR: You must specify the URL to be downloaded
Downloader-exe <URL> <TargetFileName>

OEBPS/html/graphics/18lis17a.jpg
process.Exited

{

= (sender, localEventArgs)

taskCs. SetResult(process);
b

cancellationToken
.ThrowIfCancellationRequested();

process.Start();

cancellationToken. Register(()

{

process. CloseMainWindow();

N
return taskCs.Task;

e

OEBPS/html/graphics/0635_fig01.jpg
Defining
Syntax
yield

State

yield break

. Building
Returning null Custom
or an Empty -
Collection Collections

@ Providing an
Index Operator

IList<T>

IDictionary<TKey, TValue>
IComparable<T>
ICollection<T>

More Collection
Interfaces

Primary |LSt<T>
Collection [Dictionary<TKey, TValue>
Classes |SortedDictionary<TKey, TValue>

and SortedList<T>

Stack<T>

Queue<T>

LinkedList<T>

OEBPS/html/graphics/03lis07a.jpg
“{e} != {1}", doubleNumberl, (double)floatNumber);

Trace.Assert(doubleNumberl != doubleNumber2);
// Displays: 4.20000006258488 |= 4.2
System.Console.WriteLine(

"{0} 1= {1}", doubleNumber1, doubleNumber2);

Trace.Assert(floatNunber |= doubleNumber2);
// Displays: 4.2F 1= 4.2D
System.Console.WriteLine(

"{0}F I= {1}D", floatNumber, doubleNumber2);

Trace.Assert((double)d.2F I= 4.2D);
// Display: 4.19999980926514 I= 4.2
System.Console. WriteLine(

{0} 1= {1}", (double)d.2F, 4.20);

Trace.Assert(4.2F 1= 4.20);
// Display: 4.2F 1= 4.2D
System.Console. WriteLine(

"{0}F != {1}D", 4.2F, 4.20);

OEBPS/html/graphics/app-d_lis02a.jpg
throw new ApplicationException(
" _Count < 9");
b

Console.WriteLine(
“(Alarm Thread Id) {0} != {1} (Main Thread Id)",
_AlarmThreadId,

Thread. CurrentThread. ManagedThreadId) ;
Console.WriteLine(
“Final Count = {6}", _Count);
}

static void Alarm(object state)

{

_Count+;

Console.WriteLine("{0}:- {1}",
DateTime.Now.ToString("T"),
_Count);

if (_Count >= 9)

{
_AlarnThreadId =
Thread. CurrentThread . ManagedThreadId;
_ResetEvent.Set();
}

OEBPS/html/graphics/06lis22.jpg
public static void Save(object data)
{

if (data is string)

{
i

data = Encrypt((string) data);

YZann

OEBPS/html/graphics/06lis20.jpg
public class Program

{

public static void Main()

{

Pdaltem[] pda = new Pdaltem[3];

Contact contact
contact.Address
pdafe] = contact;

new Contact("Sherlock Holmes");
"2218B Baker Street, London, England";

Appointment appointment =
new Appointment("Soccer tournament”);

appointment .StartDateTime = new DateTime(2008, 7, 18);

appointment .EndDateTime = new DateTime(2008, 7, 19);

appointment .Location = "Estadio da Machava";

pda[1] = appointment;

contact = new Contact(“Hercule Poiro
contact.Address =

")

OEBPS/html/graphics/xxix_fig01.jpg
Partal Classes () Special Classes

Nested Classes

Static Fields

Static Methods ® Static

Static Constructors
Static Classes

Declaring a Constructor

Default Constructors
Overloading Constructors

. Extension Methods

(1) Declaring and Instantiating a Class

Instance Declaring an Instance Field
Fields | Accessing an Instance Field

Const and readonly Modifiers

@ Instance Methods

@ Access Modifiers

Constructors
& Finalizers

Calling one Constructor Using this

Finalizers

Declaring a Property
Naming Conventions
Using Properties with Validation

Read-Only and Write-Only Properties
Access Modifiers on Getters and Setters
Properties as Virtual Fields

Properties and Method Calls Not Allowed
as ref or out Parameter Values

OEBPS/html/graphics/05lis17a.jpg
FirstName = value;

}
}

private string _FirstName;

// LastName property
public string LastName
{

get

{

return _LastName;

_LastName = value;
¥
}
private string _LastName;
e
}

OEBPS/html/graphics/04out14.jpg
Enter your first name: Inigo
Enter your age: forty-two

Unhandled Exceptio:
correct format-.
at System-Number.StringToNumber(String str. NumberStyles optionsa
NumberBufferg nunber. NumberFormatInfo info. Boolean parseDecimal)
at System-Number-ParseInt32(String s- NumberStyles styles
NumberFornatInfo info)
at ExceptionHandling-Main()
Goodbye Inigo

System-FormatException: Input string was not in

OEBPS/html/graphics/18lis16a.jpg
WebResponse response =
await webRequest.GetResponseAsync();
using(StreamReader reader
new StreamReader(
response.GetResponsestrean()))

{
string text =
(await reader.ReadToEndAsync());
Console.WriteLine(
FormatBytes(text.Length));
}

¥
Task task = writeNebRequestSizeAsync(url);
while (!task.Wait(100))
{

Console.Write(".");

}

s

OEBPS/html/graphics/04out12.jpg
Hey you!
Enter your first name: Inigo
Enter your age: forty-two

Unhandled Exception: System.FormatException: Input string uas
not in a correct format.
at System-Number-ParseInt32(String s. NumberStyles styles
NumberFormatInfo info)
at ExceptionHandling-Main()

OEBPS/html/graphics/11lis04a.jpg
/// </summary>
public Guid Value{ get; private set; }

/// <summary>

/// Indicates whether there is a value or whether
/// the value is "null"

/// </summary>

public bool HasValue{ get; private set; }

OEBPS/html/graphics/05lis18a.jpg
set
{
_FirstName = value;
}
}

private string _FirstName;

// LastName property
public string LastName

{
get
{
return _LastName;
}
set
{
_LastName = value;
¥
}
private string _LastName;
/4

// Title property
public string Title { get; set; }

// Manager property
public Employee Manager { get; set; }

OEBPS/html/graphics/app-d_out01.jpg
12:
12:
12:
12:
12:
12:
12:
12:
12:

19:
19:
19:
19:
19:
19:
19:
19:
19:
(Alarn Thread

EN
o
3
39
40
41
42
43
44

A
AN
AM
AN
AN
AN
AN
AN
AN

Final Count

1
2
3
y
5
b
7
8
q
I
3

1 (Main Thread Id)

OEBPS/html/graphics/0085_fig01.jpg
#if, #elif, #else, and #endif

#define and #undef
#error and #warning
#pragma
nowarn:<warn list>
#line
#region/#endregion

®

Preprocessor
Directives

Arithmetic Binary
Operators

@ Operators Assignment Operators

break Jump
“oontinue | ®Statements
goto
while Control Flow
do-while Statements
for
foreach
switch

Operators and
Control Flow

Increment and
Decrement Operators

Constant Expressions

@ Boolean Expressions

@ Bitwise Operators

OEBPS/html/graphics/0736fig01.jpg
Time

THREAD A

THREAD B

Acquires a lock on a

Acquires a lock on b

Requests a lock on b

Requests a lock on a

Deadlocks, waiting for b

Deadlocks, waiting fora

OEBPS/html/graphics/08lis07a.jpg
YZaEen

Angle angle = new Angle(25, 58, 23);
object objectAngle = angle; // Box
Console.Write(((Angle)objectAngle).Degrees);

// Unbox, modify unboxed value, and discard value
((Angle)objectAngle).MoveTo(26, 58, 23);
Console.Write(", " + ((Angle)objectAngle).Degrees);

// Box, modify boxed value, and discard reference to box
((1Angle)angle).MoveTo(26, 58, 23);
Console.Write(", " + ((Angle)angle).Degrees);

// Modify boxed value directly
((IAngle)objectAngle) .MoveTo(26, 58, 23);
Console.WriteLine(", " + ((Angle)objectAngle).Degrees);

s

OEBPS/html/graphics/03tab01b.jpg
break statement

break;

goto statement

goto identifier;

goto case const-expression;

goto default;

case
GetMove();
break;
default:
System. Console. WriteLine(
input);
break;

OEBPS/html/graphics/06lis07.jpg
public class Program

{
public static void Main()
{
Contact contact = new Contact();
contact.Name = "Inigo Montoya";
// ERROR: ‘Pdaltem.ObjectKey' is inaccessible
// due to its protection Level
// contact.ObjectKey = Guid.NewGuid();
)
¥
public class PdaItem
{
protected Guid ObjectKey
{
get { return _ObjectKey; }
set { _Objectkey = value; }
}

private Guid _ObjectKey;

s
}

OEBPS/html/graphics/05lis19a.jpg
¥
else
{
// Remove any whitespace around
// the new Last name.
value = value.Trim();
if(value == "")

{

throw new ArgumentException(

"LastName cannot be blank.", "value");*
¥
else
_LastName = value;
}
¥

}
private string _LastName;
yan

}

OEBPS/html/graphics/06lis08.jpg
public class PdaItem

{
s

¥

public class Person

{
yZan

¥
public class Contact : Pdaltem
{
private Person InternalPerson { get; set; }

public string FirstName

{
get { return InternalPerson.FirstName; }
set { InternalPerson.FirstName = value; }
}
public string LastName
{
get { return InternalPerson.lastName; }
set { InternalPerson.lastName = value; }
¥
YZan

OEBPS/html/graphics/06lis05.jpg
class GPSCoordinates

{
/7

public static implicit operator UTMCoordinates(
GPSCoordinates coordinates)
{
e
}
¥

OEBPS/html/graphics/06lis06.jpg
public class Pdaltem

{
private string _Name;
s
3
public class Contact : PdaItem
{
YZaen
¥
public class Program
{
public static void Main()
{
Contact contact = new Contact();
// ERROR: 'Pdaltem. _Name' is inaccessible
// due to its protection Level
//contact._Name = "Inigo Montoya";
}

OEBPS/html/graphics/03tab01a.jpg
for statement

for(for-initializer;
boolean-expression;
for-iterator)
embedded-statenent

for (int count = 1;
count <= 18;
count++)
{
System.Console.WriteLine(
“count = {0}", count);

foreach statement

foreach(type identifier in
expression)
embedded-statement

continue statement

continue;

foreach (char letter in email)
{
if(1insideDomain)
{
if (letter
{

@)

insideDomain = true;

¥
continue;
}
System.Console.Write(
letter);
}
switch statement switch(governing-type-expression) switch(input)
{ {

case const-expression:
statement-1list
jump- statement
default:
statement-1list
Jump-statement

case "exit":

case "quit":
System. Console. WriteLine(

"Exiting app....");

break;

case "restar
Reset();
goto case "start";

OEBPS/html/graphics/06lis04.jpg
public class Program
{
public static void Main()
{
// Derived types can be implicitly converted to
// base types
Contact contact = new Contact();
PdaItem item = contact;

e

// Base types must be cast explicitly to derived types
contact = (Contact)item;
/o

OEBPS/html/graphics/06lis01.jpg
public class Pdaltem

£
public string Name { get; set; }

public DateTime LastUpdated { get; set; }
¥

// Define the Contact class as inheriting the PdaItem class
public class Contact : Pdaltem
{
public string Address { get; set; }
public string Phone { get; set; }
}

OEBPS/html/graphics/06lis09.jpg
public sealed class CommandLineParser

{
s

)i

// ERROR: Sealed classes cannot be derived from
public sealed class DerivedCommandLineParser :
CommandL ineParser
{
s
}

OEBPS/html/graphics/0161_pro01.jpg
System.Console.WriteLine(
"Your full name is {1} {@}", lastName, firstName)

OEBPS/html/graphics/05lis03.jpg
class Program

{

static void Main()

{
Employee employeel = new Employee();
Employee employee2;
employee2 = new Employee();
Increasesalary(employeel);

}

OEBPS/html/graphics/05lis02.jpg
class Program

{
static void Main()
{
Employee employeel, employee?;
s
¥

static void Increasesalary(Employee employee)
{

¥
}

s

OEBPS/html/graphics/06tab02.jpg
Method Name

Description

public virtual bool Equals(object o)

Returns true if the object supplied
as a parameter is equal in value,
not necessarily in reference, to the
instance.

public virtual int GetHashCode()

Returns an integer corresponding
to an evenly spread hash code. This
is useful for collections such as
HashTable collections.

public Type GetType()

Returns an object of type System. Type
corresponding to the type of the object
instance.

public static bool ReferenceEquals(
object a, object b)

Returns true if the two supplied
parameters refer to the same object.

public virtual string ToString()

Returns a string representation of the
object instance.

public virtual void Finalize()

An alias for the destructor; informs the
object to prepare for termination. C#
prevents calling this method directly.

protected object MemberwiseClone()

Clones the object in question by
performing a shallow copy; references
are copied, but not the data within a
referenced type.

OEBPS/html/graphics/05lis06.jpg
class Program

{

static void Main()

{

i

Employee employeel = new Employee();
Employee employee2;
employee2 = new Employee();

employeel.FirstName = "Inigo";
employeel. LastName = "Montoya";
employeel.Salary = "Too Little";
IncreaseSalary(employeel);
Console.WriteLine(
"{ey {1}: {2},
employeel.FirstName,
employeel.LastName,
employeel.Salary);
s

static void Increasesalary(Employee employee)

{

i
}

employee. Salary = "Enough to survive on";

OEBPS/html/graphics/05lis09.jpg
class Employee

{
public string FirstName;
public string LastName;
public string Salary;

public string GetName()
{

¥

public void SetName(
string newFirstName, string newLastName)

return FirstName + " " + LastName;

{
this.FirstName = newFirstName;
this.LastName = newLastName;

OEBPS/html/graphics/06lis10.jpg
public class Pdaltem

{
public virtual string Name { get; set; }
s
}
public class Contact : Pdaltem
{
public override string Name
{
get
{
return FirstName + " " + LastName;
}
set
{
string[] names = value.Split(’ ');
// Error handling not shown.
FirstName = names[0];
LastName = names[1];
}
}

public string FirstName { get; set; }
public string LastName { get; set; }

e

OEBPS/html/graphics/05lis08.jpg
class Progran

{
static void Main()
{
Employee employeel = new Employee();
Employee employee2;
employee2 = new Employee();
employeel.FirstNane = "Inigo”;
employeel.LastName = "Montoy:
employeel.Salary = "Too Little";
IncreaseSalary(employeel);
Console.WriteLine(
"{ey: {1}"
employeel.GetName(),
employeel.Salary);
s
¥
Va

OEBPS/html/graphics/06lis11.jpg
public class Program

{

public static void Main()

{

Contact contact;
PdaItem item;

contact = new Contact();
item = contact;

// Set the name via PdaItem variable
item.Name = "Inigo Montoya";

// Display that Firsthame & LastName

// properties were set.

Console.WriteLine("{0} {1}",
contact.FirstName, contact.LastName);

OEBPS/html/graphics/app-d_lis01b.jpg
¥

static void Alarm(
object sender, ElapsedEventArgs eventArgs)

{

_Count++;

Console.WriteLine("{0}:- {1}",
eventArgs.SignalTime.ToString("
_Count);

if (_Count >= 9)

{
_AlarmThreadId =
Thread. CurrentThread . ManagedThreadId;
_ResetEvent.Set();
}

OEBPS/html/graphics/app-d_lis01a.jpg
timer.Start();

// Wait for Alarm to fire for the 18th time.
_ResetEvent.WaitOne();

// Verify that the thread executing the alarm
// Is different from the thread executing Main
if(_AlarnThreadId ==

Thread.CurrentThread. ManagedThreadId)

{
throw new ApplicationException(
"Thread Ids are the same.");
i
if(_Count < 9)
{
throw new ApplicationException(
" _Count < 9");
¥
Console.WriteLine(
“(Alarm Thread Id) {6} != {1} (Main Thread Id)",
_AlarmThreadId,

Thread. CurrentThread. ManagedThreadId) ;
Console.WriteLine(

“Final Count = {@}", _Count);

OEBPS/html/graphics/0533_fig01.jpg
@ Customizing the Event
Implementation @ Why Events?

@ Event Declaration

Generics and

Delegates @ Coding Conventions

OEBPS/html/graphics/06lis18.jpg
// Define an abstract class
public abstract class Pdaltem

{
public PdaItem(string name)

{
¥

Name = name;

public virtual string Name { get; set; }
)]

public class Program

{
public static void Main()

{
Pdaltem item;
// ERROR: Cannot create an instance of the abstract class
// item = new PdaItem("Inigo Montoya");

OEBPS/html/graphics/06lis19.jpg
// Define an abstract class
public abstract class Pdaltem

{
public PdaItem(string name)
{
Name = name;
¥

public virtual string Name { get; set; }
public abstract string GetSummary();

}

public class Contact : Pdaltem

! public override string Name
{
get
{
return FirstName + " " + LastName;
}
set

OEBPS/html/graphics/06lis16.jpg
public class Address

{
public string StreetAddress;

public string City;
public string State;
public string Zip;

public override string ToString()
{

return string.Format("{0}" + Environment.NewLine +

"{1}, {2} {31,
StreetAddress, City, State, Zip);

}

public class InternationalAddress : Address

{
public string Country;

public override string ToString()
{

return base.ToString() + Environment.NewLine +
Country;

OEBPS/html/graphics/06lis14.jpg
public class Program
{

public class BaseClass

{
public void DisplayName()
{

Console.WriteLine("BaseClass");

i

public class DerivedClass : BaseClass
{
// Compiler WARNING: DisplayName() hides inherited

// member. Use the new keyword if hiding was intended.
public virtual void DisplayName()

{
i

Console.WriteLine("DerivedClass");

}

public class SubDerivedClass : DerivedClass
{
public override void DisplayName()
{
Console.WriteLine("SubDerivedClass");
}

OEBPS/html/graphics/06lis15.jpg
class A

{
public virtual void Method()
{
}

}

class B : A

{
public override sealed void Method()
{
}

}

class C : B

{

// ERROR: Cannot override sealed members
// public override void Method()
/A
/Y
}

OEBPS/html/graphics/18lis10a.jpg
¥

cancellationTokenSource.Cancel();
Console.WriteLine(stars);
task.Wait();

Console.WriteLine();

private static void WritePi(

{

CancellationToken cancellationToken)

const int batchSize = 1;
string piSection = string.Empty;
int i = 0;

while(!cancellationToken.IsCancellationRequested
|| i == int.MaxValue)

{
piSection = PiCalculator.Calculate(
batchSize, (i++) * batchsize);
Console.Write(piSection);
}

OEBPS/html/graphics/0423_fig01.jpg
@ Custom Exceptions @ Multiple Exception Types

Exception (2) catching Exceptions

Handling

@ Guidelines @ General Catch Block

OEBPS/html/graphics/06tab01.jpg
Activity

Code

Programmer A defines
class Person that includes
properties FirstName and
LastName.

public class Person
{
public string FirstName { get; set; }
public string LastName { get; set; }
}

Programmer B derives from
Person and defines Contact
with the additional property,
Name. In addition, he defines
the Program class whose
Main() method instantiates
Contact, assigns Name, and
then prints out the name.

public class Contact : Person
{
public string Name
{
get
{
return FirstName + " " + LastName;
)
set
{
string[] names = value.Split(' ');
// Error handling not shown.
FirstName = names[8];
LastName = names[1];
¥
}

OEBPS/html/graphics/05lis12.jpg
class Employee

{
public

public
public

public
{

string FirstName;
string LastName;
string Salary;

void Save()

DataStorage. Store(this);

¥
)]

class DataStorage

{

// Save an employee object to a file
// named with the Employee name.

public
{

static void Store(Employee employee)

s

}
}

OEBPS/html/graphics/05lis11.jpg
class Employee

{
YZan

public string GetName()
{
return FirstName + " " + LastName;

}

public void SetName(string newFirstName, string newlLastName)
{
this.FirstName = newFirstName;
this.LastName = newLastName;
Console.WriteLine("Name changed to '{0}'",
this.GetName());

}
¥
class Program
{
static void Main()
{
Employee employee = new Employee();
employee. SetName("Inigo”, "Montoya");
s
}
e

OEBPS/html/graphics/05lis14.jpg
class Employee

{

s

}

// 10 namespace
using System;
using System.I0;

class DataStorage

{

/o

public static Employee Load(string firstName, string lastName)

{

Employee employee = new Employee();

// Instantiate a FileStream using FirstNameLastName.dat

// for the filename. FileMode.Open will open
// an existing file or else report an error.
FileStream stream = new FileStream(

firstName + lastName + ".dat”, FileMode.Open);’

OEBPS/html/graphics/05lis13.jpg
using System;
// IO namespace
using System.10;

class DataStorage
{
// Save an employee object to a file
// named with the Employee name.
// Error handling not shoun.
public static void Store(Employee employee)
{
// Instantiate a FileStream using FirstNameLastName.dat
// for the Filename. FileMode.Create will force
// a new file to be created or override an
// existing file.
FileStream stream = new FileStream(
employee.FirstName + employee.LastName + ".dat",

FileMode.Create);'

OEBPS/html/graphics/05lis16.jpg
class Employee

{

private string FirstName;
// Firsthame getter
public string GetFirstName()

{

¥
// FirstName setter
public void SetFirstName(string newFirstName)

{

return FirstName;

if (newFirstName !

{

null && newFirstName != "")

FirstName = newFirstName;

OEBPS/html/graphics/05lis15.jpg
class Employee

{
public string FirstName;
public string LastName;
public string Salary;
private string Password;
private bool IsAuthenticated;

public bool Logon(string password)

{
if(Password == password)

{
¥

return IsAuthenticated;

IsAuthenticated = true;

3

public bool GetIsAuthenticated()

&
return IsAuthenticated;

i
s

OEBPS/html/graphics/05lis18.jpg
class Program

{

static void Main()

{

¥
¥

Employee employeel =
new Employee();
Employee employee2 =
new Employee();

// Call the FirstName property's setter.
employeel.FirstName = "Inigo";

// Call the FirstName property's getter.
System.Console.WriteLine(employeel.FirstName);

// Assign an auto-implemented property
employee2.Title = "Computer Nerd";
employeel.Manager = employee2;

// Print employeel's manager's title.
System.Console. WriteLine(employeel . Nanager.Title);

class Employee

{

// Firsthame property
public string FirstName

{

get
{

return _FirstName;

}

OEBPS/html/graphics/05lis17.jpg
class Program

1
static void Main()
{
Employee employee = new Employee();
// Call the FirstName property's setter.
employee.FirstName = "Inigo”;
// Call the FirstName property's getter.
System. Console.WriteLine(employee. FirstName);
¥
¥

class Employee
{
// FirstName property
public string FirstName
{
get
{
return _FirstName;
}
set

{

OEBPS/html/graphics/05lis19.jpg
class Employee

{
s
public void Initialize(
string newFirstiame, string newLastName)

{
// Use property inside the Employee
// class as well.
FirstName = newFirstName;
LastName = newLastName;
}

// LastName property
public string LastName
{
get
{
return _LastName;
}
set
{
// Validate LastName assignment
if(value == null)
{
// Report error
throw new ArgumentNullException("value");

OEBPS/html/graphics/07tab01.jpg
Abstract Classes

Interfaces

Cannot be instantiated directly, only by
instantiating a derived class.

Cannot be instantiated
directly, only by
instantiating an
implementing type.

Derived classes must either be abstract
themselves, or must implement all abstract
members.

Implementing types must
implement all interface
members.

Can add additional nonabstract members that
all derived classes can inherit without breaking
cross-version compatibility.

Adding additional
members to interfaces
breaks the version
compatibility.

Can declare both properties and fields.

Can declare properties but
not fields.

Members may be instance, virtual, abstract, or
static and may provide implementations for
nonabstract members that can be used by derived
classes.

All members are
automatically treated
as though they were
abstract, and therefore
cannot include any
implementation.

A derived class may derive from only a single
base class.

An implementing type may
arbitrarily implement many
interfaces.

OEBPS/html/graphics/14lis22.jpg
using System;
using System.Ling;

Vs

Department[] departments = CorporateData.Departments;
Employee[] employees = CorporateData.Employees;

var items = departments.Join(

employees,
department => department.Id,
employee => employee.DepartmentId,
(department, employee) => new
{

department.Td,

department .Name,

Employee = employee
hH

foreach (var item in items)
{
Console.WriteLine("{0}",
item.Name);
Console.WriteLine("\t" + item.Employee);

s

OEBPS/html/graphics/14lis23.jpg
using System;
using System.Ling;

s
TEnumerablecEmployee> employees = CorporateData.Employees;

TEnumerable<IGrouping<int, Employee>> groupedemployees =
employees.GroupBy ((employee) => employee.DepartmentId);

foreach(IGrouping<int, Employee> employeeGroup in
groupedEmployees)

{

Console.liriteLine();
foreach(Employee employee in employeeGroup)

{

Console.lriteLine("\t" + employee);
}
Console.WriteLine(

"\tCount: " + employeeGroup.Count());

OEBPS/html/graphics/14lis20.jpg
public class Department
1
public long Id { get; set; }
public string Name { get; set; }
public override string ToString()
{
return string.Format("{0}", Name);
}
¥

public class Employee

{
public int Id { get; set; }
public string Name { get; set; }
public string Title { get; set; }
public int DepartmentId { get; set; }
public override string ToString()

{
i

return string.Format("{@} ({1})", Name, Title);

¥

public static class CorporateData
{
public static readonly Department[] Departments =
new Department[]
{
new Department (){
Name="Corporate", Id=0},

new Department (){

"Finance", Id=1},

OEBPS/html/graphics/14lis21.jpg
using System;
using System.Ling;

s

Department[] departments = CorporateData.Departments;
Employee[] employees = CorporateData.Employees;

var items = employees.Join(

departments,
employee => employee.DepartmentId,
department => department.Id,
(employee, department) => new
{

employee.1d,

enployee. Name,

employee. Title,

Department = department
s

foreach (var item in items)
{
Console.WriteLine("{0} ({1))",
item.Name, item.Title);
Console.Writeline("\t" + item.Department);

s

OEBPS/html/graphics/14lis26.jpg
using System;
using System.Collections.Generic;
using System.Ling;

Vs
var worldCup20@6Finalists = new[]
{
new
{

TeamName "France",
Players = new string[]

{
“Fabien Barthez", "Gregory Coupet”,
“Mickael Landreau”, "Eric Abidal",
“Jean-Alain Boumsong", "Pascal Chimbonda”,
William Gallas", "Gael Givet",
Willy Sagnol”, "Mikael Silvestre”,
Lilian Thuram”, "Vikash Dhorasoo”,
“"Alou Diarra”, "Claude Makelele",
Florent Malouda", "Patrick Vieira”,
Zinedine Zidane”, "Djibril Cisse",
"Thierry Henry", "Franck Ribery”,
“Louis Saha", "David Trezeguet",
"Sylvain Wiltord",

}

b

new

OEBPS/html/graphics/14lis27.jpg
using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

class Program
{
static void Main()
{
IEnumerablecobject> stuff =
new object[] { new object(), 1, 3, 5, 7, 9,
"\"thing\"", Guid.NewGuid() };
Print("stuff: {0}", stuff);
IEnumerablecint> even = new int[] { 0, 2, 4, 6, 8 };
Print("Even integers: {0}", even);

IEnumerablecint> odd = stuff.0fTypec<int>();
Print("0dd integers: {6}", odd);

TEnumerablecint> numbers = even.Union(odd);
Print(“Union of odd and even: {6}", numbers);

Print("Union with even: {6}", numbers.Union(even));
Print("Concat with odd: {6}", numbers.Concat(odd));
Print("Intersection with even: {0}",

OEBPS/html/graphics/14lis24.jpg
using System;
using System.Ling;

s

Department[] departments = CorporateData.Departments;
Employee[] employees = CorporateData.Employees;

var items = departments.GroupJoin(

employees,
department => department.Id,
employee => employee.DepartmentId,
(department, departmentEmployees) => new
{

department.Id,

department .Name,

Employees = departmentEmployees

bhH

foreach (var item in items)

{

Console.WriteLine("{0}",

item.Name) ;
foreach (Employee employee in item.Employees)
{

Console.WriteLine("\t" + employee);

}

s

OEBPS/html/graphics/14lis25.jpg
using System;
using System.Ling;

/o

Department[] departments = CorporateData.Departments;
Employee[] employees = CorporateData.Employees;

var items = departments.GroupJoin(
employees,
department => department.Id,
employee => employee.DepartmentId,
(department, departmentEmployees) => new
{
department .Id,
department .Name,
Employees = departmentEmployees
}).SelectMany(
departmentRecord =>
departmentRecord. Employees.Defaul tIfEmpty(),
(departmentRecord, employee) => new
{

departmentRecord. Id,

OEBPS/html/graphics/12out05.jpg
- y) D> x>y
(Parameter)

(Parameter)
- y) D> xxy) > (x+y)
x (Parameter)
y (Parameter)
x (Parameter)

y (Parameter)

OEBPS/html/graphics/18lis13a.jpg
Console.Write("...

using(StreanReader reader =
new StreamReader(
response.GetResponseStrean()))

string text =
reader.ReadToEnd() ;

Console.WriteLine(
FormatBytes(text.Length));

}
}
catch(WebException)
{

e
}
catch(IOException)
{

7
}
catch(NotSupportedException)
{

17
}

i

static public string FormatBytes(long bytes)
{

OEBPS/html/graphics/05lis10.jpg
class Employee

{
public string FirstName;
public string LastName;
public string Salary;

public string GetName()
{

return Firsthame + + LastName;

// Caution: Parameter names use Pascal case
public void SetName(string FirstName, string LastName)
{

this.FirstName = FirstName;
this.LastName = LastName;

OEBPS/html/graphics/18lis13b.jpg
string[] magnitudes =
new string[] { "GB", "M8", "
long max =
(long)Math.Pow(1624, magnitudes.Length);

", "Bytes" };

return string.Format("{1:##.4%} {0}",
magnitudes . FirstOrDefault(
magnitude =>
bytes > (max /= 1024)) ?? "@ Bytes”,
(decimal)bytes / (decimal)max).Trim();

OEBPS/html/graphics/05lis23.jpg
s

.field private string _FirstName
.method public hidebysig specialname instance string
get_FirstName() cil managed

{

// Code size 12 (oxc)

.maxstack 1

.locals init (string V_0)

IL_0000: nop

IL_6001: 1darg.0

IL_6002: 1dfld string Employee::_FirstName
stloc.o
br.s IL_o6ea

ldloc.@
o ret
} // end of method Employee: :get_Firsthame

OEBPS/html/graphics/15lis17.jpg
private static void ShowContextualKeywords3()

{
IEnumerable<string> selection =

Keywords.Where(word => word.Contains('*'));

s

/o

OEBPS/html/graphics/05lis22.jpg
class Program

{
static void Main()
{
Employee employeel = new Employee();
employeel.Name = "Inigo Montoya"
System. Console. WriteLine(employeel.Name) ;
s
¥
¥
class Employee
{
s

// FirstName property
public string FirstName

{
get

{

return _FirstName;

_Firstiame = value;

OEBPS/html/graphics/15lis16.jpg
private static void ShowContextualKeywordsi()
{

IEnumerable<string> selection =
from word in Keywords
where word. Contains('*")
select word;
YZnen

s

OEBPS/html/graphics/05lis25.jpg
class Employee
{
// Employee constructor
public Employee(string firstName, string lastName)
{
FirstName = firstName;
LastName = lastName;

}

public string FirstName{ get; set; }
public string LastName{ get; set; }
public string Salary{ get; set; }

s

OEBPS/html/graphics/15lis15.jpg
using System;
using System.Collections.Generic;
using System.Ling;

s

public static void ListMemberNames()
{
IEnumerablecstring> enumerableMethodNames = (
from method in typeof(Enumerable).GetMembers(
System.Reflection.BindingFlags.Static |
System.Reflection.BindingFlags.Public)
select method.Name).Distinct();
foreach(string method in enumerableMethodNames)
{
Console.Write(" {0},", method);
}

OEBPS/html/graphics/05lis24.jpg
.property instance string FirstName()
{
.get instance string Program::get_FirstName()
.set instance void Program: :set_FirstName(string)
} // end of property Program: :FirstName

OEBPS/html/graphics/15lis14.jpg
var numbers = new[] { 1, 2, 3 };
var product =
from word in Keywords
from number in numbers
select new {word, number};

OEBPS/html/graphics/05lis27.jpg
class Program

{

static void Main()

{
Employee employee;
// ERRO! No overload for method ‘Employee’
// takes ‘0" arguments.
employee = new Employee();
/e

}

OEBPS/html/graphics/15lis13.jpg
var selection =
rom word in Keywords
from character in word
select character;

OEBPS/html/graphics/05lis26.jpg
class Program
{
static void Main()
{
Employee employee;
employee = new Employee("Inigo", "Montoya");
employee.Salary = "Too Little";
System. Console. WriteLine(
"{ey {1}: {2}",
employee. FirstName,
employee.LastName,
enployee. Salary);

OEBPS/html/graphics/15lis12.jpg
using System;
using System.Collections.Generic;
using System.Ling;

s

private static void Groupkeywords1()

{
var selection =
from word in Keywords
group word by word.Contains('*")
into groups
select new

{
IsContextualKeyword = groups.Key,

Items = groups

b
e

s

OEBPS/html/graphics/05lis29.jpg
class Program

{
static void Main()
{
ListcEmployee> employees = new List<Employee>()
{
new Employee("Inigo”, “Montoya"),
new Employee("Chuck”, “"McAtee")
b
s
¥

OEBPS/html/graphics/15lis11.jpg
using System;
using System.Collections.Generic;
using System.Ling;

e
private static void GroupKeywordsl()
{
IEnumerable<IGrouping<bool, string>> keywordGroups
from word in Keywords
group word by word.Contains('*');
var selection =
from groups in keywordGroups
select new
{
IsContextualKeyword = groups.Key,
Ttems = groups
Y
foreach (var wordGroup in selection)
{
Console.WriteLine(Environment.NewLine + "{0}:",
wordGroup. TsContextualKeyword ?
“Contextual Keywords" : "Keywords");
foreach (var keyword in wordGroup.Ttems)
{
Console.rite(" " +
keyword.Replace("*", null));
}
}
}

/o

OEBPS/html/graphics/05lis28.jpg
class Program

1
static void Main()
{
Employee employeel = new Employee("Inigo", "Montoya")
{ Title = "Computer Nerd", Salary = "Not enough"};
V72
}

OEBPS/html/graphics/15lis10.jpg
using System;
using System.Collections.Generic;
using System.Ling;

s

private static void GroupKeywords1()
{

TEnumerable<IGrouping<bool, string>> selection =
from word in Keywords
group word by word.Contains('*');

foreach (IGroupingcbool, string> wordGroup
in selection)

{
Console.WriteLine(Environment . NewLine + "{6}:",
wordGroup.Key ?
“Contextual Keywords” : "Keywords");
foreach (string keyword in wordGroup)
{
Console.Write(" " +
(wordGroup.key ?
keyword.Replace("*", null) : keyword));
}
¥

OEBPS/html/graphics/16lis02a.jpg
return -1;
int result = StringCompare(x.LastName, y.lastName);
if (result == 0)

result = StringCompare(x.FirstName, y.FirstName);
return result;

¥

private static int StringCompare(string x, string y)
{
if (Object.ReferenceEquals(x, y))
return 0;
if (x == null)
return 1;
if (y == null)
return -1;
return x.CompareTo(y);

OEBPS/html/graphics/05lis21.jpg
class Program

£
static void Main()
{
Employee employeel = new Employee();
employeel.Initialize(42);
// ERROR: The property or indexer 'Employee.Id"
// cannot be used in this context because the set
// accessor 1is inaccessible
employeel.Td = "490";
}
¥
class Employee
{
public void Initialize(int id)
{
// Set Id property
d = id.ToString();
}
s

// Id property declaration
public string Id

OEBPS/html/graphics/05lis20.jpg
class Progran

{
static void Main()
{
Employee employeel = new Employee();
employeel.Initialize(42);
// ERROR: Property or indexer 'Employee.Id’
// cannot be assigned to -- it is read-only
employeel.Id = "490";
¥
}
class Employee
{
public void Initialize(int id)
{

// Use field because Id property has no setter,
// it is read-only.
_Id = id.ToString();

OEBPS/html/graphics/05lis34.jpg
class Employee
{
public Employee(string firstName, string lastName)
{
FirstName = firstName;
LastName = lastName;
Id = NextId;
NextTd++;

s

public static int NextId;
public int Id { get; set; }

public string FirstName { get; set; }
public string LastName { get; set; }
public string Salary { get; set; }

s

OEBPS/html/graphics/05lis33.jpg
using System;

class Program

) static void Main()
{
var patentl =
new
{

Title = "Bifocals”,
Year0fpublication = "1784"
1
var patent2 =
new
{
Title = "Phonograph”,
Year0fPublication = "1877"
¥
var patent3 =
new

{

patent1.Title,

OEBPS/html/graphics/05lis36.jpg
using System;

class Program

{

static void Main()

{

Employee.NextId = 1000000;

Employee employeel = new Employee(
“Inigo", "Montoya");

Employee employee2 = new Employee(
“"Princess”, "Buttercup");

Console.WriteLine(
"{e} {1} (21",
employeel.FirstName,
employeel.LastName,
employeel.1d);
Console.WriteLine(
"{e} {1} (21",
employee.Firstiame,
employee2. LastNare,
employee2.1d);

Console.WriteLine("NextId = {0}", Employee.NextId);

s

OEBPS/html/graphics/05lis38.jpg
class Employee

{

static Employee()

{
Random randomGenerator = new Random();
NextId = randomGenerator.Next(101, 999);

}

V2

public static int NextId = 42;

/o

OEBPS/html/graphics/05lis37.jpg
public static class DirectoryInfoExtension

{
public static void CopyTo(
DirectoryInfo sourceDirectory, string target,
SearchOption option, string searchPattern)

if (target[target.Length - 1] !
Path.DirectorySeparatorChar)

¢ target += Path.DirectorySeparatorChar;

:?\f (IDirectory.Exists(target))

¢ Directory.CreateDirectory(target);

}

for (int 1 = 0; 1 < searchPattern.Length; i++)
{

foreach (string file in
Directory.GetFiles(
sourceDirectory.FullName, searchPattern))

File.Copy(file,
target + Path.GetFileName(file), true);

OEBPS/html/graphics/20lis09a.jpg
{
¥

return virtualMemoryPointer.AllocatedPointer;

#region IDisposable Members
public void Dispose()

{
if (1Disposed)
{
Disposed = true;
GC.SuppressFinalize(this);
VirtualMemoryManager.VirtualFreeEx(ProcessHandle,
Allocatedpointer, MemorySize);
}
¥

#endregion

OEBPS/html/graphics/14lis18a.jpg
s

Console.WriteLine();
Console.WriteLine(
"2. A second listing of patents prior to the 1900s:
Console. WriteLine(
There are {0} patents prior to 1900.",
patents.Count());

Console.WriteLine();
Console.WritelLine(
"3. A third listing of patents prior to the 190@s:");
patents = patents.ToArray();
Console.Write(" There are ");
Console.WriteLine("{0} patents prior to 1900.",
patents.Count());

OEBPS/html/graphics/05lis30.jpg
class Employee

{
public Employee(string firstName, string lastName)

{

FirstName = firstName;
LastName = lastName;

}

public Employee(
int id, string firstName, string lastName)

{
1d = id;
FirstName = firstName;
LastName = lastName;

i3

public Employee(int id)

{
d = id;
// Look up employee name...
s

i

public int Id { get; set; }

public string FirstName { get; set; }
public string LastName { get; set; }
public string Salary { get; set; }

yZan

OEBPS/html/graphics/0001_fig01.jpg
Common Intermediate
Language and ILDASM @ Hello, World [Compiling and Running

Managed Execution

C# Syntax Keywords
" - Comments . @ Main
Slngl.e Ifme @ Introducing C# Fundamentals |Main
Delimited Statements
Whitespace

Working with pegiaration

@ Console Input
Variables

and Output Assignment

Use

OEBPS/html/graphics/05lis32.jpg
class Employee

£
public Employee(string firstName, string lastName)

{
int id;
// Generate an employee ID...

yZan
Initialize(id, firstName, lastName);

¥

public Employee(int id, string firstName, string lastName)

{
¥

Initialize(id, firstName, lastName);

public Employee(int id)
{
string firstName;
string lastName;
1d = id;

OEBPS/html/graphics/05lis31.jpg
class Employee

{

public Employee(string firstName, string lastName)

{
FirstName = firstName;
LastName = lastName;

¥

public Employee(
int id, string firstName, string lastName)
: this(firstName, lastName)

{
1d = id;

}

public Employee(int id)
{

1d = id;

OEBPS/html/graphics/05lis45.jpg
// CommandLine is nested within Program
class Program
{
// Define a nested class for processing the command Line.
private class CommandLine

{
public CommandLine(string[] arguments)
{
for(int argumentCounter=0;
argumentCounter<arguments. Length;
argumentCounter++)
{
switch (argumentCounter)
{
case 0:
Action = arguments[0].ToLower();
break;
case 1:
Id = arguments[1];
break;
case 2:
FirstName = arguments[2];
break;
case 3:
LastName = arguments[3];
break;
}
}
}

public string Action;
public string Id;

OEBPS/html/graphics/05lis44.jpg
class CommonGuid
£
public static readonly Guid ComIUnknownGuid =
new Guid("60000000-0000-0000-C000-000000000046") ;
public static readonly Guid ComIClassFactoryGuid =
new Guid("00000001-0000-0000-(000-000000000046") ;
public static readonly Guid ComIDispatchGuid =
new Guid("00020460-0000-0000-C006-000000000046") ;
public static readonly Guid ComITypeInfoGuid =
new Guid("00020461-0000-0000-C006-000000000046") ;
/o
}

OEBPS/html/graphics/05lis47.jpg
// File: Program.cs
partial class Program
{

static void Main(string[] args)

{

CommandLine commandLine = new CommandLine(args);

switch (commandLine.Action)
{
/e
}
}
¥

// File: Program+CommandLine.cs
partial class Program
{
// Define a nested class for processing the command Line.
private class CommandLine

{

¥
}

s

OEBPS/html/graphics/05fig01.jpg
StorageMedia @

Class
HardDrive ® DpticalStorageM... (¥ MemoryCard
Class Class Class
= StorageMedia = StorageMedia = StorageMedia
D 63 D¥D #
Class Class

= OpticalStorageMedia = OpticalStorageMedia

OEBPS/html/graphics/05lis48.jpg
// File: Person.Designer.cs
public partial class Person

{

#region Extensibility Method Definitions
partial void OnLastNameChanging(string value);
partial void OnFirstNameChanging(string value);
#endregion

YZaeen
public System.Guid PersonId
{

s
}
private System.Guid _PersonId;
YZaen
public string LastName
{

get

{

return _LastName;

¥

set

{

if ((_LastName != value))

{

OEBPS/html/graphics/03fig02.jpg

OEBPS/html/graphics/03fig03.jpg

OEBPS/html/graphics/03fig01.jpg
o
"
s
o
I
"
-
2

OEBPS/html/graphics/03fig04.jpg
12:

OEBPS/html/graphics/03fig05.jpg
) TicTacToe - Microsoft Visual Studio Quick Launch (Ctrl+Q) 3 = = s

FILE EDIT VEW REFACTOR PROJECT BULD DEBUG TEAM SQL DATA TOOLS TEST
ARCHITECTURE ANALYZE ~ WINDOW HELP
= GRE-NI Q- P Stat-Debug - | A il VB N AL

~ Solution Explorer ¥ & X

3, TicTacToe ~ ©,Main0 = @ o-e

// Display the board and prompt the current player
// for their next move.
for (int turn = 1; turn <= 10; turn++)

{

X0q|00L.

Search Solution Explc 2 ~

& Solution TicTacToe' (1|
9 4 [@ TicTacToe
b 4 Properties

Display Tic-tac-toe Board b *a References

b e TicTacToe.cs

if (winner > @)

FTT S se——) e

Solution E... | Team Expl...
Error List v B X properties 52 Lhvg
X - OErrors | & 0 Warnings 0 Messages Search Error List 0 ~ -

Description File = Line + Colu.. ~ Project

Error List | Output

OEBPS/html/graphics/05lis41.jpg
public static class DirectoryInfoExtension

{
public static void CopyTo(

this DirectoryInfo sourceDirectory, string target,
SearchOption option, string searchPattern)

s

/" ..

DirectoryInfo directory = new DirectoryInfo(".\\Source");
directory.CopyTo(".\\Target",
SearchOption.AllDirectories, "*");

OEBPS/html/graphics/05lis40.jpg
// static class introduced in C# 2.0
public static class SimpleMath
{
// parans allows the number of parameters to vary.
static int Max(params int[] numbers)
{
// Check that there is a Least one item in numbers.
if (numbers. Length == 0)
{

throw new ArgumentException(
“numbers cannot be empty");

i

int result;
result = numbers[@];
foreach (int number in numbers)

{
if(number > result)
{
result = number;
}
}

return result;

OEBPS/html/graphics/05lis43.jpg
class Employee

{
public Employee(int id)
{
Id = id;
}
/"

public readonly int Id;
public void SetTd(int newId)

{
// ERROR: read-only fields cannot be set
a outside the constructor.
// 1d = newId;

¥

yZan

OEBPS/html/graphics/05lis42.jpg
class ConvertUnits

{
public const float CentimetersPerInch = 2.54F;
public const int CupsPerGallon = 16;
YZan

OEBPS/html/graphics/0209_fig01.jpg
Partal Classes () Special Classes

Nested Classes

Static Fields

Static Methods ® Static

Static Constructors
Static Classes

Declaring a Constructor

Default Constructors
Overloading Constructors

. Extension Methods

(1) Declaring and Instantiating a Class

Instance Declaring an Instance Field
Fields | Accessing an Instance Field

Const and readonly Modifiers

@ Instance Methods

@ Access Modifiers

Constructors
& Finalizers

Calling one Constructor Using this

Finalizers

Declaring a Property
Naming Conventions
Using Properties with Validation

Read-Only and Write-Only Properties
Access Modifiers on Getters and Setters
Properties as Virtual Fields

Properties and Method Calls Not Allowed
as ref or out Parameter Values

OEBPS/html/graphics/0208_pro01.jpg
if (int.TryParse(ageText, out age))

{
System.Console.WriteLine(
"Hi {@}! You are {1} months old.", firstName,
age * 12);
}
else
{

System.Console.WritelLine(
"The age entered ,{@}, is not valid.", ageText);

OEBPS/html/graphics/14out11.jpg
Corporate
Mark Michaelis (Chief Computer Nerd)
Finance
Jewel Floch (Bookkeeper Extraordinaire)
Engineering
Michael Stokesbary (Senior Computer Wizard)
Brian Jones (Enterprise Integration Guru)
Paul R. Bramsman (Programmer Extraordinaire
Thomas Heavey (Software Architect)
Infornation Technology
Robert Stokesbary (Expert Mainframe Engineer)
Research
John Michaelis (Inventor)

OEBPS/html/graphics/20lis07a.jpg
{
}

s

[Flags]
private enum MemoryFreeType

{
¥

s

public static IntPtr AllocExecutionBlock(

{

int size, IntPtr hProcess)

IntPtr codeBytesPtr;
codeBytesPtr = VirtualAllocEx(
hProcess, IntPtr.Zero,
(IntPtr)size,
AllocationType.Reserve | AllocationType.Commit,
(uint)ProtectionOptions.PageExecuteReadurite);

if (codeBytesPtr == IntPtr.Zero)
{
throw new System.Componenthodel . Win32Exception();

}

uint 1pfl0ldprotect = 0;
if (IVirtualProtectEx(
hProcess, codeBytesPtr,
(IntPtr)size,
(uint)ProtectionOptions.PageExecuteReadurite,
ref 1pfl0ldProtect))

OEBPS/html/graphics/14out12.jpg
Corporate
Mark Michaelis (Chief Computer Nerd)
Finance
Jewel Floch (Bookkeeper Extraordinaire)
Engineering
Michael Stokesbary (Senior Computer Wizard)
Brian Jones (Enterprise Integration Guru)
Paul R. Bramsman (Programmer Extraordinaire
Thomas Heavey (Software Architect)
Information Technology
Robert Stokesbary (Expert Mainframe Engineer)
Research
John Michaelis (Inventor)
Marketing

OEBPS/html/graphics/14out10.jpg
Mark Michaelis (Chief Computer Nerd)
Count: 1

Michael Stokesbary (Senior Computer Wizard)
Brian Jones (Enterprise Integration Guru)
Paul R. Bramsman (Programmer Extraordinaire)
Thomas Heavey (Software Architect)

Count: 4

Jewel Floch (Bookkeeper Extraordinaire)
Count: 1

Robert Stokesbary (Expert Mainframe Engineer)
Count: 1

John Michaelis (Inventor)
Count: 1

OEBPS/html/graphics/14out13.jpg
Stuff: System.Objects i 31 5+ 71 9+ "thing"
24c@Yall- eeDS-41b9-958e- 50dd12eITBLe

Even integers: Os 21 Ya b 8

0dd integers: 1 3+ 51 7. 9

Union of odd and even: Ox 21 41 ke By 1a 31 51 72 9

Union with eve 0+ 2+ Y43 by 84 13 35 5+ 7. 9

Concat with odd: Or 21 Y3 by 8 11 37 51 77 91 s 31 5+ 72 9
Intersection with even: Oy 25 41 by 8

Distinct: Ou 21 4y b1 81 1o 32 51 71 9

Collection "SequenceEquals"collection-Concat(odd)-Distinct())
Reverse: 91 7+ 51 31 La B ba 4y 2. 0

Average: 4.5

Sum: 45

Max: 9

Min: O

OEBPS/html/graphics/20lis07b.jpg
{
throw new System.Componenthodel . Win32Exception();

}
return codeBytesPtr;

}

public static IntPtr AllocExecutionBlock(int size)

{
return AllocExecutionBlock(

size, GetCurrentProcessHandle());

OEBPS/html/graphics/14out08.jpg
Mark Michaelis (Chief Computer Nerd)
Corporate

Michael Stokesbary (Senior Computer Wizard)
Engineering

Brian Jones (Enterprise Integration Guru
Engineering

Jewel Floch (Bookkeeper Extraordinaire)
Finance

Robert Stokesbary (Expert Mainframe Engineer)
Information Technology

Paul R. Bramsman (Programmer Extraordinaire
Engineering

Thomas Heavey (Software Architect)
Engineering

John Michaelis (Inventor)
Research

OEBPS/html/graphics/14out09.jpg
Corporate

Mark Michaelis (Chief Computer Nerd)
Finance

Jewel Floch (Bookkeeper Extraordinaire)
Engineering

Michael Stokesbary (Senior Computer Wizard)
Engineering

Brian Jones (Enterprise Integration Guru)
Engineering

Paul R. Bramsman (Programmer Extraordinaire
Engineering

Thomas Heavey (Software Architect)
Information Technology

Robert Stokesbary (Expert Mainframe Engineer)
Research

John Michaelis (Inventor)

OEBPS/html/graphics/14out06.jpg
Bifocals (1784)

Steam Locomotive(1815)

Electrical Telegraph(1837)
Phonograph(1877)

Kinetoscope(1888)

Flying machine (1303)

Backless Brassiere(191Y4)

Droplet deposition apparatus(1989)

Droplet deposition apparatus(1989)
Backless Brassiere(191Y4)

Flying machine (1303)
Kinetoscope(1888)

Phonograph(1877)

Electrical Telegraph(1837)

Steam Locomotive(1B15)

Bifocals (1784)

OEBPS/html/graphics/14out07.jpg
Corporate
Finance

Engineering
Information Technology
Research

Marketing

Mark Michaelis (Chief Computer Nerd)
Michael Stokesbary (Senior Computer Wizard)
Brian Jones (Enterprise Integration Guru)
Jewel Floch (Bookkeeper Extraordinaire)
Robert Stokesbary (Expert Mainframe Engineer)
Paul R. Bramsman (Programmer Extraordinaire)
Thomas Heavey (Software Architect)

John Michaelis (Inventor)

OEBPS/html/graphics/0613_fig01.jpg
® Introducing
Query Expressions

LINQ with
Query Expressions

Projection

As Method v
®Features |Filtering _

Invocations

Sorting
Let

Grouping

OEBPS/html/graphics/07lis12.jpg
interface IDistributedSettingsProvider : ISettingsProvider
{
/// <sunmary>
/// Get the settings for a particular machine.
/// </sumnary>
/// <param name="nachineName">
/// The machine name the setting is related to</params
/// <param name="name">The name of the setting</param>
/// <param name="defaul tValue">
/// The value returned if the setting is not found.</param>
/// <returnss>The specified setting</returns>
string GetSetting(
string machineName, string name, string defaultValue);

/// <sunmary>
/// Set the settings for a particular machine.
/// </sumnary>
/// <param name="nachineName">
/// The machine name the setting is related to.</param>
/// <param name="name">The name of the setting.</param>
/// <param name="value">The value to be persisted.</param>
/// <returnss>The specified settinge/returns>
void SetSetting(

string machineName, string name, string value);

OEBPS/html/graphics/07lis11.jpg
public class Pdaltem

{
V72
¥
interface IPerson
{
string Firsthame
{
get;
set;
}
string LastName
{
get;
set;
}
¥

public class Person : IPerson

{
7 AT

OEBPS/html/graphics/07lis10.jpg
class Program
{
public static void Main()
{
Contact[] contacts = new Contact[6];
contacts[@] = new Contact(
"Dick”, "Traci”,
123 Main St., Spokane, WA 99037",
123-123-1234");
s

// Classes are implicitly converted to
// their supported interfaces
contacts. List(Contact.Headers) ;

Console.WriteLine();

Publication[] publications = new Publication[3] {

new Publication("Celebration of Discipline”,
"Richard Foster”, 1978),

new Publication("Orthodoxy",
"G.K. Chesterton”, 1968),

new Publication(
"The Hitchhiker's Guide to the Galaxy",
“Douglas Adams", 1979)

OEBPS/html/graphics/0496_fig01.jpg
@ Introducing | Why Delegates?
Delegates Delegate As Data Types

Delegate Internals
Instantiating Delegates

@ Expression Trees

Expression
Lambdas

Delegates and
Lambda Expressions

@ Statement Lambdas @ Anonymous Methods

OEBPS/html/graphics/14out01.jpg
Bifocals (1L784)
Phonograph (1784)

{ Title = Bifocals: YearOfPublication = 1784 I
{ Title = Phonograph. YearOfPublication = 1877 }

{ Title = Bifocals: Year = 1784 }

OEBPS/html/graphics/20lis08a.jpg
// SafeHandle abstract member
public override bool IsInvalid

{
get
{
return Disposed;
¥
¥

// Safeandle abstract member
protected override bool ReleaseHandle()

{

if (IDisposed)

{
Disposed = true;
GC.SuppressFinalize(this);
VirtualMemoryManager .VirtualFreeEx(ProcessHandle,

AllocatedPointer, MemorySize);
¥

return true;

OEBPS/html/graphics/14out04.jpg
FileName
FileName
FileName
FileName
FileName
FileName
FileName
FileName
FileName
FileName

AssemblyInfo-cs. Size = 1704 }
CodeAnalysisRules-xml. Size = 735 }
CustomDictionary.xml, Size = 199 }
EssentialCSharp.sln. Size = 40415 }
EssentialCSharp.suo. Size = 454k5k 3
EssentialCSharp.vsmdi~ Size = 499 }
EssentialCSharp.vsssccy Size = 25k 3
intelliTechture-ConsoleTester.dlls Size
intelliTechture.ConsoleTester.pdbs Size
LocalTestRun-testrunconfig, Size = 1388

e

2457 1
30208

OEBPS/html/graphics/14out05.jpg
1. Patents prior to the 1900s are:
Phonograph(1877)
Kinetoscope(1888)
Electrical Telegraph(1837)
Stean Locomotive(1815)

2. A second listing of patents prior to the 1900s:
Phonograph(1877)
Kinetoscope (1388)
Electrical Telegraph(183?)
Stean Locomotive(1a15)
There are 4 patents prior to 1900-

3. A third listing of patents prior to the 1300s:
Phonograph(1677)
Kinetoscope (1388)
Electrical Telegraph(1837)
Stean Locomotive(1815)
There are 4 patents prior to 1900

OEBPS/html/graphics/14out02.jpg
Bifocals(1784)

Phonograph(1877)

Kinetoscope (1888)

Electrical Telegraph(183?)

Flying machine(1303)

Stean Locomotive(1815)

Droplet deposition apparatus(1389)
Backless Brassiere(1914)

Benjanin Franklin(Philadelphias PA)
Orville Wright(Kitty Hawk. NC)

Uilbur Uright(Kitty Hawk NC)

Samuel Morse(New York: NY)

George Stephenson(Uylam~ Northumberland)
John Michaelis(Chicagos IL)

Mary Phelps Jacob(New Yorks NY)

OEBPS/html/graphics/app-c_lis12a.jpg
s

// We want to catch all exceptions here so we can rethrow
private static void SafeInvoke(Action action)
{

Exception exceptionThrown = null;

Action target = () =>

{
try
{
action();
}
catch (Exception exception)
{
exceptionThrown = exception;
}
35

Application.Current.Dispatcher . Invoke(target);
if (exceptionThrown != null)

{
// Use ExceptionDispatchInfo.Throw() for .NET 4.5+
throw exceptionThrown;

OEBPS/html/graphics/13fig02.jpg
Thermostat

_+«event» OnTemperatureChange: Action<float>

heater1 : Heater

_+«property» Temperature : float

_+ OnTemperatureChanged()

cooler1 : Heater

_+«property» Temperature : float

_+ OnTemperatureChanged()

heater2 : Heater

|_+«property» Temperature : float

_+ OnTemperatureChanged()

cooler2 : Heater

0.1y
Action<float>
0.1y
Action<float>
0.1y
. >
Action<float> %]
0.1y
Action<float —
ction<float> o

_+«property» Temperature : float

_+ OnTemperatureChanged()

OEBPS/html/graphics/13fig01.jpg
[Program | | thermostat:Thermostat | \heater:Heater] | cooler:Cooler | | delegate3:ActioncSingle> | |de1egate3:Acuon<sing1e9

in l
=

Create Thermostat:

<cretumy>
ety
Invoke
delegate3(66)
OnTenperatureChanged
«returm>>.
<eretumy>
P L
Tnoke |
Gelegate3(66)
[Deferred Call
X onTenperatunechanged X X
<ereturn>>
... >

OEBPS/html/graphics/13fig03.jpg
OnTemperatureChange

actor : actor thermostat : Thermostat : «delegate» heater : Heater | | cooler : Cooler

Action<float>
|

|
»

5 : operator +=

6 : operator +=

»

T T
| |
| |
| |
| |
| |
| |
| |
3 : CurrentTemperature(value) I | |
10: OnTemperaturecharlige(value) | |

| 1
5 : OnTemperatureChanged(newTemperature)

|

| []throw new Notimplemented Exception ()
| 1
1 1 1

OEBPS/html/graphics/18lis18a.jpg
RedirectStandardOutput
progress != null

3

EnableRaisingEvents = true,

14

process.Exited += (sender, localEventArgs) =>

{
taskCS.SetResult(process);

35
if(progress 1= null)
{
process.OutputDataReceived +=
(sender, localEventArgs) =>
{
progress.Report(
new ProcessProgressEventArgs(
localEventArgs.Data,
objectstate));
3
}

if(cancellationToken.IsCancellationRequested)

{
cancellationToken
.ThrowIfCancellationRequested();

¥

process.Start();

OEBPS/html/graphics/18lis18b.jpg
if(progress != null)
{

3

cancellationToken.Register(() =>

{

process.BeginOutputReadLine();

process . CloseMainkindow() ;
cancellationToken
.ThrowIfCancellationRequested();
bhH

return taskCs.Task;

yZasn

OEBPS/html/graphics/0921_pro01.jpg
System.IAsyncResult BeginInvoke(
string arg, AsyncCallback callback, object @object)
int EndInvoke(IAsyncResult result)

OEBPS/html/graphics/app-c_lis11a.jpg
if (_ProgressBar.InvokeRequired)

{
MethodInvoker updateProgressBar =
UpdateProgressBar;
_ProgressBar.BeginInvoke(updateProgressBar);
i3
else
{
_ProgressBar. Increment(1);
3
}
private void Increment()
{
for (int 1 = 0; 1 < 100; i++)
{
UpdateProgressBar () ;
Thread.Sleep(100);
}
if (InvokeRequired)
{
// Close cannot be called directly from a non-UI thread.
Invoke(new MethodInvoker(Close));
}
else
{

Close();
I

OEBPS/html/graphics/app-c_lis11b.jpg
i

private void InitializeComponent()

{
_ProgressBar = new ProgressBar();
SuspendLayout();

_ProgressBar.Location = new Point(13, 17);
_ProgressBar.Size = new Size(267, 19);

ClientSize = new Size(292, 53);
Controls.Add(this._ProgressBar);

Text = "Multithreading in Windows Forms";
Resumelayout (false);

OEBPS/html/graphics/0592_pro01.jpg
public static IOrderedEnumerable<TSource>
ThenBy<TSource, TKey>(
this IOrderedEnumerable<TSource> source,
Func<TSource, TKey> keySelector)

OEBPS/html/graphics/0875_fig01.jpg
Base Class Library

Metadata
T —— Common Language
Application Domains @ Components @ What Is the CLI? | g, ification
Assemblies

_ Common Type System
Manifests | Common Intermediate

Common Intermediate
Modules

Language

The Common
Language
Infrastructure

@ CLI Implementations

Garbage Collection
Type Safety

Code Access Security
Platform Portability
Performance

@ C# Compilation

OEBPS/html/graphics/71hfd.jpg
Author Rovyalty Attribution: 13104596

OEBPS/html/graphics/0481_pro02.jpg
string greeting
(string)Deserialization.Deserialize(stream, formatter);

OEBPS/html/graphics/app-c_fig01.jpg
System.IAsyncResult BeginTryDoSomething(
String url,\ ref string data, out string[] links,
System.AsyncCallback callback, object state)

bool TryDosomething(
string url, ref\string data, out string[] links)

bool EndTryDoSomething\ (ref string data, out string[] links,
System.IAyncResult ‘result);

OEBPS/html/graphics/0481_pro01.jpg
string greeting =
Deserialization.Deserialize<string>(stream, formatter);

OEBPS/html/graphics/17lis09a.jpg
// The following GUID is for the ID of the typelib if this project is
exposed to COM
[assembly: Guid("417a9609-24ae-4323-b1d6-cefof87a42c3")]

// Version information for an assembly consists
// of the following four values:

Va

Vi Magor Version
V Minor Version
Vi Build Number
7/ Revision

Vi

// You can specify all the values or you can
// default the Revision and Build Numbers
// by using the '*' as shown below:

// [assembly: AssemblyVersion("1.0.*")]
[assembly: AssemblyVersion(*1.6.0.0")]
[assembly: AssemblyFileversion("1.0.0.0")]

OEBPS/html/graphics/app-c_fig02.jpg
System.IAsyncResult UpdateHandler.BeginInvoke(
Object[] data, ref object value, out string text
AsyncCallback callback, object @object);

delegate bool UpdateHandlerFunc
object[] data, ref object value, out string text);

bool UpdateHandler.EndInvoke(
ref object value, out text);

OEBPS/html/graphics/06out05.jpg
FirstName: Sherlock
LastName: Holmes
Address: 221B Baker Street. London. England

Subject: Soccer tournament
Start: ?/18/2008 12:00:00 AM
End: ?7/19/2008 12:00:00 AM
Location: Estadio da Machava

rstName: Hercule
LastName: Poirot
Address: Apt 5hBx Uhitehaven Mansions. Sandhurst Sqi London

OEBPS/html/graphics/06out02.jpg
warning CSOL1Y4: '<derived method name>' hides inherited member
*<base method name>'. To make the current member override that
inplementation. add the override keyword. Otherwise add the new
keyuord-

OEBPS/html/graphics/06out03.jpg
warning CSOL0&: The keyword new is required on '<derived property
name>' because it hides inherited member '<base property name>'

OEBPS/html/graphics/16lis10.jpg
[System.Runtime.CompilerServices. IndexerName("Entry")]
public T this[params PairItem[] branches]
{
o
}

OEBPS/html/graphics/16lis19.jpg
using System;
using System.Collections.Generic;

public class Pair<T> : TPair<T>, IEnumerable<T>
{
yan

// The iterator is expanded into the following

// code by the compiler

public virtual TEnumerator<T> GetEnumerator()

{
__ListEnumerator result = new __ListEnumerator(@);
result._Pair = this;
return result;

}

public virtual System.Collections.IEnumerator
System.Collections.IEnumerable.GetEnumerator()

return new GetEnumerator();

}

private sealed class __ListEnumerator<T> : IEnumerator<T>
{

public __ListEnumerator(int itemCount)

{
¥

Pairc<T> _Pair;

_ItemCount = itemCount;

OEBPS/html/graphics/16lis15.jpg
Paircstring> fullname = new Paircstring>("Inigo”, "Montoya");
foreach (string name in fullname)
{

}

Console.WriteLine(name);

OEBPS/html/graphics/16lis16.jpg
public class BinaryTree<T>: IEnumerable<T>

{

s

#region TEnumerable<T>
public IEnumerator<T> GetEnumerator()
{
// Return the item at this node.
yield return Value;

// Iterate through each of the elements in the pair.
foreach (BinaryTree<T> tree in SubItems)

// Since each element in the pair is a tree,
// traverse the tree and yield each

// element.

foreach (T item in tree)

OEBPS/html/graphics/16lis17.jpg
// JFK
jfkFamilyTree = new BinaryTree<string>(
“John Fitzgerald Kennedy");

jfkFamilyTree.SubItems = new Pair<BinaryTreecstring>>(
new BinaryTreecstring>("Joseph Patrick Kennedy"),
new BinaryTreecstrings("Rose Elizabeth Fitzgerald"));

// Grandparents (Father's side)
jfkFamilyTree.SubItems.First.SubTtems =
new Pair<BinaryTree<string>>(
new BinaryTreecstring>("Patrick Joseph Kennedy"
new BinaryTreecstrings>("Mary Augusta Hickey"

// Grandparents (Mother's side)
jfkFamilyTree.SubItems.Second.SubItems =
new Pair<BinaryTreecstrings>(
new BinaryTree<string>("John Francis Fitzgerald"),
new BinaryTreecstring>("Mary Josephine Hannon"));

foreach (string name in jfkFamilyTree)
{

Console.WriteLine(name);
¥

OEBPS/html/graphics/16lis18.jpg
public System.Collections.Generic.IEnumerable<T>

{

GetNotNullEnumerator()

if((First == null) || (Second == null))
{

i

yield return Second;
yield return First;

yield break;

OEBPS/html/graphics/16lis11.jpg
using System;
using System.Collections.Generic;

public class BinaryTree<T>:
IEnumerable<T>

{
yZan

public T this[params PairItem[] branches]
{

get

{

BinaryTree<T> currentNode = this;

int totallevels =
(branches == null) ? @ : branches.Length;

int currentlevel = 0;

while (currentlevel < totallevels)

{

currentNode = currentNode. SubTtems[
branches[currentLevel]];

OEBPS/html/graphics/16lis12.jpg
using System;
using System.Collections.Generic;

public class BinaryTree<T>:
IEnumerable<T>

{

public BinaryTree (T value)

{

Value = value;

Y

#region IEnumerable<T>
public IEnumerator<T> GetEnumerator()
{

s

¥
#endregion TEnumerable<T>

OEBPS/html/graphics/16lis13.jpg
using System;
using System.Collections.Generic;

public class CSharpBuiltInTypes: IEnumerablecstring>
{

public IEnumerator<string> GetEnumerator()

{

yield return "object:
yield return "
yield return
yield return "
yield return
yield return "
yield return "

yield return "ushort";
yield return "decimal”;
yield return "int";

yield return "sbyte";
yield return "short";
yield return "long";
yield return "void";
yield return "double";
yield return "string";

OEBPS/html/graphics/16lis14.jpg
public struct Pair<T>: IPair<T>,
TEnumerablecT>

{
public Pair(T first, T second) : this()

{
First = first;
Second = second;
}
public T First { get; private set; }
public T Second { get; private set; }

#region IEnumerable<T>
public IEnumerator<T> GetEnumerator()
{

yield return First;

yield return Second;

3

#endregion TEnumerable<T>

#region IEnumerable Members
System.Collections. IEnumerator
System.Collections. IEnumerable.GetEnumerator()

{

return GetEnumerator();
+
#endregion

}

OEBPS/html/graphics/xxvii_lis01.jpg
class MiracleMax

{

static void Main()

datatype

—
string’ max
)

variable
max = "Have fun storming the castle!";

System.Console. WriteLine(max);

OEBPS/html/graphics/0811_fig01.jpg
@ Task.Delay Timer @ Monitor

@ Lock Keyword |_Introduction

Synchronization
Objects

(3 Interlocked API

@ Thread Local Storage

Thread
Synchronization

Mutex '\Snoreh -
WaitHandle yHchromzation - -
@ Types @ Synchronization Guidelines
Reset Events
Semaphores
Concurrent Collections

OEBPS/html/graphics/16lis08.jpg
using System;
using System.Collections.Generic;

class ContactEquality : IEqualityComparer<Contact>

{
public bool Equals(Contact x, Contact y)

{
if (Object.ReferenceEquals(x, y))
return true;
if (x == null || y == null)
return false;
return x.lastName == y.lastName &&
x.FirstName == y.FirstName;
}
public int GetHashCode(Contact x)
{
if (Object.ReferenceEquals(x, null))
return 0;
int hl = x.FirstName == null ? @ : x.FirstName.GetHashCode();
int h2 = x.LastName == null ? @ : x.LastName.GetHashCode();
return h1 * 23 + h2;
¥

OEBPS/html/graphics/app-d_tab01.jpg
<
§
2
El
& 2
& -
B v
< s H
g i I
g : 5
In w 8
[~ = :
- 3 3
w o 3
4 3 3
g 3 3
2 |4 2
L £ 5
b2 2 =
£ g £
g g 5
2 2 2
2 2 2
Feature Description @ @ @
Supports adding and removing listeners after the Yes No Yes
timer is instantiated
Supports callbacks on the user interface thread Yes No Yes
Calls back from threads obtained from the thread ~ Yes Yes No
pool
Supports drag-and-drop in the Windows Forms ~ Yes No Yes
Designer
Suitable for running in a multithreaded server Yes Yes No
environment
Includes support for passing arbitrary state from No Yes No
the timer initialization to the callback
Implements IDisposable Yes Yes Yes

OEBPS/html/graphics/16lis09.jpg
interface IPair<T>

{
T First

{
¥

get;

T Second
{

¥

get;

T this[PairTtem index]
{
get;
}
)3

public enum PairItem

{
First,
Second

¥

public struct Pair<T> : IPair<T>

{
public Pair(T first, T second)
{
_first = first;
“second = second;

OEBPS/html/graphics/04lis17a.jpg
/*

static int DirectoryCountLines(string directory)

F

R

Y

static int DirectoryCountLines(

{

i

string directory, string extension = "*.cs")

int lineCount = 0;

foreach (string file in
Directory.GetFiles(directory, extension))

{

}

lineCount += CountLines(file);

foreach (string subdirectory in
Directory.GetDirectories(directory))

{
lineCount += DirectoryCountLines(subdirectory);

¥

return lineCount;

private static int CountlLines(string file)

{

¥
}

s

OEBPS/html/graphics/16lis04.jpg
using System;
using System.Collections.Generic;

class Progran
s

static void Main()

{

Listcint> list = new Listcint>();
list.Add(1);
list.Add(2);
list.Add(3);
list.Add(2);

Listcint> results = list.FindAll(Even);

foreach(int number in results)
{

¥

Console. WriteLine(number);

¥

public static bool Even(int value)

{

return (value % 2) == 0;
}
}

OEBPS/html/graphics/16lis05.jpg
using System;
using System.Collections.Generic;

class Progran

{

static void Main()

{
Dictionary<Guid,string> dictionary =

new Dictionary<Guid, string>();

Guid key = Guid.NewGuid();
dictionary.Add(key, "hello");

}

OEBPS/html/graphics/16lis06.jpg
using System;
using System.Collections.Generic;

class Program

{

static void Main()

{
Dictionary<Guid, string> dictionary

new Dictionary<Guid, string>();

Guid key = Guid.NewGuid();
dictionary[key] = "hello";
dictionary[key] = "goodbye”;

)

OEBPS/html/graphics/21tab02a.jpg
cLs Common The portion of the CLI specification that
Language defines the core subset of features which
Specification source languages must support in order to
be executable on runtimes implemented
according to the CLI specification.
cTs Common Type A standard generally implemented by
System CLI-compliant languages that defines the
representation and behavior of types that the
language exposes visibly outside a module.
It includes concepts for how types can be
combined to form new types.
FCL NET The class library that comprises Microsoft's
Framework NET Framework. It includes Microsoft's
Class Library implementation of the BCL as well as a large
library of classes for such things as web
development, distributed communication,
database access, rich client user interface
development, and a host of others.
WinRT Windows The Windows 8-based platform under which
Runtime Metro style applications execute, WinRT
includes the WinAPI, a new and improved
Windows 8 operating system API that
includes .NET-styled metadata, making it
seamlessly accessible from C#.
VES Virtual An agent that manages the execution of a
(runtime) ~ Execution program that is compiled for the CLI.

System

OEBPS/html/graphics/16lis07.jpg
using System;
using System.Collections.Generic;

class Progran

{

static void Main()

{
var dictionary = newDictionary<string,string>();
dictionary.Add(“a deer");
dictionary.Add(a drop");
dictionary.Add(a name");
dictionary.Add(a long way");
dictionary.Add(a needle");
dictionary.Add(a note");
dictionary.Add(a drink”);
Console.WriteLine("Key Value ");
Console.Writeline("--- -------)
foreach (KeyvaluePair<string, string> i in dictionary)
{

Console.WriteLine("{0} {1}", i.Key, i.value);

}

}

OEBPS/html/graphics/16lis01.jpg
using System;
using System.Collections.Generic;

class Program

{

static void Main()

{

Listcstring> list = new Listcstring>();

// Lists automatically expand as elements
// are added.

list.Add("Sneezy");

1list.Add("Happy");

1ist.Add("Dopey");

list.Add("Doc");

1list.Add("Sleepy");

list.Add("Bashful");

1list.Add("Grumpy");

list.Sort();
Console. WriteLine(
“In alphabetical order {0} is the "
+ "first dwarf while {1} is the last.”
list[e], list[6]);

list.Remove("Grumpy");

OEBPS/html/graphics/16lis02.jpg
class Contact

{
public
public
public
{

this.
this.

¥
b

string FirstName { get; private set; }
string LastName { get; private set; }
Contact(string firstName, string lastName)

FirstName = firstName;
LastName = lastName;

using System;
using System.Collections.Generic;

class NameComparison : IComparer<Contact>

{
public
{
if
if
if

int Compare(Contact x, Contact y)

(Object.ReferenceEquals(x, y))
return 0;
(x == null)
return 1;
(y == null)

OEBPS/html/graphics/16lis03.jpg
using System;
using System.Collections.Generic;

class Program

{

static void Main()

{

Listcstring> list = new Listcstring>();
int search;

list.Add("public”);
list.Add("protected");
list.Add("private”);

list.Sort();

search = list.BinarySearch("protected internal");
if (search < 0)

{
list.Insert(~search, "protected internal");

¥

foreach (string accesshodifier in list)

{
Console.WriteLine(accessModifier);

¥

OEBPS/html/graphics/12lis02a.jpg
case SortType.Ascending :
swap = items[j - 1] > items[j];
break;

case SortType.Descending :
swap = items[j - 1] < items[j];

break;

¥

if (swap)

{
temp = items[j - 11;
items[j - 1] = items[j];
items[j] = temp;

}

OEBPS/html/graphics/20lis11a.jpg
return VirtualFreeEx(
GetCurrentProcessHandle(), lpAddress, duSize);

}

[D11Import("kernel32", SetlastError = true)]
static extern IntPtr VirtualAllocEx(

IntPtr hProcess,

IntPtr lpAddress,

IntPtr dwSize,

AllocationType flAllocationType,

uint flProtect);

s

OEBPS/html/graphics/03out31.jpg
Performing main compilation...
---\tictactoe-cs(113.18): warning CS1030: #uarning: '"Same move allowed
multiple times.™"

Build complete -- O errors. 1 warnings

OEBPS/html/graphics/16lis20.jpg
public struct Pair<T>: IEnumerable<T>

{
public IEnumerable<T> GetReverseEnumerator()
{
yield return Second;
yield return First;
}
}

public void Main()

{
Paircstring> game = new Pair<string>("Redskins”, "Eagles”);
foreach (string name in game.GetReverseEnumerator())

{
i

Console.WriteLine(name);

OEBPS/html/graphics/12lis03a.jpg
for (i = items.Length - 1; i >= @5 i--)

{

for (3 = 1; § <= 5 34+)

{
if (comparisonMethod(items[j - 1], items[31))
{
temp = items[j - 11;
items[j - 1] = items[j];
items[j] = temp;
}
¥

OEBPS/html/graphics/18fig01.jpg
10,000,000

Dual-Core Itanium 2 o B
1,000,000
sl AT
o D‘:h
100,000 g
Pentium 4 aro
Mg
fo.ceo Ot TS
il
o
1,000 oD ont
100
10
1 O Transistors (000) |
o Clock Speed (MH2)|
Power (W)
@ Perf/Clock (ILP)
0

1970 1975 1980 1985 1990 1995 2000 2005 2010

OEBPS/html/graphics/14lis01a.jpg
Year = patentl.YearOfPublication
b

Console.WriteLine("{0} ({1})",
patent1.Title, patent1.VearOfPublication);
Console.WriteLine("{0} ({1})",
patent2.Title, patent2.YearOfPublication);

Console.WriteLine();
Console.Writeline(patent1);
Console.WriteLine(patent2);

Console.WriteLine();
Console.WriteLine(patent3);

OEBPS/html/graphics/03lis52a.jpg
s

if (isRecursive)

{
// Recurse down the hierarchy
V2

¥

else if (isFiltered)

{
// Add option to List of filters.
s

}

break;

OEBPS/html/graphics/14lis25a.jpg
s

departmentRecord.Name,
Employees =
departmentRecord. Employees
}).Distinct();

foreach (var item in items)

{
Console.WriteLine("{0}",
item.Name) ;
foreach (Employee employee in item.Employees)
{
Console.WriteLine("\t" + employee);
}
}

OEBPS/html/graphics/18fig02.jpg
() IDisposable

CancellationTokenSource
Sealed Class
2

= Properties

=) IsCancellationRequested
= Token

E Methods

@ Cancel (+ 1 overload)

@ CancellationTokenSource

@ CreatelinkedTokenSource (+ 1 overload)
@ Dispose

CancellationToken @
Struct
L= r
B Properties

% CanBeCanceled
IsCancellationRequested

F None

B WaitHandle
& Methods
CancellationToken
Equals (+ 1 overload)
operator !=
operator ==
Register (+ 3 overloads)
ThrowlfCancellationRequested

LR 2R 2R IR 2R 3

OEBPS/html/graphics/03out19.jpg
Enter an integer: 42
00101010

OEBPS/html/graphics/07lis05.jpg
public class Contact : PdaItem, IListable,
{
s

public int CompareTo(object obj)
{
Y20
¥

#region IListable Members
string[] IListable.Columnvalues

{
get
{
return new string[]
{
FirstName,
LastName,
Phone,
Address
3
}
}

#endregion

IComparable

OEBPS/html/graphics/17lis26a.jpg
public VersionableDocument(
SerializationInfo info, StreamingContext context)
{
foreach(SerializationEntry entry in info)
{
switch ((Field)Enum.Parse(typeof(Field), entry.Name))
{
case Field.Title:
Title = info.GetString(
Field.Title.Tostring());
break;
case Field.Author:
Author = info.GetString(
Field.Author.ToString());
break;
case Field.Data:
Data = info.GetsString(
Field.Data.ToString());
break;

}
¥
#endregion

i

OEBPS/html/graphics/07lis04.jpg
string[] values;
Contact contactl, contact2;

yZas

// ERROR: Unable to call ColumnValues() directly
Vi on a contact.
// values = contactl.Columnvalues;

// First cast to Ilistable.
values = ((IListable)contact2).ColumnValues;

Vs

OEBPS/html/graphics/07lis03.jpg
public class Contact : PdaItem, IListable, IComparable

{

s

#region IComparable Members
/// <summary>

/"

71/ </summary>
/// <param name="0bj"></param>

/// <returns>

/// Less than zero: This instance is Less than obj.
/// zero This instance is equal to obj.
/// Greater than zero This instance is greater than obj.
/// </returns>

public int CompareTo(object obj)

{

int result;
Contact contact = obj as Contact;

if (obj =
{

null)

// This instance is greater than obj.
result = 1;

}
else if (obj != typeof(Contact))
{
throw new ArgumentException("obj is not a Contact");
}

else if(Contact.ReferenceEquals(this, obj))

{
result

OEBPS/html/graphics/07lis02.jpg
interface IListable

1

// Return the value of each column in the row.
string[] ColumnValues

{
get;
i
)3
public abstract class Pdaltem
{
public Pdaltem(string name)
{
Name = name;
}

public virtual string Name{get;set;}
)3

class Contact : PdaItem, IListable
{
public Contact(string firstName, string lastName,
string address, string phone) : base(null)
{
Firsthame = firstName;
LastName = lastName;
Address = address;
Phone = phone;

OEBPS/html/graphics/07lis09.jpg
interface IReadableSettingsProvider

{

string GetSetting(string name, string defaultvalue);
}

interface IWriteableSettingsProvider
{

void SetSetting(string name, string value);

¥

interface ISettingsProvider : IReadableSettingsProvider,
TuriteableSettingsProvider

{

}

OEBPS/html/graphics/07lis08.jpg
class FileSettingsProvider : ISettingsProvider,

{

IReadableSettingsProvider

#region ISettingsProvider Members
public void SetSetting(string name, string value)
{

¥

#endregion

yZas

#region IReadableSettingsProvider Members
public string GetSetting(string name, string defaultvalue)
{

¥

#endregion

s

OEBPS/html/graphics/07lis07.jpg
// ERROR: GetSetting() not available on ISettingsProvider
string ISettingsProvider.GetSetting(
string name, string defaultvalue)
£
e
}

OEBPS/html/graphics/07lis06.jpg
interface IReadableSettingsProvider

{

i

string GetSetting(string name, string defaultvalue);

interface ISettingsProvider : IReadableSettingsProvider

{
¥

void SetSetting(string name, string value);

class FileSettingsProvider : ISettingsProvider

{

#region ISettingsProvider Members
public void SetSetting(string name, string value)

{
/o

T
#endregion

#region IReadableSettingsProvider Members
public string GetSetting(string name, string defaultValue)

{
yZan

T
#endregion

OEBPS/html/graphics/07lis01.jpg
interface IFileCompression
£
void Compress(string targetFileName, string[] filelist);
void Uncompress(
string compressedFileName, string expandDirectoryName);

OEBPS/html/graphics/14lis26a.jpg
TeamName "Italy",

Players = new string[]

{

“Gianluigi Buffon", "Angelo Peruzzi,
Marco Amelia”, "Cristian Zaccardo”,
‘Alessandro Nesta”, "Gianluca Zambrotta",
“Fabio Cannavaro”, "Marco Materazzi,
"Fabio Grosso", "Massimo Oddo",
“Andrea Barzagli”, "Andrea Pirlo",
“Gennaro Gattuso", "Daniele De Ross:
‘Mauro Camoranesi”, "Simone Perrotta"
Simone Barone”, "Luca Toni”,
Alessandro Del Piero”, "Francesco Tott
"Alberto Gilardino”, "Filippo Inzaghi”,
"Vincenzo Taquinta”,

IEnumerablecstring> players =
worldCup2006Finalists. SelectMany(
team => team.Players);

Print(players);

s

OEBPS/html/graphics/03out15.jpg
\Progran-cs(18.2k
in the current context

error CSO10

The name 'message’ does not exist

OEBPS/html/graphics/03out13.jpg
Uhat is the maximum number of turns in tic-tac-toe? (Enter D to exit.): 9
Corrects tic-tac-toe has a max. of 9 turns.

OEBPS/html/graphics/14lis02a.jpg
patentl.Title,
Year = patentl.Year0fPublication
Y

// ERROR: Cannot implicitly convert type

V24 "AnonymousType#1' to 'AnonymousType#2'
patent1 = patent2;

// ERROR: Cannot implicitly convert type

V24 'AnonymousType#3' to 'AnonymousType#2'
patentl = patent3;

// ERROR: Property or indexer 'AnonymousType#1.Title'
V4 cannot be assigned to -- it is read only’
patent1.Title = "Swiss Cheese";

OEBPS/html/graphics/0191_pro01.jpg
DirectoryCountlLines(
string directory = Environment.CurrentDirectory,
string extension = "*.cs")

OEBPS/html/graphics/17lis03a.jpg
¥

private static void DisplayHelp()
{
// Display the command-Line help.

i
b

using System;
using System.Diagnostics;

public partial class Program

{
private class CommandLineInfo

{
public bool Help { get; set; }

public string Out { get; set; }

public ProcessPriorityClass Priority
{
get { return _Priority; }
set { _Priority = value; }
¥
private ProcessPriorityClass _Priority =
ProcessPriorityClass.Normal;

OEBPS/html/graphics/11lis42a.jpg
// Error: Only theoretically possible without
// the out type parameter modifier
Pair<Contact> contacts =
new Pair<Contact>(

new Contact("Princess Buttercupi

new Contact("Inigo Montoya"));
IReadOnlyPair<Pdaltems pair = contacts;
Pdaltem pdalteml = pair.First;
Pdaltem pdaltem2 = pair.Second;

OEBPS/html/graphics/0561_fig01.jpg
@ Standard Query @ Anonymous
Operators

Deferring Execution Types

Sorting
More...

® Implicit Typed

Collection Interfaces Local Variables

with Standard
Query Operators

Collection

@ Collections Initializers

Arrays

IEnumerable<T>

OEBPS/html/graphics/17lis03d.jpg
¥
else

{

¥
catch (ArgumentException)

{
success = false;
errorMessage =
string.Format (
“The option '{0}' is " +
“invalid for '{1}'",
optionParts[1], option);
¥
}
else
{
success = false;
errorMessage = string.Format(
“Data type '{0}' on {1} is not"
+ " supported.”,
property.PropertyType.ToString(),
commandLine.GetType().ToString());
}

success = false;
errorMessage = string.Format(

“Option '{0}' is not supported.”,
option);

OEBPS/html/graphics/17lis03e.jpg
4

return success;

OEBPS/html/graphics/17lis03b.jpg
using System;
using System.Diagnostics;
using System.Reflection;

public class CommandLineHandler

{
public static void Parse(string[] args, object commandLine)
{
string errorMessage;
if (ITryParse(args, commandLine, out errorMessage))
{
throw new ApplicationException(erroriessage);
}
}

public static bool TryParse(string[] args, object commandLine,

out string errorMessage)

{
bool success = false;
errorifessage = null;
foreach (string arg in args)

{

string option;
if (argl0]
{

11 argle] == '-")

string[] optionParts = arg.Split(
new char[]1 { ':' }, 2);

// Remove the slash|dash

option = optionParts[0].Remove(0, 1);

OEBPS/html/graphics/17lis03c.jpg
PropertyInfo property =
commandLine.GetType() .GetProperty(option,
BindingFlags.IgnoreCase |
BindingFlags.Instance |
BindingFlags.Public);
if (property != null)
{
if (property.PropertyType == typeof(bool))
{
// Last parameters for handling indexers
property.SetValue(
commandLine, true, null);
success = true;

)
else if (
property.PropertyType == typeof(string))
{
property. SetValue(
commandLine, optionParts[1], null);
success = true;
)

else if (property.PropertyType.IsEnum)
{
try
{
property.SetValue(commandLine,
Enum. Parse(
typeof (ProcessPriorityClass),
optionParts[1], true),
null);
success = true;

OEBPS/html/graphics/14lis27b.jpg
string format, IEnumerable<T> items)

StringBuilder text = new StringBuilder();
foreach (T item in items.Take(items.Count()-1))

{

i3
text.Append(items.Last());

text.Append(item + ", ");

Console.WriteLine(format, text);

¥

private static void Print<T>(string format, T item)

{

Console.WriteLine(format, item);
}
}

OEBPS/html/graphics/14lis27a.jpg
numbers. Intersect(even));
Print("Distinct: {6}", numbers.Concat(odd).Distinct());
if (!numbers.SequenceEqual(

numbers . Concat (odd) .Distinct()))

{
throw new Exception("Unexpectedly unequal”);
3
else
{
Console.WriteLine(
@"Collection ""SequenceEquals""" +
* collection.Concat(odd) .Distinct())");
Print("Reverse: {0}", numbers.Reverse());
Print("Average: {0}", numbers.Average());
Print("sum: {0}", numbers.Sum());
Print("Max: {0}", numbers.Max());
Print("Min: {}", numbers.Min());
}

}

private static void Print<T>(

OEBPS/html/graphics/03out25.jpg
Enter an email address:
mark@dotnetprogranming-con
The email domain is: dotnetprogramming.com

OEBPS/html/graphics/03out21.jpg
Enter an integer: -42
11111111311212111221321121311321311111211211111211111111 111010110

OEBPS/html/graphics/pub.jpg
vv Addison-Wesley

OEBPS/html/graphics/15lis05a.jpg
Console.WriteLine(
"3. delegatelnvocations={0}", delegateInvocations);

// Executing count should invoke func once for
// each item selected.
Console.WriteLine(

"4. Contextual keyword count={6}", selection.Count());

Console.WriteLine(
"5. delegateInvocations={0}", delegateInvocations);

// Cache the value so future counts will not trigger
// another invocation of the query.
Listcstrings selectionCache = selection.Tolist();

Console.WriteLine(
"6. delegatelnvocations={0}", delegateInvocations);

// Retrieve the count from the cached collection.
Console.WriteLine(
7. selectionCache count={8}",selectionCache.Count());

Console.WriteLine(
"8. delegatelnvocations={0}", delegateInvocations);

OEBPS/html/graphics/17lis24a.jpg
}

Console.Writeline(documentAfter.Title);

)
3

// Serializable classes use SerializableAttribute.
[Serializable]
class Document

{

public string Title = null;
public string Data = null;

[NonSerialized]
public long _WindowHandle = 0;

class Image

{

}

[NonSerialized]

private Image Picture = new Image();

OEBPS/html/graphics/14lis04a.jpg
Players = new string[]

{
"Gianluigi Buffon", "Angelo Peruzzi”,
“Marco Amelia", "Cristian Zaccardo",
Ve

}

b

Print(worldCup20@6Finalists);
¥

private static void Print<T>(IEnumerable<T> items)

{
foreach (T item in items)

{
Console.WriteLine(item);

}

OEBPS/html/graphics/09lis18a.jpg
<member name=’

M:DataStorage.Load(
System.String, System.String)">

<summary>

Loads up an employee object

</summary>

<remarks>

This method uses

<seealso cref="T:System.I0.FileStrean"/>

in addition to

<seealso cref="T:System.I0.StreanReader" />

</remarks>

<param name="firstName">

The first name of the employee</param>

<param name="lastName">

The last name of the employee</param>

<returns>

The employee object corresponding to the names

</returns>

<date>January 1, 2000</date>*

</member>

</members>

</doc>

OEBPS/html/graphics/12lis07a.jpg
int[] items = new int[5];
for (i=0; i < items.Length; i++)

{
Console.Write("Enter an integer: ");
items[i] = int.Parse(Console.ReadLine());
¥

BubbleSort(items, GreaterThan);

for (dnt i
{

i< items.Length; i++)

Console.WriteLine(items[i]);
¥

OEBPS/html/graphics/03out09.jpg
19 v=1l8
10 w=109
=101 d=100

22 y=l2l x=120
9=113 p=112 0=111
=104 g=103 f=102

OEBPS/html/graphics/17lis25a.jpg
return data;

}

#region ISerializable Members
public void GetObjectData(
SerializationInfo info, StreamingContext context)

{
info.AddValue(
Field.Title.ToString(), Title);
info.AddValue(
Field.Data.ToString(), Encrypt(Data));
i

public EncryptableDocument(
SerializationInfo info, StreamingContext context)

{
Title = info.GetString(
Field.Title.Tostring());
Data = Decrypt(info.GetString(
Field.Data.Tostring()));
¥
#endregion

}

OEBPS/html/graphics/15lis04a.jpg
//

// The side effect of console output is included

// in the predicate to demonstrate deferred execution;
// predicates with side effects are a poor practice in
// production code.

private static bool IsKeyword(string word)

{

if (word.Contains('*'))

{
Console.Write("
return true;

}

else

{
return false;

}

OEBPS/html/graphics/03out03.jpg
The original Tacoma Bridge in lUashington
uas brought down by a 42 mile/hour wind-

OEBPS/html/graphics/03out02.jpg
... error (SO201: Only assignments calls increment. decrements
and new object expressions can be used as a statement

OEBPS/html/graphics/09lis17a.jpg
VAl

<summary>
Loads up an employee object

</summary>

<remarks>

This method uses

<seealso cref="System.I0.FileStrean"/>

in addition to

<seealso cref="System.IO.StreamReader"/>
</remarks>

<param name="firstName">

The first name of the employee</param>

<param name="LastName">

The Last name of the employee</param>
<returns>

The employee object corresponding to the names
</returns>

<date>January 1, 2000</date>**/

public static Employee Load(

string firsthame, string lastName)

s

class Program

{

s

XML Delimited
Comment
(C#2.0)

OEBPS/html/graphics/07out02.jpg
'ISettingsProvider.GetSetting' in explicit interface declaration
is not a member of interface-

OEBPS/html/graphics/04lis10a.jpg
if (targetFileName != null && url != null)

{
WebClient webClient = new WebClient();
webClient.DownloadFile(url, targetFileName);
result =

}

else

{
Console.WriteLine(

"Usage: Downloader.exe <URL> <TargetFileName>");

result = 1;

}

return result;

OEBPS/html/graphics/20fig01.jpg
byte* pData ———>»

byte[] data ——

Ox0338EE9C

ox18

ox42

v

-0x0338EE98

-0x0@338EE9C

OEBPS/html/graphics/12lis20a.jpg
comparisonCount++;
return first < second;

}
Y
for (i = 0; i < items.Length; i++)
{

Console.WriteLine(items[i]);
}

Console.WriteLine("Itens were compared {0} times.”,
comparisonCount) ;

OEBPS/html/graphics/05lis31a.jpg
a

Look up employee name...

s

a

Y

a
i

public
public
public
public

e

NOTE: Member constructors cannot be
called explicitly inline
this(id, firstName, LastName);

int Id { get; set; }

string FirstName { get; set; }
string LastName { get; set; }
string Salary { get; set; }

OEBPS/html/graphics/07out01.jpg
L2 2 R A

First Name Last Name Phone

Dick Traci 123-123-1234
99037

Andrew Littman 555-123-4567
55555

Mary Hartfelt 444-123-4567
Elizabethton. PA 4uuuy

John Lindherst 222-987-6543
NH B8BES

Pat ilson 123-456-7890
22222

Jane Doe 333-345-6789
Title

Celebration of Discipline

Orthodoxy

The Hitchhiker's Guide to the Galaxy

Address
123 Main St.. Spokanes WA
1417 Palmary St.. Dallas: TX
1520 Thunder Way-
1 Aerial Way Dr., Monteray-
55 Irving Dr.. Parksdales FL
123 Main St Auroras IL bbbbkb
Author Year
Richard Foster 1978
G.K. Chesterton 1908

Douglas Adams 1979

OEBPS/html/graphics/10out02.jpg
Unhandled Exception: System.OverflowException: Arithmetic operation
resulted in an overflow. at Program-Main() in -..Program-cs:line 12

OEBPS/html/graphics/03lis27.jpg
class Program

{
static void Main(string[] args)
{
int playerCount;
System.Console. rite(
“Enter the number of players (1 or 2):");
playerCount = int.Parse(System.Console.ReadLine());
if (playerCount != 1 && playerCount != 2)
{
string message =
"You entered an invalid number of players.
3
else
{
yan
}
// Error: message is not in scope.
System.Console.WriteLine(message);
)

OEBPS/html/graphics/03lis26.jpg
if(radius>=0)
{

area = 3.14*radius*radius;

3
System.Console.WriteLine(

"The area of the circle is: {0}", area);

OEBPS/html/graphics/12tab01.jpg
Statement

Example

Lambda expressions
themselves do not have a
type. Therefore, there are no
members that can be accessed
directly from a lambda
expression, not even the
methods of object.

// ERROR: Operator '." cannot be applied to
// operand of type 'Lambda expression"
string s = ((int x) => x).ToString();

Lambda expressions do not
have a type and so cannot
appear fo the left of an is
operator.

// ERROR: The first operand of an 'is' or 'as’
// operator may not be a Lambda expression or
// anonymous method

bool b = ((int x) => x) is Funccint, int>;

Alambda expression can
only be converted to a
compatible delegate type;
here an int-returning lambda
may not be converted to a
delegate type that represents
a bool-returning method.

// ERROR: Lambda expression is not compatible
// with Funccint, bool> type.
Funccint, bool> f = (int x) => x;

Alambda expression does
not have a type, so it cannot
be used to infer the type of a
local variable.

// ERROR: Cannot assign Lambda expression to

// an implicitly typed local variable
var v = x = x;

OEBPS/html/graphics/03lis25.jpg
if(radius>=0)
area = 3.14 * radius *radius;
System.Console.WriteLine(
"The area of the circle is: {0}", area);

OEBPS/html/graphics/17fig01.jpg
_MemberInfa

? ICustomAttributeProvider

Memberinfo
Abstract Class

i1

\ = Properties

B DeclaringTvpe
‘ o MemberTipe
{5 MetadataToken
{2 Module

L Name

: ReflectedType

i = Methods

| @ GetCustomAttributes (+ I overibad)
{ @ sDefined

i MemberInfo

-

Q _PropertyInfo 1

Propertyinfo
Abstract Class

= MemberInfo
2

= Properties

2R Ateributes

5P CanRead
CanWiite
IsSpecialName
MemberType
OptionalCustomMadifiers
FropertyTipe

g RequiredCustomMadifiers
B Methods

=@ Getdccessors (+ 1 overioad)
@ GetConstantvalue

=@ GetGetvethod (+ 1 overioad)
@ Getingexparameters

=@ GetOptionalCustomModifiers

=@ GetRawConstant¥alue

@ GetRequiredCustomModifiers

=@ Getsetmethod (+ I overioad)
<@ Getvalue (+ 1 overload)

3% Propertylnfo
=@ SetVale (+ 1 overiad)

9 _MethodBase J

MethodBase
Abstract Class

=» MemberInfo
£~

[# Properties

= Methods

“@ BindGenericParameters
@ GetCurrentMethod

@ GetGenericArguments
“§ GetGenericMethodDefinition i
@ GetMethodBody {
=@ GetMethodFromHandle (+ 1 overload)
=@ GetMethodimplementationSags

=@ GetParameters

@ Invoke (+ 1 overload)

@ MakeGenericMethod

3% MethodBase

|

9 _Methodlnfo

Methodinfo

i abstract Class

=+ MethodBase

2

= Properties
B ContainsGenericParameters
HasGenericArguments

5 IsGenericMethod
IsGenericMethodDefinition

Member Type
ReturnParameter
ReturnType

BF ReturnTypeCustomAtirbutes
B Methods

=@ BindGenericParameters

=@ GetfaseDefinition

@ GetGenericArguments

“® GetGenericMethodDefinition
:@ MakeGenericMethod

3% Methodinfo

OEBPS/html/graphics/03lis24.jpg
class CircleAreaCalculator

{

static void Main()

{

double radius; // Declare a variable to store the radius.
double area; // Declare a variable to store the area.

System.Console.Write("Enter the radius of the circle:
// double.Parse converts the ReadLine()
// return to a double.

radius = double.Parse(System.Console.ReadLine());

if(radius>=0)

{
// Calculate the area of the circle.
area = 3.14*radius*radius;
System.Console. WriteLine(
"The area of the circle is: {6}", area);
i
else
{
System.Console. WriteLine(
{0} is not a valid radius.”, radius);
¥

OEBPS/html/graphics/17fig02.jpg
B A cacophony of ramblings from my potpourri

=10l x|
Fle Edt Fomat Vew tep

| o yyyyao on >Scratch, |
Version=0.0.0.0, culture= neutra1
Pub1icKkeyToken=i nulloo ODocumentn
oTitleopatanno on 3A cacophony of
ramblings from my potpourri of notesnn

OEBPS/html/graphics/03lis22.jpg
if (input < @)
System.Console.WriteLine("Exiting...");
else if (input < 9)
System.Console.WriteLine(
"Tic-tac-toe has more than {6}" +
maximum turns.”, input);
else if(input < 9)
System.Console. WriteLine(
"Tic-tac-toe has less than {0}" +
" maximum turns.”, input);

else
System. Console.WriteLine(
"Correct, tic-tac-toe has a maximum
" of 9 turns.");

+

OEBPS/html/graphics/03lis21.jpg
class TicTacToeTrivia

{
{

static void Main()

int input; // Declare a variable to store the input.

System.Console. Write(
"What is the maximum number
"of turns in tic-tac-toe?” +
"(Enter © to exit.): ");

+

// int.Parse() converts the ReadLine()
// return to an int data type.
input = int.Parse(System.Console.ReadLine());

if (input <= @)
// Input is less than or equal to 6.
System.Console. WriteLine("Exiting...");
else
if (input < 9)

OEBPS/html/graphics/03lis20.jpg
class TicTacToe // Declares the TicTacToe class.
{
static void Main() // Declares the entry point of the program.

{
string input;

// Prompt the user to select a 1- or 2-player game.
System.Console. hrite (
"1 - Play against the computer\n" +
"2 - Play against another player.\n" +
"Choose:"
Y

input = System.Console.ReadLine();

if (input=="1")
// The user selected to play the computer.

System.Console. WriteLine(
“Play against computer selected.

else
// Default to 2 players (even if user didn't enter 2).
System. Console. WriteLine(
“Play against another player.");

OEBPS/html/graphics/01lis18b.jpg
} // end of method HelloWorld::Main
.method public hidebysig specialname rtspecialname
instance void .ctor() cil managed
{
// Code size 7 (0x7)
.maxstack 8
IL_0600: 1ldarg.o
IL_6e01: call instance void [mscorlib]System.Object
IL_6006: ret
} // end of method Hellokorld

ctor()

ctor

} // end of class Hellokorld

11

] FAEEEERERES DISASSEMBLY COMPLETE *4+H+H8kskhkht ks ks kaksts

OEBPS/html/graphics/01lis18a.jpg
-imagebase 0x00400000
.file alignment 0x00000200
.stackreserve 0x00100000
.subsystem 0x0003
.corflags 0x00000001 // TILONLY
// Tmage base: 0x00490000

11

// WINDOWS_CUI

CLASS MEMBERS DECLARATION =

.class private auto ansi beforefieldinit HelloWorld
extends [mscorlib]System.Object

{

.method private hidebysig static void Main() cil managed

{

.entrypoint
// Code size
.maxstack 8

IL_6000:
1IL_eoe1:
1L_0006:
L_eoeb:
IL_eeoc:

nop
ldstr
call
nop
ret

13 (oxd)

"Hello. My name is Inigo Montoya."

void [mscorlib]System.Console

riteline(string)

OEBPS/html/graphics/03lis29.jpg
if(input=9) // Allowed in C++, not in C#.
System.Console.WriteLine(
“Correct, tic-tac-toe has a maximum of 9 turns.");

OEBPS/html/graphics/08lis16a.jpg
if ((file.Attributes & FileAttributes.Hidden) !=
FileAttributes.Hidden)
{

throw new Exception(“File is not hidden
}

if ((file.Attributes & FileAttributes.ReadOnly) !=
FileAttributes.ReadOnly)
{

i

throw new Exception("File is not read-only.");

s

OEBPS/html/graphics/ii_fig01.jpg
Microsoft Windows Development Series

Visual Studio
Team Foundation

Server 2012 Adopting
Aglle Software Practices

Buiding
Windows 8 Apps
with JavaScript

Reengineetng NET
Essential C# 5.0

Ild-l!

v Addison-Wesley

Visit informit.com/mswinseries for a complete list of available publications.

The Windows Development Series grew out of the award-winning Microsoft .NET Development
Series established in 2002 to provide professional developers with the most comprehensive

and practical coverage of the latest Windows developer technologies. The original series has

been expanded to include not just .NET, but all major Windows platform technologies and tools.
It is supported and developed by the leaders and experts of Microsoft development technologies,
including Microsoft architects, MVPs and RDs, and leading industry luminaries. Titles and resources
in this series provide a core resource of information and understanding every developer needs to
write effective applications for Windows and related Microsoft developer technologies.

“This is a great resource for developers targeting Microsoft platforms. It covers all bases, from expert
perspective to reference and how-to. Books in this series are essential reading for those who want to
Jjudiciously expand their knowledge and expertise.”

— JOHN MONTGOMERY, Principal Director of Program Management, Microsoft
“This series is always where | go first for the best way to get up to speed on new technologies. With its

expanded charter to go beyond .NET into the entire Windows platform, this series just keeps getting
better and more relevant to the modern Windows developer.”

— CHRIS SELLS, Vice President, Developer Tools Division, Telerik

o .
L4

Make sure to connect with us!

informit.com/socialconnect

i | informm | Safari

e =

ALWAYS LEARNING PEARSON

OEBPS/html/graphics/12lis21a.jpg
Console.Write("Enter an integer:");
items[i] = int.Parse(Console.ReadLine());
}

BubbleSort(items, locals._AnonymousMethod_00000000);
for (i = 0; i < items.Length; i++)
{

i

Console.WriteLine(items[i]);

Console.WriteLine("Items were compared {6} times.",
locals. comparisonCount) ;

OEBPS/html/graphics/05lis32a.jpg
// Look up employee data
s

Initialize(id, firstName, lastName);
}

private void Initialize(
int id, string firstName, string lastName)

{
Id = id;
FirstName = firstName;
LastName = lastName;

¥

OEBPS/html/graphics/04tab02a.jpg
System.InvalidCastException

Indicates that an attempt to convert from
one data type to another was not a valid
conversion.

System.NotImplementedException

Indicates that although the method
signature exists, it has not been fully
implemented.

System.NullReferenceException

Throws when code tries to find the object
referred to by a reference which is null.

System.ArithmeticException

Indicates an invalid math operation, not
including divide by zero.

System.ArrayTypeMismatchException

Occurs when attempting to store an
element of the wrong type into an array.

System.StackoverflowException

Indicates an unexpectedly deep recursion.

OEBPS/html/graphics/03lis16.jpg
int count = 123;
int result;
result = counts+;
System.Console.WriteLine(
"result = {0} and count = {1}", result, count);

OEBPS/html/graphics/03lis15.jpg
char current;
int unicodeValue;

// Set the initial value of current.
current="z";

do
{
// Retrieve the Unicode value of current.
unicodevalue = current;
Systen.Console.Write("{0}={1}\t", current, unicodeValue);

// Proceed to the previous letter in the alphabet;
current-

i

while(current>="a");

OEBPS/html/graphics/13lis09.jpg
public class Thermostat
1
// Define the event publisher
public Action<float> OnTemperatureChange;

public float CurrentTemperature
{

get{return _CurrentTemperature;}
set

{
if (value != CurrentTemperature)
{
_CurrentTemperature = value;
if(OnTemperatureChange != null)

{

List<Exception> exceptionCollection =
new List<Exception>();
foreach (

Action<float> handler in
OnTemperatureChange. GetInvocationList())

try
{
handler(value);

}

OEBPS/html/graphics/06lis19b.jpg
public Appointment(string name) :
base(name)
{

Name = name;

¥

public DateTime StartDateTime { get; set; }
public DateTime EndDateTime { get; set; }
public string Location { get; set; }

s

public override string GetSummary()
{
return string.Format(
“Subject: {0}" + Environment.NewLine
+ "Start: {1}" + Environment.NewLine
+ "End: {2}" + Environment.NewLine
+ "Location: {3}",
Name, StartDateTime, EndDateTime, Location);

OEBPS/html/graphics/13lis06.jpg
yZan

Thermostat thermostat = new Thermostat();
Heater heater = new Heater(60);

Cooler cooler = new Cooler(86);

Action<floats delegatel;
Actioncfloat> delegate2;
Actioncfloat> delegate3;

delegatel
delegate2

heater.OnTemperatureChanged;
cooler.OnTemperatureChanged;

Console.WriteLine("Invoke both delegates:"
delegate3 = delegatel;

delegate3 += delegate2;

delegate3(90);

Console.WriteLine("Invoke only delegate2");
delegate3 -= delegatel;

delegate3(30);

yZann

OEBPS/html/graphics/06lis19a.jpg
string[] names = value.Split(' ');
// Error handling not shown.
FirstName = names[0];

LastName = names[1];

}

public string FirstName { get; set; }
public string LastName { get; set; }
public string Address { get; set; }

public override string GetSummary()

{
return string.Format(
"FirstName: {0}\n"
+ "LastName: {1}\n"
+ "Address: {2}", FirstName, LastName, Address);
i3
e

i

public class Appointment : Pdaltem

{

OEBPS/html/graphics/13lis05.jpg
public class Thermostat

{

public float CurrentTemperature
{
get{return _CurrentTemperature;}
set
{
if (value != CurrentTemperature)
{
_CurrentTemperature = value;
// If there are any subscribers
// then notify them of changes in
// temperature
Action<float> localOnChange =
OnTemperatureChange;
if(localOnChange != null)
{
// Call subscribers
localonChange(value) ;

}
}
private float _CurrentTemperature;

}

OEBPS/html/graphics/03tab04a.jpg
#error directive

#error preproc-message

#error Buggy
implementation

#warning
directive

#warning preproc-message

#warning Needs code
review

#pragma directive

#pragma warning

#pragma warning
disable 1030

#line directive

#Iine org-line new-line

#line default

#line 467
icTacToe.cs”

#line default

#region directive

#iregion pre-proc-message
code
#endregion

#region Methods

#endregion

OEBPS/html/graphics/13lis08.jpg
class Program

{

public static void Main()

{

Thermostat thermostat = new Thermostat();
Heater heater = new Heater(60);

Cooler cooler = new Cooler(80);

string temperature;

thermostat .OnTemperatureChange +=
heater.OnTemperatureChanged;
// Using C# 3.0. Change to anonymous method
// if using C# 2.6
thermostat .OnTemperatureChange +=
(newTemperature) =>
{
throw new InvalidoperationException();
¥
thermostat .OnTemperatureChange +=
cooler.OnTemperatureChanged;

Console.Write("Enter temperature: ");
temperature = Console.ReadLine();
thermostat . CurrentTemperature = int.Parse(temperature);

OEBPS/html/graphics/13lis07.jpg
s

Thermostat thermostat = new Thermostat();
Heater heater = new Heater(60);

Cooler cooler = new Cooler(80);

Actioncfloat> delegatel;
Actionc<float> delegate2;
Actioncfloats> delegate3;

// Note: Use new Action(
V4 cooler.OnTemperatureChanged) for C# 1.6 syntax.
delegatel = heater.OnTemperatureChanged;
delegate2 = cooler.OnTemperatureChanged;

Console.WriteLine("Conbine delegates using + operator:
delegate3 = delegatel + delegate2;
delegate3(60);

Console.WriteLine("Uncombine delegates using - operator
delegate3 = delegate3 - delegate2;

delegate3(60);

/o

OEBPS/html/graphics/13lis02.jpg
public class Thermostat
{
// Define the event publisher
public Actioncfloat> OnTemperatureChange { get; set; }

public float CurrentTemperature

{
get{return _CurrentTemperature;}
set
{
if (value != CurrentTemperature)
{
_CurrentTemperature = value;
}
}
¥

private float _CurrentTemperature;

OEBPS/html/graphics/13lis01.jpg
class Cooler

{

public Cooler(float temperature)

{
Temperature = temperature;
¥
public float Temperature
{
get{return _Temperature;}
set{_Temperature = value;}
}

private float _Temperature;

public void OnTemperatureChanged(float newTemperature)

{

if (newTemperature > Temperature)

{

System.Console.WriteLine("Cooler: On");
}
else
{

System.Console.WriteLine("Cooler: OFf");
}

OEBPS/html/graphics/13lis04.jpg
public class Thermostat

{
public float CurrentTemperature
{
get{return _CurrentTemperature;}
set
{
if (value != CurrentTemperature)
{
_CurrentTemperature = value;
// INCOMPLETE: Check for null needed
// Call subscribers
OnTemperatureChange(value);
}
}
}

private float _CurrentTemperature;
}

OEBPS/html/graphics/13lis03.jpg
class Program
{
public static void Main()
{
Thermostat thermostat = new Thermostat();
Heater heater = new Heater(60);
Cooler cooler = new Cooler(80);
string temperature;

thermostat .OnTemperatureChange +=
heater.OnTemperatureChanged;

thermostat.OnTemperatureChange +=
cooler.OnTemperatureChanged;

Console.Write("Enter temperature: ");
temperature = Console.ReadLine();
thermostat.CurrentTemperature = int.Parse(temperature);

OEBPS/html/graphics/03lis19.jpg
Va

ublic long Main
E 5 0 Constant Expression

—_—

const int secondsPerDay =60 * 60 * 24;

const int secondsPerieek = secondsPerDay * 7;
[Nislngihins)

Constant
Vs

OEBPS/html/graphics/09tab01.jpg
Modifier

Description

public

Declares that the member is accessible anywhere
the type is accessible. If the class is internal, the
member will be internally visible. Public members
will be accessible from outside the assembly if the
containing type is public.

internal

The member is accessible from within the as
only.

embly

private

The member is accessible from within the containing
type, but inaccessible otherwise.

protected

The member is accessible within the containing
type and any subtypes derived from it, regardless of
assembly.

protected internal

The member is accessible from anywhere within the
containing assembly and from any types derived
from the containing type, even if the derived types
are within a different assembly.

OEBPS/html/graphics/03lis18.jpg
class IncrementExample

{

public static void Main()

{
int x = 123;
// Displays 123, 124, 125.
System.Console.WriteLine("{0}, {1}, {2}", x++, x++, X);
// x now contains the value 125.
// Displays 126, 127, 128
System.Console.WriteLine("{0}, {1}, {2}", ++x, +x, X);
// x now contains the value 128.

OEBPS/html/graphics/03lis17.jpg
int count = 123;
int result;
result = ++count;
System.Console.WriteLine(
"result = {0} and count = {1}", result, count);

OEBPS/html/graphics/02tab08.jpg
Common Mistake

Error Description

Corrected Code

int numbers[];

The square braces for declaring an array appear after the data
type, not after the variable identifier.

int[] numbers;

int[] numbers;
numbers = {42, 84, 168 };

When assigning an array after declaration, it is necessary to
use the new keyword and then specify the data type.

int[] numbers;
numbers = new int[](
42,84, 168 |

int[3] numbers =
{42, 84, 168 };

Itis not possible to specify the array size as part of the variable
declaration.

int[] numbers =
(42,84,168);

int[] numbers =
new int[];

The array size is required at initialization time unless an array
literal is provided.

int[] numbers =
new int[3);

int[] numbers =

The array size is specified as 3, but there are no elements in

int[] numbers

new int[3]{} the array literal. The array size must match the number of new int[3]
elements in the array literal. (42,84,168);
int[] numbers = Array indexes start at zero. Therefore, the last item is one less int[] numbers =
new int[3]; than the array size. (Note that this is a runtime error, not a new int[3];
Console.WriteLine(compile-time error.) Console WriteLine(
numbers[3]);

numbers[2]);

int[] numbers =
new int[3];
numbers[numbers .Length] =
42;

Same as previous error: 1 needs to be subtracted from the
Length to access the last element. (Note that this is a runtime
error, not a compile-time error.)

int[] numbers =
new int[3];
numbers[numbers.Length-1]
42

int[] numbers;
Console.WriteLine(
numbers[01);

numbers has not yet been assigned an instantiated array, and
therefore, it cannot be accessed.

int[] numbers

2,84
Console.WriteLine(
numbers[0));

int[,] numbers =

{ {42},
{84, 42} };

Multidimensional arrays must be structured consistently.

int[,] numbers =
(142, 168},
(84,42});

int[][] numbers =
{ {42, 84},
{84, 42} };

Jagged arrays require instantiated arrays to be specified for the
arrays within the array.

int[][] numbers =
{new int[]{42, 84},
new int[](84, 42);

OEBPS/html/graphics/02tab07.jpg
Description

Example

Declaration
Note that the brackets appear
with the data type.
Multidimensional arrays are
declared using commas where
the comma+1 specifies the
number of dimensions.

string[] languages; // one dimensional
int[,] cells; // two dimensional

Assignment

The new keyword and the
corresponding data type are
optional at declaration time.
Following declaration, the new
keyword is required when
instantiating an array.

Arrays can be assigned with-
out literal values. As a result,
the value of each item in

the array is initialized to its
default.

If no literal values are pro-
vided, the size of the array
must be specified. (The size
does not have to be a constant;
it can be a variable calculated
at runtime.)

Starting with C# 3.0, specifying
the data type is optional.

string[] languages = { "C#", "COBOL", "Java",
"C++", "Visual Basic", "Pascal”,
"Fortran”, "Lisp", "J#"};

languages = new string[9];

languages = new string[]{"C#", "COBOL", "Java",
"C++", "Visual Basic", "Pascal”,
“Fortran”, "Lisp" U H

// Multidimensional array assignment

// and initialization.

int[,] cells = int[3,3];

cells = {
o,
{1, 2,
i 2

2},
0},
1}
b

default Keyword

The explicit default of any
data type is available using the
default operator.

int count = default(int);

Accessing an Array
Arrays are 0-based, so the first
element in an array is at index 0.
The square brackets are used to
store and retrieve data from an
array.

string[] languages = new string[9]{
"C#", "COBOL", "Java",
“"C++", "Visual Basic", "Pascal”,
"Fortran", "Lisp", "J#"};
// Save "C++" to variable called Language.
string language = languages[3];
// Assign "Java" to the C++ position.
languages[3] = languages[2];
// Assign Language to Location of "Java".
languages[2] = language;

OEBPS/html/graphics/02tab06.jpg
Statement

Example

bool StartsWith(
string value)

bool Endshith(
string value)

string lastName

s

bool isPhd = lastName.EndsWith("Ph.D.");
bool isDr = lastName.StartsWith("Dr.");

string ToLower()
string ToUpper()

string severity = "warning";
// Display the severity in uppercase
System.Console.WriteLine(severity.ToUpper());

string Trim()
string Trim(...)
string TrimEnd()
string TrimStart()

// Remove any whitespace at the start or end.
username = username.Trim();

string Replace(
string oldvalue,
string newvalue)

string filename;

s
// Remove ?'s from the string
filename = filename.Replace("?", "");;

OEBPS/html/graphics/02tab05.jpg
Statement

Example

static string string.Format(
string format,

=)

string text, firstName, lastName;

yas

text = string.Format("Your full name is {6} {1}.",
firstiame, lasthame);

// Display

// "Your full name is <firstName> <lLastName>."

System.Console. WriteLine(text);

static string string.Concat(
string stro,
string strl)

string text, firstName, lastName;

yas

text = string.Concat(firstNane, lastName);
// Display "<firsthame><LastName>", notice
// that there is no space between names.
System.Console. WriteLine(text);

static int string.Compare(
string stro,
string stri)

string option;
yas
// String comparison in which case matters.

int result = string.Compare(option, "/help”);

// Display:
// 8 if equal

// negative if option < /help
// positive if option > /help
System.Console. WriteLine(result);

string option;
s
// Case-insensitive string comparison
int result = string.Compare(
option, "/Help”, true);

// Display:
// 8 if equal

// <0 if option < /help

// >0 if option > /help
System.Console. WriteLine(result);

OEBPS/html/graphics/03lis41.jpg
class FibonacciCalculator

{

static void Main()

{

decimal current;
decimal previous;
decimal temp;
decimal input;

System.Console.Write("Enter a positive integer:

// decimal.Parse convert the Readline to a decimal.
input = decimal.Parse(System.Console.ReadLine());

// Initialize current and previous to 1, the first
// two numbers in the Fibonacci series.
current = previous = 1;

// While the current Fibonacci number in the series is
// less than the value input by the user.
while(current <= input)

{
temp = current;
current = previous + current;
previous = temp; // Executes even if previous
// statement caused current to exceed input
}

Systen.Console. WriteLine(
"The Fibonacci number following this is {@}",
current);

OEBPS/html/graphics/02tab04.jpg
Escape Sequence Character Name Unicode Encoding

\' Single quote \uee27

\" Double quote \uee22

\\ Backslash \ueesc

\o Null \ueeoe

\a Alert (system beep) \u00o7

\b Backspace \ueees

\f Form feed \ueeeC

\n Line feed (sometimes referred toas ~ \u@@eA
anewline)

\r Carriage return \ueeen

\t Horizontal tab \ueees

\v Vertical tab \ueees

A\UXXXX Unicode character in hex \uee29

\x[n][n][n]n Unicode character in hex (first three ~ \u3A
placeholders are options); variable
length version of \uxxxx

AUXXXXXXXX Unicode escape sequence for \UD846DCO1
creating surrogate pairs (%)

OEBPS/html/graphics/05lis33a.jpg
Year = patentl.YearOtPublication
b

System.Console.WriteLine("{0} ({1})",
patentl.Title, patentl.vearOfPublication);

System.Console.WriteLine("{0} ({1})",
patent2.Title, patenti.YearOfPublication);

Console.WriteLine();
Console.WriteLine(patent1);
Console.WriteLine(patent2);

Console.WriteLine();
Console.WriteLine(patent3);

OEBPS/html/graphics/02tab03.jpg
Range Significant Literal
Type size (Inclusive) BCL Name Digits Suffix
decimal 128bits 1.0x10%to System 28-29 Morm

approximately

7.9 x 10% .Decimal

OEBPS/html/graphics/02tab02.jpg
Significant Literal
Type Size Range (Inclusive) BCL Name Digits Suffix
float 30bits +1.5x 10 to System.Single 7 Forf
£3.4 x 10%
double 64 bits 5.0 x 102 to System.Double 15-16 %

1.7 x 100

OEBPS/html/graphics/02tab01.jpg
Type Size Range (Inclusive) BCL Name Signed Literal Suffix
sbyte 8bits 12810127 System.SByte Yes
byte 8bits 010255 Syste.Byte No
short 16bits 32,768 to 32,767 system.Intle Yes
ushort 16bits 01065535 System.UInt16 No
int 32bits -2,147,483,648 to System.Int32 Yes
2,147 483,647
uint 32bits 0104294967295 System.UInt32 No Uoru
long 64bits -9,223372,036,854775808t0 System.Int6d Yes Lorl
9,223,372,036,854,775,807
ulong 64bits Oto System.UIntéd No ULorul

18,446,744,073,709,551,615

OEBPS/html/graphics/03lis49.jpg
int shifter; // The number of places to shift
// over in order to set a bit.
int position; // The bit which is to be set.

// int.Parse() converts "input” to an integer.
// "int.Parse(input) - 1" because arrays

// are zero-based.

shifter = int.Parse(input) - 1;

// Shift mask of 06006000600600000600600060000001
// over by celllocations.
position = 1 << shifter;

// Take the current player cells and OR them to set the
// new position as well.

// Since currentplayer is either 1 or 2,

// subtract one to use currentPlayer as an

// index in a 0-based array.
playerPositions[currentPlayer-1] |= position;

OEBPS/html/graphics/04tab01a.jpg
System. Threading. Tasks

Contains types for task-based asynchrony.

System.eb

Contains types that enable browser-to-server
communication, generally over HTTP. The
functionality within this namespace is used to
support ASPNET.

System.ServiceModel

The Windows Communication Foundation (WCF)
that contains types for sending and retrieving data
between service and client applications, enabling the
distributed communication between both .NET and
non-NET technologies.

System.Windows

Contains types for creating rich user interfaces
starting with .NET 3.0 using a UI technology called
Windows Presentation Framework (WPF) that
leverages Extensible Application Markup Language
(XAML) for declarative design of the UL

System.Windows . Forms

Contains types for creating rich user interfaces and
the components within them.

System.xml

Contains standards-based support for XML
processing.

OEBPS/html/graphics/03lis48.jpg
class TicTacToe // Declares the TicTacToe class.
{
static void Main() // Declares the entry point of the program.
{
int winner=0;
// Stores locations each player has moved.
int[] playerPositions = {0,0};

// Hardcoded board position
// xl2]o
e —
// 0lole6
/) mmteeetenn
/X x|x
playerpositions[0]
playerpositions[1]

449;
28;

// Determine if there is a winner
int[] winningMasks = {
7, 56, 448, 73, 146, 292, 84, 273 };
// Iterate through each winning mask to determine
// if there is a winner.

OEBPS/html/graphics/03lis47.jpg
static bool ValidateAndMove(
int[] playerPositions, int currentPlayer, string input)

{
bool valid = false;

// Check the current player's input.
switch (input)

{
case "1"
case "2" :
case "3" :
case "4" :
case "5" :
case "
case
case
case "9

// Save/move as the player directed.

valid = true;

OEBPS/html/graphics/03lis46.jpg
s
bool valid = false;

// Check the current player's input.

if((input == "17) ||
(input
(input
(input
(input
(input
(input
(input
(input

// Save/move as the player directed.

s

valid = true;

}
else if((input
{

) Il (input == "quit"))

valid = true;

}
else
{
System.Console.WriteLine(
"\NERROR: Enter a value from 1-9. "
+ "Push ENTER to quit");
}

s

OEBPS/html/graphics/03lis45.jpg
class TicTacToe // Declares the TicTacToe class.

{

static void Main() // Declares the entry point of the program.
{

// Hardcode initial board as follows

Y/
/o123
Y
//als]e
1) wooteeeteen
/71819
1) -oepmeepeen

char[] cells = {
1Y, 020, 3, A, s, e, T, e,
b

Systen. Console. hrite(
“The available moves are as follows: ");

// Write out the initial available moves
foreach (char cell in cells)

{
if (cell != '0' 8& cell != 'X')
{
System.Console.Write("{0} ", cell);
}
¥

OEBPS/html/graphics/13lis17.jpg
public class Thermostat

{

yZan

// Declaring the delegate field to save the

// List of subscribers.

private EventHandler<TemperatureArgs> _OnTemperatureChange;

public void add_OnTemperatureChange(
EventHandler<TemperatureArgs> handler)

{
System.Delegate. Conbine(_OnTemperatureChange, handler);

+
public void remove_OnTemperatureChange(
EventHandler<TemperatureArgs> handler)

{
¥

System.Delegate.Remove(_OnTemperatureChange, handler);

public event EventHandler<TemperatureArgs> OnTemperatureChange
{

add
{
add_OnTemperatureChange(value)
}
remove
{
remove_OnTemperatureChange(value)
}

OEBPS/html/graphics/03lis44.jpg
for(int x=0, y=5; ((x<=5) && (y>=0)); y--, X++)
{
System.Console.Write("{0}{1}{2}\t",

X, (oy? <), y);

OEBPS/html/graphics/13lis16.jpg
public class Thermostat

{

public event EventHandler<TemperatureArgs> OnTemperatureChange

OEBPS/html/graphics/03lis43.jpg
public class BinaryConverter

{

public static void Main()

{

const int size = 64;
ulong value;
char bit;

System.Console.Write ("Enter an integer: ");

// Use Long.Parse() so as to support negative numbers
// Assumes unchecked assignment to ulong.

value = (ulong)long.Parse(System.Console.ReadLine());

// Set initial mask to 100....
ulong mask = 1UL << size - 1;
for (int count = @; count < size; counts+)

{

bit = ((mask & value) > @) ? '1'
System.Console.Write(bit);

// Shift mask one Location over to the right
mask >>= 1;

0';

OEBPS/html/graphics/15lis01a.jpg
"sealed”,

“readonly”, "ref”, "remove*", "return”, "sbyte",
"select*", "set*", "short”, "sizeof", "stackalloc”,
“static”, “string”, "struct”, "switch”, "this", "throw",
“true”, "try", "typeof", "uint", "ulong", “unchecked",
“unsafe”, “ushort", “using”, "value*", "var*', "virtual",
"void", "volatile", “where*", "while", "yield*"};

private static void ShowContextualKeywordsl()

{
IEnumerablecstring> selection =
from word in Keywords
where !word.Contains('*")
select word;
foreach (string keyword in selection)
{
Console.Write(keyword + "
}
¥

s

OEBPS/html/graphics/03lis42.jpg
// Repeatedly request player to move until he
// enter a valid position on the board.
bool valid;
do
{
valid = false;

// Request a move from the current player.
System.Console.Write(

"\nPlayer {@}: Enter move:", currentPlayer);
input = System.Console.ReadLine();

// Check the current player's input.
V2

} while (lvalid);

OEBPS/html/graphics/13lis18.jpg
public class Thermostat

{

public class TemperatureArgs: System.EventArgs

{
i

// Define the event publisher
public event EventHandler<TemperatureArgs> OnTemperatureChange

{

add
{

System.Delegate. Combine(value, _OnTemperatureChange);
}
remove
{

System.Delegate.Remove(_OnTemperatureChange, value);
}

3

protected EventHandler<TemperatureArgs> _OnTemperatureChange;

public float CurrentTemperature

{
¥

private float _CurrentTemperature;

OEBPS/html/graphics/13lis13.jpg
public delegate void EventHandler<TEventArgs>(object sender, TEventArgs e)
where TEventArgs : EventArgs;

OEBPS/html/graphics/13lis12.jpg
public class Thermostat
{
public class TemperatureArgs: System.EventArgs
{
public TemperatureArgs(float newTemperature)
{
NewTemperature = newTemperature;

Y

public float NewTemperature
{
get{return _newTemperature;}
set{_newTemperature = value;}
}
private float _newTemperature;

i

// Define the event publisher
public event EventHandler<TemperatureArgs> OnTemperatureChange =
delegate { };

public float CurrentTemperature
{

}
private float _CurrentTemperature;

OEBPS/html/graphics/13lis15.jpg
public class Thermostat
{

public class TemperatureArgs: System.EventArgs

{

public TemperatureArgs(float newTemperature)

{
NewTemperature = newTemperature;
}
public float NewTemperature
{
get{return _newTemperature;}
set{_newTemperature = value;}
}

private float _newTemperature;
public delegate void TemperatureChangeHandler(
object sender, TemperatureArgs newTemperature);

public event TemperatureChangeHandler
OnTemperatureChange;

public float CurrentTemperature

{
}

private float _CurrentTemperature;

OEBPS/html/graphics/13lis14.jpg
public class Thermostat

£
public float CurrentTemperature
{
get{return _CurrentTemperature;}
set
{
if (value != CurrentTemperature)
{
_CurrentTemperature = value;
// If there are any subscribers
// then notify them of changes in
// temperature
if(OnTemperatureChange = null)
{
// Call subscribers
OnTemperatureChange(
this, new TemperatureArgs(value));
}
}
}
}

private float _CurrentTemperature;

}

OEBPS/html/graphics/990fig01.jpg

OEBPS/html/graphics/13lis11.jpg
class Program

{

public static void Main()
{
Thermostat thermostat = new Thermostat();
Heater heater = new Heater(60);
Cooler cooler = new Cooler(80);
string temperature;

// Note: Use new Action(

V4 cooler.OnTemperatureChanged) if C# 1.6.
thermostat.OnTemperatureChange +=
heater.OnTemperatureChanged;

thermostat .OnTemperatureChange +=
cooler.OnTemperatureChanged;

thermostat .OnTemperatureChange(42) ;

OEBPS/html/graphics/13lis10.jpg
class Program
{
public static void Main()
{
Thermostat thermostat = new Thermostat();
Heater heater = new Heater(60);
Cooler cooler = new Cooler(80);
string temperature;

// Note: Use new Action(
Y cooler.OnTemperatureChanged) if C# 1.0
thermostat .OnTemperatureChange =

heater .OnTemperatureChanged;

// Bug: assignment operator overrides

// previous assignment.

thermostat .OnTemperatureChange =
cooler.OnTemperatureChanged;

Console.Write("Enter temperature: ");
temperature = Console.ReadLine();
thermostat.CurrentTemperature = int.Parse(temperature);

OEBPS/html/graphics/0033_fig01.jpg
Declaring

Instantiating Arrays Integer Types
Assigning @ v @ Numeric Types [Fioating-Point Types

Using Decimal Type
Strings as Arrays Literal Values
Explicit Cast| (5) Conversions (2 More Types | Boolean Type
Implicit Cast Data Types Character Type
Without Casting Strings

Value Types @Categories of Types @ null and void

Reference Types|

OEBPS/html/graphics/11lis44a.jpg
bool bl = fc.FirstIsBetter(applel, orange);
// or apples and apples:

bool b2 = fc.FirstIsBetter(applel, apple2);
// This is legal because the interface is

// contravariant:

ICompareThings<Apple> ac = fc;

// This is really a fruit comparer, so it can
// compare two apples still.

bool b3 = ac.FirstIsBetter(applel, apple2);

OEBPS/html/graphics/0515_pro01.jpg
vold BubbleSort(int[] items,
Func<int, int, bool> comparisonMethod) { ... }

OEBPS/html/graphics/03lis37.jpg
int x;

X = (-7 >> 2); // 11111111111111111111111111111001 becomes
// 11111111111111111111111111111110

// Write out "x is -2."

System.Console.WriteLine("x = {8}.", x);

OEBPS/html/graphics/03lis36.jpg
string fileName = GetFileName();
yZan
string fullName

s

fileName ?? "default.txt";

OEBPS/html/graphics/03lis35.jpg
public class TicTacToe
{
public static string Main()
{
// Initially set the currentPlayer to Player 1;
int currentPlayer = 1;

/e
for (int turn = 1; turn <= 10; turn++)
{

VZams

// switch players
currentPlayer = (currentPlayer == 2) ? 1 : 2;

OEBPS/html/graphics/03lis34.jpg
bool valid = false;

bool result = lvalid;

// Displays "result = True".
System.Console.WriteLine("result = {0}", result);

OEBPS/html/graphics/03lis33.jpg
if ((10 < hour0fTheDay) 8& (hourOfTheDay < 24))
System.Console. WriteLine(
"Hi-Ho, Hi-Ho, it's off to work we go.");

OEBPS/html/graphics/17lis21a.jpg
FileInfo file = new FileInfo(fileName);

file.Attributes = FileAttributes.Hidden |
FileAttributes.ReadOnly;

Console.WriteLine("\"{8}\" outputs as \"{1}\"",
file.Attributes.ToString().Replace(","”, " |"),
file.Attributes);

FileAttributes attributes =
(FileAttributes)Enun.Parse(typeof (Fileattributes),
file.Attributes.Tostring());

Console.WriteLine(attributes);

s

OEBPS/html/graphics/03lis32.jpg
if ((hour0fTheDay > 23) || (hourOfTheDay < @))
System.Console.WriteLine("The time you entered is invalid.");

OEBPS/html/graphics/03lis31.jpg
if (input == "" || input

{
System.Console.WriteLine("Player {0} quit!!", currentPlayer);
break;

}

"quit")

OEBPS/html/graphics/17out02.jpg
Compress-exe /Outi<file name> /Help
/Priority:RealTime|High|AboveNormal |Normal|BelouNornal|Idle

OEBPS/html/graphics/17out05.jpg
-..Progran+CommandLineInfo.cs(24,17): error CSD592: Attribute
'CommandLineSwitchAlias' is not valid on this declaration type. It is
valid on 'property, indexer' declarations only-

OEBPS/html/graphics/03lis39.jpg
public class BinaryConverter

{

public static void Main()

{

const int size = 64;
ulong value;
char bit;

System.Console.Write ("Enter an integer: ");
// Use Long.Parse() so as to support negative numbers
// Assumes unchecked assignment to ulong.

value = (ulong)long.Parse(System.Console.ReadLine());

// Set initial mask to 160.
ulong mask = 1UL << size - 1;
for (int count = 0; count < size; count++)

{

bit = ((mask & value) != @) ? '1': '0';
System.Console.Write(bit);

// Shift mask one Location over to the right
mask >>= 1;

¥

System.Console.WriteLine();

OEBPS/html/graphics/17out08.jpg
SampleCode\ObsoleteAttributeTest.cs (2417
Progran.ObsoleteMethod()' is obsolete

uarning CSOB12:

OEBPS/html/graphics/19tab04.jpg
Collection Class

Description

BlockingCollection<T>

IEnumerable<T>
ICollection

Enumerable
Disposable
BlockingCollection<T> ®
GenercCse
a
5 Propertes
2 BoundedCapacty
2 count
' 1sAddingCompleted
' 1sCompleted
& Methods
% Add (+ 1 overioad)
% AddToany (+ 1 overlosd)
% BlockingCollection(+ 3overloads)
@ Completeadding
@ copyTo
@ Dispose (+ 1overload)
@ GetConsumingEnumerable (+ 1 overload)
@ Toke (+ 1 overioad)
@ TakeFromany (+ 1 overload)
@ Toamay
@ TyAdd (+3 overloads)
@ TryAddTony (+3 overloads)
@ ToTake (+ 3 overloads)
@ ToyTakeFromany (+ 3 overloads)

Provides a blocking collection that enables producer/
consumer scenarios in which producers write data into the
collection while consumers read the data. This class provides
a generic collection type that synchronizes add and remove
operations without concern for the backend storage (whether
a queue, stack, list, and so on). BlockingCollection<T>
provides blocking and bounding support for collections

that implement the IProducerConsumerCollection<T>
interface.

OEBPS/html/graphics/0677_fig01.jpg
AttributeUsageAttribute

ConditionalAttribute

@ Accessing
Metadata | GetType()
typeof()

Dynamic Programming
\

Predefined

Attributes (2) Member Invocation

ObsoleteAttribute

Reflection,

Serialization Attributes, and
Dynamic .)
(&) Named Parameters Programming (3 Reflection on Generics

(®) Attribute Constructors/ \ (@ Custom Attributes

OEBPS/html/graphics/19tab03.jpg
Main() DoWork()
Console.WritelLine(
"Application started..
Task task = new Task(DoWork);
Console.WritelLine(
"Starting thread....");
task.Start();
DoliorksignaledResetEvent .Wait(); Console.WriteLine(

“Dobork() started....");

DokorksignaledResetEvent. Set();

Console. WriteLine(
“Thread executing...");

MainSignaledResetEvent.Set();

MainSignaledResetEvent.Wait();

task.Wait();

Console.WriteLine(
"Doklork() ending....");

Console. WriteLine(
“Thread completed”);

Console. WriteLine(
“Application exiting..

OEBPS/html/graphics/19tab02.jpg
Method Signature

Description

public static T CompareExchange<T>(
T location,
T value,
T comparand

)

Checks location for the value in
comparand. If the values are equal, it
sets location to value and returns the
original data stored in location.

public static T Exchange<T>(
T location,
T value

)3

Assigns location with value and
returns the previous value.

public static int Decrement(
ref int location

);

Decrements location by one. It is
equivalent to the -- operator, except
Decrement () is thread-safe.

public static int Increment(
ref int location

)3

Increments location by one. It is
equivalent to the ++ operator, except
Increment() is thread-safe.

public static int Add(
ref int location,
int value

);

Adds value to location and assigns
location the result. It is equivalent to
the += operator

public static long Read(
ref long location
)3

Returns a 64-bit value in a single atomic
operation.

OEBPS/html/graphics/19tab01.jpg
Main Thread Decrement Thread Count
Copy the value 8 out of _Count. 0
Increment the copied value (8), 0
resulting in 1.
Copy the resultant value (1) into 1
_Count.
Copy the value 1 out of _Count. 1
Copy the value 1 out of _Count. 1
Increment the copied value (1), 1
resulting in 2.
Copy the resultant value (2) into 2
_Count.
Decrement the copied value (1), 2
resulting in @.
Copy the resultant value (8) 0

into_Count.

OEBPS/html/graphics/04lis14a.jpg
// Call Combine() with an array
fullName = Combine(
new stringl] {
C:\\", "Data”,
“HomeDir", "index.html"});
Console.WriteLine(fullName);
s
}

static string Combine(params string[] paths)
{

string result = string.Empty;

foreach (string path in paths)

{
result = System.T0.Path.Combine(result, path);

Y

return result;

OEBPS/html/graphics/06tab01a.jpg
Later, Programmer A adds the
Name property, but instead of
implementing the getter as
FirstName + " " + LastName,
she implements it as
LastName + ", " +
FirstName. Furthermore, she
doesn’t define the property

as virtual, and she uses the
property in a DisplayName()
method.

/7
public class Person
{
public string Name
{
get
{
return LastName + ", " + Firstiame;
}
set
{
string[] names = value.Split(", ");
// Error handling not shown.
LastName = names[6];
FirstName = names[1];
}
}

public static void Display(Person person)
{
// Display <LastName>, <FirstName>
Console.lriteLine(person.Name);

OEBPS/html/graphics/11lis02a.jpg
case ConsoleKey.DownArrow:
case ConsoleKey.UpArrow
case ConsoleKey.LeftArrou:
case ConsoleKey.RightArrou:
// savestate()
currentPosition = new Cell(
Console.CursorLeft, Console.CursorTop);
path.Push(currentPosition);
break;

default:
Console.Beep(); // Added in C# 2.0
break;

¥

while (key.Key != Consolekey.X); // Use X to quit.

}
}

public struct Cell
{
readonly public int X;
readonly public int V;
public Cell(int x, int y)
{
X
Y

x;
Vi

OEBPS/html/graphics/12lis25b.jpg
return "*";

case ExpressionType.Add:
return "+";

case ExpressionType.Divide:
return "/";

case ExpressionType.Subtract:
return

case ExpressionType.GreaterThan:
return

case ExpressionType.LessThan:
return

default:
return expression.ToString() +

" (" + expression.NodeType.Tostring() + ")";

OEBPS/html/graphics/14fig01.jpg
IDisposable
Interface
=

& Methods

=9 Dispose

IEnumerator
Interface
k=

= Properties

&= current

& Methods

=@ MoveNext
=9 Reset

IEnumerator<T>
Generic Interface
- IDisposable

- |[Enumerator
@

& Properties

& current

IEnumerable
Interface
k=

& Methods

=9 GetEnumerator

IEnumerable<T>
Generic Interface

> |Enumerable
@

(= Methods

GetEnumerator

OEBPS/html/graphics/12lis25a.jpg
if (expression is BinaryExpression)
PrintNode(expression as BinaryExpression, indent);
else
PrintSingle(expression, indent);
¥
private static void PrintNode(BinaryExpression expression,
int indent)

{
PrintNode(expression.Left, indent + 1);
PrintSingle(expression, indent);
PrintNode(expression.Right, indent + 1);
¥

private static void PrintSingle(
Expression expression, int indent)
{
Console.WriteLine("{0," + indent * 5 + "}{1}",
"", NodeToString(expression));

¥

private static string NodeToString(Expression expression)

{
switch (expression.NodeType)

{
case ExpressionType.Multiply:

OEBPS/html/graphics/14fig03.jpg
Left Outer

Inner

- .
Inventors = = — —

Right Outer

OEBPS/html/graphics/14fig02.jpg
Main

Program Enumerable Console IEnumerable<Patent> | | IEnumerable<Patent> IEnumerator
Where<Patent>
WriteLine
»[] 1
GetEnumerator
>
Current(get)
>
MoveNext
WriteLine
> | 2
Count<Patent>
List Display Triggered
WriteLine
»>|
WriteLine @3
id
ToAray<Patent>
List Display Triggered
Write
>
Count<Patent>
List NOT Triggered
WriteLine
>

»| | List Display Triggered for Item

OEBPS/html/graphics/20lis10a.jpg
¥

Reserve = 0x2000,

/// <sunmary>

/// Indicates that data in the memory range specified by
/// LpAddress and dwSize is no Longer of interest. The
/// pages should not be read from or written to the
/// paging file. However, the memory block will be used
/// again Later, so it should not be decommitted. This
/// value cannot be used with any other value.

/// </summary>

Reset = 0x80000,

/// <summary>

/// Allocates physical memory with read-write access.
/// This value is solely for use with Address Windowing
/// Extensions (AWE) memory.

/// </sumnary>

Physical = 0x400000,

/// <summary>

/// Allocates memory at the highest possible address.
/// </sunmary>

TopDown = @x100000,

/// <summary>
/// The memory protection for the region of pages to be
/// allocated.

/// </sumnary>

[Flags]

private enum ProtectionOptions : uint

{

OEBPS/html/graphics/20lis10c.jpg
private enum MemoryFreeType : uint

{

/17 <summary>
/// Decommits the specified region of committed pages.
/// After the operation, the pages are in the reserved
/// state.

/// </summary>

Decommit = 0x4000,

/// <summary>

/// Releases the specified region of pages. After this
/// operation, the pages are in the free state.

/// </summary>

Release = 0x8000

s

OEBPS/html/graphics/20lis10b.jpg
1

/// <summary>
/// Enables execute access to the committed region of
/// pages. An attempt to read or write to the committed
/// region results in an access violation.

/// </summary>

Execute = 0x10,

71/ <summary>

/// Enables execute and read access to the committed
/// region of pages. An attempt to write to the

/// committed region results in an access violation.
71/ </sunmary>

PageExecuteRead = 0x20,

/17 <summary>

/// Enables execute, read, and write access to the

/// committed region of pages.

71/ </sunnary>

PageExecuteReadirite = 0x40,

s

/// <summary>
/// The type of free operation
/// </sumnary>

[Flags]

OEBPS/html/graphics/04lis13a.jpg
return 6;

static bool TryGetPhoneButton(char character, out char button)

{

bool success = true;
switch(char.ToLower(character))

{
case '1':
button = '1';
break;

case '2': case 'a': case 'b
button = '2';
break;

case

/o
case '-':
button = '-';
break;
default:
// Set the button to indicate an invalid value
button 5
success = false;
break;

}

return success;

OEBPS/html/graphics/10lis04a.jpg
}

catch (SystemException exception)

{
// Handle SystemException
}
catch (Exception exception)
{
// HandLe Exception
}
catch
{
// Any unhandled exception
¥
finally
{

// Handle any cleanup code here as it runs
// regardless of an exception or not.

OEBPS/html/graphics/14lis20c.jpg
Console.WriteLine();

IEnumerable<Employee> employees =
CorporateData. Employees;
Print(employees);

}

private static void Print<T>(IEnumerable<T> items)

{

foreach (T item in items)

{

Console.WriteLine(item);

OEBPS/html/graphics/14lis20b.jpg
new Employee(){
Name="Jewel Floch",
Title="Bookkeeper Extraordinaire”,
DepartmentId=1},

new Employee(){
Name="Robert Stokesbary",
Title="Expert Mainframe Engineer”,
DepartmentId = 3},

new Employee(){
Name="Paul R. Bramsman",
Title="Programmer Extraordinaire”,
DepartmentId = 2},

new Employee(){
Name="Thomas Heavey",
Title="Software Architect”,
DepartmentId = 2},

new Employee(){

ohn Michaelis”,

Inventor”,

DepartmentId = 4}

3
Y

class Program

static void Main()

{
IEnumerable<Department> departments =

CorporateData.Departments;
Print (departments);

OEBPS/html/graphics/14lis20a.jpg
new Department(){
Name="Engineering", Id=2},

new Department(){
Name="Information Technology”,
1d=3},

new Department(){
Name="Research"”,
Id=4},

new Department (){
Name="Harketing",
1d=5},

b

public static readonly Employee[] Employees = new Employee[]
{

new Employee(){
Name="Mark Michaelis",
Title="Chief Computer Nerd",
DepartmentId = 0},

new Employee(){
Name="Michael Stokesbary",
Title="Senior Computer Wizard",
DepartmentId=2},

new Employee(){
Name="Brian Jones",
Title="Enterprise Integration Guru",
DepartmentId=2},

OEBPS/html/graphics/11by10.jpg

OEBPS/html/graphics/03lis05.jpg
intn='3' 4+ 4
char ¢ = (char)n;
System.Console.WriteLine(c); // Writes out g.

OEBPS/html/graphics/06lis14a.jpg
public class SuperSubDerivedClass : SubDerivedClass
{

public new void DisplayName()

{

Console. WriteLine("SuperSubDerivedClass”);
}
i

public static void Main()

{
SuperSubDerivedClass superSubDerivedClass

= new SuperSubDerivedClass();

SubDerivedClass subDerivedClass = superSubDerivedClass;
DerivedClass derivedClass = superSubDerivedClass;
BaseClass baseClass = superSubDerivedClass;

supersubDerivedClass.DisplayName() ;
subDerivedClass.DisplayName() ;
derivedClass.DisplayName();
baseClass.DisplayName();

OEBPS/html/graphics/03lis04.jpg
class FortyTwo

{
static void Main()
{
short windspeed = 42;
System. Console. WriteLine(
“The original Tacoma Bridge in Washington\nwas "
+ "brought down by a "
+ windSpeed + " mile/hour wind.
}

OEBPS/html/graphics/03lis03.jpg
class Division

{

static void Main()

{

int numerator;
int denominator;
int quotient;
int remainder;

System.Console.Write("Enter the numerator: ");
numerator = int.Parse(System.Console.ReadLine());

System.Console.Write("Enter the denominator: ");
denominator = int.Parse(System.Console.ReadLine());

quotient = numerator / denominator;
remainder = numerator % denominator;

System.Console.WritelLine(
{0} / {1} = {2} with remainder {3}",
numerator, denominator, quotient, remainder);

OEBPS/html/graphics/05lis37a.jpg
}

//Copy SubDirectories (recursively)
if (option == SearchOption.AllDirectories)

{
foreach(string element in
Directory.GetDirectories(
sourceDirectory. FullName))
{
Copy(element,
target + Path.GetFileName(element),
searchPattern);
}
}
s

DirectoryInfo directory = new DirectoryInfo(".\\Source");
directory.MoveTo(".\\Root");
DirectoryInfoExtension.CopyTo(

directory, ".\\Target",

SearchOption.AllDirectories, "*");
s

OEBPS/html/graphics/05lis13a.jpg
// Create a StreamWriter object for writing text
// into the FileStream
Streamhriter writer = new Streamhriter(stream);

// Write all the data associated with the employee.
writer.Writeline(employee.FirstName);
writer.WriteLine(employee.LastName);
writer.WriteLine(employee.Salary);

// Close the Streamriter and its Stream.
writer.Close(); // Automatically closes the stream
}
yan
}

OEBPS/html/graphics/04lis16a.jpg
return DirectoryCountLines(
Directory.GetCurrentDirectory());

static int DirectoryCountLines(string directory)

{
i

return DirectoryCountLines(directory, "*.cs");

static int DirectoryCountLines(
string directory, string extension)

int lineCount = @;
foreach (string file in
Directory.GetFiles(directory, extension))

{
}

lineCount += CountLines(file);

foreach (string subdirectory in
Directory.GetDirectories(directory))
{

lineCount += DirectoryCountLines(subdirectory);

return lineCount;

private static int CountLines(string file)

{

OEBPS/html/graphics/03lis09.jpg
// Displays: -Infinity
System.Console.WriteLine(-1f / 6);

// Displays: Infinity
System.Console.WriteLine(3.402823E+38f * 2f);

OEBPS/html/graphics/03lis07.jpg
decimal decimalNumber = 4.2M;
double doubleNumberl = 0.1F * 42F;
double doubleNumber2 = @.1D * 420;
float floatNumber = 0.1F * 42F;

Trace.Assert(decimalNunber |= (decimal)doubleNumber1);
// Displays: 4.2 I= 4.20000006258488
System.Console. NriteLine(

"{0} = {1}", decimalNumber, (decimal)doubleNumber1);

Trace.Assert((double)decimalNunber = doubleNumber1);
// Displays: 4.2 I= 4.20000006258488
System.Console. WriteLine(

"{0} 1= {1}", (double)decimalNumber, doubleNumberl);

Trace.Assert((float)decinalumber != floatNumber);
// Displays: (float)a.2n I= 4.2F
System.Console. NriteLine(

"(float){oIM = {1}F",

(float)decimalNunber, floatNunber);

Trace.Assert(doubleNumberl != (double)floatNumber);
// Displays: 4.20000006258488 |= 4.20000028610229
System.Console.WriteLine(

OEBPS/html/graphics/04lis16b.jpg
int lineCount = ©;
string line;
FileStream stream =
new FileStream(file, FileMode.Open);"
StreamReader reader = new StreamReader(stream);
line = reader.ReadLine();
while(line = null)
{
if (line.Trim() 1=
{

lineCounts+;

}

line = reader.ReadLine();

}

reader.Close(); // Automatically closes the stream
return lineCount;

OEBPS/html/graphics/10lis02a.jpg
{

throw;

}
¥
catch (SystemException)
{

// Handle SystemException
¥
catch (Exception exception)
{

// Handle Exception
}
finally
{

// Handle any cleanup code here as it runs
// regardless of an exception or not.

OEBPS/html/graphics/05lis14a.jpg
i
i

// Create a SteamReader for reading text from the file.
StreanReader reader = new StreamReader(stream);

// Read each Line from the file and place it into
// the associated property.

employee. FirstName = reader.ReadLine();

employee. LastNane = reader.ReadLine();
employee.Salary = reader.ReadLine();

// Close the StreanReader and its Stream.
reader.Close(); // Automatically closes the stream

return employee;

class Program

{

static void Main()

{

Employee employeel;

OEBPS/html/graphics/07lis11a.jpg
}

public class Contact : PdaItem, IPerson

{
private Person Person
{
get { return _Person; }
set { _Person = value; }
}

private Person _Person;

public string FirstName

{
get { return _Person.FirstName; }
set { _Person.FirstName = value; }
}
public string LastName
{
get { return _Person.LastName; }
set { _Person.lLastName = value; }
}
s

OEBPS/html/graphics/05lis14b.jpg
Employee employee2 = new Employee();
employee2. SetName("Inigo", "Montoya");
employee2.Save();

// Modify employee2 after saving.
Increasesalary(employee2);

// Load employeel from the saved version of employee2
employeel = DataStorage.Load("Inigo”, “Montoya");

Console.riteLine(
"{ey: {1},
employeel.GetName(),
employeel.Salary);

Vs

OEBPS/html/graphics/04lis15a.jpg
foreach (string subdirectory in
Directory.GetDirectories(directory))

{
lineCount += DirectoryCountLines(subdirectory);

i

return lineCount;

}

private static int CountLines(string file)
{
string line;
int lineCount = @;
FileStream stream =
new FileStream(file, FileMode.Open);’
StreamReader reader = new StreamReader(stream);
line = reader.ReadLine();

while(line != null)

{
if (line.Trim() !

{

lineCount++;

¥

line = reader.ReadLine();

}

reader.Close(); // Automatically closes the stream
return lineCount;

OEBPS/html/graphics/13lis01a.jpg
class Heater

{
public Heater(float temperature)
{
Temperature = temperature;
¥
public float Temperature
{
get{return _Temperature;}
set{_Temperature = value;}
}

private float _Temperature;

public void OnTemperatureChanged(float newTemperature)

{
if (newTemperature < Temperature)

{

System.Console.WriteLine("Heater: On");
i
else
{

System.Console.WriteLine("Heater: OFF");
¥

OEBPS/html/graphics/02lis11.jpg
class Duelofuits

{
static void Main()
{
System. Console. hrite(
"\"Truly, you have a dizzying intellect.\"");
Systenm.Console.Write("\n\"Wait 'til I get going!\"\n");
i

OEBPS/html/graphics/18lis27a.jpg
+
catch(AggregateException exception)

{
Console.WriteLine(
"ERROR: {0}:",
exception.GetType().Name);
foreach(Exception item in
exception. InnerExceptions)
{
Console.WriteLine(" {0} - {1}",
item.GetType().Name, item.Message);
¥
}

OEBPS/html/graphics/18lis28.jpg
using System;

using System.Collections.Generic;
using System.Diagnostics;

using System.I0

using System.Threading;

using System.Threading.Tasks;

public class Program

1
s

static void EncryptFiles(
string directoryPath, string searchPattern)

{

string stars =
"+ _PadRight (Console.Windowhidth-1, "+');

IEnumerablecstring> files = Directory.GetFiles(
directoryPath, searchPattern,
SearchOption.AllDirectories);

CancellationTokenSource cts =
new CancellationTokenSource();
ParallelOptions parallelOptions =
new ParallelOptions
{ CancellationToken = cts.Token };
cts.Token.Register(
() => Console.WriteLine("Cancelling..."));

OEBPS/html/graphics/18lis29.jpg
using System.Collections.Generic;
using System.Ling;

class Cryptographer
{
YZn
public Listcstring>
Encrypt(IEnumerable<string> data)
{

return data.Select(
item => Encrypt(item)).Tolist();

OEBPS/html/graphics/02lis14.jpg
class Uppercase

{

static void Main()

{

string text;

System.Console.Write("Enter text
text = System.Console.ReadlLine();

// UNEXPECTED: Does not convert text to uppercase
text.ToUpper();

System.Console.Writeline(text);

OEBPS/html/graphics/0734_pro01.jpg
if (bankAccounts.Checking.Balance >= 1000.00m)

{
bankAccounts .Checking.Balance -= 1000.00m;
bankAccounts.Savings.Balance += 1000.00m;

}

OEBPS/html/graphics/18lis26.jpg
using System;

using System.Collections.Generic;
using System.IO0;

using System.Threading. Tasks;

class Program
{
e
static void EncryptFiles(
string directoryPath, string searchPattern)

{

IEnumerablecstring> files = Directory.GetFiles(
directoryPath, searchPattern,
SearchOption.AllDirectories);

Parallel.ForEach(files, (fileName) =>

{

Encrypt(fileName);

N

¥
/"

OEBPS/html/graphics/02lis15.jpg
class Uppercase

{

static void Main()

{
string text, uppercase;

System.Console.Write("Enter text: ");
text = System.Console.ReadLine();

// Return a new string in uppercase
uppercase = text.ToUpper();

System.Console.WriteLine(uppercase) ;

OEBPS/html/graphics/18lis27.jpg
using System;

using System.Collections.Generic;
using System.I0;

using System.Threading;

using System.Threading. Tasks;

class Program
{
Vs
static void EncryptFiles(
string directoryPath, string searchPattern)
{

IEnumerablecstring> files = Directory.GetFiles(
directoryPath, searchPattern,
SearchOption.AllDirectories);

try

{
parallel.Forfach(files, (fileName) =
{

Encrypt(fileName);
A

OEBPS/html/graphics/18lis24.jpg
using System;
using Addisonkesley.Michaelis.EssentialCSharp.Shared;

class Program

{
const int TotalDigits = 100;
const int BatchSize = 10;

static void Main()
{
string pi = null;
int iterations = TotalDigits / BatchSize;
for(int i = 0; i < iterations; i++)
{
pi += PiCalculator.Calculate(
BatchSize, i * BatchSize);
}

Console.WriteLine(pi);

OEBPS/html/graphics/02lis13.jpg
class PalindromeLength

{
static void Main()
{
string palindrome;
System.Console.Write("Enter a palindrome:
palindrome = System.Console.ReadLine();
System. Console. WriteLine(
“The palindrome, \"{6}\" is {1} characters.”,
palindrome, palindrome.Length);
)

OEBPS/html/graphics/18lis25.jpg
using System;
using System.Threading.Tasks;
using AddisonWesley.Michaelis.EssentialCSharp.Shared;

s

class Program
{
static void Main()
{
string pi = null;
int iterations = TotalDigits / BatchSize;
string[] sections = new string[iterations];
parallel.For(0, iterations, (i) =>

{
sections[i] = PiCalculator.Calculate(
BatchSize, i * BatchSize);
N
pi = string.Join("", sections);

Console.Writeline(pi);

OEBPS/html/graphics/02lis18.jpg
class Program

{

static void Main()

{

var patentl =
new { Title = "Bifocals”
Year0fPublication = "1784" };
var patent2 =
new { Title honograph”,
YearOfPublication = "1877" };

System.Console.WriteLine("{0} ({1})",
patent1.Title, patent1.VearOfPublication);

System. Console.WriteLine("{0} ({1})",
patent2.Title, patentl.YearOfPublication);

OEBPS/html/graphics/02lis17.jpg
class Uppercase

{

static void Main()

{

System.Console.Write("Enter text: ");
var text = System.Console.ReadLine();

// Return a new string in uppercase
var uppercase = text.ToUpper();

System.Console.WritelLine(uppercase);

OEBPS/html/graphics/0992fig01.jpg
In'orm .cnm THE TRUSTED TECHNOL!

PEARSON InformIT is a brand of Pearson and the online presence
SR for the world’s leading technology publishers. It's your source
for reliable and qualified content and knowledge, providing

access to the top brands, authors, and contributors from
the tech community.

#Addison-Wesley Cisco Press ExAavvCRAM 1BM gue g oRenmcs g4Ms | Safari”

LearniT at InformiIT

Looking for a book, eBook, or training video on a new technology? Seek-
ing timely and relevant information and tutorials? Looking for expert opin-
ions, advice, and tips? InformIT has the solution.

* Learn about new releases and special promotions by
subscribing to a wide variety of newsletters
Visit informit.com/newsletters.

* Access FREE podcasts from experts at informit.com/podcasts.

* Read the latest author articles and sample chapters at
informit.com/articles

* Access thousands of books and videos in the Safari Books
Online digital library at safari.informit.com

* Get tips from expert blogs at informit.com/blogs.

Visit informit.com/learn to discover all the ways you can access the
hottest technology content.

Are You Part of the IT Crowd?

Connect with Pearson authors and editors via RSS feeds, Facebook,
Twitter, YouTube, and more! Visit informit.com/socialconnect.

You

INFOFMIT.COM . oo recumoroor ieamma source

AAddison-Wesley Cisco Press ExAV/CRAM 'BM pue 3 FRENTCE §4MS | Safari”

OEBPS/html/graphics/07lis10a.jpg
1
publications. List(Publication.Headers);
}
¥

static class Listable
{

public static void List(
this IListable[] items, string[] headers)

{
int[] columnWidths = DisplayHeaders(headers);
for (int itemCount = @; itemCount < items.length; itemCounts+)
{
string[] values = items[itemCount].ColumnValues;
DisplayItemRow(columnWidths, values);
}
}

OEBPS/html/graphics/08out08.jpg
"ReadoOnly | Hidden™ outputs as "ReadOnly. Hidden™
ReadOnly- Hidden

OEBPS/html/graphics/18lis22.jpg
using System;
async private void PingButton_Click(
object sender, RoutedEventArgs e)
{
StatusLabel .Content = "Pinging..";
Ping ping = new Ping();
PingReply pingReply =
await ping.SendPingAsync(“www.IntelliTect.com");
StatusLabel.Content = pingReply.Status.ToString();

OEBPS/html/graphics/08out01.jpg
Enter a number between 2 and 1000:42

D+ 1+ 1a 21 3 54 81 13 21a 34 55, 89+ 14N, 233+ 377 bLO+ 987, 1597
2584+ 418L+ b7h5+ 1L0F4hs L?71l. 28657+ 4b3bA. 75025, 121393, 19L414.
317811~ 514229, B32040, 134b2k9. 2178309, 3524578, 5702887, G2274k5.
14930352, 24157817+ 39088165+ b3245986+ 102334155+ 1b5580L4L

OEBPS/html/graphics/18lis23.jpg
using System;
async private void PingButton_Click(
object sender, RoutedEventArgs e)

{
Listestrings urls = new List<string>()

{
“ww . habitat - spokane.org”,
“waw . partnersint1.org”,
“waw . iassist.org",
“ww . Fh.org”,
“ww .wor1dvision. org”

b

IPStatus status;

Funcestring, Task<IPStatuss>> func =
async (localurl) =>
{

OEBPS/html/graphics/18lis20.jpg
using System;
using System.Threading. Tasks;

public class Program

{

public static void Main()

{

}

DisplayStatus("Before");
Task taskA =
Task.Run(() =>
DisplayStatus("Starting.
.ContinueNith(antecedent =>
DisplayStatus("Continuing A..."));
Task taskB = taskA.ContinueNith(antecedent =>
DisplayStatus("Continuing B..."));
Task taskC = taskA.ContinueWith(antecedent =>
DisplayStatus("Continuing C..."));
Task.WaitAll(taskB, taskC);
DisplayStatus("Finished!");

")

private static void DisplayStatus(string message)

{

string text =
string.Format("{@}: {1}",
Thread. CurrentThread. ManagedThreadTd,
message);
Console.WriteLine(text);

OEBPS/html/graphics/18lis21.jpg
using System;

private void PingButton_Click(
object sender, RoutedEventArgs e)
{
StatusLabel .Content =
Ping ping = new Ping();
PingReply pingReply =
ping. Send("www. IntelliTect.com");
StatusLabel .Content = pingReply.Status.ToString();

OEBPS/html/graphics/02lis07.jpg
s

const double number = 1.618033988749895;
double result;

string text;

text = string.Format("{0}", number);

result = double.Parse(text);

System.Console.WriteLine("{0}: result != number”,
result 1= number);

text = string.Format("{0:R}", number);

result = double.Parse(text);

System.Console.WriteLine("{0}: result == number”,
result == number);

s

OEBPS/html/graphics/16fig01.jpg
(tEnumerable
Interface
a

) Methods
@ Geterumerator

A R

(‘1collection (‘1Enumerable<T>
Interface Generic Intrface
 IEnumerable + IEnumerable
= Properties) Methods

Count. @ Getenumerator
ESypchronzed . J
Sycoot
 Methods
@ copyro (‘1coltection<T>
\) Generic Inrface

 IEnumerable<T>
+ IEnumaratle
o

= Properties

(mwist (‘Dictionary
i]
Ficolection Ficalection
SiEamabe Siamabe
S &
= propertes

S redsie

) Methods
@ 4dd
Y Gar
@ Contains (tbictionary <Tkey, Tvalue> ((mist<T>
© Indexcr Generic Inrface Generic Inrface
@ dsert % IColketion <KeyValusPlr <Tkey, Tude + ICollction<T>
8 Famoie = IErumerable <KeyalugPalr <Tkey, TV S IEnumerable<T>
 IEnamaratle S IEnamaratle
@ Removedt o a
J
= Properties = Properties
) Methods
@ Indexcr
) Methods @ et
o 4dd @ Removedt
@ Containstey
@ Remove

@ Dycetvaise

OEBPS/html/graphics/02lis08.jpg
string option;

int comparison = string.Compare(option, "/Help", true);

OEBPS/html/graphics/02lis05.jpg
// Display the value 42 using a hexadecinmal Literal.
System.Console.Writeline(@x@02A);

OEBPS/html/graphics/0845fig01.jpg
Unsafe Code
Pointer Declaration

Dereferencing a Pointer

@ Pointers and Addresses

Interoperability and
Unsafe Code

Using Windows
Runtime Libraries

@ from C#

Platform

Declaring
SafeHandle
Calling

OEBPS/html/graphics/11lis51.jpg
Stack<int> stackOne
Stack<int> stackTwo

new Stack<int>();
new Stack<int>();

OEBPS/html/graphics/18lis33.jpg
using System;

using System.Collections.Generic;
using System.Ling;

using System.Threading;

using System.Threading.Tasks;

public class Program

{

public static List<string> ParallelEncrypt(
Listcstrings data,
CancellationToken cancellationToken)

{
return data.AsParallel().WithCancellation(
cancellationToken).Select(
(item) => Encrypt(item)).ToList();
}

public static void Main()

{
Listcstring> data = Utility.GetData(1000000).ToList();

OEBPS/html/graphics/18lis31.jpg
Vs
OrderedparallelQuery<string> parallelGroups
data.AsParallel().OrderBy(iten => item);

// Show the total count of items still
// matches the original count
System.Diagnostics.Trace.Assert(
data.Count parallelGroups.Sum(
item item.Count()));

/o

OEBPS/html/graphics/18lis32.jpg
s

s

ParallelQuery<IGrouping<char, string>> parallelGroups;
parallelGroups =
from text in data.AsParallel()
orderby text
group text by text[0];

// Show the total count of items still
// matches the original count
System.Diagnostics.Trace.Assert(
data.Count == parallelGroups.Sum(
item => item.Count()));

OEBPS/html/graphics/18lis30.jpg
using System.Ling;

class Cryptographer

{
e
public List<string>
Encrypt (IEnumerablecstring> data)
{
return data.AsParallel().Select(
item => Encrypt(item)).ToList();

OEBPS/html/graphics/02lis54a.jpg
// Reverse the array
System.Array.Reverse(temp);

// Convert the array back to a string and
// check if reverse string is the same.
if(reverse == new string(temp))

{
System.Console.WriteLine("\"{0}\" is a palindrome.",
palindrome);
i3
else
{

System. Console. WriteLine(
"\"{6}\" is NOT a palindrome.",
palindrome);

OEBPS/html/graphics/16lis19a.jpg
T _Current;
int _ItemCount;

public object Current

{
get
{
return _Current;
}
}
public bool MoveNext()
{
switch (_TtemCount)
{
case 0:
_Current = _Pair.First;
_TtemCounts+;
return true;
case 1:
_Current = _Pair.Second;
_TtemCount+;
return true;
default:
return false;
}

OEBPS/html/graphics/0670_pro01.jpg
jfkFamilyTree.SubItems.First =
new BinaryTree<string>("Joseph Patrick Kennedy");

OEBPS/html/graphics/app-b_lis01.jpg
#define CSHARP2
using System;

#pragma warning disable 1030 // Disable user-defined warnings

// The TicTacToe class enables two players to
// play tic-tac-toe.
class TicTacToeGame // Declares the TicTacToeGame class

static void Main() // Declares the entry point to the program

// Stores Locations each player has moved.
int[] playerPositions = { 0, 0 };

// Initially set the currentPlayer to Player 1;
int currentPlayer = 1;

// Winning player
int winner = 0;

string input = null;

// Display the board and prompt the current player
// for his next move.

OEBPS/html/graphics/18lis28a.jpg
Console.WriteLine("Push ENTER to exit.");

// Use Task.Factory.StartNewcstring>() for
// TPL prior to .NET 4.5
Task task = Task.Run(() =>

{
try
{
parallel.ForEach(
files, parallelOptions,
(fileName, loopState) =>
{
Encrypt (fileName);
s
¥

catch(OperationCanceledException){}
s

// Wait for the user's input
Console.Read();

// Cancel the query
cts.Cancel();
Console.Write(stars);
task.Wait();

OEBPS/html/graphics/18lis04a.jpg
System.Diagnostics.Trace.Assert(
task.IsCompleted);
}
)3

public class PiCalculator

{
public static string Calculate(int digits = 100)

{
W

i
¥

public class Utility
{
public static IEnumerable<char> BusySymbols()
{
string busySymbols = @"-\|/-\|/";
int next = 0;
while(true)
{
yield return busySymbols[next];
next = (next + 1) % busySymbols.Length;
yield return ‘\b';

OEBPS/html/graphics/19tab04a.jpg
*ConcurrentBag<T>

O ProducerConsumerCollection<T>
IEnumerable<T>
ICollection
IEnumerable
ISerializable.
IDeserializationCallback

ConcurrentBag<T> ®
Generc Css
a
5 Propertes
= count
2 1sEmpty
& Methods
¥ add
@ ConcurrentBag (+2 overloads)
% copyTo
& GetEnumerator

39 GetobjectData
% Omeserialzstion

% Toarmay
@ TryPeek
@ TyTake

A thread-safe unordered collection of T type objects.

OEBPS/html/graphics/0155_fig01.jpg
Exception
Handling

@ Method
Overloading

Value Parameters

Referance Parameters (ef) | (4) Parameters

Namespace
@ Calling Type Name

a Method [Scope
Method Name

Parameters
Method Return

@ Declaring
a Method

Methods and
Parameters

@ The Using
Directive

Guiput Parameters (out)

Parameter Arrays (params)
Optional Parameters

OEBPS/html/graphics/19tab04c.jpg
*ConcurrentQueue<T> A thread-safe queue supporting first in, first out (FIFO)
semantics on objects of type T.

O ProducerConsumerCollection<T>
IEnumerable<T>
ICollection
IEnumerable
ISerializable.
IDeserializationCallback

ConcurrentQueue<T> ®
Generc Css
a
5 Propertes
2 count
2 1sEmpty
& Methods
& ConcurrentQueue (+ 2 overloads)
@ copyTo
@ Enqueue
¥ GetEnumerator

5% GetobjecDsts
3% Ombeserialzstion

% Toarmay
@ TryDeaueue
@ Trypeek

OEBPS/html/graphics/19tab04b.jpg
ConcurrentDictionary
<TKey, Tvalue>

IDictionary<Tey, TValue>
ICollection<KeyValuePair<TKey, TValues>
IEnumerable<KeyValuePair<TKey, TValue>>
‘Dictionary

Icollection

IEnumerable

ISerializable.

IDeserializationCallback

ConcurrentDictionary<TKey, TValue> (&
s
o
& Propertes
2 count
IsEmpty
Keys
this
Valuzs
 methods
 Clear
@ ConcurrentDictionary (+7 overloads)
 Contaskey
 GetEnumerstor
59 GetobjectData
5% omdeserialzstion
@ Toamsy
 Tyadd
@ TyGetvalue
@ TyRemove

@ Typdate

A thread-safe dictionary; a collection of keys and values.

OEBPS/html/graphics/app-c_lis09a.jpg
// Register a callback for when the calculation completes
calculationkorker . RunWorkerCompleted +=
new RunWorkerCompletedEventHandler(
Complete);
calculationkorker.
WorkerSupportsCancellation = true;

// Begin calculating pi for up to digitCount digits
calculationhorker . RunorkerAsync(
digitCount);

Console.ReadLine();
// If cancel is called after the calculation
// has completed it doesn't matter.
calculationWorker . CancelAsync();

// Wait for Complete() to run.
resetEvent.WaitOne();

}
else
{
Console.WriteLine(
“The value entered is an invalid integer.");
}

private static void CalculatePi(
object sender, DoWorkEventArgs eventArgs)

{

int digits = (int)eventArgs.Argument;

OEBPS/html/graphics/app-c_lis09b.jpg
StringBuilder pi
new StringBuilder("3.", digits + 2);
calculationkorker .ReportProgress(
@, pi.Tostring());

// Calculate rest of pi, if required
if (digits > @)
{

for (int i

{

i < digits; i += 9)

// Calculate next i decimal places
int nextDigit =
PiDigitCalculator. StartingAt(
i+1);
int digitCount =
Math.Min(digits - i, 9);
string ds
string.Format("{6:09}", nextDigit);
pi.Append(ds.Substring(, digitCount));

// Show current progress
calculationhorker .ReportProgress(
0, ds.Substring(e, digitCount));

// Check for cancellation
if (
calculationkorker .CancellationPending)
{
// Need to set Cancel if you need to
// distinguish how a worker thread completed

OEBPS/html/graphics/19tab04d.jpg
*ConcurrentStack<T>

O ProducerConsumerCollection<T>
IEnumerable<T>
Icollection
IEnumerable
ISerializable.
IDeserializationCallback

ConcurrentStack<T> @
Genarec ez
=)
= Properties
2 count
5 1sEmoty
& Methods
@ Clear
@ Concurrentstack (+ 2 overloads)
@ copyTo
@ GetEnumerator
39 GetObjectData
39 OnDeserialzation
9 push
@ PushRange (+ 1 overload)
9 Toarray
@ Trypeek
@ Trypop
@ TrypopRange (+ 1 overload)

A thread-safe stack supporting first in, last out (FILO)
semantics on objects of type T.

* Collection classes that implement IProducerConsumerCollection<T>.

OEBPS/html/graphics/app-c_lis09c.jpg
// i.e., by checking
//RuniorkerCompLetedEventArgs . Cancel Led
eventArgs.Cancel = true;

break;

¥

eventArgs.Result = pi.ToString();
}

private static void UpdateDisplayWithioreDigits(
object sender,
ProgressChangedEventArgs eventArgs)

string digits = (string)eventArgs.UserState;

Console.lrite(digits);

static void Complete(
object sender,
RunhorkerCompletedEventArgs eventArgs)

s

OEBPS/html/graphics/app-c_lis09d.jpg
public class PiDigitCalculator

{
yZasn

}

OEBPS/html/graphics/03lis60.jpg
#region Display Tic-tac-toe Board

#if CSHARP2
System.Console.Clear();
#endif

// Display the current board;
border = 6; // set the first border (border[0] = "|")

// Display the top Line of dashes.

7/ ("\n---+ \n")

System.Console.Write(borders[2]);

foreach (char cell in cells)

{
// Write out a cell value and the border that comes after it.
System.Console.Write(" {0} {1}", cell, borders[border]);

// Increment to the next border;
border++;

// Reset border to @ if it is 3.
if (border == 3)
{
border = 0;
}
¥

#endregion Display Tic-tac-toe Board

OEBPS/html/graphics/app-c_lis08a.jpg
TaskScheduler.
FromCurrentSynchronizationContext();

Task.Run(
0=
{

return PiCalculator.Calculate(digits);
}, cancelToken)
-Continuewith(

continueTask =>

{

Exception exception =
continueTask.Exception
continueTask.Exception :
continueTask.Exception.

InnerException;

CalculateCompleted(
typeof(PiCalculator),
new CalculateCompletedEventArgs(

continueTask.Result,
exception,
cancelToken. IsCancellationRequested,
userstate));
}, scheduler);

null ?

}

public event
EventHandler<CalculateCompletedEventArgs>
CalculateCompleted = delegate { };

OEBPS/html/graphics/app-c_lis08b.jpg
public class CalculateCompletedEventArgs
: AsyncCompletedEventArgs
{
public CalculateCompletedEventArgs(
string value,
Exception error,
bool cancelled,
object userState) : base(
error, cancelled, userState)

{

¥
public string Result { get; private set; }

Result = value;

OEBPS/html/graphics/18lis23a.jpg
Ping ping = new Ping();
PingReply pingReply =
await ping.SendPingAsync(localurl);
return pingReply.Status;
b

StatusLabel .Content = "Pinging..";

foreach(string url in urls)
{
status = await func(url);
StatusLabel.Content =
string.Format("{@}: {1} ({2})",
url, status.ToString(),

Thread. CurrentThread. ManagedThreadId) ;

OEBPS/html/graphics/08fig02.jpg
int numbert ——>»

char letter——|
float pi———>

int number2——
string text——>|

StringReader reader——>|

Heap

42

ry

3.14F

42

0x00A61234

0x00A612C0
\
A

00 66 00 20 00

00 66 00 72 00
6F 00 6D 00 20
—
9C 11 C9 78 00
00 00 00 34 12
A6 00 00 00 00
00 33 00 00 00
00 00 00 00 00
00 00 00 00 00
00 00 00 00 00
—
D4 4C C7 78 02
—
41 00 20 00 63
00 61 00 63 00
6F 00 70 00 68

00 6F 00 6E 00
79 00 20 00 6F
00 66 00 20 00
72 00 61 00 6D

—

/...

int numberl = 42;
char letter = 'A';
float pi = 3.14F;

int number2 = numberl;
/]

using System.IO;

/...
string text =
"A cacophony of ramblings
from my potpourri of notes";
StringReader reader =
new StringReader(text);
...

OEBPS/html/graphics/08fig01.jpg
int numbert——>

char letter——»|
float pi——>

int number2——

42

A

3.14F

42

Stack

...

int numberl = 42;
char letter = 'A";
float pi = 3.14F;

int number2 = numberl;

/...

OEBPS/html/graphics/03lis52.jpg
Y
static void Main(string[] args)
{
bool isOutputSet = false;
bool isFiltered = false;

foreach (string option in args)

{

switch (option)
{
case "/out":
isOutputSet = true;
isFiltered = false;
goto default;
case "/f":
isFiltered = true;
isRecursive = false;
goto default;
default:

OEBPS/html/graphics/03lis50.jpg
class EmailDomain

{

static void Main()

{

string email;
bool insideDomain = false;
System.Console.WriteLine("Enter an email address: ");

email = System.Console.ReadLine();

System.Console.Write("The email domain is

// Iterate through each Letter in the email address.
foreach (char letter in email)

{
if (linsideDomain)
{
if (letter == '@')
{
insideDomain = true;
¥
continue;
}
System.Console.Write(letter);
}

OEBPS/html/graphics/16lis16a.jpg
yield return item;

¥
i

#endregion TEnumerable<T>

#region IEnumerable Members
System.Collections.IEnumerator
System.Collections. IEnumerable.GetEnumerator()

return GetEnumerator();
3

#endregion

OEBPS/html/graphics/10lis09.jpg
using System;

public class Program

{
public static void Main()
{
unchecked
{
// ‘int.MaxValue equals 2147483647
int n = int.MaxValue;
n=n+1;
System.Console.WriteLine(n);
}
}

OEBPS/html/graphics/03lis59.jpg
124 #line 113 "TicTacToe.cs"

125 #warning "Same move allowed multiple times."
126 #line default

OEBPS/html/graphics/10lis08.jpg
using System;

public class Program

{
public static void Main()
{
checked
{

// int.MaxValue equals 2147483647
int n = int.MaxValue;

n=n+1;
System.Console.WriteLine(n);

OEBPS/html/graphics/10lis07.jpg
using System;

public class Program

{

public static void Main()

{
// int.MaxValue equals 2147483647
int n = int.MaxValue;
n=n+1;
System.Console.WriteLine(n);

¥

OEBPS/html/graphics/10lis06.jpg
// Supporting serialization via an attribute
[Serializable]
class DatabaseException : System.Exception

{
s

// Used for deserialization of exceptions

public DatabaseException(
SerializationInfo serializationInfo,
StreamingContext context)

I ees

OEBPS/html/graphics/10lis05.jpg
class DatabaseException : System.Exception

{
public DatabaseException(

System.Data.SqlClient . SQLException exception)
{

InnerException = exception;
s
i

public DatabaseException(
System.Data.OracleClient .OracleException exception)

{
InnerException = exception;
s
}
public DatabaseException()
{
s
¥
public DatabaseException(string message)
{
s
¥

public DatabaseException(
string message, Exception innerException)

{

TInnerException = innerException;

s

OEBPS/html/graphics/10lis04.jpg
using System

public sealed class Program

{
public static void Main()
{
try
{
s
throw new InvalidOperationException (
"Arbitrary exception");
s
¥
catch (NullReferenceException exception)
{
// Handle NullReferenceException
}
catch (ArgumentException exception)
{
// HandLe ArgumentException
}
catch (InvalidOperationException exception)
{

// HandlLe ApplicationException

OEBPS/html/graphics/10lis03.jpg
using System
using System.Runtime.ExceptionServices;

using System.Threading.Tasks;

Task task = WriteWebReauestSizeAsvnc(url):
try

{
while (!task.Wait(100))
{
Console.Write(".");
¥
}

catch(AggregateException exception)
{
exception = exception.Flatten();
ExceptionDispatchInfo.Capture(
exception. InnerException) . Throw();

OEBPS/html/graphics/10lis02.jpg
using System;

public sealed class Program

{

public static void Main(string[] args)
{

try
{
s
throw new InvalidOperationException(
“Arbitrary exception”);
Vs
}
catch (NullReferenceException exception)
{
// Handle NullReferenceException
}
catch (ArgumentException exception)
{
// HandLe ArgumentException
¥
catch (InvalidOperationException exception)
{

bool exceptionHandled=false;
// Handle InvalidOperationException

/o
if(!exceptionHandled)

OEBPS/html/graphics/10lis01.jpg
public sealed class TextNumberParser

{
public static int Parse(string textDigit)

{
string[] digitTexts =
{ "zero", "one", "two", "three", "four",
“five", "six", "seven", "eight", "nine" };

int result = Array.Index0f(
digitTexts, textDigit.ToLower());

if (result < 0)

{
throw new ArgumentException(
"The argument did not represent a digit”,
"textDigit");
¥

return result;

OEBPS/html/graphics/04lis20a.jpg
Console.WritelLine(
“The age entered, {6}, is not valid.”,

ageText);
result = 1;
¥
catch(Exception exception)
{
Console.WriteLine(
“Unexpected error: {0}", exception.Message);
result = 1;
}
finally
{
Console.WriteLine("Goodbye {0}",
firstName);
}

return result;

OEBPS/html/graphics/16fig08.jpg
Program primitives: enumerator: Console
9 CSharpPrimitiveTypes Enumerator
T T T T
| | | |
GetEnumerator() | | }
Instantiate : }
> |
< ——————— !
MoveNext() T }
T » |
yield return "object" |
B S Tt o T |
| WriteLine() | |
T T
| |
MoveNext() : |
yield return "byte" }
< -9 ——————— |
| WriteLine() | |
T T
| |
| |
| | |
MoveNext() : }
yield return "string" D }
-——————— —_—————_——
—: WriteLine() | }
T T
| |
| |
| | |
1 1 |

OEBPS/html/graphics/16fig07.jpg
ICollection<T>
IEnumerable<T>
IColection
IEnumerable
I5erializable
IDeseriaizationCalback

LinkedList<T> LinkedListNode <T>

Generic Class. S Last | Ganeric Sealed Class
= Properties st | Properties.
& count et

Head = st F Previous
= System Collecions. Generi IColecton<T> IsReadonly ¢ 3 vahe

= System Collecions. Calcton Issynchvonized = methods

' System,Collections.ICollection SyncRoot

@ Unkedusthiods.

= Tal
= Methods

Addafter (+ 1 overload)
Addsefore (+ 1 overload)
AddFirst (+ 1 overload)
AddHead (+ 1 overload)
AddLast (+ 1 overload)
AddTail (+ 1 overload)
Clear

Contans

CopyTo,

Find

FindLast

GetEnumerator
GetObjectData

Linkedis (+2 overloads)
OnDeserialzation
Remove (+ 1 overload)
RemaveFirst
Remaveread
RemaveLast

RemoveTal

6666666606666 66666648

OEBPS/html/graphics/16fig06.jpg
IEnumerable<T>
IColection
IEnumerable

(Queue<T>
Gerric sz

= Propertis
2 cout
= system.Collections. ICollection, IsSynchronized
= System.Collctons ICollecton SyncRost
= Wethods
 Cear
Contains
CopyTo
Deaueue
Enaueue
GetEnunerstor
pesk
Queue (+ 2 overloads)
Toaray
Trnexcess
TrnTosize

6666660608

OEBPS/html/graphics/16fig05.jpg
IEnumerable<T>
IColection
IEnumerable

Stack<T>
Generic lazs

= Propertis
2 comt
= ystem.CollctonsCollction JsSynchorized
= System.Collctions ICollecton SyncRost
= Wethods
@ Coar
Contains
ComyTo
Getgnunerstor
pesk
Pop
Push
Stack (+ 2 overloads)
Toanay
Trnexcess
TrnTosize

6666660668

OEBPS/html/graphics/16fig04.jpg
IDictionary <Tkey, Talue>
IColection<KeyValuePair <TKey, Tvalus:>>
Ienumerable <KeyValuspair <Tkey, Tralue>>

IDictonary
IColectian
IEnumerable

SortedList<TKey, TValue>
Generic lszz

= Propertiss
5 Copaciy
5 Comparer
F Count
' Ttem
B
= system Collections.Generi IColction<Syste.

System,Collctions. Generic Iictonary <Tkey,

System,Collctions. Generic Iictionary <Tkey,

System,CollctionsIColecton IsSynchronized

System,Collctions.IColeston. SyneRoot

System,Collctions. IDictionary JsFixedSize

System,Collctions IDictonery. sReadOnly

System,Collctions IDictonery Ttem

System,Collctions IDictionary Keys

System,Collctions Iictionary.Values

F values

= Methods

 Add

Clear

Cortainskey

Cortaistalue

GetErumerator

IndexORey

IndexOfvalue

Remave

Removedt

Sorteist (+ 5 overloads)

Trinxcess

THimToSize

TryGetiahe

660666666666

IDictionary <Tkey, TValue>
IColection<KeyValuePair <TKey, Tvalus:>>
Ienumerable <KeyValuspair <Tkey, Tralue>>

IDictonary
IColectian
IEnumerable

SortedDictionary <TKey, TValue>
Generic lszz

= Properties

Comparer
F Count
5 Item
5 ke

System,Collction. Generc IColeston <Syste.
System,Collctions Generc Iictionary <Tkey,
System,Collctions. Generic Iictionary <Tkey,
System,Collctions IColecton IsSynchronized
System,Collctions. IColeston, SyneRoot
System,Collctions. IDictionary JsFixedSize
System,Collctions IDictonery. sReadOnly
System,Collctions IDictonary ltem
System,Collctions.IDictionary Keys
System,Collctions Iictionery.Values

23
@ Containskey
& Containstalue
@ copyTo

@ GetEnumerator
@ Remove

@

@

SortedDictonary (+ 3 overloads)
TryGetvalie

OEBPS/html/graphics/16fig03.jpg
IDictionary <Tkey, TValue>
IColection<KeyValuePair <TKey, Tvalus:>>
Ienumerable <KeyValuspair <Tkey, Tralue>>
IDictonary

IColectian

IEnumerable

I5erilzable

IDeseriaizationCalback

Dictionary <Tey, T¥alue>
Gearic e
5
= Propertiss
5 Comparer
F Count
& tem
& e
= system. Colestons.GenericICollection <5ystem, Colections.G
System,Collctions. GenercIDictinary <Tkey, Talue> Keys
System,Collctions. Generc IDictionary <Tkey, Taue > Vaes
System,CollctionsIColecton. IsSynchronized
System,Collctions.IColeston. SyneRoot
System,Collctions. IDictinary JsFixedSize
System,Collctions Iictonery. IsReadOnly
System,Collctions IDictonary Ttem
System,Collctions.IDictionary Keys
System,Collctions Iictionary.Values
F Values
= Methods
© add
Clear

Containskey
Containsvalue

Dictionary (+ 6 overloads)
GetEnumerator
GetObjectData
OnDeserialzation
Remave

TryGetvalie

666666666

OEBPS/html/graphics/16fig02.jpg
IList<T>
IColection<T>
IEnumerable<T>
st

IColection
IEnumerable

List<T>
Generic lszz
= Properties

F Copacty
5 Count
= tem
51 SystemCollctions.Generc ICollecion<T> JsReadorly
= System Collcions. Calcton Issynchvonized
= System Collections.ICalcton.SyncRook
= system.Collctons List IsFhedsize
' System,Collections. IList.IsReadOnly
= System Colectons List tem
= methods

@ add
addRange

AsReadOnly

BinerySearch (+ 2 overloads)
Clear

Contains
Convertall<TOutpuE>
CopyTo (+ 2 overloads)
Exsts

Find

Findall

Findindex (+2 overloads)
FindLast

FindLastindex (+ 2 overloads)
ForEach

GetEnumerator

GetRange

IndexOF (+ 2 overloads)
Insert

InsertRange

LastindexOf (+ 2 overloads)
st (+2 overloads)

Remave

Remavel

RemaveAt

RemaveRange

Reverse (+ 1 overload)

Sort (+3 overloads)
Todrray

TrinExcess

TrinTasize

TrueFordl

GO66000600000606600660066606666¢

OEBPS/html/graphics/08lis18a.jpg
file.Attributes = FileAttributes.Hidden |
FileAttributes.Readonly;

Console.WriteLine("\"{8}\" outputs as \"{1}\"",
file.Attributes.ToString().Replace(",", " |"),
file.Attributes);

FileAttributes attributes =
(FileAttributes) Enum.Parse(typeof(FileAttributes),
file.Attributes.Tostring());

Console.WriteLine(attributes);
File.SetAttributes(fileName,

startingAttributes);
file.Delete();

OEBPS/html/graphics/0523_pro01.jpg
persons.Where(
person => person.Name.ToUpper()

"INIGO MONTOYA");

OEBPS/html/graphics/07fig01.jpg
Pdaltem

Class.

= Fields

% _DateTimeLastUp

P Name
® _Objectiey
& Properties

1 DateTimeLastUpd...

= Name

= Objectiey

IContact

Contact
Class
bPdaltem

(= Fields
o9 _Address
o _Person
@ _Phone

= Properties
2 address
1 Firsthlame
A Lasthame

2 Phene

) TPerson

Person
Class

B Fields
A Firsthame

=3 Person

@ _Lasthame
B Properties

5 Firsthiame
Lasthame

IPerson

Interface

© Properties

= Aistname
Z Lastiiame

IContact
Interface
b IPerson

& Properties

= Address
Fhone

OEBPS/html/graphics/18lis24a.jpg
¥
)]

using System;

class PiCalculator

{
public static string Calculate(

int digits, int startingAt)

{

}
s

s

OEBPS/html/graphics/20lis20.jpg
unsafe

{
Angle angle = new Angle(30, 18, 0);
Angle* pangle = 8angle;
System.Console.WriteLine("{0}° {1}’ {2}\"",
pAngle->Hours, pAngle->Minutes, pAngle->Seconds);

OEBPS/html/graphics/20lis21.jpg
using System.Runtime.InteropServices;

class Program

{
unsafe static int Main(string[] args)

{
// Assign redpill

byte[] redpill = {

0x0f, 6x01, 0xod, // asm SIDT instruction

0x00, 6x00, 0x00, 0x00, // placeholder for an address

oxc3}; // asm return instruction
unsafe

{
fixed (byte* matrix = new byte[6],
redpillPtr = redpill)
{
// Move the address of matrix immediately
// following the SIDT instruction of memory.
(uint)&redpillPtr[3] = (uint)8matrix[0];

using (VirtualMemoryPtr codeBytesPtr =
new VirtualWemoryPtr(redpill.Length))

{
Marshal .Copy(

redpill, 0,
codeBytesPtr, redpill.length);

MethodInvoker method =
(MethodInvoker)Marshal .GetDelegateForFunctionPointer(

OEBPS/html/graphics/13lis09a.jpg
catch (Exception exception)

{
exceptionCollection.Add(exception);
}
i3
if (exceptionCollection.Count > @)
{

throw new AggregateException(
“There were exceptions thrown by
OnTemperatureChange Event subscribers.”,
exceptionCollection);
i3
)

i

¥
private float _CurrentTemperature;

i

OEBPS/html/graphics/app-c_lis04a.jpg
tasks[line] = DisplayPageSizeAsync(
urls[line], line);

}
while (!Task.WaitAll(tasks, 50))
{
DisplayProgress(tasks);
}

Console.SetCursorPosition(®, urls.Length);

i

private static Task<WebResponse>
DisplayPageSizeAsync(string url, int line)
{
WebRequest webRequest
WebRequestState state
new WebRequestState(webRequest, line);
Write(state, url + " ");
return Task<WebResponse>.Factory.Fromasync(
webRequest . BeginGetResponse,
GetResponseAsyncCompleted, state);

WebRequest .Create(url);

i

private static WebResponse GetResponseAsyncCompleted(
IAsyncResult asyncResult)

{

OEBPS/html/graphics/app-c_lis04b.jpg
i

WebRequestState completedState =
(WebRequestState)asyncResult .AsyncState;
HttpWebResponse response =
(HttpWebResponse)completedState. WebRequest
.EndGetResponse(asyncResult);
Stream stream =
response .GetResponseStrean() ;
using (StreamReader reader =
new StreamReader(stream))

{
int length = reader.ReadToEnd().Length;
write(
completedState, FormatBytes(length));
}

return response;

private static void Write(

{

WebRequestState completedState, string text)

lock (ConsoleSyncObject)
{

Console. SetCursorPosition(
completedstate. ConsoleColumn,
completedstate.ConsoleLine);

Console.Write(text);

completedstate.ConsoleColumn +=
text.Length;

OEBPS/html/graphics/app-c_lis04c.jpg
}

private static void DisplayProgress(
Task[] tasks)

{
for (int i = 0; i < tasks.Length; i++)
{
if (Itasks[i].IsCompleted)
{
DisplayProgress(
(WebRequestState)tasks[1]
.AsyncState);
}
¥
¥

private static void DisplayProgress(
WebRequestState state)
{
lock (ConsoleSyncObject)
{
int left = state.ConsoleColumn;
int top = state.ConsoleLine;
if (left >= Console.BufferWidth -
int.MaxValue.ToString() .Length)

{
left = state.Url.Length;

OEBPS/html/graphics/app-c_lis04d.jpg
Console.SetCursorPosition(left, top);
Console.Write("".PadRight(
Console.Bufferiidth -
state.Url.Length));

state.ConsoleColumn = left;

}

Write(state, .

¥

static public string FormatBytes(long bytes)
{
string[] magnitudes =
new string[] { "G8", "M8", "
long max =
(long)Math.Pow(1024, magnitudes.Length);

", "Bytes" };

return string.Format("{1:##.4#} {0}",
magnitudes . FirstOrDefault(
magnitude =>
bytes > (max /= 1024))?? "0 Bytes",
(decimal)bytes / (decimal)max).Trim();
}
¥

class WebRequestState

OEBPS/html/graphics/17lis20.jpg
[AttributeUsage(AttributeTargets.Property, AllowMultiple=true)]
public class CommandLineSwitchAliasAttribute : Attribute

{
s
}

OEBPS/html/graphics/app-c_lis04e.jpg
public WebRequestState(
WebRequest webRequest, int line)

{
WebRequest = webRequest;
Consoleline = line;
ConsoleColumn = 0;

}

public WebRequestState(WebRequest webRequest)
{
WebRequest = webRequest;
}
public WebRequest WebRequest { get; private set; }
public string Url

{
get
{
return WebRequest.RequestUri.ToString();
}
}

public int Consoleline { get; set; }
public int ConsoleColumn { get; set; }

OEBPS/html/graphics/17lis22.jpg
#define CONDITION_A

using System;
using System.Diagnostics;

public class Program

{

public static void Main()

{
Console.WriteLine("Begin...");
MethodA();
MethodB();
Console.WriteLine("End...");

}

[Conditional("CONDITION_A")]
static void MethodA()

{
i

Console.WriteLine("MethodA() executing

[Conditional("CONDITION_B")]
static void MethodB()
{
Console.WriteLine("MethodB() executing
}
}

L")

N H

OEBPS/html/graphics/17lis21.jpg
// Filettributes defined in System.IO.

[Flags] // Decorating an enum with FlagsAttribute.
public enum FileAttributes

{
ReadOnly = 1<<0, // 006000006000001
Hidden = 1¢ct, // 000000000000010
Y

}

using System;
using System.Diagnostics;
using System.I0;

class Program

public static void Main()

{
yZaen

string fileName = @ enumtest.txt";

OEBPS/html/graphics/17lis24.jpg
using System;
using System.IO;
using System.Runtime.Serialization.Formatters.Binary;
class Program
{
public static void Main()
{
Stream stream;
Document documentBefore = new Document();
documentBefore.Title =
"A cacophony of ramblings from my potpourri of notes”;
Document documentAfter;

using (stream = File.Open(
documentBefore.Title + ".bin", FileMode.Create))

{
BinaryFormatter formatter =
new BinaryFormatter();
formatter.Serialize(stream, documentBefore);
¥

using (stream = File.Open(
documentBefore.Title + ".bin", FileMode.Open))
{
BinaryFormatter formatter =
new BinaryFormatter();
documentAfter = (Document)formatter.Deserialize(
stream) ;

OEBPS/html/graphics/17lis26.jpg
[Serializable]
public class VersionableDocument : ISerializable

{
enum Field
{
Title,
Author,
pata,
}
public VersionableDocument()
{
¥

public string Title;
public string Author;
public string Data;

#region ISerializable Members
public void GetObjectData(
SerializationInfo info, StreamingContext context)
{
info.AddValue(Field.Title.ToString(), Title);
info.Addvalue(Field.Author.Tostring(), Author);
info.AddValue(Field.Data.ToString(), Data);

OEBPS/html/graphics/17lis25.jpg
using System;
using System.Runtime.Serialization;

[Serializable]
class EncryptableDocument :
ISerializable

{
public EncryptableDocument(){ }

enum Field
{
Title,
Data

}
public string Title;
public string Data;

public static string Encrypt(string data)
{
string encrypteddata = data;
// Key-based encryption .
return encrypteddata;

}

public static string Decrypt(string encrypteddata)

{
string data = encryptedoata;

// Key-based decryption. ..

OEBPS/html/graphics/17lis28.jpg
.class private auto ansi beforefieldinit Person
extends [mscorlib]System.Object
{
.custom instance void CustomAttribute:
(@1 00 00 00)
} // end of class Person

ctor() =

OEBPS/html/graphics/17lis27.jpg
class auto ansi serializable nested private
beforefieldinit Person
extends [mscorlib]System.Object

{

} // end of class Person

OEBPS/html/graphics/17lis29.jpg
using System;

e
dynamic data =

“Hello! My name is Inigo Montoya";
Console.WriteLine(data);
data = (double)data.Length;
data = data*3.5 + 28.6;
if(data == 2.4 + 112 + 26.2)
{

Console.WriteLine(

"{0} makes for a long triathlon.”, data);

¥
else
{

data.NonExistentMethodCallstillCompiles();

¥
s

OEBPS/html/graphics/app-c_lis03a.jpg
Stream stream =

response. GetResponseStrean() ;
StreamReader reader =

new StreanReader(stream);
int length = reader.ReadToEnd().Length;

Console. Writeline(FormatBytes(length));
resetEvent.Set();
resetEvent.Dispose();

1
null);

// Indicate busy using dots
while (
lasyncResult.AsynchaitHandle. WaitOne(100))

{

Console.Write(" .
}
resetEvent.Wait();

s

OEBPS/html/graphics/17lis11.jpg
public class CommandLineSwitchRequiredAttribute : Attribute
{
}

OEBPS/html/graphics/17lis10.jpg
[return: Description(
“Returns true if the object is in a valid state.”)]

public bool IsValid()

{
/o
return true;

}

OEBPS/html/graphics/17lis13.jpg
public class CommandLineSwitchAliasAttribute : Attribute
{

public CommandLineSwitchAliasAttribute(string alias)

{

Alias = alias;

¥

public string Alias

{

get { return _Alias; }

private set { Alias = value; }
¥
private string _Alias;

¥

class CommandLineInfo

{
[CommandLineSwitchAlias("2")]

public bool Help

{
get { return _Help; }
set { _Help = value; }

}
private bool _Help;

s

OEBPS/html/graphics/17lis12.jpg
using System;
using System.Collections.Specialized;
using System.Reflection;

public class CommandLineSwitchRequiredAttribute : Attribute
{
public static string[] GetMissingRequiredOptions(
object commandLine)

{
StringCollection missingOptions = new StringCollection();
PropertyInfo[] properties =
commandLine.GetType() .GetProperties();
foreach (PropertyInfo property in properties)
{
Attribute[] attributes =
(Attribute[])property .GetCustomAttributes(
typeof (CommandLineSwitchRequiredAttribute),
false);
if ((attributes.length > 0) &&
(property.GetValue(commandLine, null) == null))
{
missingOptions.Add(property.Name);
}
}
return missingOptions.ToArray();
¥

OEBPS/html/graphics/17lis15.jpg
using System;
using System.Reflection;
using System.Collections.Generic;

public class CommandLineSwitchAliasAttribute : Attribute

{
public CommandLineSwitchAliasAttribute(string alias)

{

Alias = alias;

}
public string Alias
{
get { return _Alias; }
private set { _Alias = value; }
}

private string _Alias;

public static Dictionary<string, PropertyInfo> GetSwitches(
object commandLine)

{

OEBPS/html/graphics/17lis14.jpg
PropertyInfo property =
typeof (CommandLineInfo) .GetProperty(“Help");
CommandLineSwitchAliasAttribute attribute =
(CommandLineswitchAliasAttribute)
property.GetCustomAttributes(
typeof (ComandL inesuitchAliasattribute), false)[0];
if(attribute.Alias ")
{
Console.WriteLine("Help(?)");
};

OEBPS/html/graphics/17lis17.jpg
[AttributeUsage(AttributeTargets.Property)]
public class CommandLineSwitchAliasAttribute : Attribute

{
/o
}

OEBPS/html/graphics/17lis16.jpg
using System;
using System.Reflection;
using System.Collections.Generic;

public class CommandLineHandler

{
s

public static bool TryParse(
string[] args, object commandLine,
out string errorMessage)

bool success
erroriessage

false;
null;

Dictionary<string, PropertyInfo> options =
CommandLineSwitchAliasAttribute.GetSwitches(
commandLine);

foreach (string arg in args)
{
PropertyInfo property;
string option;
if (arglo] == '/' || arglo] ==
{

)

string[] optionParts = arg.Split(
new char[] { ":' }, 2);
option = optionParts[0].Remove(@, 1).ToLower();

OEBPS/html/graphics/17lis19.jpg
// Restrict the attribute to properties and methods
[AttributeUsage(

AttributeTargets.Field | AttributeTargets.Property)]
public class CommandLineSwitchAliasAttribute : Attribute
{

YZ2n
}

OEBPS/html/graphics/17lis18.jpg
// ERROR: The attribute usage is restricted to properties
[CommandLineSwitchAlias("?")]

class CommandLineInfo

{

}

OEBPS/html/graphics/19lis12.jpg
using System;
using System.Threading;

public class Program

{

[Threadstatic]
static double _Count = 0.01134;
public static double Count

{
get { return Program._Count; }
set { Program._Count = value; }

¥

public static void Main()

{

Thread thread = new Thread(Decrement);
thread.Start();

// Increment
for(int i = 0; i < short.MaxValue; i++)

OEBPS/html/graphics/19lis13.jpg
using System;
using System.Threading.Tasks;

public class Pomodoro

{
YZ2n

private static async Task TickAsync(
System. Threading. CancellationToken token)

{
for(int minute = 0; minute < 25; minute++)
{
DisplayMinuteTicker(minute);
for(int second = 0; second < 60; second++)
{
await Task.Delay(1000);
if(token. IsCancellationRequested) break;
DisplaySecondTicker();
}
if(token. IsCancellationRequested) break;
¥
}

OEBPS/html/graphics/19lis10.jpg
using System;
using System.Threading;
using System.Threading.Tasks;

public class Program

{
static ManualResetEventSlim MainSignaledResetEvent;
static ManualResetEventSlim DokorkSignaledResetEvent;

public static void DoWork()

{
Console.WriteLine("Dotork() started....");
DokorkSignaledResetEvent. Set();
MainSignaledResetEvent.Wait();
Console.WriteLine("Dokork() ending. .

}

public static void Main()
{
using(MainSignaledResetEvent =
new ManualResetEventslim())
using (DokorksignaledResetEvent =
new ManualResetEventslim())

{

OEBPS/html/graphics/19lis11.jpg
using System;
using System.Threading;

public class Program

{
static ThreadLocal<double> _Count =

new ThreadLocal<double>(() => 0.01134);

public static double Count

{
get { return _Count.Value; }
set { _Count.Value = value; }

i

public static void Main()
{

Thread thread = new Thread(Decrement);
thread.start();

// Increment
for(double i
{

i < short.MaxValue; i++)

Count++;

OEBPS/html/graphics/20lis06.jpg
[StructLayout(LayoutKind.Sequential)]
struct ColorRef

{

public byte Red;
public byte Green;

public byte Blue;

// Turn off warning about not accessing Unused.
#pragna warning disable 414

private byte Unused;

#ipragma warning restore 414

public ColorRef(byte red, byte green, byte blue)
{

Blue = blue;
Green = green;
Red = red;

Unused = ©;

OEBPS/html/graphics/20lis05.jpg
class VirtualMemoryManager
1
s
[D11Tmport(“kernel32.d11", SetlastError = true)]
static extern bool VirtualProtectEx(
IntPtr hProcess, IntPtr lpAddress,
IntPtr dwSize, uint flNewProtect,
ref uint lpfloldprotect);

OEBPS/html/graphics/20lis08.jpg
public class VirtualMemoryPtr :

{

System.Runtime. InteropServices. SafeHandle

public VirtualMemoryPtr(int memorySize) :
base(IntPtr.Zero, true)
{
ProcessHandle =
VirtualMemoryManager .GetCurrentProcessHandle() ;
MemorySize = (IntPtr)memorySize;
AllocatedPointer =
VirtualMemoryManager .AllocExecutionBlock(
memorySize, ProcessHandle);
Disposed = false;

¥

public readonly IntPtr AllocatedPointer;
readonly IntPtr ProcessHandle;

readonly IntPtr MemorySize;

bool Disposed;

public static implicit operator IntPtr(
VirtualMemoryPtr virtualMemoryPointer)

return virtualMemoryPointer.AllocatedPointer;

OEBPS/html/graphics/app-c_lis02a.jpg
}
state.ResetEvent.Wait();

¥

// Retrieve the results when finished downloading
private static void GetResponseAsyncCompleted(
TAsyncResult asyncResult)
{
WebRequestState completedState =
(WebRequestState)asyncResult.AsyncState;
HttpWebResponse response =
(HttpWebResponse) completedState . WebRequest
.EndGetResponse(asyncResult);
Stream stream = response.GetResponseStream();
StreamReader reader = new StreamReader(stream);
// Note: ReadToknd() is blocking. A production implementation
//should offload this to another thread.
int length = reader.ReadToEnd().Length;

Console.Writeline(FormatBytes(length));
completedState.ResetEvent.Set();
completedState.Dispose();

OEBPS/html/graphics/20lis07.jpg
class VirtualMemoryManager
{
[D11Import("kernel32.d1l", ", SetlastError = true)]
private static extern IntPtr VirtualAllocEx(
IntPtr hProcess,
IntPtr 1pAddress,
IntPtr dwSize,
AllocationType flAllocationType,
uint flProtect);

s
[D11Import("kernel32.d11", SetlastError = true)]
static extern bool VirtualProtectEx(

IntPtr hProcess, IntPtr lpAddress,

IntPtr dwSize, uint flNewProtect,

ref uint 1pfloldProtect);

[Flags]
private enum AllocationType : uint
{

s
i3

[Flags]
private enum ProtectionOptions

OEBPS/html/graphics/app-c_lis02b.jpg
class WebRequestState : IDisposable
{
public WebRequestState(WebRequest webRequest)

{

}
public WebRequest WebRequest { get; private set; }
private ManualResetEventSlim _ResetEvent =
new ManualResetEventSlim();
public ManualResetEventSlim ResetEvent
{ get { return ResetEvent; } }

WebRequest = webRequest;

public void Dispose()

{
ResetEvent.Dispose();
GC.SuppressFinalize(this);

OEBPS/html/graphics/20lis02.jpg
using System;
using System.Runtime.InteropServices;
class VirtualMemoryManager

{

[D11Import("kernel32.d11", EntryPoint="GetCurrentProcess")]
internal static extern IntPtr GetCurrentProcessHandle();

}

OEBPS/html/graphics/0362_pro01.jpg
System.Diagnostics.Trace.WritelLine(string.Format(
"The connection is currently {@}.",
ConnectionState.Disconnecting));

OEBPS/html/graphics/20lis01.jpg
using System;
class WinRTEvent
{
EventRegistrationTokenTable<EventHandler> table = null;
public event EventHandler MyEvent
{
add
{
return EventRegistrationTokenTable<EventHandler>
.GetOrCreateEventRegistrationTokenTable(ref table)
-AddEventHandler(value);
}
remove
{
return EventRegistrationTokenTable<EventHandler>
.GetOrCreateEventRegistrationTokenTable(ref table)
.RemoveEventHandler (value);
}
¥
void OnMyEvent()
{
EventHandler handler =
EventRegistrationTokenTable<EventHandler>
.GetOrCreateEventRegistrationTokenTable(ref table)
.InvocationList;
if (handler != null)
handler(this, new EventArgs());

OEBPS/html/graphics/20lis04.jpg
using System;
using System.Runtime.InteropServices;
class VirtualMemoryManager
{
[D11Import("kernel32.d11")]
internal static extern IntPtr GetCurrentProcess();

[D11Import("kernel32.d11", SetLastError = true)]
private static extern IntPtr VirtualAllocEx(
IntPtr hProcess,
IntPtr lpAddress,
IntPtr dwSize,
AllocationType flAllocationType,
uint flProtect);

OEBPS/html/graphics/20lis03.jpg
LPVOID VirtualAllocEx(
HANDLE hProcess,

LPVOID 1pAddress,

SIZE_T dusize,

// The handle to a process. The

// function allocates memory within
// the virtual address space of this
// process.

// The pointer that specifies a

// desired starting address for the
// region of pages that you want to
// allocate. Tf lpAddress is NULL,

// the function determines where to

// allocate the region.

// The size of the region of memory to
// allocate, in bytes. If lpAddress
// is NULL, the function rounds dwSize
// up to the next page boundary.

DWORD flAllocationType, // The type of memory allocation.

DWORD flProtect);

// The type of memory allocation.

OEBPS/html/graphics/17lis02.jpg
using System.Diagnostics;

e

ThreadPriorityLevel priority;

priority = (ThreadPrioritylevel)Enum.Parse(
typeof (ThreadPriorityLevel), "Idle");

/o

OEBPS/html/graphics/17lis01.jpg
DateTime dateTime = new DateTime();

Type type = dateTime.GetType();
foreach (

System.Reflection.PropertyInfo property in
type.GetProperties())

Console.WriteLine(property.Name) ;

OEBPS/html/graphics/17lis03.jpg
using System;
using System.Diagnostics;

public partial class Program
{
public static void Main(string[] args)
{
string errorMessage;
CommandLineInfo commandLine = new CommandLineInfo();
if (1CommandLineHandler.TryParse(
args, commandLine, out errortessage))

¢ Console.WriteLine(errorMessage);
DisplayHelp();
}
if (commandLine.Help)
{
DisplayHelp();
}
else
{
if (commandLine.Priority !=
ProcessPriorityClass.Normal)
{
// Change thread priority
}
¥

OEBPS/html/graphics/17lis06.jpg
using System;
using System.Collections.Generic;

public partial class Program

{

public static void Main()

{
Stack<int> s = new Stack<int>();
Type t = s.GetType();
foreach(Type type in t.GetGenericArguments())
{

System.Console.Writeline(
“Type parameter: " + type.FullName);

}
Va

}

OEBPS/html/graphics/17lis05.jpg
using System;

public class Program

{

static void Main()

{

Type type;

type = typeof(System.Nullablec>);
Console.WriteLine(type.ContainsGenericParameters);
Console.WriteLine(type.IsGenericType);

type = typeof (System.NullablecDateTimes);
Console.WriteLine(!type.ContainsGenericParameters);
Console.WriteLine(type.IsGenericType);

OEBPS/html/graphics/0925_pro01.jpg
void CalculateAsync(
int digits, object state, CancellationToken ct)

OEBPS/html/graphics/17lis07.jpg
class CommandLineInfo

{
[CommandLineSwitchAlias(

public bool Help
{

get { return _Help; }
set { _Help = value; }

}
private bool _Help;

[CommandLineSwitchRequired]
public string Out
{
get { return _out; }
set { _Out = value; }

¥

private string _Out;

public System.Diagnostics.ProcessPriorityClass Priority
{
get { return _Priority; }
set { _Priority = value; }
)
private System.Diagnostics.ProcessPriorityClass _Priority =
System.Diagnostics.ProcessPriorityClass.Normal;

OEBPS/html/graphics/17lis09.jpg
using System.Reflection;
using System.Runtime.CompilerServices;
using System.Runtime.InteropServices;

// General information about an assembly is controlled
// through the following set of attributes. Change these
// attribute values to modify the information

// associated with an assembly.

[assembly: AssemblyTitle("CompressionLibrary”)]
[assembly: AssemblyDescription("")]

[assembly: AssemblyConfiguration("")]

[assembly: AssemblyCompany(“Michaelis.net")]

[assembly: AssemblyProduct("CompressionLibrary”)]
[assembly: AssemblyCopyright("Copyright® Michaelis.net 2006-2012")]
[assembly: AssemblyTrademark("")]

[assembly: AssemblyCulture("")]

// Setting ComVisible to false makes the types in this

// assembly not visible to COM components. If you need to

// access a type in this assembly from COM, set the ComVisible
// attribute to true on that type.

[assembly: Comvisible(false)]

OEBPS/html/page-map.xml

OEBPS/html/graphics/20lis11.jpg
class VirtualMemoryManager

{
s

[D11Import("kernel32.d11", SetLastError = true)]
static extern bool VirtualFreefx(

IntPtr hProcess, IntPtr lpAddress,

IntPtr dwSize, IntPtr dwFreeType);
public static bool VirtualFreeEx(

IntPtr hProcess, IntPtr lpAddress,

IntPtr dwsize)

bool result = VirtualFreeEx(
hProcess, lpaddress, dusize,
(IntPtr)MemoryFreeType.Decommit);
if (Iresult)
{
throw new System.Componenthodel . Win32Exception();
}
return result;
}
public static bool VirtualFreeEx(
IntPtr lpAddress, IntPtr dwSize)
{

OEBPS/html/graphics/20lis10.jpg
class VirtualMemoryManager

{

Vs

/// <sunmary>

/// The type of memory allocation. This parameter must
/// contain one of the following values.

71/ </summary>

[Flags]

private enum AllocationType : uint

{

/// <sunmary>

/// Allocates physical storage in memory or in the
/// paging file on disk for the specified reserved
/// memory pages. The function initializes the memory
/// to zero.

/// </sumnary>

Commit = 6x1000,

/// <sunmary>

/// Reserves a range of the process's virtual address
/// space without allocating any actual physical

/// storage in memory or in the paging file on disk.
7// </summary>

OEBPS/html/graphics/20lis19.jpg
string text;
text = "S5280ft";

Console.Write(" {0}

", text);

unsafe // Requires /unsafe switch.
{
fixed (char* pText = text)
{
pText[1]
pText[2]
pext([3]
pText[4]
pText[s]
pText[6] = ' ';

¥

¥
Console.WriteLine(text);

OEBPS/html/graphics/20lis18.jpg
string text 5280ft";
Console.Write("{0} = ", text);
unsafe // Requires /unsafe switch.

{
fixed (char* pText = text)

{

char* p = pText;
aap = 'm's
Haap =
aap
*hip
*aap
+ap

¥

}
Console.WriteLine(text);

OEBPS/html/graphics/app-c_lis01a.jpg
// Retrieve the results when finished downloading
MWebResponse response =

webRequest . EndGetResponse(asyncResult) ;
using (StreamReader reader =
new StreamReader(response.GetResponseStream()))

{
// Note: ReadToknd() is blocking. A production implementation
//should offload this to another thread.
int length = reader.ReadToEnd().Length;
Console.WriteLine(FormatBytes(length));

}

¥

static public string FormatBytes(long bytes)

{

string[] magnitudes =

new string[] { "GB", "MB", "KB", "Bytes" };
long max =

(long)Math.Pow(1024, magnitudes.Length);

return string.Format("{1:##.4%} {0}",
magnitudes . FirstOrDefault(
magnitude =>
bytes > (max /= 1024))?? "0 Bytes",
(decimal)bytes / (decimal)max).Trim();

OEBPS/html/graphics/20lis12.jpg
class Program
{
unsafe static int Main(string[] args)
{
Y20
¥
}

OEBPS/html/graphics/20lis15.jpg
byte[] bytes = new byte[24];
fixed (byte* pData = &bytes[@]) // pbata = bytes also allowed
{
s
}

OEBPS/html/graphics/20lis14.jpg
struct ServiceStatus
{

int State;
string Description; // Description is a reference type

}

OEBPS/html/graphics/20lis09.jpg
public struct VirtualMemoryPtr

{
public VirtualMemoryPtr(int memorySize)

{

IDisposable

ProcessHandle =
VirtualMemorylanager . GetCurrentProcessHandle();

MemorySize = (IntPtr)memorySize;

Allocatedpointer =
VirtualMemoryManager.AllocExecutionBlock(
memorySize, ProcessHandle);

Disposed = false;

}

public readonly IntPtr AllocatedPointer;
readonly IntPtr ProcessHandle;

readonly IntPtr MemorySize;

bool Disposed;

public static implicit operator IntPtr(
VirtualMemoryPtr virtualMemoryPointer)

OEBPS/html/graphics/01out01.jpg
>csc.exe Hellolorld.cs

Microsoft (R) Visual C# Compiler version 4.0.30319.17k2h
for Microsoft (R) -NET Framework 4.5

Copyright (O) Microsoft Corporation. All rights reserved-

OEBPS/html/graphics/02lis54.jpg
class Palindrome

{
static void Main()

{
string reverse, palindrome;
char[] temp;

System.Console.rite("Enter a palindrome:
palindrome = System.Console.ReadLine();

// Remove spaces and convert to Lowercase
reverse = palindrome.Replace(” ", "");

reverse.TolLower();

reverse

// Convert to an array
temp = reverse.ToCharArray();

OEBPS/html/graphics/19lis04a.jpg
}
task.Wait();
Console.WriteLine("Count = {6}", _Count);
}
static void Decrement()
{
for(int i = 0; i < _Total; i++)
{
bool lockTaken = false;
try
{
Monitor. Enter(_Sync, ref lockTaken);
_Count--;
i
finally
{
if(lockTaken)
{
Moni'tor. Exit(_Sync);
}
i
}

OEBPS/html/graphics/09lis22.jpg
class Program
{
/o

static void Search()
{
using (TemporaryFileStream fileStreaml =
new TemporaryFileStream(),
fileStream2 = new TemporaryFileStream())

// Use temporary file stream;

OEBPS/html/graphics/09lis23.jpg
using System.I0;

class DataCache

{
s
public TemporaryFileStream FileStream
{
get
{
if (_FileStream == null)
{
_FileStream = new TemporaryFileStrean();
}
return _FileStream;
¥
}

private TemporaryFileStream _FileStream = null;

s
}

OEBPS/html/graphics/09lis24.jpg
using System.I0;
class DataCache
{

s

public string FileStreamName { get; set; }

public DataCache()

{
_FileStream = new Lazy<TemporaryFileStream>(
() => new TemporaryFilestrean(FileStreanName));
¥
public TemporaryFileStream FileStream
{
get
{
return _FileStream.Value;
¥
}

private Lazy<TemporaryFileStreams _FileStream;

YZ2n

OEBPS/html/graphics/12lis21.jpg
class Delegatesample

{

yZan
private sealed class _LocalsDisplayClass_00060061

{
public int comparisonCount;

public bool _AnonymousMethod_60000600(
int first, int second)

{
comparisonCount++;
return first < second;
}
i3
e
static void Main(string[] args)
{
int i;

__LocalsbisplayClass_60060061 locals =
new __LocalsDisplayClass_00000001();

locals. comparisonCount=0;

int[] items = new int[5];

5 icitems.length; i++)

OEBPS/html/graphics/12lis20.jpg
class DelegateSample

{
YZ2n

static void Main(string[] args)

{

int ij
int[] items = new int[5];
int comparisonCount=0;

for (i
{

; icitems.Length; i++)

Console.Write("Enter an integer:");
items[i] = int.Parse(Console.ReadLine());

i

BubbleSort (items,
(int first, int second) =>

{

OEBPS/html/graphics/12lis23.jpg
class DoNotCaptureLoop

{
static void Main()
{
var items = new string[] { "Moe", "Larry”, "Curly" };
var actions = new List<Action>();
foreach (string item in items)
{
string _item = item;
actions.Add(
()=> { Console.WriteLine(_item); });
}
foreach (Action action in actions)
{
action();
¥
¥

OEBPS/html/graphics/18tab01.jpg
Enum

Description

None

This is the default behavior. The continuation
task will be executed when the antecedent task
completes, regardless of its task status.

Preferfairness

If two tasks were both asynchronously started, one
before the other, there is no guarantee that the one
that was started first actually gets to run first. This
flag asks the task scheduler to try to increase the
likelihood that the first task started is the first task
to execute—something that is particularly relevant
when the two tasks you describe are created from
different thread pool threads.

LongRunning

This tells the task scheduler that the task is likely to
be an I/0 bound high-latency task. This is so that
the scheduler can allow other queued work to be
processed rather than starved because of the long-
running task. This option should be used sparingly.

AttachedToParent

This specifies that a task should attempt to attach to
a parent task within the task hierarchy.

DenyChildattach
(NET45)

This throws an exception if creation of a child task

is attempted. If code within the continuation tries to
use AttachedToParent, it'll behave as if there was no
parent.

OEBPS/html/graphics/12lis22.jpg
class CaptureLoop

{

static void Main()

{

var items = new string[] { "Moe", "Larry”, "Curly" };
var actions = new ListcAction>();
foreach (string item in items)

{
actions.Add(()=> { Console.WriteLine(item); });
}
foreach (Action action in actions)
{
action();
}

OEBPS/html/graphics/18tab02.jpg
Description

Main() Thread/

GetResponseAsync () Task

ReadToEndAsync() Task

1. Execution flows normally into Main and
up through the first Console. Write(url)
statement.

2. Acallis made to
viritenebRequestsizeasync () and so control
flows into that method as it would normally.

3. Instructions within
WritehebRequestsizeAsync() execute
normally (still on the Main() thread)
including the call to WebRequest .
Create(url)

string url =
“http: //we. IntelliTect..con";

if(args.Length > 0)

1{

}

url = args[o];

Console.hrite(url);

Task task =
WriteebRequestSizeAsync(url);

WebRequest webRequest =
WebRequest.Create(url);

4. The first await modifier begins, generating a
new Task on which the GetResponseAsync ()
can exccute. And, assuming it didn't execute
virtually instantaneously, the control flow
returns to Main() and begins executing the
while loop.

5. Once the GetResponseAsync() task
completes, execution within the same task
continues with the implicit assignment of the
said task's result o the response variable.
Then the StreanReader is instantiated from
the response.

while(ltask.Wait(100))
1{

}

Console.Write(

WebResponse response =
await webRequest.GetResponseAsync();
StreanReader reader =
new StreanReader(
response.GetResponseStrean())) ;

OEBPS/html/graphics/09lis20.jpg
using System.I0;

class TemporaryFileStream

{
public TemporaryFileStream()
{
_File = new FileInfo(Path.GetTempFileName());
_Stream = new FileStream(
File.FullName, FileMode.OpenOrCreate,
FileAccess.Readwrite);
}

// Finalizer
~TemporaryFileStream()

{
Close();
}
public FileStream Stream
{
get { return _Stream; }
¥

readonly private FileStream _Stream;

OEBPS/html/graphics/12lis25.jpg
using System;
using System.Ling.Expressions;

class Program

{

static void Main()

{

¥

ExpressioncFunccint, int, bool>> expression;
expression = (x, y) x> y;
Console.WriteLine
expression);
PrintNode(expression.Body, 0);
Console.WriteLine();
Console.WriteLine();
expression = (x, y) => X ¥y > X +y;
Console.WriteLine("- ---{0}--
expression);
PrintNode(expression.Body, 0);
Console.Writeline();
Console.WriteLine();

---{0}--

public static void PrintNode(Expression expression,

int indent)

OEBPS/html/graphics/09lis21.jpg
using System;
using System.I0;

class Program

{
s
static void Search()
{
TemporaryFileStream fileStream =
new TemporaryFileStream();
// Use temporary file stream;
s
fileStream.Dispose();
o
}
}

class TemporaryFileStream : IDisposable
{
public TemporaryFileStream()
{
_File = new FileInfo(Path.GetTempFileName());
_Stream = new FileStream(
File.FullName, FileMode.OpenOrCreate,
FileAccess.ReadwWrite);

OEBPS/html/graphics/12lis24.jpg
persons.Where(person => person.Name.ToUpper()

“INIGO MONTOYA");

select * from Person where upper(Name) = 'INIGO MONTOYA';

OEBPS/html/graphics/0527_pro03.jpg
public IQueryable<TSource> Where<TSource>(
this IQueryable<TSource> collection,
Expression<Func<TSource, bool>> predicate);

OEBPS/html/graphics/02lis50.jpg
class Programminglanguages
{
static void Main()
{
string[] languages = new string[1{
wCa, "COBOL", "Java",
"C++", "Visual Basic”, "Pascal”,
“Fortran®, "Lisp", "J#"};

System.Array.Sort(languages);

string searchString = "COBOL";
int index = System.Array.BinarySearch(

languages, searchString);
System.Console.WriteLine(

"The wave of the future, {0}, is at index {1}.",

searchstring, index);

System.Console.WriteLine();
System.Console.WriteLine("{0,-20}\t{1,-20}",
"First Element”, "Last Element");

OEBPS/html/graphics/02lis51.jpg
bool[,,] cells;
cells = new bool[2,3,3];
System.Console.WriteLine(cells.GetLength(@)); // Displays 2

OEBPS/html/graphics/0527_pro02.jpg
public IEnumerable<TSource> Where<TSource>(
this IEnumerable<TSource> collection,
Func<TSource, bool> predicate);

OEBPS/html/graphics/0527_pro01.jpg
persons.Where(person => person.Name.ToUpper() =
"INIGO MONTOYA"):

OEBPS/html/graphics/02lis43.jpg
string[] languages = new string[9]{
"c#", "COBOL", "Java",
"C++", "Visual Basi "Pascal”,
"Fortran”, "Lisp", "3#"};

// Retrieve 3rd item in languages array (Java)

string language = languages[4];

OEBPS/html/graphics/03tab03.jpg
Left Operand Right Operand Result
True True False
True False True
False True True
False False False

OEBPS/html/graphics/app-b_lis01d.jpg
winner
break;

¥
}

return winner;

}

static bool ValidateAndMove(
int[] playerpositions, int currentPlayer, string input)
£

bool valid = false;

// Check the current player’s input.
switch (input)
{
case
case
case
case
case "s":
case "6":
case "7":
case
case "9":
#warning “Same move allowed multiple times."
int shifter; // The number of places to shift
// over in order to set a bit.
int position; // The bit which is to be set.

// int.Parse() converts
// “int.Parse(input) - 1

nput” to an integer.
because arrays

OEBPS/html/graphics/02lis44.jpg
string[] languages
"C#", "COBOL", "
"C++", "Visual Basic”, “Pascal”,
"Fortran", "Lisp", "J#"};

// Save "C++" to variable called Language.

string language = languages[3];

// Assign "Java" to the C++ position.

languages[3] = languages[2];

// Assign Language to Location of “Java".

languages[2] = language;

OEBPS/html/graphics/03tab04.jpg
Statement or

Expression General Syntax Structure Example
#if directive #if preprocessor-expression #if CSHARP2
code Console.Clear();
#endif #endif
#elif directive #if preprocessor-expressionl #if LINUX
code
#elif preprocessor-expression2 #elif WINDOWS
code
#endif #endif
#else directive #if #if CSHARPL
code
#else #else
code
#endif #endif
#define directive #define conditional-symbol #define CSHARP2

#undef directive #undef conditional-symbol #undef CSHARP2

OEBPS/html/graphics/18lis06a.jpg
Task canceledTask = task.ContinueWith(
(antecedentTask) =>

{
Trace.Assert(task.IsCanceled);
Console.WriteLine(
"Task State: Canceled");
3

TaskContinuationOptions.OnlyonCanceled);

Task completedTask =
(antecedentTask)
{

ta sk.Cont)’nuewith(

Trace.Assert (task.IsCompleted);
Console. WriteLine(
“Task State: Completed");
}, TaskContinuationOptions.
OnlyOnRanToCompletion);
completedTask.Wait();

OEBPS/html/graphics/app-b_lis01c.jpg
// user again.
System.Console.WriteLine("\nThe game was a tie!");
endGame = true;

}
else if (input == "* || input == "quit")
{
// Check if user quit by hitting Enter without
// any characters or by typing "quit”.
System.Console.WriteLine("The last player quit");
endGame = true;
}

return endGame;

¥

static int DetermineWinner(int[] playerPositions)

{

int winner = 0;
// Determine if there is a winner
int[] winningMasks = {

7, 56, 448, 73, 146, 292, 84, 273};

foreach (int mask in winningMasks)

{
if ((mask & playerPositions[0]) == mask)
{
winner
break;
}

else if ((mask & playerPositions[1]) == mask)

{

OEBPS/html/graphics/02lis41.jpg
bool[,,] cells;
cells = new bool[2,3,3]
{
// Player 1 moves
{ {true, false, false},
{true, false, false},
{true, false, true} },

// Player 2 moves
{ {false, false, true},
{false, true, false},
{false, true, true} }

};

/7
/"
/7
V
Y

//
/7
V
/7
Y

OEBPS/html/graphics/03tab05.jpg
Category Operators

Primary x.y f(x) alx] x++ x-- new
typeof(T) checked(x) unchecked(x) default(T)
delegate{} ()

Unary oL~ ex (T

Multiplicative %

Additive + =

Shift << >

Relational and type testing < > <= »= is as

Equality

Logical AND

Logical XOR

Logical OR

Conditional AND

Conditional OR

Null coalescing

Conditional

Assignment and lambda

OEBPS/html/graphics/app-b_lis01b.jpg
bool validMove;
do

// Request a move from the current player.
System.Console.Write("\nPlayer {0} - Enter move:",
currentPlayer);
input = System.Console.ReadLine();
validiove = ValidateAndMove(playerPositions,
currentPlayer, input);
} while (lvalidMove);

return input;

static bool EndGame(int winner, int turn, string input)

{

bool endGame = false;
if (winner > 0)

{
System.Console.WriteLine("\nPlayer {0} has won!!!
winner);
endGame = true;
}

else if (turn
{

10)

// After completing the 10th display of the
// board, exit out rather than prompting the

OEBPS/html/graphics/app-b_lis01a.jpg
for (int turn = 1; turn <= 10; ++turn)
{
DisplayBoard(playerPositions);

#region Check for End Game
if (EndGame(winner, turn, input))

{
break;

}
#endregion Check for End Game
input = NextMove(playerPositions, currentPlayer);

winner = DetermineNinner(playerPositions);

// switch players
currentPlayer = (currentPlayer == 2) ? 1 : 2;

i

private static string NextMove(int[] playerPositions,
int currentPlayer)

string input;

// Repeatedly prompt the player for a move
// until a valid move is entered.

OEBPS/html/graphics/02lis47.jpg
Console.WriteLine("There are {0} languages in the array.",
languages. Length) ;

OEBPS/html/graphics/19lis01.jpg
using System;
using System.Threading. Tasks;

public class Program

{
const int _Total = int.MaxValue;
static long _Count = ©;

public static void Main()

{
// Use Task.Factory.StartNew for .NET 4.0
Task task = Task.Run(()=>Decrement());

// Increment
for(int i = 0; i < _Total; i++)
{

_Counts+;

)

task.Wait();
Console.WriteLine("Count = {6}", _Count);

}

static void Decrement()

{
// Decrement
for(int i = 0; i < _Total; i++)
{

_Count--;

i

OEBPS/html/graphics/02lis48.jpg
string languages = new string[9];

// RUNTIME ERROR: index out of bounds - should
// be 8 for the Last element
languages[4] = languages[9];

OEBPS/html/graphics/19lis02.jpg
using System;
using System.Threading.Tasks;
public class Program

{
public static void Main()
{
int x
Parallel.For(e, int.MaxValue, i
{
X443
x5
s
Console.WriteLine("Count = {0}", x);
}

OEBPS/html/graphics/02lis45.jpg
int[,] cells = {
{1, o, 2},
{e, 2, o},
{1, 2, 1}
b
// Set the winning tic-tac-toe move to be player 1.
cells[1,0] = 1;

OEBPS/html/graphics/03tab01.jpg
Statement

General Syntax Structure

Example

if statement

if (boolean-expression)
embedded-statement

if (input
{

"quit")

System.Console.WriteLine(
“Game end");

return;
}
if (booLean-expression) if (input == "quit")
embedded-statement 1
else System.Console.WriteLine(
embedded-statement "Game end");
return;
}
else
GetNextMove();

while statement

while(booLean-expression)

while(count < total)

embedded-statement {
System.Console. WriteLine(
“count = {@}", count);
count++;
}
do while statement do do
embedded-statenent while(boolean-expression); {
System. Console. WriteLine(
"Enter name:");
input =
System.Console. ReadLine();
}

while(input I= "exit");

OEBPS/html/graphics/03tab02.jpg
Operator Description Example
< Less than input<9;
> Greater than input>9;
<= Less than or equal to input<=9;
>= Greater than or equal to input>=9;
Equality operator input==9;
1= Inequality operator input!=9;

OEBPS/html/graphics/09lis11.jpg
public struct Latitude

{
s
public Latitude(double decimalDegrees)
{
_DecimalDegrees = Normalize(decimalDegrees);
¥
public double DecimalDegrees
{
get { return _DecimalDegrees; }
¥

private readonly double _DecimalDegrees;
V72

public static implicit operator double(Latitude latitude)
{

¥
public static implicit operator Latitude(double degrees)

{
i

return latitude.DecimalDegrees;

return new Latitude(degrees);

YZan

OEBPS/html/graphics/02lis49.jpg
string languages = new string[9];

languages[4] = languages[languages.Length - 1];

OEBPS/html/graphics/09lis13.jpg
// Define the namespace AddisonWesley
namespace Addisonhesley
{

class Program

{
s
Y
¥

// End of AddisonWesley namespace declaration

OEBPS/html/graphics/09lis14.jpg
// Define the namespace Addisonkesley
namespace Addisoniesley
{
// Define the namespace AddisonWesley.Michaelis
namespace Michaelis
{
// Define the namespace
// AddisoniesLey.Michaelis.Essential CSharp
namespace EssentialCSharp
{
// Declare the class

// AddisonkesLey.Michaelis.EssentialCSharp.Program
class Program

{
/o
¥
¥
¥
i

// End of AddisonWesley namespace declaration

OEBPS/html/graphics/app-b_lis01h.jpg
// The position is empty.
token = ' 3
}

return token;

}

#1line 113 "TicTacToe.cs"
// Generated code goes here
#line default

OEBPS/html/graphics/app-b_lis01g.jpg
¥

token, borders[border]);

static char CalculateToken(

{

int[] playerpositions, int position)

// Initialize the players to 'X' and 0"
char[] players = {'X', '0'};

char token;
// If player has the position set,
// then set the token to that player.
if ((position & playerPositions[6]) == position)
{
// Player 1 has that position marked
token = players[e];
i
else if ((position & playerPositions[1]) == position)
{
// Player 2 has that position marked
token = players[1];
i

else

{

OEBPS/html/graphics/app-b_lis01f.jpg
break;

¥
return valid;
}
static void DisplayBoard(int[] playerPositions)
{
// This represents the borders between each cell
// for one row.
string[] borders = {
], \nees BRI
e Snn, [,
b

// Display the current board;
int border = @; // set the first border (border[@] = "[")

#if CSHARP2
System.Console.Clear();
#endif

for (int position
position <= 256;
position <= 1, border++)

char token = CalculateToken(
playerPositions, position);

// Write out a cell value and the border that
// comes after it.
System.Console.Write(" {0} {1}",

OEBPS/html/graphics/09lis10.jpg
public static bool operator false(Isvalid item)
{

}

public static bool operator true(Isvalid item)
{

s

s
}

OEBPS/html/graphics/app-b_lis01e.jpg
// are zero-based.
shifter = int.Parse(input) - 1;

// Shift mask of 00000000006000000000000000006001
// over by celllocations.
position = 1 << shifter;

// Take the current player cells and OR them

// to set the new position as well.

// Since currentPlayer is either 1 or 2 you

// subtract one to use currentPlayer as an

// index in a @-based array.
playerPositions[currentPlayer - 1] |= position;

valid = true;
break;

case

case "quit":
valid = true;
break;

default:
// If none of the other case statements
// is encountered, then the text is invalid.
System.Console.Writeline(
"\NERROR: Enter a value from 1-9.
+ "Push ENTER to quit");

OEBPS/html/graphics/0480_pro01.jpg
public static T Deserialize<T>(
Stream stream, IFormatter formatter)

{
}

return (T)formatter.Deserialize(stream);

OEBPS/html/graphics/09lis19.jpg
yan

private WeakReference Data;

public FileStream GetData()
{

FileStream data = (FileStream)Data.Target;
if (data != null)

{
return data;

3

else

{
// Load data
"
// Create a weak reference
// to data for use Later.
Data.Target = data;

}

return data;

OEBPS/html/graphics/09lis15.jpg
// Define the namespace Addisonkesley.Michaelis.EssentialCSharp
namespace Addisonkesley.Michaelis.EssentialCSharp
{

class Program

{

s

3

T

// End of AddisonWesley namespace declaration

OEBPS/html/graphics/09lis16.jpg
// extern must precede all other namespace elements
extern alias CoordPlus;

using System;

using CoordPlus: :Addisoniesley.Michaelis.EssentialCSharp
// Equivalent also allowed

// using CoordPlus.Addisonkesley .Michaelis.EssentialCSharp

using global: :Addisoniesley.Michaelis.EssentialCSharp
// Equivalent NOT allowed
// using global.Addisontesley.Michaelis.EssentialCSharp

public class Program

{
YZ2n

}

OEBPS/html/graphics/09lis17.jpg
17/ <summary>
/// DataStorage is used to persist and retrieve
/// employee data from the files.

/// </sunnary>

class DataStorage

/// <summarys
/// Save an employee object to a file

/// named with the Employee name.

71/ </sunmary>

/// <remarks>

/// This method uses

/// <seealso cref="System.10.FileStrean"/>
/// in addition to

/// <seealso cref="System.IO.Streamiriter"/>
/// </remarks>

/// <param name="employee">

/// The employee to persist to a file</param>
/// <date>January 1, 2600</date>

public static void Store(Employee employee)

{
s

}

Single-Line XML
Comment

OEBPS/html/graphics/09lis18.jpg
<2xml versio
<doc>
<assenbly>
<name>DataStorage</name>
</assembly>
<members>
<member nam
<summary>
DataStorage is used to persist and retrieve
employee data from the files.
</sunmary>
</member>
<member name="M:DataStorage.Store(Employee)">
<summary>
Save an employee object to a file
named with the Employee name.
</summary>
<remarks>
This method uses
<seealso cref="T:System.I0.FileStream"/>
in addition to
<seealso cre
</remarks>
<param name="employee">
The employee to persist to a file</param>
<date>January 1, 2000</date>
</member>

1.0"2>

DataStorage”>

T:System.10.Streamiriter”/>

OEBPS/html/graphics/19lis05.jpg
using System;
using System.Threading;
using System.Threading.Tasks;

public class Program

{
readonly static object _Sync = new object();
const int _Total = int.MaxValue;
static long _Count = 0;

public static void Main()

{
// Use Task.Factory.StartNew for .NET 4.0
Task task = Task.Run(()=>Decrement());

// Increment
for(int i = 8; i < _Total; i++)
{

lock(_Sync)

{

_Counts+;

}

OEBPS/html/graphics/19lis06.jpg
public class SynchronizationUsingInterlocked

{

private static object _Data;

// Initialize data if not yet assigned.
static void Initialize(object newValue)

{
// If _bata is null then set it to newValue.

Interlocked.CompareExchange(
ref _Data, newvalue, null);

s

OEBPS/html/graphics/19lis03.jpg
using System;
using System.Threading.Tasks;

public class Program

{
YZ2n

public static async void CountAsync()
{

// Use Task.Factory.StartNew for .NET 4.0
Task task = Task.Run(()=>Decrement());
// Increment

for(int i = 0; 1 < _Total; i++)

{
i

_Count++;

await task;
Console.WriteLine("Count = {0}", _Count);

OEBPS/html/graphics/19lis04.jpg
using System;
using System.Threading;
using System.Threading. Tasks;

public class Program

{
readonly static object _Sync = new object();
const int _Total = int.MaxValue;
static long _Count = ©;

public static void Main()

{

// Use Task.Factory.StartNew for .NET 4.0
Task task = Task.Run(()=>Decrement());
// Increment

for(int i = 0; 1 < _Total; i++)

{

bool lockTaken = false;

try

{
Monitor.Enter(_Sync, ref lockTaken);
_Count++;

}

finally

{

if (lockTaken)
{

}

Monitor.Exit(_Sync);

OEBPS/html/graphics/19lis09.jpg
using System;
using System.Threading;
using System.Reflection;

public class Program

{

public static void Main()

{

// Indicates whether this is the first

// application instance

bool firstApplicationInstance;

// Obtain the mutex name from the full

// assembly name.

string mutexName =
Assembly.GetEntryAssembly().FullName;

using(Mutex mutex = new Mutex(false, mutexName,
out firstApplicationInstance))

{
if (1firstApplicationInstance)
{
Console.WriteLine(
“This application is already running.");
¥
else
{
Console.WriteLine("ENTER to shutdown");
Console.ReadLine();
¥
¥

OEBPS/html/graphics/02lis40.jpg
// ERROR: Each dimension must be consistently sized.
int[,] cells = {
{1, 0, 2, 0},
{1, 2, e},
{, 2}
{1}
};

OEBPS/html/graphics/19lis05a.jpg
}

task.Wait();
Console.WriteLine("Count = {0}", _Count);

i

static void Decrement()
{
for(int i = 8; i < _Total; i++)
{
lock(_Sync)
{

_Count--;

i

OEBPS/html/graphics/19lis07.jpg
// Not thread-safe
if (OnTemperatureChanged != null)
{
// Call subscribers
OnTemperatureChanged(
this, new TemperatureEventArgs(value));

OEBPS/html/graphics/19lis08.jpg
s
TemperatureChangedHandler localonChange =
OnTemperatureChanged;

if(localonChanged != null)
{

// Call subscribers

1ocalonChanged(

this, new TemperatureEventArgs(value));

¥
s

OEBPS/html/graphics/02lis32.jpg
string[] languages = { "C#", "COBOL", "Java",
"C++", "Visual Basic", "Pascal",

“"Fortran”, "Lisp", "J#"};

OEBPS/html/graphics/02lis33.jpg
string[] languages;

languages = new string[1{"C#", "COBOL", "Java",
"C++", "Visual Basic”, "Pascal”,
"Fortran", "Lisp", "J#" };

OEBPS/html/graphics/12lis07.jpg
public delegate bool ComparisonHandler (
int first, int second);

class Delegatesample

{
public static void BubbleSort(
int[] items, ComparisonHandler comparisontlethod)

{
¥

Ve

public static bool GreaterThan(int first, int second)

{
¥

return first > second;

static void Main()
{

int 1;

OEBPS/html/graphics/12lis06.jpg
public delegate bool ComparisonHandler (
int first, int second);

class DelegateSample
{
public static void BubbleSort(
int[] items, ComparisonHandler comparisontlethod)

{

e
}
public static bool GreaterThan(int first, int second)
{
return first > second;
T
V72

}

OEBPS/html/graphics/02lis37.jpg
string[] grocerylist;

System.Console.Nrite("How many items on the list? ");
int size = int.Parse(System.Console.ReadLine());
groceryList = new string[size];

/.

OEBPS/html/graphics/18lis09a.jpg
thread.Start();

Delay(2000) ;
¥
finally

{
Message("Finally block running.

¥
}

static void Delay(int i)

{
Message(string. Format("Sleeping for {0} ms", i));
Thread.Sleep(i);
Message("Awake");

¥

static void Message(string text)
{

Console.WriteLine("{0}:{1:0000}:{2}",
Thread.CurrentThread . ManagedThreadId,
clock.ElapsedWilliseconds,
text);

OEBPS/html/graphics/09lis01.jpg
public struct Coordinate

{
public Coordinate(Longitude longitude, Latitude latitude)

{
_Longitude = longitude;
_Latitude = latitude;

i

public Longitude Longitude { get { return _Longitude; } }
private readonly Longitude _Longitude;

public Latitude Latitude { get { return _Latitude; } }
private readonly Latitude _Latitude;

public override string ToString()

{

return string.Format("{0} {1}", Longitude, Latitude);
}
Y74

OEBPS/html/graphics/09lis02.jpg
public struct Coordinate

£
public Coordinate(Longitude longitude, Latitude latitude)

{
_Longitude = longitude;
Tlatitude = latitude;
}

public Longitude Longitude { get { return _Longitude; } }
private readonly Longitude _Longitude;

public Latitude Latitude { get { return _Latitude; } }
private readonly Latitude _Latitude;

public override int GetHashCode()

{
int hashCode = Longitude.GetHashCode();
// As long as the hash codes are not equal
if (Longitude.GetHashCode() != Latitude.GetHashCode())
{
hashCode = Latitude.GetHashCode(); // eXclusive OR
}
return hashCode;
}
s

OEBPS/html/graphics/09lis03.jpg
public sealed class ProductSerialNumber

1

public ProductSerialNumber(
string productSeries, int model, long id)

{
ProductSeries = productSeries;
Model = model;
Id = id;

}

public readonly string ProductSeries;
public readonly int Model;
public readonly long Id;

public override int GetHashCode()

{
int hashCode = ProductSeries.GetHashCode();
hashCode "= Model; // Xor (eXclusive OR)
hashCode ~= Id.GetHashCode(); // Xor (eXclusive OR)
return hashCode;

}

public override bool Equals(object obj)
{

if (obj == null)

{

OEBPS/html/graphics/12lis01.jpg
static class SimpleSortl

{

public static void BubbleSort(int[] items)

{

int i;
int 3;
int temp;

1f(items==null)

{
i

return;

for (i = items.length - 1; 1 >= 0; i--)

{

for (j =
{

3+

if (items[j - 1] > items[j])
{
temp = items[j - 1];
items[j - 1] = items[j];
items[j] = temp;

OEBPS/html/graphics/12lis03.jpg
class Delegatesample

{
Vs

public static void BubbleSort(

int[] items, ComparisonHandler comparisonMethod)
{

int i;

int j;

int temp;

i (comparisontethod

{
i

= null)

throw new ArgumentNullException("comparisonMethod”);

if (items==null)

{
return;

¥

OEBPS/html/graphics/12lis02.jpg
class SimpleSort2

{
public enum SortType
{
Ascending,
Descending
}

public static void BubbleSort(int[] items, SortType sortOrder)

{
int 1;
int 3;
int temp;

if(items==null)
{

return;

i

for (i = items.length - 1; 1 >= 0;

{

for (3
{

53 5 3+

bool swap = false;
switch (sortOrder)

OEBPS/html/graphics/09lis08.jpg
public class Program

{

public static void Main()

{

Coordinate coordinatel,coordinate2;
coordinatel = new Coordinate(

new Longitude(48, 52), new Latitude(-2, -20));
Arc arc = new Arc(new Longitude(3), new Latitude(1));

coordinate2 = coordinatel + arc;
Console. WriteLine(coordinate2);

coordinate2 = coordinate2 - arc;
Console. WriteLine(coordinate2);

coordinate += arc;
Console. WriteLine(coordinate2);

OEBPS/html/graphics/09lis09.jpg
public struct Latitude

{

Y

;ﬂbi;; static Latitude operator -(Latitude latitude)
¢ return new Latitude(-latitude.DecimalDegrees);
;ublic static Latitude operator +(Latitude latitude)
¢ return latitude;

}

public struct Longitude

{

yZas
public static Longitude operator -(Longitude longitude)
{
return new Longitude(-longitude.DecimalDegrees);
i
public static Longitude operator +(Longitude longitude)

{

}
}

return longitude;

OEBPS/html/graphics/09lis04.jpg
public struct Coordinate

£
public Coordinate(Longitude longitude, Latitude latitude)

{
_Longitude = longitude;
_latitude = latitude;

}

public Longitude Longitude { get { return _Longitude; } }
private readonly Longitude _Longitude;

public Latitude Latitude { get { return _Latitude; } }
private readonly Latitude _Latitude;

yan
}

class Program

{
public void Main()

{
A

Coordinate coordinatel =
new Coordinate(new Longitude(ds, 52),
new Latitude(-2, -20));

OEBPS/html/graphics/02lis50a.jpg
System Console. writeLine(“(B, ZB)\t(l, 201",

="

systen.Console.riteLine("(0, 201\t {1,-20}",
languages[0], languages[languages.Length-1]);

System.Array.Reverse(languages);
System.Console.WriteLine("{0,-20}\t{1,-20}",
languages[@], languages[languages.Length-1]);

// Note this does not remove all items from the array.
// Rather it sets each item to the type’s default value.
System.Array.Clear(languages, 0, languages.Length);
System.Console.WriteLine("{@,-20}\t{1,-20}",

languages[@], languages[languages.Length-11);
System.Console.WriteLine(

"After clearing, the array size is: {0}",

languages. Length) ;

OEBPS/html/graphics/09lis05.jpg
public struct Longitude

{
s
}

public struct Latitude
{

Ve
¥

public struct Coordinate

{
public Coordinate(Longitude longitude, Latitude latitude)

{
_Longitude = longitude;
_Latitude = latitude;
}

public Longitude Longitude { get { return _Longitude; } }
private readonly Longitude _Longitude;

public Latitude Latitude { get { return _Latitude; } }
private readonly Latitude _Latitude;

public override bool Equals(object obj)

{
// STEP 1: Check for null

OEBPS/html/graphics/09lis06.jpg
public sealed class Coordinate

{
YZ2n

public static bool operator ==(
Coordinate leftHandSide,
Coordinate rightHandside)

// Check if leftHandSide is null.

// (operator== would be recursive)

if (ReferenceEquals(leftHandSide, null))

{
// Return true if rightHandSide is also null
// but false otherwise.

return ReferenceEquals(rightHandside, null);
}

return (leftHandSide.Equals(rightHandside));
}

public static bool operator !=(
Coordinate leftHandSide,
Coordinate rightHandside)

return !(leftHandSide == rightHandSide);

OEBPS/html/graphics/09lis07.jpg
struct Arc

{
public Arc(
Longitude longitudeDifference,
Latitude latitudeDifference)

_LongitudeDifference = longitudeDifference;
_LatitudeDifference = latitudeDifference;

public Longitude LongitudeDifference

{
get

{

return _LongitudeDifference;

¥

private readonly Longitude _LongitudeDifference;

public Latitude LatitudeDifference

{
get
{

return _LatitudeDifference;

OEBPS/html/graphics/0443fig01.jpg
@Generic Internals @C# without Generics

Covarance () variance
Contravariance

(8) Generic Methods (2) Nullable Modifier

imrice Dot
Base Class | () Constraints (@) Generic Types [Ganeiis
Stru%/j:‘as‘: Naming Guidelines
__Multiple | Interfaces
Constructor Structs

OEBPS/html/graphics/02lis22.jpg
public class Program

{
public static void Main()
{
checked
{
// int.MaxValue equals 2147483647
int n = int.Maxvalue;
n=n+1;
System.Console.WriteLine(n);
i3
¥

OEBPS/html/graphics/12lis15.jpg
yZan
BubbleSort(items, (first, second) => first < second);

s

OEBPS/html/graphics/12lis18.jpg
// Contravariance
Actioncobject> broadAction =
(object data) =>
{

Console.WriteLine(data);
b

Action<string> narrowAction

broadAction;

// Covariance

Funcestring> narrowFunction
() =>Console.ReadLine();

Func<object> broadFunction = narrowFunction;

// Contravariance & Covariance Combined
Funccobject, string> funcl =

(object data) => data.ToString();
Func<string, object> func2 = funcl;

OEBPS/html/graphics/02lis20.jpg
long longhumber = 50918309109;
int intNumber = (int) longNumber;
&)

cast operator

OEBPS/html/graphics/12lis17.jpg
public
public
public
in
public
T
public
T
public
in
in

delegate
delegate
delegate
1 argl,
delegate
argl, T2
delegate
argl, T2

delegate

void Action ();

void Action<in T>(T arg)

void Actioncin T1, in T2>(

in T2 arg2)

void Actioncin T1, in T2, in T3>(

arg2, T3 arg3)

void Actioncin T1, in T2, in T3, in T4(
arg2, T3 arg3, T4 argd)

void Action<

T1, in T2, in T3, in T4, in TS, in T6, in 77, in T8,
T9, in T1e, in Ti1, in T12, in T13, in T14, in T16(

T1 argl,
TS args,
T9 arg9,

T2 arg2, T3 arg3, T4 argd,
T6 argé, T7 arg7, T8 args,
T10 argle, Til argll, T12 argl2,

T13 argl3, T14 argld, T1S argls, T16 arglé)

OEBPS/html/graphics/12lis19.jpg
class DelegateSample

{

/" .

static void Main(string[] args)

{

i

int ij
int[] items = new int[5];

for (i
{

; icitems.length; i++)

Console.Write("Enter an integer:");
items[i] = int.Parse(Console.ReadLine());

BubbleSort (itens,
DelegateSample._AnonymousMethod_00000000) ;

for (i = 0; 1 < items.Length; it+)

{
}

Console.WriteLine(items[i]);

private static bool __AnonymousMethod_00000000(

{
i

int first, int second)

return first < second;

OEBPS/html/graphics/02lis23.jpg
using System;

public class Program

{
public static void Main()
{
unchecked
{
// int.MaxValue equals 2147483647
int n = int.MaxValue;
n=n+1;
System.Console.WriteLine(n);
}
)

OEBPS/html/graphics/18lis08a.jpg
Trace.Assert(antecedentTaskIsFaulted);
if (Itask.IsFaulted)
{
task.Wait();
i3
else
{
task.Exception.Handle(eachException =>
{
Console. Writeline(
"ERROR: {0}",
eachException.Message);
return true;
bhH

OEBPS/html/graphics/02lis29.jpg
double number;
string input;

System.Console.Write("Enter a number: ");
input = System.Console.ReadLine();
if (double.TryParse(input, out number))
{
// Converted correctly, now use number
s
}
else
{
System.Console.WriteLine(
“The text entered was not a valid number.");

OEBPS/html/graphics/02lis27.jpg
string middleCText = "261.626";
double middleC = System.Convert.ToDouble(middleCText);
bool boolean = System.Convert.ToBoolean(middleC);

OEBPS/html/graphics/12lis10.jpg
using System;
class Delegatesample
{

public delegate bool ComparisonHandler(int first, int second);

public static void BubbleSort(
int[] items, ComparisonHandler comparisonMethod)

{
int i;
int 3;
int temp;
for (i = items.Length - 1; i >= @; i--)
{
for (3 = 1; 3 <= i j++)
{
if (comparisonMethod(items[j - 1], items[j1))
{
temp = items[j - 11;
items[j - 1] = items[j];
items[j] = temp;
}
}
¥
¥

public static bool GreaterThan(int first, int second)
{

return first > second;

OEBPS/html/graphics/17lis31.jpg
using System;

/o
dynamic person = DynamicXml.Parse(
@" <Person>
<FirstName>Inigo</FirstName>
<LastName>Montoyac/LastName>
</Person>");

Console.WriteLine(" {0} {1}",
person.FirstName, person.LastName);
/.

OEBPS/html/graphics/17lis30.jpg
using System;
using System.Xml.Ling;

/o
XElement person = XElement.Parse(
@"<Person>
<FirstName>Inigo</FirstName>
<LastName>Montoya</LastName>
</Person>");

Console.WriteLine("{0} {1}",
person.Descendants("FirstName") .FirstorDefault().Value,
person.Descendants("LastName") . FirstOrDefault().Value);

s

OEBPS/html/graphics/17lis33.jpg
using System.Dynamic;

public class DynamicObject : IDynamicMetaObjectProvider

{
protected DynamicObject();

public virtual IEnumerablecstring> GetDynamicMemberNames();

public virtual DynamicMetaObject GetMetaObject(
Expression parameter);

public virtual bool TryBinaryOperation(
BinaryOperationBinder binder, object arg,

out object result);

public virtual bool TryConvert(
ConvertBinder binder, out object result);

public virtual bool TryCreateInstance(
CreateInstanceBinder binder, object[] args,

out object result);

public virtual bool TryDeleteIndex(
DeleteIndexBinder binder, object[] indexes);

public virtual bool TryDeleteMember(
DeleteMemberBinder binder);

OEBPS/html/graphics/12lis13.jpg
using System.Collections.Generic;
using System.Diagnostics;
using System.Ling;
Vs
IEnumerablecProcess> processes = Process.GetProcesses().Where(
process => { return process.WorkingSet64 > 1000000000; });
/o

OEBPS/html/graphics/17lis32.jpg
using System;
using System.Dynamic;
using System.Xml.Ling;

public class DynamicXml : DynamicObject

{
private XElement Element { get; set; }

public DynamicXml(System.Xml.Ling.XElement element)

1

Element = element;

}
public static DynamicXml Parse(string text)
{
return new DynamicXml(XElement.Parse(text));
¥

public override bool TryGetMember(
GetMemberBinder binder, out object result)
{
bool success = false;
result = null;
XElement firstDescendant =
Element .Descendants(binder . Name) . FirstorDefault();
if (firstDescendant != null)
{
if (firstDescendant.Descendants().Count() > 0)
{
result = new DynamicXml(firstDescendant);

}

OEBPS/html/graphics/0991fig01.jpg
REGISTER

THIS PRODUCT

Register the Addison-Wesley, Exam Registering your products can unlock

Cram, Prentice Hall, Que, and the following benefits:
Sams products you own to unlock * Access to supplemental content,
great benefits. including bonus chapters,

source code, or project files.
* A coupon to be used on your
next purchase.

To begin the registration process,
simply go to informit.com/register
to sign in or create an account.

You will then be prompted to enter Registration benefits vary by product
the 10- or 13-digit ISBN that appears ~ Benefits will be listed on your Account
on the back cover of your product page under Registered Products.

About InformIT — THE TRUSTED TECHNOLOGY LEARNING SOURCE

INFORMIT IS HOME TO THE LEADING TECHNOLOGY PUBLISHING IMPRINTS
Addison-Wesley Professional, Cisco Press, Exam Cram, IBM Press, Prentice Hall
Professional, Que, and Sams. Here you will gain access to quality and trusted content and
resources from the authors, creators, innovators, and leaders of technology. Whether you're
looking for a book on a new technology. a helpful article, timely newsletters, or access to
the Safari Books Online digital library, InformIT has a solution for you

Ad)y | Cisc
1BM Press | Que |

| Exam Cram
Hall | Sams

informiIT. GIIIII

TR TED TEC MO L EARNING

AR

T

OEBPS/html/graphics/19lis12a.jpg
{
3

Count++;

thread.Join();
Console.WriteLine("Main Count = {@}", Count);

Y

static void Decrement()

{

for(int i = 8; i < short.MaxValue; i++)
{

Count--;

i

Console.WriteLine("Decrement Count = {0}", Count);

OEBPS/html/page-template.xpgt

	

	
	

	

	
	

OEBPS/html/graphics/04lis21.jpg
using System;

class ExceptionHandling

{

static int Main()

{

string firstName;
string ageText;
int age;

int result =

Console.Write("Enter your first name: ");
firsthame = Console.ReadLine();

Console.Write("Enter your age:
ageText = Console.ReadLine();

try
{
age = int.Parse(ageText);
Console.WriteLine(
"Hi {@}! You are {1} months old."
firstName, age*12);
}
finally
{
Console.WriteLine("Goodbye {0}",
firsthame);
}

return result;

OEBPS/html/graphics/04lis22.jpg
try

{
age = int.Parse(ageText);
System.Console.WriteLine(
"Hi {0}! You are {1} months old.",
Firsthame, age*12);
}

catch (System.FormatException exception)
{
System.Console.WriteLine(
“The age entered ,{0}, is not valid.”,
ageText);
result = 1;

}
catch(System. Exception exception)
{
System.Console.WriteLine(
"Unexpected error: {0}", exception.Message);
result = 1;
¥
catch
i
System.Console.WriteLine(
“Unexpected error!”);
result = 1;
}
finally
{

System.Console.WritelLine("Goodbye {0}",
firsthame);

OEBPS/html/graphics/04lis23.jpg
using System;
class ThrowingExceptions

{
static void Main()
{
try
{

Console.WriteLine("Begin executing");
Console.WriteLine("Throw exception...");
throw new Exception("Arbitrary exception”);
Console.WriteLine("End executing”);

¥
catch (FormatException exception)

{
Console.WriteLine(

"A FormateException was thrown");

\ }

catch(Exception exception)

{

Console.WriteLine(

Unexpected error: {0}", exception.Message);

}
catch
{

Console.WriteLine("Unexpected error!");
¥
Console.WriteLine(

“Shutting down. ..

OEBPS/html/graphics/04lis24.jpg
catch(Exception exception)
{
Console.WriteLine(
"Rethrowing unexpected error:
exception.Message);
throw;

{8},

OEBPS/html/graphics/04lis20.jpg
using System;

class ExceptionHandling
{
static int Main()
{
string firstName;
string ageText;
int age;
int result = @;

Console.Write("Enter your first name:
firstName = Console.ReadLine();

Console.Write("Enter your age: ");
ageText = Console.ReadLine();

try
{
age = int.Parse(ageText);
Console. WriteLine(
"Hi {0}! You are {1} months old.",
firsthame, age*12);
}

catch (FormatException)
{

OEBPS/html/graphics/0313fig01.jpg
Extension Methods N
on Interfaces @ Polymorphism

@ Versioning

Interface
Inheritance

@ Interface
Implementation |Explicit
Implicit

OEBPS/html/graphics/12lis17a.jpg
public delegate TResult Func<out TResult>();

public delegate TResult Func<in T, out TResult>(T arg)

public delegate TResult Funccin T1, in T2, out TResult>(
in T1 argl, in T2 arg2)

public delegate TResult Func<in T1, in T2, in T3, out TResult>(
T1 argl, T2 arg2, T3 arg3)

public delegate TResult Func<in T1, in T2, in T3, in T4,
out TResult>(T1 argl, T2 arg2, T3 arg3, T4 argd)

public delegate TResult Func<

in T1, in T2, in T3, in T4, in T5, in T6, in T7, in T8,
in T9, in T1e, in T11, in T12, in T13, in T14, in Ti6,
out TResult>(

T1 argl, T2 arg2, T3 arg3, T4 argd,

T5 arg5, T6 args, T7 arg7, T8 args,

T9 argd, T10 argle, T11 argll, T12 argl2,

T13 argl3, T14 argld, T15 argl5, T16 argl6)

OEBPS/html/graphics/14lis11c.jpg
public static readonly Patent[] Patents

{

b

new

new

new

new

new

new

new

new

new Patent[]

Patent(){

Title="Bifocals", YearOfPublication="1784",
InventorIds=new long[] {1}},

Patent(){

Title="Phonograph", YearOfPublication="1877",
InventorIds=new long[] {1}},
Patent(){

Title="Kinetoscope”, YearOfPublicatio
InventorIds=new long[] {1}},
Patent(){

Title="Electrical Telegraph",
YearOfPublication="1837",
InventorIds=new long[] {4}},

="1888",

Patent (){

Title="Flying machine", YearOfPublication="1903",
InventorIds=new long[] {2,3}},

Patent (){

Title="Steam Locomotive",
YearOfPublication="1815",

InventorIds=new long[] {5}},

Patent(){

Title="Droplet deposition apparatus”,

YearOfPublication="1989",
InventorTds=new long[] {6}},
Patent(){

Title="Backless Brassiere”,
YearOfPublication="1914",
InventorIds=new long[] {7}},

OEBPS/html/graphics/14lis11b.jpg
+
¥

public static class PatentData

{

public static readonly Inventor[] Inventors = new Inventor[]

{

b

new

new

new

new

new

new

new

Tnventor(){
enjamin Franklin”, City="Philadelphia”,
State="PA", Country="USA", Td=1 },
Tnventor(){

rville Wright", City="Kitty Hawk",
NC*, Country="USA", Td=2},
Inventor(){

Name="Wilbur Wright", Cit: Kitty Hawk",
State="NC", Country="USA", Id=3},
Inventor(){

Name="Samuel Morse", City="New York",
State="NY", Country="USA", Id=4},
Tnventor(){

Name="George Stephenson", City="ylam",
State="Northumberland”, Country="UK", Id=5},
Tnventor(){

Name="John Michaelis", City="Chicago",
State="IL", Country="USA", Id=6},
Tnventor(){

Name="Mary Phelps Jacob”, City="New York",
State="NY", Country="USA", Id=7},

OEBPS/html/graphics/14lis11a.jpg
public string City { get; set; }
public string State { get; set; }
public string Country { get; set; }

public override string ToString()
{
return string.Format("{0}({1}, {21)",
Name, City, State);
}
)

class Program

{
static void Main()

{
IEnumerablecPatent> patents = PatentData.Patents;

Print(patents);

Console.WriteLine();

IEnumerablecInventor> inventors = PatentData.Inventors;
Print(inventors);

¥

private static void Print<T>(IEnumerable<T> items)

{

foreach (T item in items)

{

Console.WriteLine(item);

}

OEBPS/html/graphics/09lis07a.jpg
¥

private readonly Latitude _LatitudeDifference;

}

struct Coordinate
{
s
public static Coordinate operator +(
Coordinate source, Arc arc)

{
Coordinate result = new Coordinate(
new Longitude(
source.Longitude + arc.longitudeDifference),
new Latitude(
source.Latitude + arc.latitudeDifference));
return result;
¥

OEBPS/html/graphics/04lis07.jpg
namespace EssentialCSharp

{
using System;

class HelloWorld

{
static void Main()
{
// No need to qualify Console with System
// because of the using directive above.
Console.WriteLine("Hello, my name is Inigo Montoya");
}
}

OEBPS/html/graphics/04lis08.jpg
using System;
using System.Threading;
using CountDownTimer = System.Timers.Timer;

class HelloWorld

{
static void Main()
{
CountDownTimer timer;
s
¥

OEBPS/html/graphics/04lis09.jpg
using System;
using System.Threading;

// Declare alias Timer to refer to System.Timers.Timer to
// avoid code ambiguity with System. Threading. Timer

using Timer = System.Timers.Timer;

class HelloWorld

{
static void Main()
{
Timer timer;
s
}

OEBPS/html/graphics/04lis03.jpg
class Program

{
static void Main()
{
System.Console.Write("Enter your first name:
System.Console.WriteLine("Hello {0}!",
System.Console.ReadLine());
}

OEBPS/html/graphics/17lis16b.jpg
commandLine, true, null);
success = true;
¥

else

{

if ((optionParts.Length < 2)

|| optionParts[1] "
|| optionParts[1])
{
// No setting was provided for the switch.
success = false;
errorMessage = string.Format(
"You must specify the value for the {0} option.",
property.Name);
}
else if (
property .PropertyType == typeof(string))
{
property.SetValue(
commandLine, optionParts[1], null);
success = true;
}
else if (property.PropertyType.IsEnum)
{
success = TryParseEnumSwitch(
commandLine, optionParts,
property, ref errorMessage);
}
else

OEBPS/html/graphics/04lis04.jpg
class IntroducingMethods

{
static void Main()

{
string firstName;
string lastName;
string fullName;
System.Console.WriteLine("Hey you!");

firstame = GetUserInput("Enter your first name: ");
lastName = GetUserInput("Enter your last name: ");

fullName = GetFullName(firstName, lastName);

DisplayGreeting(fullName);
+

static string GetUserInput(string prompt)

OEBPS/html/graphics/17lis16c.jpg
success = false;
errortessage = string.Format(
"Data type '{0}' on {1} is not supported.”,
property.PropertyType.ToString(),
commandLine.GetType() . Tostring());
}
}

return success;

OEBPS/html/graphics/04lis05.jpg
class Program

{
static bool MyMethod()
{
string command = ObtainCommand();
switch(command)
{
case "quit":
return false;
// ... omitted, other cases
default:
return true;
}
}

OEBPS/html/graphics/04lis06.jpg
// The using directive imports all types from the
// specified namespace into the entire file.
using System;

class HellowWorld

{
static void Main()
{
// No need to qualify Console with System
// because of the using directive above.
Console.WriteLine("Hello, my name is Inigo Montoya");
¥

OEBPS/html/graphics/17lis16a.jpg
if (options.TryGetValue(option, out property))

{
success = SetOption(
commandLine, property,
optionParts, ref errorMessage);
}
else
{
success = false;
erroriessage = string.Format(
“Option '{6}" is not supported.”,
option);
¥

}

return success;

private static bool SetOption(
object commandLine, PropertyInfo property,
string[] optionParts, ref string errorMessage)
{
bool success;

if (property.PropertyType
{

typeof(bool))

// Last parameters for handling indexers
property.SetValue(

OEBPS/html/graphics/06fig02.jpg
Pdaltem &
Class

= Fields
L:P _DateTimelastUp ...

c,O _Mame
¥ _Objectkey
= Properties

B DateTimeLastUpd...
Mame

Er
S Objectkey

Contact ®)
Class

= Pdaltem

= Fields
g% _hddress
¥ _InternalPerson
o# _Phone
[= Properties
ﬁ Address
ﬁ FirstMame
@ LastMame

ﬁ Phone

- 4

A

InkernalPerson

Person @
Class

= Fields

L;f/f _FirstMame
‘QV _LastMame

= Properties

B Firsthame

B Lasthame
—_ 4

OEBPS/html/graphics/04lis02.jpg
class HeyYou
{

static void Main()

{
string firstName;
string lastName;
System.Console.WriteLine("Hey you!");

Namespace Method Name Parameters

System.Console. Write("Enter your first name:

Type Name

firstName = System.Console.ReadLine();

System.Console.Write("Enter your last name: ");

lastName = System.Console.ReadLine();

Systen.Console.WriteLine("Your full name is {@} {1}."
firstName, lastName);

OEBPS/html/graphics/06fig01.jpg
»|

Contact

Class

|= Properties

7 Address

% DateTimeCreated
DateTimelastUpd..

Objectkey
Phone

Pdaltem
Class

|= Properties

P DateTimeCreated
3 DateTimeLastUpd...

? Mame

S Objectkey

»)

Contact
Class

|= Properties
& pddress
2 Email
Phone
B Title

Appointment
Class

|= Properties
% EndTime
ﬁ Location
S StartTime

OEBPS/html/graphics/08tab01.jpg
C# Code CIL Code

static void Main() .method private hidebysig
static void Main() cil managed
{ {
.entrypoint
// Code size 21 (ex15)
.maxstack 1
int number; .locals init ([@] int32 number,
object thing; [1] object thing)
IL_000: nop
number = 42; IL_e0e1: 1ldc.id.s 42
IL_0003: stloc.o
// Boxing IL_60e4: 1ldloc.o
thing = number; IL_0005: box [mscorlib]System. Int32
IL_00ea: stloc.1
// Unboxing IL_eoeb: 1ldloc.1
number = (int)thing; IL_0@0c: unbox.any [mscorlib]System.Int32
IL_0011: stloc.o
IL_0012: br.s IL_oe14
return; IL_0014: ret

} } // end of method Program::Main

OEBPS/html/graphics/02fig01.jpg
int numbert——>

char letter——»|
float pi——>

int number2——

42

A

3.14F

42

Stack

...

int numberl = 42;
char letter = 'A";
float pi = 3.14F;

int number2 = numberl;

/...

OEBPS/html/graphics/02fig02.jpg
int numbert ——>»

char letter——|
float pi———>

int number2——
string text——>|

StringReader reader——>|

Heap

42

ry

3.14F

42

0x00A61234

0x00A612C0
\
A

00 66 00 20 00

00 66 00 72 00
6F 00 6D 00 20
—
9C 11 C9 78 00
00 00 00 34 12
A6 00 00 00 00
00 33 00 00 00
00 00 00 00 00
00 00 00 00 00
00 00 00 00 00
—
D4 4C C7 78 02
—
41 00 20 00 63
00 61 00 63 00
6F 00 70 00 68

00 6F 00 6E 00
79 00 20 00 6F
00 66 00 20 00
72 00 61 00 6D

—

/...

int numberl = 42;
char letter = 'A';
float pi = 3.14F;

int number2 = numberl;
/]

using System.IO;

/...
string text =
"A cacophony of ramblings
from my potpourri of notes";
StringReader reader =
new StringReader(text);
...

OEBPS/html/graphics/11out03.jpg
error (SO3LL: The type 'System.Text.StringBuilder' cannot be used as type
parameter 'T' in the generic type or method 'BinaryTree<T>'. There is no
implicit reference conversion from 'System.Text-StringBuilder' to
*System.IComparable<Systen. Text.StringBuilder>’.

OEBPS/html/graphics/04lis18.jpg
class Program

{
static void Main()
{
DisplayGreeting(
firstName: "Inigo”, lastName: "Montoya");
)

public void DisplayGreeting(
string firsthane,
string middleName = default(string),
string lastName = default(string))

yZan

OEBPS/html/graphics/04lis19.jpg
using System;

class ExceptionHandling

{
static void Main()
{
string firstName;
string ageText;
int age;
Console.WriteLine("Hey you!");
Console.Write("Enter your first name:
firstName = System.Console.ReadLine();
Console.Write("Enter your age: ");
ageText = Console.ReadLine();
age = int.Parse(ageText);
Console. WriteLine(
"Hi {0}! You are {1} months old.",
firstName, age*12);
}

OEBPS/html/graphics/04lis14.jpg
using System.I0;

class PathEx

{

static void Main()

{

string fullName;

s

// Call Combine() with four arguments

fullName = Combine(
Directory.GetCurrentDirectory(),
"bin", "config", “index.html");

Console.WriteLine(fullName);

s

// Call Combine() with only three arguments
fullName = Combine(
Environment.SystemDirectory,
“Temp", "index.html");
Console.WriteLine(fullName);

s

OEBPS/html/graphics/04lis15.jpg
using System.I0;

public static class LineCounter
{
// Use the first argument as the directory
// to search, or default to the current directory.
public static void Main(string[] args)
{
int totallineCount = @;
string directory;
if (args.length > 0)

{
directory = args[0];
}
else
{
directory = Directory.GetCurrentDirectory();
}

totallineCount = DirectoryCountLines(directory);
System.Console.WriteLine(totallineCount);

¥

static int DirectoryCountLines(string directory)

{

int lineCount = ©;
foreach (string file in
Directory.GetFiles(directory, "*.c

")
{
lineCount += CountLines(file);

OEBPS/html/graphics/04lis16.jpg
using System.I0;

public static class LineCounter

{
public static void Main(string[] args)
{
int totallineCount;
if (args.Length > 1)
{
totallineCount =
DirectoryCountLines(args[@], args[1]);
¥
if (args.Length > 0)
{
totalLineCount = DirectoryCountLines(args[@]);
i3
else
{
totallineCount = DirectoryCountLines();
}
System. Console.WriteLine(totallineCount);
}

static int DirectoryCountLines()

{

OEBPS/html/graphics/04lis17.jpg
using System.I0;

public static class LineCounter

{
public static void Main(string[] args)
{
int totallineCount;
if (args.Length > 1)
{
totallineCount =
DirectoryCountLines(args[@], args[1]);
}
if (args.length > 0)
{
totalLineCount = DirectoryCountLines(args[01);
¥
else
{
totallineCount = DirectoryCountLines();
}
System.Console.Writeline(totallineCount);
¥

static int DirectoryCountLines()
{

¥

s

OEBPS/html/graphics/04lis10.jpg
using System;
using System.10;
using System.Net;

class Program

{

static int Main(string[] args)

{

int result;

string targetFileName;
string url;

switch (args.Length)

{

default:

// Exactly two arguments must be specified; give

Console.WriteLine(

“"ERROR: You must specify the "

+ "URL and the file name");
targetFileName = null;
url = null;
break;

case 2:
url = args[e];
targetFileName = args[1];
break;

an error.

OEBPS/html/graphics/04lis11.jpg
class Program

{

static void Main()

{
s
string fullName;
string driveletter = "C:";
string folderPath = "Data";
string fileName = "index.html";
fullName = Combine(driveletter, folderPath, fileName);
Console.WriteLine(fullName);
s

¥

static string Combine(
string driveletter, string folderPath, string fileName)

{
string path;
path = string.Format("{1}{0}{2}{e}{3}",
System.10.Path.DirectorySeparatorChar,
driveletter, folderpath, fileName);
return path;
¥

OEBPS/html/graphics/04lis12.jpg
class Program

{
static void Main()
{
s
string first = "hello";
string second = "goodbye”;
swap(ref first, ref second);
System.Console.WriteLine(
@'first = ""{0}"", second = ""{1}""",
first, second);
e
}

static void Swap(ref string x, ref string y)
{
string temp = x;

OEBPS/html/graphics/04lis13.jpg
class ConvertToPhoneNumber

{

static int Main(string[] args)

{

char button;

if(args.Length
{

)

Console.WriteLine(

“ConvertToPhoneNumber .exe <phrase>”);
Console. WriteLine(

'_" indicates no standard phone button");

return 1;
}
foreach(string word in args)
{
foreach(char character in word)
{
if(TryGetPhoneButton(character, out button))
{
Console.Write(button);
}
else
{
Console.Write(’_
}
¥
}

Console.WriteLine();

OEBPS/html/graphics/11out02.jpg
% G\WINDOWS)system32\cmd.exe - Sketcher.
Use arrow keys to draw

OEBPS/html/graphics/09lis09a.jpg
public struct Arc

{

Ve
public static Arc operator -(Arc arc)
{
// Uses unary - operator defined on
// Longitude and Latitude
return new Arc(-arc.LongitudeDifference,
-arc.LatitudeDifference);
}
public static Arc operator +(Arc arc)

{

return arc;

OEBPS/html/graphics/11out01.jpg
% G\WINDOWS)system32\cmd.exe - Sketcher.
Use arrow keys to draw

OEBPS/html/graphics/09lis04a.jpg
// Value types will never be reference equal.
if (Coordinate.ReferenceEquals(coordinatel,
coordinate1))

{
throw new Exception(
coordinatel reference equals coordinate
}
Console.WriteLine(

“coordinatel does NOT reference equal itself");

OEBPS/html/graphics/21tab02.jpg
Acronym

Definition

Description

NET

None

Microsoft’s implementation of the entire CLI
stack. Includes the CLR, CIL, and various
languages, all of which are CLS-compliant.

BCL

Base Class
Library

The portion of the CLI specification that
defines the collection, threading, console, and
other base classes necessary to build virtually
all programs.

C#

None

A programming language. Note that separate
from the CLI standard there is a C# Language
Specification, also ratified by the ECMA and
15O standards bodies.

CIL (IL)

Common
Intermediate
Language

The language of the CLI specification

that defines the instructions for the code
executable on implementations of the CLI.
This is sometimes also referred to as IL or
Microsoft IL (MSIL) to distinguish it from
other intermediate languages. (To indicate
that it is a standard broader than Microsoft,
CIL is preferred over MSIL and even IL.)

CLI

Common
Language
Infrastructure

The specification that defines the intermediate
language, base classes, and behavioral
characteristics which enable implementers

to create Virtual Execution Systems and
compilers in which source languages are
interoperable on top of a common execution
environment.

CLR

Common
Language
Runtime

Microsoft's implementation of the runtime, as
defined in the CLI specification.

OEBPS/html/graphics/21tab01.jpg
Compiler

Description

Microsoft Visual C#
NET Compiler

Microsoft’s NET C# compiler is dominant in the
industry, but it is limited to running on the Windows
family of operating systems. You can download it free
as part of the Microsoft NET Framework SDK from
http:/ /msdn.microsoft.com/en-us/netframework/
default.aspx.

Microsoft Silverlight

This is a cross-platform implementation of the CLI that
runs on both the Windows family of operating systems
and the Macintosh. Resources for getting started with
development on this platform are available at http://
silverlight.net/getstarted.

Microsoft Compact
Framework

This is a trimmed-down implementation of the .NET
Framework designed to run on PDAs and phones.

Microsoft XNA

This is a CLI implementation for game developers
targeting Xbox and Windows Vista. For more
information, see http:/ /create.msdn.com.

Mono Project

The Mono Project is an open source implementation
sponsored by Ximian and designed to provide a
Windows-, Linux-, and Unix-compatible version of the
CLI specification and C# compiler. Source code and
binaries are available at www.go-mono.com.

DotGNU

This is focused on creating platform-portable
applications that will run under both the .NET and the
DotGNU.Portable.NET implementations of the CLL
This implementation is available from www.dotgnu.
org. Supported operating systems include GNU/ Linux
*BSD, Cygwin/Mingw32, Mac OS X, Solaris, AIX, and
PARISC. DotGNU and Mono have used portions of
each other’s libraries at various times.

Rotor

The Rotor program, also known as the Shared Source
CLI, is an implementation of the CLI that Microsoft
developed to run on Windows, Mac OS X, and
FreeBSD. Both the implementation and the source code
are available free at http://msdn.microsoft.com/en-us/
library /ms973880.aspx. Note that although the source
code is available for download, Microsoft has not
licensed Rotor for developing commercial applications,
and instead has targeted it as a learning tool.

OEBPS/html/graphics/0277_fig01.jpg
Casting
@ is Operator ® Derivation —p,o‘ee‘ged

Single Inheritance
Scaled Classes

virtual
new
sealed

@ Overriding

@ System.Object @ Abstract Classes

OEBPS/html/graphics/0023_pro01.jpg
<?xml version="1.0" encoding="utf-8" ?>

<body>
<book title="Essential Ci# 5.0">
<chapters>
<chapter title="Introducing C#"/>
<chapter title="Operators and Control Flow"/>
</chapters>
</book>

</body>

OEBPS/html/graphics/02out11.jpg
Enter a palindrome: Never odd or even
The palindrome. "Never odd or even” is 17 characters.

OEBPS/html/graphics/06lis20a.jpg
"Apt 56B, Whitehaven Mansions, Sandhurst Sq, London";
pda[2] = contact;

List(pda);
¥

public static void List(Pdaltem[] items)
{
// Implemented using polymorphism. The derived
// type knows the specifics of implementing
// GetSummary().
foreach (Pdaltem item in items)
{
Console.WriteLine(" ")
Console.WriteLine(item.GetSummary());

OEBPS/html/graphics/02out12.jpg
Enter text: This is a test of the emergency broadcast system.
This is a test of the emergency broadcast system.

OEBPS/html/graphics/02out13.jpg
Enter text: This is a test of the emergency broadcast system.
THIS IS A TEST OF THE EMERGENCY BROADCAST SYSTEM.

OEBPS/html/graphics/02out16.jpg
Unhandled Exception: System.OverflowException: Arithmetic operation
resulted in an overflow at Program-Main() in ...Program.csiline 12

OEBPS/html/graphics/03lis21a.jpg
else

// Input is less than 9.

System. Console.WriteLine(
"Tic-tac-toe has more than {0}" +
" maxinum turns.”, input);

if(input>9)
// Input is greater than 9.
System. Console.WritelLine(
"Tic-tac-toe has fewer than {0}" +
" maximum turns.”, input);
else
// Input equals 9.
System. Console.Writeline(
"Correct, tic-tac-toe " +
“has a max. of 9 turns.");

OEBPS/html/graphics/17tab01.jpg
Step Description Code
1 Define a class decorated with [Serializable]
System.SerializableAttribute. —class Document
{
2. Add a field or two (public or public string Title;
private) of any serializable type. public string Data;
}
3. Serialize the object to a file called ~ Stream stream;

*.vl.bin.

Document documentBefore = new
Document();
documentBefore.Title =

“A cacophony of ramblings from my
potpourri of notes";
Document documentAfter;

using (stream = File.Open(
documentBefore.Title + ".bin",
Fileode.Create))
{
BinaryFormatter formatter =
new BinaryFormatter();
formatter.Serialize(
stream, documentBefore);

OEBPS/html/graphics/09lis03b.jpg
// STEP 1: Check for null
return ((obj != null)
// STEP 5: Compare identifying fields for equality.
8& (ProductSeries == obj.ProductSeries) &&
(Model == obj.Model) &
(Id == obj.Id));

i

public static bool operator ==(
ProductSerialNumber leftHandside,
ProductSerialNumber rightHandSide)

// Check if LeftHandSide is null.
// (operator== would be recursive)
if (ReferenceEquals(leftHandside, null))
{
// Return true if rightHandside is also null
// but false otherwise.
return ReferenceEquals(rightHandside, null);
}

return (leftHandside.Equals(rightHandSide));
}
public static bool operator !=(
ProductSerialNunber leftHandside,
ProductSerialNumber rightHandside)

OEBPS/html/graphics/09lis03a.jpg
¥

return false;

}
if (ReferenceEquals(this, obj))
{
return true;
}
if (this.GetType() != obj.GetType())
{
return false;
}

return Equals((ProductSerialNumber)obj);

public bool Equals(ProductSerialNumber obj)

{

// STEP 3: Possibly check for equivalent hash codes
// if (this.GetHashCode() != obj.GetHashCode())
VS

// return false;

/7y

// STEP 4: Check base.Equals if base overrides Equals()
// System.Diagnostics.Debug.Assert(

// base.GetType() != typeof(object));

// if (base.Equals(obj))

/74
// return false;

/Y

OEBPS/html/graphics/09lis03d.jpg
Console.WriteLine(
“serialNumberl reference equals serialNumber2");

Console.WriteLine(

erialNumberl equals serialNumber2");

// These serial numbers are NOT the same object identity.
if (Productserialumber.ReferenceEquals(seriallumberl,

serialNumber3))
{
throw new Exception(
“serialNumberl DOES reference " +
“equal serialNumber3");
i

// but they are equal (assuming Equals is overloaded).
else if(!serialNumberl.Equals(serialNumber3) ||

seriallumber != serialNumber3)
{
throw new Exception(
“serialNumberl does NOT equal serialNumber3");
¥

Console.WriteLine("serialNumberl equals serialNumber3”);

OEBPS/html/graphics/09lis03c.jpg
return !(leftHandSide

rightHandSide);

¥

class Program
{
static void Main()
{
ProductSerialNumber seriallumberl =
new ProductSerialNumber("PV", 1000, 09187234);
ProductSerialNumber seriallNumber2 = serialNumberl;
ProductSerialNumber serialNumber3
new ProductSerialNumber("PV", 1000, 089187234);

// These serial numbers ARE the same object identity.
if (1ProductSerialNumber .ReferenceEquals(seriallumberl,

serialumber2))
{
throw new Exception(
“serialNunberl does NOT " +
“reference equal serialNumber2");
T

// and, therefore, they are equal
else if(!serialNumberi.Equals(serialNumber2))

{
throw new Exception(
“serialNumberl does NOT equal serialNumber2");
¥
else

OEBPS/html/graphics/17lis15a.jpg
PropertyInfo[] properties = null;
Dictionary<string, PropertyInfo> options =
new Dictionary<string, PropertyInfo>();

properties = commandLine.GetType().GetProperties(
BindingFlags.Public | BindingFlags.NonPublic |
BindingFlags. Instance);
foreach (PropertyInfo property in properties)
{
options.Add(property.Name.ToLower(), property);
foreach (CommandLineSwitchAliasAttribute attribute in
property.GetCustomAttributes(
typeof (CommandLineSwitchAliasAttribute), false))
{

¥

options.Add(attribute.Alias.Tolower(), property);

i

return options;

OEBPS/html/graphics/05lis40a.jpg
// params allows the number of parameters to vary.
static int Min(params int[] numbers)
{

// Check that there is a Least one item in numbers.

if(numbers.Length == @)

{

throw new ArgumentException(
"numbers cannot be empty”);

¥

int result;
result = numbers[0];
foreach (int number in numbers)

{
if(number < result)
{
result = number;
}
}

return result;

OEBPS/html/graphics/18out01.jpg
B i LCTETTT PP RRa

P

Y
AR R R bR bR R b bbbt
Y
AR R R bR R bbbt
Y
AAb R R RS bbb bbb = o o e s

e eeeibbbbbRR
AR R bR bbb R RS bt
Y
AR R R bbb R RS bbbt
Y
AR R R R R bbbt
PRSI

ey

AR R R R RS bbbt
N

OEBPS/html/graphics/19lis10a.jpg
Console.WriteLine(
“Application started....");
Console.WriteLine("Starting task..

)

// Use Task.Factory.StartNew for .NET 4.0
Task task = Task.Run(()=>DoWork());

// Block until DoWork() has started.
DoWorkSignaledResetEvent.Wait();
Console.WriteLine(

" Waiting while thread executes.
MainSignaledResetEvent.Set();
task.Wait();
Console.WriteLine("Thread completed”);
Console.WriteLine(

"Application shutting down..

OEBPS/html/graphics/18out06.jpg
Push ENTER to exit.
3.141592653589793238462L4338327950288419716939937510562097494 4592307816
40L28L20899862803482534211,706798214808L 51328230664 70938 4460955058223172
5359408128481117450

B e S P S P e e T e e e PP ey
2

OEBPS/html/graphics/18tab01a.jpg
NotOnRanToCompletion*

This specifies that the continuation task should not
be scheduled if its antecedent ran to completion.
This option is not valid for multitask continuations.

NotOnFaulted*

This specifies that the continuation task should not
be scheduled if its antecedent threw an unhandled
exception. This option is not valid for multitask
continuations.

OnlyonCanceled*

This specifies that the continuation task should be
scheduled only if its antecedent was canceled. This
option is not valid for multitask continuations.

NotOnCanceled*

This specifies that the continuation task should not
be scheduled if its antecedent was canceled. This
option is not valid for multitask continuations.

OnlyOnFaulted*

This specifies that the continuation task should be
scheduled only if its antecedent threw an unhandled
exception. This option is not valid for multitask
continuations.

OnlyonRanToCompletion*

This specifies that the continuation task should be
scheduled only if its antecedent ran to completion.
This option is not valid for multitask continuations.

OEBPS/html/graphics/18out09.jpg
ERROR: AggregateException:

UnauthorizedAccessException - Attempted to perform an unauthorized
operation-

UnauthorizedAccessException - Attempted to perform an unauthorized
operation-

UnauthorizedAccessException - Attempted to perform an unauthorized
operation-

OEBPS/html/graphics/18out08.jpg
>3.141592653589793238 4626433832 795028841 97169399375105820974944 5923078
1b4062862089986280348253421 170679821 48066 51328230654 709384 460955058223
1725359408128481117450284102701938 52110555964 4622948954930381 964428810
97566593344k1284756 4823378678316 527120190914 5648 5669234L03486104 543260
482133936072L024914127372458700bL0L31 5588174881 520920962829254091 7153k
43789259036001133053054882046k 5213841, 46951941 5116094330572 70365759591
953092186117381932611793105118548074 4623799627456 7351885 7527248912279
3818301194912

OEBPS/html/graphics/18out05.jpg
047:Throwing exception.

052:Unhandled exception handler starting.
3:0055:S1eeping for 4000 ms

058:Sleeping for 2000 ms

059: Awake

1:2060: finally block running.

059: Auake

Unhandled Exception: System-Exception: Exception of
Exception' was thrown.

type 'System.

OEBPS/html/graphics/18tab01b.jpg
ExecuteSynchronously

This specifies that the continuation task should be
executed synchronously. With this option specified,
the continuation the schedule will attempt to
execute the work on is the same thread that causes
the antecedent task to transition into its final state.
If the antecedent s already complete when the
continuation is created, the continuation will run on
the thread creating the continuation.

HideScheduler
(NET 45)

This prevents the ambient scheduler from being
seen as the current scheduler in the created task.
This means that operations like Run/StartNew and
ContinueWith that are performed in the created
task will see TaskScheduler.Default (null) as the
current scheduler. This is useful when continuation
should run on a particular scheduler, but the
continuation is calling out to additional code that
should not schedule work on the same scheduler.

LazyCancellation
(NET 45)

This causes the continuation to delay monitoring
the supplied cancellation token for a cancellation
request until the antecedent has completed.
Consider tasks t1, t2, and t3 where the latter is a
continuation of the former. If t2 is canceled before t1
completes, it is possible that t3 could start before t1
completes. Setting LazyCancellation avoids this.

OEBPS/html/graphics/0186_pro01.jpg
M(x)
{
if x is trivial
Return the result
else
a. Do some work to make the problem smaller
b. Recursively call M to solve the smaller problem
c. Compute the result based on a. and b.
return the result

OEBPS/html/graphics/01tab03.jpg
Comment Type

Description

C# 1.0 with NET
Framework 1.0/1.1
(Visual Studio 2002 and
2003)

The initial release of C#. A language built from the
ground up to support .NET programming.

C# 2.0 with NET
Framework 2.0 (Visual
Studio 2005)

Added generics to the C# language and libraries that
supported generics to the .NET Framework 2.0.

NET Framework 3.0

An additional set of APIs for distributed
communications (Windows Communication
Foundation—WCF), rich client presentation
(Windows Presentation Foundation—WPF),
workflow (Windows Workflow—WF), and Web
authentication (Cardspaces).

C#3.0 with NET
Framework 3.5 (Visual
Studio 2008)

Added support for LINQ, a significant improvement
to the APIs used for programming collections. The
NET Framework 3.5 provided libraries that extended
existing APIs to make LINQ possible.

C# 4.0 with NET
Framework 4 (Visual
Studio 2010)

Added support for dynamic typing along with
significant improvements in the API for writing
multithreaded programs that capitalized on multiple
processors and cores within those processors.

C#5.0 with NET
Framework 4.5 (Visual
Studio 11) and WinRT
integration

Added support for asynchronous method invocation
without the explicit registration of a delegate
callback. An additional change in the framework
was support for interoperability with the Windows
Runtime (WinRT).

OEBPS/html/graphics/01tab01.jpg
abstract
add*

alias* (2)
as
ascending* (3)
async* (5)
await* (5)
base

bool

break

by* (3)
byte

case

catch

char
checked
class

const
continue
decimal
default
delegate
descending* (3)
do

double
dynamic* (4)

else
enum
equals* (3)
event
explicit
extern
false
finally
fixed

float

for
foreach
from* (3)
get* (1)
global* (2)
goto
group* (3)
if
implicit

in

int
interface
internal
into* (3)
is

join* (3)

let* (3)
lock

long
namespace
new

null
object

on* (3)
operator
orderby* (3)
out
override
params
partial* (2)
private
protected
public
readonly
ref
remove*
return
sbyte
sealed
select* (3)
set* (1)
short

sizeof
stackalloc
static
string
struct
switch
this
throw
true

try
typeof
uint
ulong
unchecked
unsafe
ushort
using
value* (1)
var* (3)
virtual
void
volatile
where* (3)
while

yield* (2)

* Contextual keyword

Numbers in parentheses (1) identify in which version the contextual keyword was added.

OEBPS/html/graphics/01tab02.jpg
Comment Type

Description

Example

Delimited
comments

Aforward slash followed by an asterisk, /%,
identifies the beginning of a delimited com-
ment. To end the comment use an asterisk
followed by a forward slash: */. Comments
of this form may span multiple lines in the
code file or appear embedded within a line
of code. The asterisks that appear at the
beginning of the lines but within the delimit-
ers are simply for formatting.

/*comment*/

Single-line
comments

Comments may also be declared with a
delimiter comprising two consecutive
forward slash characters: //. The compiler
treats all text from the delimiter to the end
of the line as a comment. Comments of this
form comprise a single line. It is possible,
however, to place sequential single-line
comments one after another, as is the case
with the last comment in Listing 1.17.

//comment

XML delimited
comments

Comments that begin with /#* and end with
**/ are called XML delimited comments.
They have the same characteristics as regu-
lar delimited comments, except that instead
of ignoring XML comments entirely, the
compiler can place them into a separate text
file. XML delimited comments were only
explicitly added in C# 2.0, but the syntax is
compatible with C# 1.0

/**comment**/

XML single-
line comments

XML single-line comments begin with
/// and continue to the end of the line. In
addition, the compiler can save single-line
comments into a separate file with the XML
delimited comments.

///comment

OEBPS/html/graphics/09lis05b.jpg
// STEP 4: Possibly check for equivalent hash codes
// if (this.GetHashCode() != obj.GetHashCode())
/AL

Y return false;

7/}

// STEP 5: Check base.Equals if base overrides Equals()
// System.Diagnostics.Debug.Assert(

// base.GetType() != typeof(object));

// if (lbase.Equals(obj))

VB

// return false;

/Y

// STEP 6: Compare identifying fields for equality

Y4 using an overload of Equals on Longitude.

return ((Longitude.Equals(obj.Longitude)) 8&
(Latitude.Equals(obj. Latitude)));

¥

// STEP 7: Override GetHashCode.

public override int GetHashCode()

{
int hashCode = Longitude.GetHashCode();
hashCode = Latitude.GetHashCode(); // Xor (eXclusive OR)
return hashCode;

OEBPS/html/graphics/09lis05a.jpg
if (obj
{

null)

return false;
T
// STEP 3: equivalent data types
// Can be avoided if type is sealed.
if (this.GetType() != obj.GetType())
{

¥

return Equals((Coordinate)obj);

return false;

}
public bool Equals(Coordinate obj)

{
// STEP 1: Check for null if a reference type

// (e.g., a reference type)

// if (obj == null)
VZ
/7 return false;
/Y

// STEP 2: Check for ReferenceEquals if this
// is a reference type

// if (ReferenceEquals(this, obj))

V8

// return true;

/Y

OEBPS/html/graphics/19lis11a.jpg
}

thread.Join();
Console.Writeline("Main Count = {0}", Count);

¥

static void Decrement()
{

Count = -Count;

for (double i = 0; i < short.MaxValue; i++)

{
}

Console.WriteLine(
“Decrement Count = {0}", Count);

Count--;

OEBPS/html/graphics/0371_fig01.jpg
Finalizers

Deterministic Finalization
with the using Statement

Garbage Collection
and Finalization

Resource Utilization and
Finalization Guidelines

@ Garbage
Collection

Weak References

Associating XML Comments
with Programming Constructs

® Resource
Cleanup

®Overriding object
Members

@ Operator
Overloading

Referencing Other
Assemblies

Well-Formed
Types

XML

@Defining
Comments Namespaces

Generating an XML
Documentation File

OEBPS/html/graphics/18tab02a.jpg
6. Upon the occurrence of another await,
another task i created, this time to execute
ReadTondAsync(). (All the while Main's
while loop continues executing.)

7. Upon completion of the ReadToEndAsync ()
task, the result is assigned to text, whose
Length is then displayed on the console.

8. Finally, task.Wait() returns true and the
process executes,

string text =
(await reader.ReadToEndAsync());

Console.uriteLine(
FormatBytes(text.Length));

OEBPS/html/graphics/02out20.jpg
The wave of the

First Element

<
Visual Basic

After clearings

futures COBOL. is at index 1.

Last Element

Visual Basic
cH

the array size is: 9

OEBPS/html/graphics/09out01.jpg
warning (SOLS9: '<Class Name>' overrides Object-Equals(object o) but
does not override Object.GetHashCode()

OEBPS/html/graphics/09out02.jpg
serialNumberl reference equals serialNumber2
serialNumberl equals serialNumber3d

OEBPS/html/graphics/09out04.jpg
>csc /targetilibrary /out:Coordinates.-dll Coordinate.cs IAngle-cs
Latitude-cs Longitude-cs Arc.cs

Microsoft (R) Visual C# 2010 Compiler version 4.0.2050k.1
Copyright (C) Microsoft Corporation. All rights reserved-

OEBPS/html/graphics/01lis09.jpg
class MiracleMax

{
static void Main()

datatype

—_——

string max;
)

variable
max = "Have fun storming the castle!

System.Console. HritelLine(max);

OEBPS/html/graphics/15lis06.jpg
using System;

using System.Collections.Generic;
using System.Ling;

using System.I0;

T/

static void FindHonthOldFiles(
string rootDirectory, string searchPattern)
{
IEnumerablecFileInfo> files =
from fileName in Directory.GetFiles(
rootDirectory, searchPattern)
where File.GetLasturiteTime(ileName) <
DateTime. Now. AddMonths(-1)
select new FileInfo(fileName);
foreach (FileInfo file in files)
{
// As simplification, current directory is
// assumed to be a subdirectory of
// rootDirectory
string relativePath = file.FullName.Substring(
Environment.CurrentDirectory. Length);
Console.WriteLine(".{0}({1})",
relativePath, file.lasthriteTime);

s

OEBPS/html/graphics/01lis08.jpg
class Hellokorld{static void Main()
{Systen.Console.WriteLine("Hello Inigo Montoya");}}

OEBPS/html/graphics/15lis05.jpg
using System;
using System.Collections.Generic;
using System.Ling;

Y

private static void CountContextualKeywords()

{

int delegateInvocations = ©;
Funcestring, strings func

tex

{
delegatelnvocations++;
return text;

14

IEnumerablecstring> selection =
from keyword in Keywords
where keyword.Contains('*")
select func(keyword);

Console. WriteLine(
"1. delegateInvocations={0}", delegateInvocations);

// Executing count should invoke func once for
// each item selected.
Console. WriteLine(

“2. Contextual keyword count={@}", selection.Count());

OEBPS/html/graphics/15lis04.jpg
using System;
using System.Collections.Generic;
using System.Ling;

s

private static void ShowContextualKeywords2()
{

IEnumerablecstring> selection = from word in Keywords
where IsKeyword(word)
select word;

Console.WriteLine("Query created.");

foreach (string keyword in selection)

{

// No space output here.
Console.Write(keyword) ;

OEBPS/html/graphics/app-d_lis01.jpg
using System;

using System.Timers;

using System.Threading;
// Because Timer exists in both the System.Timers and
// System.Threading namespaces, you disambiguate "Timer"
// using an alias directive.

using Timer = System.Timers.Timer;

class UsingSystenTimersTimer
{
private static int _Count=0;
private static readonly ManualResetEvent _ResetEvent =
new ManualResetEvent(false);
private static int _AlarmThreadId;

public static void Main()
{
using(Timer timer = new Timer())
{
// Initialize Timer
timer.AutoReset = true;
timer.Interval = 1000;
timer.Elapsed
new ElapsedEventHandler(Alarm);

OEBPS/html/graphics/15lis03.jpg
using System;

using System.Collections.Generic;
using System.Ling;

using System.10;

s

s

static void List2(string rootDirectory, string searchPattern)

{

var fileNames =Directory.GetFiles(
rootDirectory, searchPattern)
var fileResults =
from fileName in fileNames
select new
{
Name = fileName,
LastWriteTime = File.GetLastWriteTime(fileName)

b
foreach (var fileResult in fileResults)
{
Console.WriteLine("{8}({1})",
fileResult.Name, fileResult.LasthriteTime);
}

OEBPS/html/graphics/15lis02.jpg
using System;

using System.Collections.Generic;
using System.Ling;

using System.IO0;

/o

static void Listl(string rootDirectory, string searchPattern)
{
IEnumerablecstring> fileNames = Directory.GetFiles(
rootDirectory, searchPattern);
IEnumerablecFileInfo> fileInfos =
from fileName in fileNames
select new FileInfo(fileName);

foreach (FileInfo fileInfo in fileInfos)

{
Console.WriteLine(".{0}({1})",
fileInfo.Name, fileInfo.lastWriteTime);

/o

OEBPS/html/graphics/15lis01.jpg
using System;
using System.Collections.Generic;
using System.Ling;

e

static string[] Keywords = {

“ascending*",

synct”, "awaitt", break”,

"by*", "byte", "case”, , "char”, "checked",

ontinue”, "decimal”, "default”,

, "descending*", "do", "double”,

, "else", "enum", "event", "equals*",

"explicit”, "extern”, "false”, "finally”, "fixed",
rom*", "float", "for", "foreach", "get*", "global*",

let*", "namespace”, "new", "null", "object”,
“on*", "operator”, "orderby*", "out", "override",
“params”, "partial*", "private", "protected”, "public",

OEBPS/html/graphics/01lis07.jpg
class HelloWorld

{

static void Main()

{

System.Console.WriteLine("Hello Inigo Montoya");
}

}

OEBPS/html/graphics/01lis01.jpg
class HelloWorld

{

static void Main()

{

}
}

System.Console.WriteLine("Hello. My name is Inigo Montoya.");

OEBPS/html/graphics/0339_fig01.jpg
Initializing Structs
Inheritance and Interfaces
with Value Types

Converting between
Enumerations and Strings
Enumerations As Flags

OEBPS/html/graphics/01lis03.jpg
class HelloWorld

{

static void Main() }Me(hodlle(lamlon Main

{

Class
Definition

System.Console.WriteLine("Hello, My name is Inigo Montoya"

¥ Statement

}

OEBPS/html/graphics/15lis09.jpg
Va

IEnumerablec<FileInfo> files =
from fileName in Directory.GetFiles(

rootbirectory, searchPattern)

let file = new FileInfo(fileName)
orderby file.Length, fileName
select file;

Vs

OEBPS/html/graphics/15lis08.jpg
using System;

using System.Collections.Generic;
using System.Ling;

using System.I0;

/o
static void ListByFileSize2(
string rootDirectory, string searchPattern)
{
IEnumerablecFileInfo> files =
from fileName in Directory.GetFiles(
rootDirectory, searchPattern)
orderby new FileInfo(fileName).Length, ileName
select new FileInfo(fileName);

foreach (FileInfo file in files)
{
// As simplification, current directory is
// assumed to be a subdirectory of
// rootDirectory
string relativePath = file.FullName.Substring(
Environment.CurrentDirectory.Length);
Console.WriteLine(".{0}({1})",
relativePath, file.length);

a

OEBPS/html/graphics/15lis07.jpg
using System;

using System.Collections.Generic;
using System.Ling;

using System.I0;

e
static void ListByFileSizel(
string rootDirectory, string searchPattern)

{
IEnumerablecstring> fileNames =
from fileName in Directory.GetFiles(
rootbirectory, searchPattern)
orderby (new FileInfo(fileName)).Length descending,
fileName
select fileName;
foreach (string fileName in fileNames)
{
Console.WriteLine("{0}", fileName);
}
}

//

OEBPS/html/graphics/16lis13a.jpg
// The IEnumerable.GetEnumerator method is also required

// because IEnumerable<T> derives from IEnumerable.
System.Collections.IEnumerator

System.Collections. IEnumerable.GetEnumerator()

{
// Invoke IEnumerator<string> GetEnumerator() above
return GetEnumerator();
}
}
public class Program
{
static void Main()
{
CSharpBuiltInTypes keywords =
new CSharpBuiltInTypes();
foreach (string keyword in keywords)
{
Console.WriteLine(keyword);
}
}

OEBPS/html/graphics/app-d_tab01a.jpg
Supports on-off callbacks as well as periodic Yes Yes Yes
repeating callbacks

Accessible across application domain boundaries Yes Yes Yes
Supports IComponent; hostable in an IContainer Yes No Yes

OEBPS/html/graphics/app-d_lis02.jpg
using System;
using System.Threading;

class UsingSystemThreadingTimer
{
private static int _Count=0;
private static readonly AutoResetEvent _ResetEvent =
new AutoResetEvent(false);
private static int _AlarmThreadId;

public static void Main()
{
// Timer(callback, state, dueTime, period)
using(Timer timer =
new Timer(Alarm, null, , 1000))

// Wait for Alarm to fire for the 10th time.
_ResetEvent.WaitOne();
}

// Verify that the thread executing the alarm
// Is different from the thread executing Main
if(_AlarnThreadId ==
Thread. CurrentThread. ManagedThreadId)
{
throw new ApplicationException(
“Thread Ids are the same.");

i
if(_Count < 9)

OEBPS/html/graphics/17tab01a.jpg
4. Add an additional field to the [Serializable]
serializable class. class Document
{
public string Title;
public string Author;
public string Data;
}
5. Deserialize the *v1.bin file using (stream = File.Open(

into the new object (Document)
version.

documentBefore.Title + ".bin",
FileMode.Open))

BinaryFormatter formatter =
new BinaryFormatter();
documentAfter =
(Document)formatter.
Deserialize(
stream);

}

OEBPS/html/graphics/05lis20a.jpg
+

o
// Id property decLaration
public string Id

{
get
{
return _Id;
3
// No setter provided.
¥

private string _Id;

OEBPS/html/graphics/16lis12a.jpg
}

public T Value

{ get; private set; }

public Pair<BinaryTree<T>> SubItems
{ get; private set; }

public struct Pair<T>

{

public Pair(T first, T second) : this()
{

First = first;

Second = second;
}
public T First { get; private set; }
public T Second { get; private set; }

OEBPS/html/graphics/05out08.jpg
Bifocals (1784)
Phonograph (1877)

{ Title = Bifocals. YearOfPublication = 1784 I
{ Title = Phonograph. YearOfPublication = 1877 }

€ Title

Bifocals, Year = 1784 }

OEBPS/html/graphics/9780133117851.jpg
Mads Torgersen,

Essential C# 5.0

Development
Series
-
N 8 !
Mark Michaelis
th Eric Lippert
Tt

OEBPS/html/graphics/06lis07a.jpg
public class Contact : Pdaltem

{

void Save()

{
// Instantiate a FileStream using <ObjectKeys.dat
// for the filename.
FileStream stream = System.10.File.Openkirite(

Objectkey + ".dat");

}

void Load(PdaItem pdaltem)

{
// ERROR: 'pdaltem.ObjectKey' is inaccessible
// due to its protection Level
// pdaltem.ObjectKey = ...;
Contact contact = pdaltem as Contact;
if(contact != null)
{

contact.Objectkey =

}
s

i

OEBPS/html/graphics/14tab02.jpg
Comment Type

Description

Count() Provides a total count of the number of items within the
collection

Average() Calculates the average value for a numeric key selector

sum() Computes the sum values within a numeric collection

Max() Determines the maximum value among a collection of
numeric values

Min() Determines the minimum value among a collection of

numeric values

OEBPS/html/graphics/14tab01.jpg
Comment Type

Description

OfType<T>()

Forms a query over a collection that returns only
the items of a particular type, where the type is
identified in the type parameter of the 0fType<T>()
method call.

Union()

Combines two collections to form a superset of all
the items in both collections. The final collection
does not include duplicate items even if the same
item existed in both collections to start.

Concat()

Combines two collections together to form a
superset of both collections. Duplicate items are not
removed from the resultant collection. Concat()will
preserve the ordering. That is, concatting {A, B}
with {C, D} will produce {A, B, C, D}.

Intersect()

Extracts the collection of items that exist in both
original collections.

Distinct()

Filters out duplicate items from a collection so that
each item within the resultant collection is unique.

SequenceEquals()

Compares two collections and returns a Boolean
indicating whether the collections are identical,
including the order of items within the collection.
(This is a very helpful message when testing
expected results.)

Reverse()

Reverses the items within a collection so that they
oceur in reverse order when iterating over the
collection.

OEBPS/html/graphics/03lis47a.jpg
break;

case " :

break;
default :
// If none of the other case statements
// is encountered then the text is invalid.
System. Console.WriteLine(
"\NERROR: Enter a value from 1-9. "
+ "Push ENTER to quit");
break;

return valid;

}

OEBPS/html/graphics/05lis45a.jpg
public string FirstName;
public string LastName;

i

static void Main(string[] args)

{

CommandLine commandLine = new CommandLine(args);

switch (commandLine.Action)
{
case "new":
// Create a new employee
/7
break;
case "update”:
// Update an existing employee’s data
4 v
break;
case "delete":
// Remove an existing employee's file.
/.
break;
default:
Console.WriteLine(
"Employee.exe " +
“new|update|delete <id> [firstname] [lastname]”);
break;

OEBPS/html/graphics/app-c_lis12.jpg
using System;
using System.Windows;
using System.Windows.Threading;

public static class UIAction

{

public static void Invoke<T>(

{
}

Action<T> action, T parameter)

Invoke(() => action(parameter));

public static void Invoke(Action action)

{

DispatcherObject dispatcher =
Application.Current;

if (dispatcher == null
|| dispatcher.CheckAccess()
|| dispatcher.Dispatcher == null

)
{
action();
}
else
{
safeInvoke(action);

}

OEBPS/html/graphics/05lis21a.jpg
get
{

}

// Providing an access modifier is in C# 2.6
// and higher only

private set

{

return _Id;

_Id = value;
}
i3

private string _Id;

OEBPS/html/graphics/app-c_lis10.jpg
/o
static void Complete(

{

object sender, RunkorkerCompletedEventArgs eventArgs)

Console.WriteLine();
if (eventArgs.Cancelled)
{
Console.WriteLine("Cancelled");
}
else if (eventArgs.Error = null)
{
// IMPORTANT: check error to retrieve any exceptions.
Console.WriteLine(
"ERROR: {@}", eventArgs.Error.Message);
}
else
{
Console.WriteLine("Finished");
¥

resetEvent.Set();

OEBPS/html/graphics/app-c_lis11.jpg
using System;
using System.Drawing;
using System.Threading;
using System.Windows.Forms;

class Program : Form

{

private System.Windows.Forms.ProgressBar _ProgressBar;

[STAThread]
static void Main()
{

¥

Application.Run(new Program());

public Program()

{
InitializeComponent();

// Use Task.Factory.StartNew for .NET 4.0
Task task = Task.Run((Action)Increment);

¥

void UpdateProgressBar ()
{

OEBPS/html/graphics/11lis33a.jpg
public TValue New(TKey key)

{
TFactory factory = new TFactory();
TValue newEntity = factory.CreateNew(key);
Add(newEntity.Key, newEntity);
return newEntity;
}

}..

public interface IEntityFactory<TKey, TValue>

{
TValue CreateNew(TKey key);

i

OEBPS/html/graphics/16lis11a.jpg
if (currentNode null)

{
// The binary tree at this Location is null.

throw new IndexOut0fRangeException();
}

currentLevel++;

}

return currentiode.Value;

OEBPS/html/graphics/app-c_out02.jpg
http://uwu.habitat-spokane.org --3.18 KB
http://www-partnersintl.org «+.......14.74 KB
http://uwu.iassist.org -17.12 KB
http://uwwu-fh.org
http://uww-worldvision.org

35.09 KB
54.5b KB

OEBPS/html/graphics/11lis01.jpg
public class Stack

{
public virtual object Pop() { ... }
public virtual void Push(object obj) { ... }
YZaees

OEBPS/html/graphics/11lis02.jpg
using System;
using System.Collections;

class Progran

{
s

public void Sketch()
{

Stack path = new Stack();

Cell currentPosition;

ConsoleKeyInfo key; // Added in C# 2.0

do
{
// Etch in the direction indicated by the
// arrow keys that the user enters.
key = Move();
switch (key.Key)
{
case ConsoleKey.Z:
// Undo the previous Move.
if (path.Count >= 1)

{
currentPosition = (Cell)path.Pop();
Console. SetCursorPosition(
currentPosition.X, currentPosition.Y);
Undo();
}

break;

OEBPS/html/graphics/17lis32a.jpg
¥

else
{

result = firstDescendant.Value;

}

success = true;

}

return success;

public override bool TrySetMember(

{

SetMenberBinder binder, object value)

bool success = false;
XElement firstDescendant =

Element .Descendants(binder . Name) . FirstOrDefault();
if (firstDescendant != null)

{
if (value.GetType() == typeof(XElement))
{
firstDescendant .ReplaceWith(value);
}
else
{
firstDescendant.Value = value.ToString();
3
success = true;
¥

return success;

OEBPS/html/graphics/08lis01a.jpg
return new Angle(
Degrees + degrees,
Minutes + minutes,
Seconds + seconds)

¥

// Declaring a class - a reference type
// (declaring it as a struct would create a value type
// Larger than 16 bytes.)

class Coordinate

{
public Angle Longitude
{
get { return _Longitude; }
set { _Longitude = value; }
}

private Angle _Longitude;

public Angle Latitude

{
get { return _Latitude; }

set { _Latitude = value; }

}
private Angle _Latitude;

OEBPS/html/graphics/11lis07.jpg
public class Stack<T>

{

private T[] _Items;

public void Push(T data)

{
Y

public T Pop()
{

}

OEBPS/html/graphics/11lis08.jpg
interface IPair<T>

{
T First { get; set; }
T Second { get; set; }

OEBPS/html/graphics/11lis09.jpg
public struct Pair<T>: IPair<T>

{

public T First
{

get

{

return _First;

_First = value;
}

}
private T _First;

public T Second
{

get

{

return _Second;

_Second = value;
}
¥

private T _Second;

OEBPS/html/graphics/11lis03.jpg
public class CellStack

{
public virtual Cell Pop();
public virtual void Push(Cell cell);
s

}

OEBPS/html/graphics/11lis04.jpg
struct NullableInt

/// <summary>
/// Provides the value when HasValue returns true.
71/ </summary>

public int Value{ get; private set; }

11/ <summary>
/// Indicates whether there is a value or whether
/// the value is "null"

11/ </sumnary>

public bool Hasvalue{ get; private set; }

/"

i

struct NullableGuid

77/ <summary>
/// Provides the value when HasValue returns true.

OEBPS/html/graphics/11lis05.jpg
struct Nullable

11/ <summary>
/// Provides the value when HasValue returns true.
/// </summary>

public object Value{ get; private set; }

/// <sunmary>
/// Indicates whether there is a value or whether
/// the value is "null"

/17 </summary>

public bool HasValue{ get; private set; }

OEBPS/html/graphics/app-c_out03.jpg
Application started....
Starting thread.

Thread ending-
3.141592L535897932384L2L 4 3383279502884197169399375 10582097494 4559230781
b40L286204998L2803482 534211, 706798214808k 51328230664 709384 4609550582231
72535940812848111 7450284102 701938521 10555964 462294 8954930381964 4288109
7565933446 128475648233786 78316 52712019091 4 5648 566 9234E03486104 5432664
8213393607260249141273724 58 700LL0L 315588174881, 520920962829254091 71536 4
367892590360011,33053054882046k6 5213841 46951941,5116094330572703657595919
530921,86117381932611793105118548074462379962 74956 7351885752 72489122793
418301194912

Application shutting doun....

OEBPS/html/graphics/11lis06.jpg
using System;
using System.Collections.Generic;

class Program

{
s

public void Sketch()
{
Stack<Cell> path; // Generic variable declaration

path = new Stack<Cell>(); // Generic object instantiation
Cell currentPosition;

ConsoleKeyInfo key;

do

{
// Etch in the direction indicated by the
// arrow keys entered by the user.
key = Move();

switch (key.Key)
{
case Consoleey.Z:
// Undo the previous Move.
if (path.Count >= 1)
{
// No cast required.
currentPosition = path.Pop();

OEBPS/html/graphics/18lis33a.jpg
CancellationTokenSource cts =
new CancellationTokenSource();

Console.WriteLine("Push ENTER to exit.");

// Use Task.Factory.StartNew<string>() for
// TPL prior to .NET 4.5
Task task = Task.Run(() =
{
data = ParallelEncrypt(data, cts.Token);
}, cts.Token);

// Wait for the user's input
Console.Read();

cts.Cancel();
Console.Write(stars);

try{ task.Wait(); }
catch(AggregateException){}

s

OEBPS/html/graphics/01lis16.jpg
System.Console.WriteLine("Your full name is {1}, {0}",
Firsthame, lastName);

OEBPS/html/graphics/01lis15.jpg
class HeyYou

{
static void Main()

{

string firstName;
string lastName;

System.Console.WriteLine("Hey you!");

System.Console.Write("Enter your first name: ");
firstName = System.Console.ReadLine();

System.Console.Write("Enter your last name: ");
lastName = System.Console.ReadLine();

System. Console. WriteLine(
"Your full name is {6} {1}.", firstName, lastName);

OEBPS/html/graphics/01lis18.jpg
/I Microsoft (R) .NET Framework IL Disassembler. Version 4.0.30319.17369
/] Copyright (c) Microsoft Corporation. All rights reserved.

// Metadata version: v4.0.30319
.assembly extern mscorlib
{
.publickeytoken = (B7 7A 5C 56 19 34 E@ 89) 1/
-.z\V.4
.ver 4:
}
.assembly HelloWorld
{
.custom instance void [mscorlib]System.Runtime.CompilerServices.Compilat
ws ionRelaxationsAttribute::.ctor(int32) = (01 @0 @8 00 60 @0 00 00)
.custom instance void [mscorlib]System.Runtime.CompilerServices.Runtime
W CompatibilityAttribute::.ctor() = (@1 60 @1 @0 54 02 16 57 72 61 70 4E 6F
- 6E 45 78 // T..WrapNonEx

:0:0

W 63 65 70 74 69 6F 6E 54 68 72 6F 77 73 01) // ceptionThrows.
.hash algorithm ©x00008004
.ver 0:0:0:0
¥
.module HelloWorld.exe
// MVID: {D229AC10-1DEC-47A1-AA62-3BA19389E37E}

OEBPS/html/graphics/01lis17.jpg
class CommentSamples

{

static void Main()

{

single-line comment

string firstName; // Variable for storing the first name
string lastName; // Variable for storing the Last name

System.Console.WriteLine("Hey you!");

delimited comment inside statement

——
System.Console.Write /* No new Line */ (
"Enter your first name: ");
firstame = System.Console.ReadLine();

System.Console.Write /* No new Line */ (
"Enter your last name: ");
lastName = System.Console.ReadLine();

/* Display a greeting to the console
using composite formatting. */
System.Console.WriteLine("Your full name is {0} {1}.",

firstName, lastName);
// This is the end
// of the program listing

} delimited comment

OEBPS/html/graphics/03lis48a.jpg
foreach (int mask in winningMasks)

{
if ((mask & playerPositions[@])

{

mask)

winner = 1;
break;
}
else if ((mask & playerPositions[1])
{

mask)

winner = 2;
break;

3

System. Console. WriteLine(
“Player {0} was the winner”, winner);

OEBPS/html/graphics/01lis12.jpg
class MiracleMax

{

static void Main()

{
yZasn
string requirements, max;
requirements = max = "It would take a miracle.";
s

¥

OEBPS/html/graphics/app-c_lis01.jpg
using System;
using System.I0;
using System.Net;
using System.Ling;

public class Program

{

public static void Main(string[] args)

{

string url = "http://www. IntelliTect.con";
if (args.length > 0)
{
url = args[e];
}

Console.Write(url);
WebRequest webRequest =
WebRequest .Create(url);

IAsyncResult asyncResult =
webRequest . BeginGetResponse(null, null);

// Indicate busy using dots Ideally (at Least in a non-Console
// implementation) should use a callback rather than a wait.
while (

lasyncResult.AsynchaitHandle.WaitOne(100))
{

Console.Write('.');
}

OEBPS/html/graphics/01lis11.jpg
class MiracleMax

£
static void Main()
{
string valerie;
string max =

lave fun storming the castle!";

valerie = "Think it will work?";

System.Console. WriteLine(max);
Systen.Console.WriteLine(valerie);

max = "It would take a miracle.”;
System.Console. WriteLine(max);

OEBPS/html/graphics/05lis22a.jpg
private string _FirstName;

// LastName property
public string LastName

{
get
{
return _LastName;
}
set
{
_LastName = value;
}
}
private string _LastName;
Y2

// Name property
public string Name

{
get

{
T

set

return FirstName + + LastName;

// Split the assigned value into
// first and Last names.

OEBPS/html/graphics/app-c_lis02.jpg
using System;

using System.I0;

using System.Net;
using System.Ling;
using System.Threading;

public class Program

{

public static void Main(string[] args)

{

string url = "http://www.intelliTechture.con";
if (args.Length > 0)
{
url = args[o];
}

Console.Write(url);
WebRequest webRequest
WebRequestState state =
new WebRequestState(webRequest);
IAsyncResult asyncResult =
webRequest . BeginGetResponse(
GetResponseAsyncCompleted, state);

WebRequest .Create(url);

// Indicate busy using dots
while (

tasyncResult . AsynchaitHandle.NaitOne(100))
{

Console.Write('.");

OEBPS/html/graphics/05lis22b.jpg
yZaaen

string[] names;
names = value.Split(new char[1{' '});
if(names.Length == 2)

{

}

FirstName = names[0];
LastName = names[1];

else

{

// Throw an exception if the full

// name was not assigned.

throw new System. ArgumentException (
string.Format(

“Assigned value '{0}' is invalid", value));

OEBPS/html/graphics/01lis13.jpg
class HeyYou

{

static void Main()

{

string firstName;
string lastName;

System. Console.WriteLine("Hey you!");

System.Console.Write("Enter your first name: ");
firstName = System.Console.ReadLine();

System.Console.Write("Enter your last name: ");
lastName = System.Console.ReadLine();

OEBPS/html/graphics/app-c_lis09.jpg
using System;

using System.Threading;
using System.ComponentModel;
using System.Text;

public class PiCalculator
{
public static BackgroundWorker calculationkorker =
new Backgroundworker();
public static AutoResetEvent resetEvent =
new AutoResetEvent(false);

public static void Main()

{
int digitCount;

Console.Write(

“Enter the number of digits to calculate:
if (int.TryParse(

Console.ReadLine(), out digitCount))

{

Console.WriteLine("ENTER to cancel");

// C# 2.6 Syntax for registering delegates

calculationkorker.Dokiork += CalculatePi;

// Register the ProgressChanged callback

calculationWorker.ProgressChanged +=
UpdateDisplayWithMoreDigits;

calculationWorker.WorkerReportsProgress =
true;

OEBPS/html/graphics/oneby.jpg

OEBPS/html/graphics/app-c_lis07.jpg
using System;

public class Program

{

public static void Main(string[] args)

{

Console.WriteLine("Application started..

Console.WriteLine("Starting thread. .

Func<int,string> workerMethod =
PiCalculator.Calculate;

TIAsyncResult asyncResult =
workertethod .BeginInvoke(500, null, null);

// Display periods as progress bar.
while(!lasyncResult.AsynchaitHandle.WaitOne(
100, false))
{
Console.Write(".");

i

Console.WriteLine();

Console.WriteLine("Thread ending.
Console.WriteLine(
workerMethod . EndInvoke(asyncResult));

Console.WriteLine(
“"Application shutting down.

OEBPS/html/graphics/app-c_lis08.jpg
using System;

using System.ComponentModel;

using System.Threading;

using System.Threading. Tasks;

using Addisonwesley.Michaelis.EssentialCSharp.Shared;

partial class PiCalculation

{

public void CalculateAsync<TStates(
int digits,
CancellationToken cancelToken
= default(CancellationToken),
Tstate userState
= default(TState))

synchronizationContext.
SetsynchronizationContext(
AsyncOperationManager .
SynchronizationContext);

// Ensure the continuation runs on the current thread, and that
// therefore the event will be raised on the same thread that
// called this method in the first place.

TaskScheduler scheduler =

OEBPS/html/graphics/17lis33a.jpg
public virtual bool TryGetIndex(
GetIndexBinder binder, object[] indexes,
out object result);
public virtual bool TryGetMember(
GetMenberBinder binder, out object result);
public virtual bool TryInvoke(
InvokeBinder binder, object[] args, out object result);
public virtual bool TryInvokeMember(
InvokeMenberBinder binder, object[] args,
out object result);
public virtual bool TrySetIndex(
SetIndexBinder binder, object[] indexes, object value);
public virtual bool TrySetMember(
SetMenberBinder binder, object value);
public virtual bool TryUnaryOperation(
UnaryOperationBinder binder, out object result);

OEBPS/html/graphics/app-c_lis05.jpg
s

private static Task
DisplayPageSizeAsync(string url, int line)

{

WebRequest webRequest = WebRequest.Create(url);
WebRequestState state =
new WebRequestState(webRequest, line);
Write(state, url + " ");
return Task<WebResponse>.Factory.FromAsync(
webRequest .BeginGetResponse,
webRequest .EndGetResponse, state)
-ContinueNith(
(antecedent, antecedentState) =>

{
Stream stream =
antecedent.Result.
GetResponseStrean();
using (StreamReader reader =
new StreanReader(stream))
{
int length =
reader.ReadToEnd() . Length;
Write(state,
FormatBytes(length).ToString());
}
}, state);

s

OEBPS/html/graphics/07lis03a.jpg
}

else

{

result = LastName.CompareTo(contact.LastName);
if (result == @)

{
result = FirstName.CompareTo(contact.Firsthane);
¥
}
return result;
¥
#endregion

#region IListable Members
string[] IListable.ColumValues

{
get
{
return new string[]
{
Firstiame,
LastNane,
Phone,
Address
b
}
}
#endregion

}

OEBPS/html/graphics/app-c_lis06.jpg
s

private async static Task
DisplayPageSizeAsync(string url, int line)

{

WebRequestState state =
new WebRequestState(url, line);
Write(state, url + " ");
WebRequest webRequest = WebRequest.Create(url);
WebResponse webResponse =
await Task<WebResponse>.Factory.Fromasync(
webRequest .BeginGetResponse,
webRequest .EndGetResponse, state);
Stream stream =
webResponse. GetResponseStrean() ;
using (StreamReader reader =
new StreamReader(stream))

{
int length = reader.ReadToEnd().Length;
Write(state,
FormatBytes(length).Tostring());
}

OEBPS/html/graphics/app-c_lis03.jpg
using System;

using System.IO0;

using System.Net;
using System.Ling;
using System.Threading;

public class Program

{

public static void Main(string[] args)

{

string url = "http://www.intelliTechture.con";
if (args.Length > 0)
{

i

url = args[o];

Console.Write(url);
WebRequest webRequest = WebRequest.Create(url);
ManualResetEventSlim resetEvent =
new ManualResetEventSlim();
IAsyncResult asyncResult =
webRequest .BeginGetResponse(
(completedAsyncResult) =>
{
HttplebResponse response =
(HttpWebResponse)webRequest . EndGetResponse(
completedAsyncResult);

OEBPS/html/graphics/app-c_lis04.jpg
using System;

using System.IO0;

using System.Net;

using System.Ling;

using System.Threading. Tasks;

public class Program

{

static private object ConsoleSyncObject =
new object();

public static void Main(string[] args)
{
string[] urls = args;
if (args.length == 0)
{
urls = new string[]
{
“http://wwu.habitat-spokane.org" ,
“http://ww.partnersintl.org”,
“http://ww.iassist.org",
“http://ww . Fh.org",
“http://w .worldvision.org”
¥
¥

Task[] tasks = new Task[urls.Length];
for (int line = @; line < urls.Length; line++)

{

OEBPS/html/graphics/08lis13.jpg
ThreadPriorityLevel priority = (ThreadPriorityLevel)Enum.Parse(
typeof (ThreadPriorityLevel), "Idle");
Console.WriteLine(priority);

OEBPS/html/graphics/12fig02.jpg
Anonymous
Function

T

Lambda Anonymous
Expression Method
[

Expression
Lambda

Statement
Lambda

OEBPS/html/graphics/08lis12.jpg
enum ConnectionStatel
{
Disconnected,
Connecting,
Connected,
Disconnecting

¥

enun ConnectionState2
{
Disconnected,
Connecting,
Connected,
Disconnecting

b

class Program

{

static void Main()

{
ConnectionStatel[] states =
(ConnectionState1[])(Array)new ConnectionState2[42];

OEBPS/html/graphics/12fig03.jpg
ZF NodeType { Expression

Methods
o Complle(+ Love.

OEBPS/html/graphics/12fig04.jpg
& Left | E Properties

= 2 Nodetype
B Type

& Methods

BinaryExpression (&
g

e

b5

P

% Comvrson
= toches

= techedronat

OEBPS/html/graphics/09lis20a.jpg
public FileInfo File
{
get { return _File; }
}
readonly private FileInfo File =
new FileInfo(Path.GetTempFileName());

public void Close()

{

if(Stream != null)
{

Stream.Close();
+
if(File != null)
{

File.Delete();
¥

OEBPS/html/graphics/12fig01.jpg
ICloneable
ISerializable _MethodInfo

i MethodInfo ¥ i

Abstract Class i i Abstract Class i
- F— i = MethodBase i
¥ I |

MuliticastDelegate
Abstract Class

ComparisonHandler ¥
Class

- Object

OEBPS/html/graphics/05lis23a.jpg
-method public hidebysig specialname instance void
set_Firsthame(string 'value') cil managed

{
// Code size 9 (6x9)
.maxstack 8
: nop
_ 1darg.0
IL_0002: ldarg.l
IL_00e3: stfld string Employee::_FirstName

IL_0008: ret
} // end of method Employee: :set_Firsthame

.property instance string FirstName()
{
.get instance string Employee: :get_FirstName()
.set instance void Employee: :set_FirstName(string)
} // end of property Employee: :FirstName

s

OEBPS/html/graphics/15out06.jpg
Keywords:
abstract as base bool break byte case catch char checked class const
continue decimal default delegate do double else enum event explicit
extern false finally fixed float for foreach goto if implicit in int
interface internal is lock long namespace new null object operator out
override params private protected public readonly ref return sbyte
sealed short sizeof stackalloc static string struct switch this throw
true try typeof uint ulong unchecked unsafe ushort using virtual void
volatile uhile
Contextual Keyword:
add alias ascending async await by descending dynamic equals from
get global group into join let on orderby partial remove select
set value var uhere yield

OEBPS/html/graphics/15out05.jpg
-\TestData\Bill.cs(8/10/2011 9:33:55 PM)

\TestData\Contact.cs(8/19/2011 11:40:30 PM)
-\TestData\Employee.cs(8/17/2011 1:33:22 AM)
-\TestData\Person.cs(10/22/2011 10:00:03 PM)

OEBPS/html/graphics/15out04.jpg
3
2.
EN
4.
5.
b
7
8.

delegateInvocations=0
Contextual keyword count=15
delegateInvocations=15
Contextual keyword count=15
delegateInvocations=30
delegateInvocations=45
selectionCache count=15
delegateInvocations=45

OEBPS/html/graphics/15out03.jpg
Query created.

addx aliasx ascending* byx descending* dynamick equalsk fromk getx
global* group* into* joink let* on orderby* partial* remove* selectx
setx valuex vark wherex yieldx

OEBPS/html/graphics/15out02.jpg
Account-cs(11/22/2011 11:5k:11 AM)
Bill.cs(8/10/2011 9:33:55 PM)

Contact-cs(8/19/2011 11:40:30 PM)
Customer.cs(11/1?7/2011 2:02:52 AM)
Employee.cs(8/17/2011 1:33:22 AM)
Person.cs(10/22/2011 10:00:03 PM)

OEBPS/html/graphics/15out01.jpg
abstract as base bool break byte case catch char checked class const
continue decimal default delegate do double else enum event explicit
extern false finally fixed float for foreach goto if implicit in int
interface internal is lock long namespace new null object operator out
override params private protected public readonly ref return sbyte
sealed short sizeof stackalloc static string struct switch this throw
true try typeof uint ulong unchecked unsafe ushort using virtual void
volatile uhile

OEBPS/html/graphics/07lis02e.jpg
"Douglas Adams”, 1979)
35

ConsoleListControl.List(
Publication.Headers, publications);

¥
}
class ConsoleListControl
{
public static void List(string[] headers, IListable[] items)
{
int[] columnWidths = DisplayHeaders(headers);
for (int count = 0; count < items.Length; counts+)
{
string[] values = items[count].ColumnValues;
DisplayItenRow(columniidths, values);
}
i3

/// <summary>Displays the column headers</summary>

OEBPS/html/graphics/11lis21.jpg
public class BinaryTree<T>

{
public Pair<BinaryTreecT>> SubItems
{
get{ return _SubItems; }
set
{
IComparable<T> first;
first = (IComparable<T>)value.First.Item;
if (first.CompareTo(value.Second.Item) < @)
{
// first is Less than second.
}
else
{
// second is Less than or equal to first.
}
_SubItems = value;
¥
}

private Pair<BinaryTree<T>> _SubItems;

OEBPS/html/graphics/20lis21a.jpg
codeBytesPtr, typeof(MethodInvoker));

method();

i3

if (matrix[5] > xde)

{
Console.WriteLine("Inside Matrix!\n");
return 1;

i3

else

{
Console.WriteLine("Not in Matrix.\n");
return 0;

¥

} // fixed

} // unsafe

OEBPS/html/graphics/07lis02d.jpg
"555-123-4567") ;

contacts[2] = new Contact(
“Mary", "Hartfelt",
"1520 Thunder Way, Elizabethton, PA 44444",
"444-123-4567");

contacts[3] = new Contact(
“John", "Lindherst”,
"1 Aerial Way Dr., Monteray, NH 88888",
222-987-6543");

contacts[4] = new Contact(
"Pat", "Wilson",
"565 Irving Dr., Parksdale, FL 22222",
123-456-7890") ;

contacts[5] = new Contact(
“Jane”, “"Doe”,
"123 Main St., Aurora, IL 66666",
"333-345-6789");

// Classes are cast implicitly to
// their supported interfaces
ConsoleListControl.List(Contact.Headers, contacts);

Console.WriteLine();

Publication[] publications = new Publication[3] {
new Publication("Celebration of Discipline”,
ichard Foster”, 1978),
new Publication("Orthodoxy”,
“G.K. Chesterton”, 1908),
new Publication(
"The Hitchhiker's Guide to the Galaxy",

OEBPS/html/graphics/11lis22.jpg
public class BinaryTree<T>

{

where T: System.IComparable<T>

public Pair<BinaryTree<T>> SubItems
{
get{ return _SubItems; }
set
{
IComparable<T> first;
// Notice that the cast can now be eliminated.
first = value.First.Item

if (first.CompareTo(value.Second.Item) < 0)
{

// first is less than second

3

else

{

// second is Less than or equal to first.

Y

_SubTtems = value;
¥
)

private Pair<BinaryTree<T>> _SubItems;

OEBPS/html/graphics/11lis23.jpg
public class EntityDictionary<TKey, Tvalue>
: System.Collections.Generic.Dictionary<TKey, TValues
where Tvalue : EntityBase

OEBPS/html/graphics/07lis02f.jpg
/// <returns>Returns an array of column widths</returns>
private static int[] DisplayHeaders(string[] headers)
{
s
¥

private static void DisplayItemRow(
int[] columnWidths, string[] values)
{
s
}

OEBPS/html/graphics/09fig02.jpg
L
/77 <sunmary>

/77 bisplay the text specitied
717 <tummary>

117 <param name="text">The text to be displayed in the console.</paran>
Tme static void Display(string text)

Console.iriteLine(text);

static void Main()

Display(
void Program.Display(string text)
Dispay the tet specied

{
X
{
¥

e,
} text: The text to be displayed in the console.

OEBPS/html/graphics/11lis24.jpg
public struct Nullable<T> :
IFormattable, IComparable,
IComparable<Nullable<T>>, INullable
where T : struct

yZasn

OEBPS/html/graphics/07lis02a.jpg
}

public string FirstName { get; set; }
public string LastName { get; set; }
public string Address { get; set; }
public string Phone { get; set; }

public string[] ColumnValues

{
get
{
return new string[]
{
Firsthame,
LastName,
Phone,
Address
¥
T
¥
public static string[] Headers
{
get
{
return new string[] {
"First Name", "Last Name "
“Phone
“Address LR 7]

OEBPS/html/graphics/09fig01.jpg
Stack

Heap

a2

42

| Equal Value Types

0x00A60289

| Equal Reference Types

0x00A64799

0x00A61234

0x00A61234

| Identical (Equal References)

00
A6
00
00
00
00

v
A

00
00
00
00
00
00

00 66 00 20 00

00 66 00 72 00
6F 00 6D 00 20

78
34
00
00
00
00
00

—
D4 4C C7 78 02

D4 4C C7 78 02
== =l

12
00
00
00
00
00

OEBPS/html/graphics/07lis02c.jpg
public static string[] Headers

{
get
{
return new string[] {
"Title
“Author
"Year" };
}
}
78
)3
class Program
{
public static void Main()
{

Contact[] contacts = new Contact[6];
contacts[@] = new Contact(
“Dick”, "Traci”,
123 Main St., Spokane, WA 99037",
123-123-1234");
contacts[1] = new Contact(
"Andrew", "Littman",
"1417 Palmary St., Dallas, TX 55555",

OEBPS/html/graphics/15out08.jpg
Enunerable methods are: First: FirstOrDefault: Last LastOrDefaults
Single. SingleOrDefault. ElementAt. ElementAtOrDefault. Repeat-
Empty. Anys All: Counts LongCounts Contains: Aggregates Sums Mins Maxa
Average. Uheres Selects SelectManys Take Takellhiles Skip» Skiplihiles
Joins Groupdoins OrderBy OrderByDescendings ThenBy. ThenByDescendings
GroupBy. Concat. Distincts Union Intersect. Except: Reverses
SequenceEqual, AsEnumerables ToArray: ToList: ToDictionarys Tolookups
DefaultIfEmptys OfTypes Casts Range

OEBPS/html/graphics/07lis02b.jpg
/"o

class Publication : IListable

{

public Publication(string title, string author, int year)

{
Title = title;
Author = author;
Year = year;

}

public string Title { get; set; }
public string Author { get; set; }
public int Year { get; set; }

public string[] ColumnValues

{
get
{
return new string[]
{
Title,
Author,
Year.ToString()
b5
}

OEBPS/html/graphics/11lis20.jpg
public class BinaryTree<T>

{
YZaen
public Pair<BinaryTree<T>> SubItems
{
get{ return _SubItems; }
set
{

IComparable<T> first;
// ERROR: Cannot implicitly convert type...
first = value.First; // Explicit cast required

if (first.CompareTo(value.Second) < ©)

{
// first is less than second.
s

Y

else

it
// first and second are the same or
// second is Less than first.
Vs

}

_Subltems = value;
}
¥

private Pair<BinaryTree<T>> _SubItems;

OEBPS/html/graphics/15out07.jpg
Keywords:
abstract as base bool break byte case catch char checked class const
continue decimal default delegate do double else enum event explicit
extern false finally fixed float for foreach goto if implicit in int
interface internal is lock long namespace new null object operator out
override params private protected public readonly ref return sbyte
sealed short sizeof stackalloc static string struct switch this throw
true try typeof uint ulong unchecked unsafe ushort using virtual void
volatile uhile
Contextual Keyword:
add alias ascending async await by descending dynamic equals from
get global group into join let on orderby partial remove select
set value var uhere yield

OEBPS/html/graphics/04tab01.jpg
Namespace

Description

System

Contains the fundamental types, and types for
conversion between types, mathematics, program
invocation, and environment management.

System.Collections

Contains types for working with collections of
objects such as lists and dictionaries.

System.Collections.

Generics

Contains strongly typed collections that use generics.

System.Data

Contains types used for working with databases.

System.Drawing

Contains types for drawing to the display device
and working with images.

System.10

Contains types for working with directories and
manipulating, loading, and saving files.

System.Ling

Contains classes and interfaces for querying data in
collections using a Language Integrated Query.

System.Text

Contains types for working with strings and various
text encodings, and for converting between those
encodings.

System. Text.
RegularExpressions.

Contains types for working with regular expressions.

System. Threading

Contains types for multithreaded programming.

OEBPS/html/graphics/11lis29.jpg
public abstract class MathEx<T>

{
public static T Add(T first, T second)

{

// Error: Operator '+ cannot be applied to
// operands of type 'T' and 'T'.
// return first + second;

+

OEBPS/html/graphics/04tab02.jpg
Exception Type

Description

System.Exception

The “base” exception from which all other
exceptions derive.

System.ArgumentException

Indicates that one of the arguments
passed into the method is invalid.

System.ArgumentNullException

Indicates that a particular argument is
null and that this is not a valid value for
that parameter.

System.ApplicationException

To be avoided. Originally the idea that
you might want to have one kind of
handling for “system” exceptions and
another for “application” exceptions,
although plausible, doesn’t actually work
well in the real world.

System.FormatException

Indicates that the string format is not
valid for conversion.

System. IndexOutOfRangeException

Indicates that an attempt was made to
access an array or other collection element
that does not exi

OEBPS/html/graphics/08lis18.jpg
// FileAttributes defined in System.IO.

[Flags] // Decorating an enum with FlagsAttribute.
public enum FileAttributes

{
Readonly = 1¢<0, // 000600000000001
Hidden = 1ea1, // 000000000000010
Vs

3

using System;
using System.Diagnostics;
using System.10;

class Program
{
public static void Main()
{
string fileName = @enumtest.txt";
FileInfo file = new FileInfo(fileName);
file.Open(Filetiode.Create).Close();

FileAttributes startingAttributes =
file.Attributes;

OEBPS/html/graphics/11lis25.jpg
public class EntityDictionary<TKey, Tvalue>
: Dictionary<TKey, TValue>
where TKey : IComparable<TKey>, IFormattable
where Tvalue : EntityBase

OEBPS/html/graphics/08lis16.jpg
using System;
using System.10;

public class Program

{
public static void Main()

{
YZan

string fileName = @enumtest.txt";

System.10.FileInfo file =
new System.I0.FileInfo(fileName);

file.Attributes = FileAttributes.Hidden |
FileAttributes.ReadOnly;

Console.WriteLine("{0} | {1} = {2}",
FileAttributes.Hidden, FileAttributes.ReadOnly,
(int)file.Attributes);

OEBPS/html/graphics/11lis26.jpg
public class EntityBase<TKey>

{

i

public TKey Key
{
get{ return Key; }
set{ _Key = value; }
}
private TKey _Key;

public class EntityDictionary<TKey, TValue> :

Dictionary<TKey, TValue>
where TKey: IComparable<TKey>, IFormattable
where TValue : EntityBase<TKey>, new()

YZaen

public Tvalue MakeValue(TKey key)

{
Tvalue newEntity = new TValue();
newEntity.Key = key;
Add(newEntity.Key, newEntity);
return newEntity;

YZan

OEBPS/html/graphics/08lis15.jpg
[Flags] public enum FileAttributes

{

None =
Readonly =

Hidden =

System =

Directory =
Archive

Device =

Normal =

Temporary =
SparseFile =
ReparsePoint =
Compressed =
Offline =
NotContentIndexed =
Encrypted =

o,
1<<0,
1<,
1¢<2,
1<<a,
1¢<5,
1¢<6,
17,
1¢<8,
1¢<9,
1«10,
1caat,
112,
1¢a13,
1«14,

// 000000000000000
// ©00000000000001
// 060000000000010
// ©00000000000100
// 060000000010000
// 000000000160000
// ©00000001000000
// 000000010000000
// ©00000100000000
// 060001000000000
// ©00010000000000
// 000100000000000
// 001600000000000
// 010000000000000
// 160000000000000

OEBPS/html/graphics/11lis27.jpg
class EntityBase<T> where T : IComparable<T>
{

/7
}

// ERROR:

// The type 'U' must be convertible to

// 'System.IComparable<U>' in order to use it as parameter
// 'T' in the generic type or method.

// class Entity<U> : EntityBase<U>

/1

7/

//}

OEBPS/html/graphics/08lis14.jpg
System.Diagnostics.ThreadPrioritylevel priority;
if(Enum.TryParse("Tdle", out priority))
{
Console.WriteLine(priority);
}

OEBPS/html/graphics/11lis28.jpg
class EntityBase

{

public virtual void Method<T>(T t)
where T : IComparable<T>

{
s
¥
¥
class Order : EntityBase
{

public override void Method<T>(T t)
// Constraints may not be repeated on overriding
// members
// where T : IComparable<T>
{
b7
}
}

OEBPS/html/graphics/08lis02.jpg
struct Angle
{
s
// ERROR: Fields cannot be initialized at declaration time
// int _Degrees = 42;
s
}

OEBPS/html/graphics/08lis01.jpg
// Use keyword struct to declare a value type.
struct Angle
{

public Angle(int degrees, int minutes, int seconds)

{

_Degrees = degrees;
_Minutes = minutes;
_Seconds = seconds;
}
public int Degrees
{
get { return _Degrees; }
}

private int Degrees;

public int Minutes
{

¥

private int _Minutes;

get { return _Minutes; }

public int Seconds

{
get { return _Seconds; }

i
private int _Seconds;

public Angle Move(int degrees, int minutes, int seconds)

{

OEBPS/html/graphics/17851.jpg

OEBPS/html/graphics/11lis10.jpg
public interface IContainer<T>

{

i

ICollection<T> Items
{

get;

set;

public class Person: IContainer<Address>,

{

IContainer<Phone>, IContainer<Email>

ICollection<Address> IContainer<Addresss.Items
{

get{...}

set{...}

b

ICollection<Phone> IContainer<Phone>.Items
{

Y

Y

get{.
set{.

3
ICollection<Email> IContainer<Email>.Items
{

get{...}

set{...}

OEBPS/html/graphics/11lis11.jpg
public struct Pair<T>: IPair<T>

{

public Pair(T first, T second)
{

_First = first;
_Second = second;

}

public T First

{
get{ return _First; }
set{ _First = value; }

}

private T _First;

public T Second

{
get{ return _Second; }
set{ _Second = value; }

¥
private T _Second;

OEBPS/html/graphics/11lis12.jpg
public struct Pair<T>: IPair<T>

{
// ERROR: Field 'Pair<T>._second’ must be fully assigned
V4 before control Leaves the constructor
// public Pair(T first)
/L
// _First = first;
/Y
yZan

OEBPS/html/graphics/11lis13.jpg
public struct Pair<T>: IPair<T>

{
public Pair(T first)
{
_First = first;
second = default(T);
}
7T

OEBPS/html/graphics/05lis48a.jpg
OnLastNameChanging(value);
_LastName = value;

}
}
}
private string _LastName;
s
public string FirstName
{
get
{
return _FirstName;
}
set
{
if ((_FirstName 1= value))
{
OnFirstNameChanging(value);
_FirstName = value;
}
}
}

private string _FirstName;

}

// File: Person.cs
partial class Person

{

OEBPS/html/graphics/05lis48b.jpg
partial void OnLastNameChanging(string value)
{

if (value == null)
! throw new ArgumentNullException("LastName");
zf(value.Trjm().Length 0)
! throw new ArgumentException(
“LastName cannot be empty.");
}

OEBPS/html/graphics/11lis18.jpg
class Container<T, U>
{
// Nested classes inherit type parameters.

// Reusing a type parameter name will cause
// a warning.
class Nested<U>

{
void Method(T parame, U paraml)
{
}

}

OEBPS/html/graphics/08lis09.jpg
int connectionState;
I/ e
switch (connectionState)
{
case 0:
s
break;
case 1:
-
break;
case 2:
/"
break;
case 3:
s
break;

OEBPS/html/graphics/11lis19.jpg
public class BinaryTree<T>

{
public BinaryTree (T item)
{
Ttem = item;
}

public T Item
{

get{ return
set{ _Item

Item; }
value; }

}

private T _Item;

public Pair<BinaryTree<T>> SubItems

{

get{ return _SubItems; }
set{ _SubItems = value; }

¥
private Pair<BinaryTree<T>> _SubItems;

OEBPS/html/graphics/08lis08.jpg
int number;

object thing;

number = 42;

// Boxing

thing = number;

// No unboxing conversion.

string text = ((IFormattable)thing).ToString(
X", null);

Console.WriteLine(text);

OEBPS/html/graphics/08lis07.jpg
interface TAngle

{
void MoveTo(int degrees, int minutes, int seconds);
¥
struct Angle : IAngle
{
VZ2

// NOTE: This makes Angle mutable, against the general
Vi guideline
public void MoveTo(int degrees, int minutes, int seconds)
{

_Degrees = degrees;

_Minutes = minutes;

_Seconds = seconds;

class Program

{

static void Main()

{

OEBPS/html/graphics/11lis14.jpg
interface IPair<TFirst, TSecond>

£
TFirst First { get; set; }
TSecond Second { get; set; }

}

public struct Pair<TFirst, TSecond>: IPair<TFirst, TSecond>

{
public Pair(TFirst first, Tsecond second)

{
_First = first;
_Second = second;
+
public TFirst First
{
get{ return _First; }
set{ _First = value; }
}

private TFirst _First;

public TSecond Second

{
get{ return _Second; }
set{ _Second = value; }

¥

private TSecond _Second;

OEBPS/html/graphics/08lis05.jpg
class DisplayFibonacci

{

static void Main()

{

int totalCount;
System.Collections.ArrayList list =
new System.Collections.Arraylist();

Console.Write("Enter a number between 2 and 1600
totalCount = int.Parse(Console.ReadLine());

// Execution-time error:
// list.Add(e); // Cast to double or ‘D' suffix required
// Whether cast or using 'D' suffix,
// CIL is identical.
1list.Add((double)e);
1ist.Add((double)1);
for (int count = 2; count < totalCount; count++)
{
list.Add(
((double)list[count - 1] +
(double)list[count - 2]));

}
foreach (double count in list)
{
Console.rite("{@}, ", count);
}

OEBPS/html/graphics/11lis15.jpg
Pair<int, string> historicalEvent =
new Paircint, string>(1914,
“Shackleton leaves for South Pole on ship Endurance");

Console.WriteLine("{0}: {1}",
historicalEvent.First, historicalEvent.Second);

OEBPS/html/graphics/08lis04.jpg
// Use keyword struct to declare a value type.
struct Angle

{
public Angle(int degrees, int minutes)

: this(degrees, minutes, default(int))
{
i

s
}

OEBPS/html/graphics/11lis16.jpg
public class Tuple {
public class Tuple<Ti>:
IStructuralEquatable, IStructuralComparable, IComparable {

¥

public class Tuple<Tl, T2>: ... {...}

public class Tuple<Tl, T2, T3>: ... {...}
public class Tuple<Ti, T2, T3, T4>: .
public class Tuple<Tl, T2, T3, T4, Ts [

public class Tuple<Ti, T2, T3, T4, TS, T6>:
public class Tuple<Ti, T2, T3, T4, T5, T6, T7>: ... {...
public class Tuple<Tl, T2, T3, T4, TS5, T6, T7, TRest>: ... {

OEBPS/html/graphics/08lis03.jpg
// ERROR: The 'this' object cannot be used before
Y all of its fields are assigned to

// public Angle(int degrees, int minutes, int seconds)

VZat

7/ Degrees = degrees; // Shorthand for this.Hours = hours;
// Minutes = minutes; // Shorthand for this.Minutes =
// Seconds = seconds; // Shorthand for this.Seconds
7/}

OEBPS/html/graphics/11lis17.jpg
Tuplecstring, Contact> keyValuePair;
keyValuePair =
Tuple.Create(
"555-55-5555", new Contact("Inigo Montoya"));
keyValuePair
new Tuplecstring, Contact>(
"555-55-5555", new Contact("Inigo Montoya"));

OEBPS/html/graphics/18lis08.jpg
using System;
using System.Diagnostics;
using System.Threading.Tasks;

public class Program

{

public static void Main()

{

bool parentTaskFaulted = false;
Task task = new Task(() =>
{
throw new InvalidOperationException();
s
Task continuationTask = task.ContinueWith(
(antecedentTask) =>
{
antecedentTaskIsFaulted =
antecedentTask.IsFaulted;
}, TaskContinuationOptions.OnlyOnFaulted);
task.Start();
continuationTask.Wait();

OEBPS/html/graphics/18lis09.jpg
using System;
using System.Diagnostics;
using System.Threading;

public class Program
{
public static Stopwatch clock = new Stopwatch();
public static void Main()
{
try
{
clock.Start();
// Register a callback to receive notifications
// of any unhandled exception.
AppDomain.CurrentDomain.UnhandledException +=

(s, e) =>
{
Message("Event handler starting");
Delay(4000);
3
Thread thread = new Thread(() =>

{

Message("Throwing exception.
throw new Exception();
12H

OEBPS/html/graphics/18lis06.jpg
using System;
using System.Threading.Tasks;
using Addisonkesley.Michaelis.EssentialCSharp.Shared;

public class Program

{
public static void Main()

{
// Use Task.Factory.StartNewcstring>() for
// TPL prior to .NET 4.5
Task<string> task =
Task.Run<string>(
() => PiCalculator.Calculate(10));

Task faultedTask = task.ContinueWith(
(antecedentTask) =>

{
Trace.Assert(task.IsFaulted);
Console.iriteLine(
"Task State: Faulted");
3,

TaskContinuationOptions.OnlyOnFaulted);

OEBPS/html/graphics/18lis07.jpg
using System;
using System.Threading.Tasks;

public class Program

{

public static void Main()

{

// Use Task.Factory.StartNewcstring>() for
// TPL prior to .NET 4.5
Task task = Task.Run(() =>
{

throw new InvalidOperationException();
s

try
{
task.Wait();
i
catch(AggregateException exception)
{

exception.Handle(eachException =>

{
Console. WriteLine(
“ERROR: {0}",
eachException.Message) ;
return true;
s

OEBPS/html/graphics/18lis04.jpg
using System;
using System.Threading. Tasks;
using AddisonWesley.Michaelis.EssentialCSharp.Shared;

public class Program
{
public static void Main()
{
// Use Task.Factory.StartNewcstrings() for
// TPL prior to .NET 4.5
Task<string> task =
Task.Run<string>(
() => PiCalculator.Calculate(100));

foreach(
char busySymbol in Utility.BusySymbols())
{
if(task. IsCompleted)
{
Console.Write("'\b');
break;
}
Console. Write(busySymbol);
¥

Console.WriteLine();

Console.WriteLine(task.Result);

OEBPS/html/graphics/18lis05.jpg
using System;
using System.Threading.Tasks;

public class Program

{
public static void Main()
{
Console.WriteLine("Before");
// Use Task.Factory.StartNewcstring>() for
// TPL prior to .NET 4.5
Task taskA =
Task.Run(() =>
Console.WriteLine("Starting..."))
.ContinueNith(antecedent =>
Console.WriteLine("Continuing A..."));
Task taskB = taskA.ContinueWith(antecedent =>
Console.WriteLine("Continuing B..."));
Task taskC = taskA.ContinueWith(antecedent =>
Console.WriteLine("Continuing C..."));
Task.WaitAll(taskB, taskC);
Console.WriteLine("Finished!");
¥

OEBPS/html/graphics/18lis02.jpg
using System;
using System.Threading;

public class Program

{

public const int Repetitions = 1000;
public static void Main()

{
ThreadPool .QueueUserhorkItem(DoWork, '+');

for(int count = @; count < Repetitions; count++)
{

¥

Console.Write("-");

// Pause until the thread completes
// This is for illustrative purposes; do not
// use Thread.Sleep for synchronization in
// production code.
Thread.Sleep(1000) ;
}
public static void DoWork(object state)
{
for(int count = @; count < Repetitions; count++)
{
Console.Write(state);

Y

OEBPS/html/graphics/18lis03.jpg
using System;
using System.Threading.Tasks;

public class Program

{

public static void Main()

{

const int Repetitions = 10000;

// Use Task.Factory.StartNewcstrings() for
// TPL prior to .NET 4.5

Task task = Task.Run(() =>

{
for(int count = 0;
count < Repetitions; counts+)
{
Console.rite(’-');
)
hH

for(int count = @; count < Repetitions; count++)
{

}

Console.Write('+');

// Wait until the Task completes
task.Wait();

OEBPS/html/graphics/12lis10a.jpg
¥

public static bool AlphabeticalGreaterThan(
int first, int second)

{
int comparison;
comparison = (first.ToString().CompareTo(
second. ToString()));
return comparison > ;
}

static void Main(string[] args)

{
int i;
int[] items = new int[5];

for (i=0; icitems.Length; it+)

{
Console.Write("Enter an integer: ");
items[i] = int.Parse(Console.ReadLine());

¥
BubbleSort(ites, AlphabeticalGreaterThan);

for (i = 0; i < items.Length; i++)
{

¥

Console.WriteLine(items[i]);

OEBPS/html/graphics/11lis43.jpg
interface IReadOnlyPair<out T>
{

T First { get; }

T Second { get; }
}

OEBPS/html/graphics/11lis44.jpg
class Fruit {}
class Apple : Fruit {}
class Orange : Fruit {}

interface ICompareThings<in T>

{

bool FirstIsBetter(T t1, T t2);

class Program

{

class FruitComparer : ICompareThings<Fruit>

o

}

static void Main()

{

// Allowed in C# 4.0
ICompareThings<Fruit> fc = new FruitComparer();
Apple applel = new Apple();

Apple apple2 = new Apple();

Orange orange = new Orange();

// A fruit comparer can compare apples and oranges:

OEBPS/html/graphics/11lis45.jpg
class Food {}
class Pizza : Food {}
class Salad : Food {}
class Document {}
class ComputerProgram : Document {}
interface ITransformer<in TSource, out TTarget>
{
TTarget Transform(TSource source);
}
// A computer programmer is a device which transforms
// food into computer programs:

class Programmer : ITransformer<Food, ComputerProgram>
{
public ComputerProgram Transform(Food) { ... }
}
class Program
{
static void Main()
{
var programmer = new Programmer();
ComputerProgram cp = programmer. Transform(new Salad());
// A computer programmer may be converted with
// both co- and contra-variant conversions. Because
// @ programmer can turn any food into a computer
// program, it can be used as a device that turns pizza
// into documents.
ITransformer<Pizza, Document> transformer = programmer;
Document d = transformer.Transform(new Pizza());

OEBPS/html/graphics/11lis46.jpg
// ERROR: Invalid variance, the type parameter 'T' is not
7/ invariantly valid
interface IPairInitializercin T>
{
void Initialize(IPair<T> pair);
i

// Suppose the code above were Legal, and see what goes
// wrong:
class FruitPairInitializer : IPairInitializer<Fruit>
{
// Let’s initiaize our pair of fruit with an
// apple and an orange.
public void Initialize(IPair<Fruit> pair)
{
pair.First = new Orange();
pair.Second = new Apple();
i
)3

// ... later ...

var f = new FruitPairInitializer();

// This would be legal if contravariance were Legal:
IpairInitializercApple> a = f;

// And now we write an orange into a pair of apples:
a.Initialize(new Pair<Apple>());

OEBPS/html/graphics/11lis40.jpg
s

// Error: Cannot convert type ..

Pair<Pdaltem> pair = (Pair<PdaItem>) new Pair<Contact>();
IPair<Pdaltem> duple = (IPair<Pdaltem>) new Pair<Contact>();

OEBPS/html/graphics/11lis41.jpg
s

Contact contactl = new Contact(“Princess Buttercup”),

Contact contact2 = new Contact("Inigo Montoya");

Pair<Contact> contacts = new Pair<Contact>(contactl, contact2);

// This gives an error: Cannot convert type ...

// But suppose it did not.

// TPair<Pdaltem> pdaPair = (IPair<Pdaltem>) contacts;
// This is perfectly legal, but not type safe.

// pdaPair.First = new Address("123 Sesame Street");

OEBPS/html/graphics/11lis42.jpg
interface TReadOnlyPair<T>

{
T First { get; }
T Second { get; }
¥

interface IPair<T>

{

T First { get; set; }
T Second { get; set; }
¥

public struct Pair<T> : IPair<T>, IReadOnlyPair<T>

{
Vs

¥

class Program
s

static void Main()

{

OEBPS/html/graphics/18lis01.jpg
using System;
using System.Threading;

public class RunningASeparateThread
{
public const int Repetitions = 1000;

public static void Main()

{
ThreadStart threadStart = DolWork;
Thread thread = new Thread(threadstart);
thread. Start();
for(int count = ; count < Repetitions; count++)
{
Console.Write(-
}
thread. Join();
}
public static void DoWork()
{
for(int count = ; count < Repetitions; count++)
{
Console.Write('+');
}
¥

OEBPS/html/graphics/11lis47.jpg
public class Stack<T> where T : IComparable

{
T[] items;

// rest of the class here

OEBPS/html/graphics/11lis48.jpg
.class private auto ansi beforefieldinit
Stack'1¢([mscorlib]System. IComparable)T>
extends [mscorlib]System.Object

OEBPS/html/graphics/04lis04a.jpg
System. Console. Write(prompt);
return System.Console.ReadLine();

i

static string GetFullName(string firstName, string lastName)

{
i

return firstName + + lastName;

static void DisplayGreeting(string name)
{
Systen.Console.WriteLine("Your full name is {@}.", name);
return;

OEBPS/html/graphics/11lis49.jpg
.class public auto ansi beforefieldinit
*Stack'1' <([mscorlib]System. IComparable) T>
extends [mscorlib]System.Object

.field private 10[] items

OEBPS/html/graphics/18lis19.jpg
async Task<int> DoStuffAsync()
{
await DoSomethingAsync();
await DoSomethingElseAsync();
return await GetAnIntegerAsync() + 1;

}

OEBPS/html/graphics/18lis17.jpg
using System.Diagnostics;
using System.Threading;
using System.Threading.Tasks;
class Program

{

static public Task<Process> RunProcessAsync(
string fileName,
string arguments = null,
CancellationToken cancellationToken =

default(CancellationToken))

TaskCompletionSource<Process> task(S =

new TaskCompletionSource<Process>();

Process process = new Process()

{

b

StartInfo = new ProcessStartInfo(fileName)
{

UseshellExecute = false,
Arguments = arguments,

3
EnableRaisingEvents = true,

OEBPS/html/graphics/18lis18.jpg
using System;
using System.Diagnostics;
using System.Threading;
using System.Threading. Tasks;
class Program
{
static public Task<Process> RunProcessAsync(
string fileName,
string arguments = null,
CancellationToken cancellationToken =
default(CancellationToken),
IProgress<ProcessProgressEventArgs> progress =
null,
object objectState = null)

TaskCompletionSourcecProcess> taskCS =
new TaskCompletionSource<Process>();

Process process = new Process()

{
StartInfo = new ProcessStartInfo(fileName)

{
UseshellExecute = false,
Arguments = arguments,

OEBPS/html/graphics/18lis15.jpg
using System;

using System.IO0;

using System.Net;

using System.Ling;

using System.Threading.Tasks;

public class Program

{
private static async Task WriteWebRequestSizeAsync(

string url)

{
try
{
WebRequest webRequest =
WebRequest .Create(url);
WebResponse response =
await webRequest.GetResponseAsync();
using(StreanReader reader =
new StreamReader(
response.GetResponseStrean()))
{
string text =
await reader.ReadToEndAsync();
Console.liriteLine(
FormatBytes(text.Length));
}
}
catch(WebException)
{
1/

}

OEBPS/html/graphics/18lis16.jpg
using System;
using System.10;

using System.Net;

using System.Ling;

using System.Threading.Tasks;

public class Program
{

public static void Main(string[] args)

{
string url = "http://www.IntelliTect.com";
if(args.Length > 0)
{

}

url = args[e];

Console.Write(url);

Funccstring, Task> writelebRequestSizeAsync =
async (string webRequestUrl) =>
{
// Error handling ommitted for
// elucidation.
WebRequest webRequest =
WebRequest.Create(url);

OEBPS/html/graphics/09lis21b.jpg
// Turn off calling the finalizer
System.GC.SuppressFinalize(this);

i

#endregion

public void Dispose(bool disposing)

{
// Do not dispose of an owned managed object (one with a
// finalizer) if called by member finalize
// as the owned managed objects finalize method
// will be (or has been) called by finalization queue
// processing already
if (disposing)

{
if (Stream != null)
t

Stream.Close();

}

}

if(File != null)

{

File.Delete();
¥

OEBPS/html/graphics/18lis13.jpg
using System;
using System.10;
using System.Net;
using System.Ling;

public class Program

{

public static void Main(string[] args)
{
string url = "http://www. IntelliTect.com";
if(args.Length > 0)
{
url = args[o];
¥

try
Console.Write(url);
WebRequest webRequest =

WebRequest .Create(url);

WebResponse response =
webRequest .GetResponse();

OEBPS/html/graphics/09lis21a.jpg
~TemporaryFileStream()

{
Dispose(false);
}
public FileStream Stream
{
get { return _Stream; }
}

readonly private FileStream _Stream;

public FileInfo File
{

i

readonly private FileInfo _File;

get { return _File; }

public void Close()

{
Dispose();
}

#region IDisposable Members
public void Dispose()

{

Dispose(true);

OEBPS/html/graphics/18lis14.jpg
using System;

using System.10;

using System.Net;

using System.Ling;

using System.Threading.Tasks;

public class Program

{
public static void Main(string[] args)

{

string url = "http://www.IntelliTect.com";
if(args.Length > 0)
{
url = args[e];
}

Console.Write(url);
Task task = WriteNebRequestSizeAsync(url);
try
{
while(!task.Wait(100))
{

Y

Console.Write(".

i
catch(AggregateException exception)

{

exception = exception.Flatten();

OEBPS/html/graphics/11lis32.jpg
public Tvalue New(TKey key)

{
// Error: 'Tvalue': Cannot provide arguments
// when creating an instance of a variable type.
Tvalue newEntity = null;
// newEntity = new Tvalue(key);
Add(newEntity.Key, newEntity);
return newEntity;

OEBPS/html/graphics/11lis33.jpg
public class EntityBase<TKey>

{
public EntityBase(TKey key)
{
Key = key;
¥
public TKey Key
{
get { return _key; }
set { _key = value; }
¥
private TKey _key;
¥

public class EntityDictionary<TKey, Tvalue, TFactory> :
Dictionary<TKey, Tvalue>
where TKey : IComparable<TKeys, IFormattable
where Tvalue : EntityBase<TKey>
where TFactory : IEntityFactory<TKey, Tvalue>, new()

{

OEBPS/html/graphics/11lis34.jpg
public class Order : EntityBase<Guid>

{
public Order(Guid key) :
base(key)
{
s
}
¥

public class OrderFactory : IEntityFactory<Guid, Order>

{
public Order CreateNew(Guid key)

{

¥
}

return new Order(key);

OEBPS/html/graphics/11lis35.jpg
public static class Mathx
{
public static T Max<T>(T first, params T[] values)
where T : IComparable<T>
{
T maximum = first;
foreach (T item in values)
{
if (item.CompareTo(maximum) > 0)
{
maxinum = item;
}
i

return maximum;

¥

public static T Min<T>(T first, params T[] values)
where T : IComparable<T>
{

T minimum = first;

foreach (T item in values)

! if (item.CompareTo(minimum) < 0)
{
minimum = item;
}
}

return minimum;

OEBPS/html/graphics/11lis30.jpg
public class BinaryTree<T>
// Error: OR is not supported.

// where T: System.IComparable<T> || System.IFormattable

OEBPS/html/graphics/11lis31.jpg
// Error: Constraint cannot be special class 'System.Delegate’
public class Publisher<T>

where T : System.Delegate
{

public event T Event;

public void Publish()

{
if (Event != null)
{
Event(this, new EventArgs());
}
}

OEBPS/html/graphics/12tab01a.jpg
Jump statements (break,
goto, continue) inside
lambda expressions
cannot be used to jump to
locations outside the lambda
expression, and vice versa.
Here the break statement
inside the lambda would
jump to the end of the
switch statement outside the
lambda.

// ERROR: Control cannot Leave the body of an
// anonymous method or Lambda expression
string[] args;
Funcestring> £5
switch(args[@])
{

case "/File":

=0
«

if (IFile.Exists(args[1]))
break;
return args[1];

¥
YZen
}
Parameters and locals // ERROR: The name 'first' does not

introduced by a lambda
expression are in scope only
within the lambda body.

Va exist in the current context
Funccint, int, bool> expression =

(first, second) => first > second;
Firstes;

OEBPS/html/graphics/18lis11.jpg
public Task<string> CalculatePiAsync(int digits)
£

return Task.Factory.StartNew<string(
() => Calculatepi(digits));

}

private string CalculatePi(int digits)
{

}

s

OEBPS/html/graphics/18lis12.jpg
using System.Threading.Tasks;

/o
Task task = Task.Factory.StartNew(
O =
WritePi(cancellationTokenSource.Token),
TaskCreationOptions.LongRunning);
s

OEBPS/html/graphics/12tab01b.jpg
The compiler’s definite
assignment analysis is unable
to detect initialization of
“outer” local variables in
lambda expressions.

int number;
Funccstring, bool> f =
text => int.TryParse(text, out number);
if (F("1"))
{
// ERROR: Use of unassigned Local variable
System.Console.Write(number);

}

int number;
Funccint, bool> isFortyTwo =
x => 42 == (number = x);
if (isFortyTwo(42))
{
// ERROR: Use of unassigned Local variable
System.Console. Write(number);

OEBPS/html/graphics/18lis10.jpg
using System;

using System.Threading;

using System.Threading.Tasks;

using AddisonWesley.Michaelis.EssentialCSharp.Shared;

public class Program

{

public static void Main()

{

string stars =
"+".PadRight (Console.WindowWidth-1, '*');
Console.Writeline("Push ENTER to exit.");

CancellationTokenSource cancellationTokenSource=
new CancellationTokenSource();
// Use Task.Factory.StartNewcstrings() for
// TPL prior to .NET 4.5
Task task = Task.Run(
0=
Writepi(cancellationTokenSource.Token),
cancellationTokenSource. Token);

// Wait for the user's input
Console.ReadLine();

OEBPS/html/graphics/11lis36.jpg
Console.Writeline(
MathEx.Max<int>(7, 490));
Console.WritelLine(
MathEx.Min<string>("R.0.U.S.", "Fireswamp"));

OEBPS/html/graphics/11lis37.jpg
Console.WriteLine(

MathEx.Max(7, 49@)); // No type arguments!
Console.WriteLine(

MathEx.Min("R.0.U.S'", "Fireswamp”));

OEBPS/html/graphics/11lis38.jpg
public class ConsoleTreeControl
£
// Generic method Show<T>
public static void Show<T>(BinaryTreecT> tree, int indent)
where T : IComparable<T>

{
Console.WriteLine("\n{0}{1}",
"+ --".PadLeft(S*indent, '),
tree.Ttem.ToString());
if (tree.SubItems.First != null)
Show(tree.SubItems.First, indent+1);
if (tree.SubItems.Second = null)
Show(tree.SubItems.Second, indent+1);
¥

OEBPS/html/graphics/11lis39.jpg
public class BinaryTree<T>
where T: System.IComparable<T>

{
}

