
C SS / WEB DEVELOPMENT

Basic Visual Formatting in CSS

ISBN: 978-1-491-92996-4

US $9.99 CAN $11.99

Twitter: @oreillymedia
facebook.com/oreilly

Some aspects of the CSS formatting model may seem counterintuitive at
first, but as you’ll learn in this practical guide, the more you work with these
features, the more they make sense. Author Eric Meyer gives you a good
grounding in CSS visual rendering, from element box rules and concepts to
the specifics of managing tricky layouts for block-level and inline elements.

Short and sweet, this book is an excerpt from the upcoming fourth edition
of CSS: The Definitive Guide. When you purchase either the print or the
ebook edition of Basic Visual Formatting in CSS, you’ll receive a discount on
the entire Definitive Guide once it’s released. Why wait? Learn how to bring
life to your web pages now.

■ Learn the details of element box types, including block, inline,
inline-block, list-item, and run-in boxes

■ Change the type of box an element generates, from inline to
block, or list-item to inline

■ Dive into the complexities of horizontal and vertical block-box
formatting

■ Explore key concepts of inline layout: anonymous text, em box,
content area, leading, inline box, and line box

■ Understand formatting differences between nonreplaced and
replaced inline elements

Eric A. Meyer is an author, speaker, blogger, sometime teacher, and co-founder
of An Event Apart. He’s a two-decade veteran of the Web and web standards,
a past member of the W3C’s Cascading Style Sheets Working Group, and the
author of O’Reilly’s CSS: The Definitive Guide.

Eric A. Meyer

Basic Visual
Formatting
in CSS
L AYOUT FUNDAMENTALS IN CSS

C SS / WEB DEVELOPMENT

Basic Visual Formatting in CSS

ISBN: 978-1-491-92996-4

US $9.99 CAN $11.99

Twitter: @oreillymedia
facebook.com/oreilly

Some aspects of the CSS formatting model may seem counterintuitive at
first, but as you’ll learn in this practical guide, the more you work with these
features, the more they make sense. Author Eric Meyer gives you a good
grounding in CSS visual rendering, from element box rules and concepts to
the specifics of managing tricky layouts for block-level and inline elements.

Short and sweet, this book is an excerpt from the upcoming fourth edition
of CSS: The Definitive Guide. When you purchase either the print or the
ebook edition of Basic Visual Formatting in CSS, you’ll receive a discount on
the entire Definitive Guide once it’s released. Why wait? Learn how to bring
life to your web pages now.

■ Learn the details of element box types, including block, inline,
inline-block, list-item, and run-in boxes

■ Change the type of box an element generates, from inline to
block, or list-item to inline

■ Dive into the complexities of horizontal and vertical block-box
formatting

■ Explore key concepts of inline layout: anonymous text, em box,
content area, leading, inline box, and line box

■ Understand formatting differences between nonreplaced and
replaced inline elements

Eric A. Meyer is an author, speaker, blogger, sometime teacher, and co-founder
of An Event Apart. He’s a two-decade veteran of the Web and web standards,
a past member of the W3C’s Cascading Style Sheets Working Group, and the
author of O’Reilly’s CSS: The Definitive Guide.

Eric A. Meyer

Basic Visual
Formatting
in CSS
L AYOUT FUNDAMENTALS IN CSS

Eric A. Meyer

Basic Visual Formatting in CSS

978-1-491-92996-4

[LSI]

Basic Visual Formatting in CSS
by Eric A. Meyer

Copyright © 2015 Eric A. Meyer. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Meg Foley
Production Editor: Colleen Lobner
Copyeditor: Amanda Kersey
Proofreader: Lindsy Gamble

Interior Designer: David Futato
Cover Designer: Ellie Volckhausen
Illustrator: Rebecca Demarest

August 2015: First Edition

Revision History for the First Edition
2015-07-31: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781491929964 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Basic Visual Formatting in CSS, the
cover image of salmon, and related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the author have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the author disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

http://safaribooksonline.com
http://oreilly.com/catalog/errata.csp?isbn=9781491929964

Table of Contents

Preface. v

Basic Visual Formatting. 1
Basic Boxes 1

A Quick Refresher 2
The Containing Block 3

Altering Element Display 4
Changing Roles 5
Block Boxes 7
Horizontal Formatting 9
Horizontal Properties 10
Using auto 11
More Than One auto 13
Negative Margins 14
Percentages 16
Replaced Elements 17
Vertical Formatting 18
Vertical Properties 19
Percentage Heights 20
Auto Heights 22
Collapsing Vertical Margins 23
Negative Margins and Collapsing 25
List Items 28

Inline Elements 28
Line Layout 29
Basic Terms and Concepts 32
Inline Formatting 34
Inline Nonreplaced Elements 35

iii

Building the Boxes 35
Vertical Alignment 37
Managing the line-height 40
Scaling Line Heights 42
Adding Box Properties 43
Changing Breaking Behavior 46
Glyphs Versus Content Area 47
Inline Replaced Elements 48
Adding Box Properties 49
Replaced Elements and the Baseline 51
Inline-Block Elements 53
Run-in Elements 56
Computed Values 58

Summary 59

iv | Table of Contents

Preface

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This element signifies a general note.

This element indicates a warning or caution.

v

Safari® Books Online
Safari Books Online is an on-demand digital library that deliv‐
ers expert content in both book and video form from the
world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and crea‐
tive professionals use Safari Books Online as their primary resource for research,
problem solving, learning, and certification training.

Safari Books Online offers a range of plans and pricing for enterprise, government,
education, and individuals.

Members have access to thousands of books, training videos, and prepublication
manuscripts in one fully searchable database from publishers like O’Reilly Media,
Prentice Hall Professional, Addison-Wesley Professional, Microsoft Press, Sams, Que,
Peachpit Press, Focal Press, Cisco Press, John Wiley & Sons, Syngress, Morgan Kauf‐
mann, IBM Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New Riders,
McGraw-Hill, Jones & Bartlett, Course Technology, and hundreds more. For more
information about Safari Books Online, please visit us online.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://bit.ly/basic-visual-formatting.

To comment or ask technical questions about this book, send email to bookques‐
tions@oreilly.com.

vi | Preface

http://safaribooksonline.com
https://www.safaribooksonline.com/explore/
https://www.safaribooksonline.com/pricing/
https://www.safaribooksonline.com/enterprise/
https://www.safaribooksonline.com/government/
https://www.safaribooksonline.com/academic-public-library/
https://www.safaribooksonline.com/our-library/
http://bit.ly/basic-visual-formatting
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com

For more information about our books, courses, conferences, and news, see our web‐
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Preface | vii

http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

Basic Visual Formatting

This book is all about the theoretical side of visual rendering in CSS. Why is it neces‐
sary to spend an entire book (however slim) on the theoretical underpinnings of vis‐
ual rendering? The answer is that with a model as open and powerful as that
contained within CSS, no book could hope to cover every possible way of combining
properties and effects. You will obviously go on to discover new ways of using CSS. In
the course of exploring CSS, you may encounter seemingly strange behaviors in user
agents. With a thorough grasp of how the visual rendering model works in CSS, you’ll
be able to determine whether a behavior is a correct (if unexpected) consequence of
the rendering engine CSS defines, or whether you’ve stumbled across a bug that needs
to be reported.

Basic Boxes
At its core, CSS assumes that every element generates one or more rectangular boxes,
called element boxes. (Future versions of the specification may allow for nonrectangu‐
lar boxes, and indeed there are proposals to change this, but for now everything is
rectangular.) Each element box has a content area at its center. This content area is
surrounded by optional amounts of padding, borders, outlines, and margins. These
areas are considered optional because they could all be set to a width of zero, effec‐
tively removing them from the element box. An example content area is shown in
Figure 1, along with the surrounding regions of padding, borders, and margins.

Each of the margins, borders, and the padding can be set using various side-specific
properties, such as margin-left or border-bottom, as well as shorthand properties
such as padding. The outline, if any, does not have side-specific properties. The con‐
tent’s background—a color or tiled image, for example—is applied within the padding
by default. The margins are always transparent, allowing the background(s) of any
parent element(s) to be visible. Padding cannot have a negative length, but margins
can. We’ll explore the effects of negative margins later on.

1

Figure 1. The content area and its surroundings

Borders are generated using defined styles, such as solid or inset, and their colors
are set using the border-color property. If no color is set, then the border takes on
the foreground color of the element’s content. For example, if the text of a paragraph
is white, then any borders around that paragraph will be white, unless the author
explicitly declares a different border color. If a border style has gaps of some type,
then the element’s background is visible through those gaps by default. Finally, the
width of a border can never be negative.

The various components of an element box can be affected via a number of proper‐
ties, such as width or border-right. Many of these properties will be used in this
book, even though they aren’t defined here.

A Quick Refresher
Let’s quickly review the kinds of boxes we’ll be discussing, as well as some important
terms that are needed to follow the explanations to come:

Normal flow
This is the left-to-right, top-to-bottom rendering of text in Western languages
and the familiar text layout of traditional HTML documents. Note that the flow
direction may be changed in non-Western languages. Most elements are in the
normal flow, and the only way for an element to leave the normal flow is to be
floated, positioned, or made into a flexible box or grid layout element. Remem‐
ber, the discussions in this chapter cover only elements in the normal flow.

Nonreplaced element
This is an element whose content is contained within the document. For exam‐
ple, a paragraph (p) is a nonreplaced element because its textual content is found
within the element itself.

2 | Basic Visual Formatting

Replaced element
This is an element that serves as a placeholder for something else. The classic
example of a replaced element is the img element, which simply points to an
image file that is inserted into the document’s flow at the point where the img
element itself is found. Most form elements are also replaced (e.g., <input
type="radio">).

Root element
This is the element at the top of the document tree. In HTML documents, this is
the element html. In XML documents, it can be whatever the language permits;
for example, the root element of RSS files is rss.

Block box
This is a box that an element such as a paragraph, heading, or div generates.
These boxes generate “new lines” both before and after their boxes when in the
normal flow so that block boxes in the normal flow stack vertically, one after
another. Any element can be made to generate a block box by declaring display:
block.

Inline box
This is a box that an element such as strong or span generates. These boxes do
not generate “linebreaks” before or after themselves. Any element can be made to
generate an inline box by declaring display: inline.

Inline-block box
This is a box that is like a block box internally, but acts like an inline box exter‐
nally. It acts similar to, but not quite the same as, a replaced element. Imagine
picking up a div and sticking it into a line of text as if it were an inline image,
and you’ve got the idea.

There are several other types of boxes, such as table-cell boxes, but they won’t be cov‐
ered in this book for a variety of reasons—not the least of which is that their com‐
plexity demands a book of its own, and very few authors will actually wrestle with
them on a regular basis.

The Containing Block
There is one more kind of box that we need to examine in detail, and in this case
enough detail that it merits its own section: the containing block.

Every element’s box is laid out with respect to its containing block; in a very real way,
the containing block is the “layout context” for a box. CSS defines a series of rules for
determining a box’s containing block. We’ll cover only those rules that pertain to the
concepts covered in this book in order to keep our focus.

Basic Boxes | 3

For an element in the normal, Western-style flow of text, the containing block forms
from the content edge of the nearest ancestor that generated a list item or block box,
which includes all table-related boxes (e.g., those generated by table cells). Consider
the following markup:

<body>
 <div>
 <p>This is a paragraph.</p>
 </div>
</body>

In this very simple markup, the containing block for the p element’s block box is the
div element’s block box, as that is the closest ancestor element box that is a block or a
list item (in this case, it’s a block box). Similarly, the div’s containing block is the
body’s box. Thus, the layout of the p is dependent on the layout of the div, which is in
turn dependent on the layout of the body element.

And above that, the layout of the body element is dependent on the layout of the html
element, whose box creates what is called the initial containing block. It’s a little bit
unique in that the viewport—the browser window in screen media, or the printable
area of the page in print media—determines its dimensions, not the size of the con‐
tent of the root element. It’s a subtle distinction, and usually not a very important one,
but it does exist.

Altering Element Display
You can affect the way a user agent displays by setting a value for the property
display. Now that we’ve taken a close look at visual formatting, let’s consider the
display property and discuss two more of its values using concepts from earlier in
the book.

display

Values: none | inline | block | inline-block | list-item | run-in | table |
inline-table | table-row-group | table-header-group | table-
footer-group | table-row | table-column-group | table-column |
table-cell | table-caption | inherit

Initial value: inline

Applies to: All elements

Inherited: No

4 | Basic Visual Formatting

Computed
value:

Varies for floated, positioned, and root elements (see CSS2.1, section 9.7); otherwise,
as specified

We’ll ignore the table-related values, since they’re far too complex for this text, and
we’ll also ignore the value list-item since it’s very similar to block boxes. We’ve
spent quite some time discussing block and inline boxes, but let’s spend a moment
talking about how altering an element’s display role can alter layout before we look at
inline-block and run-in.

Changing Roles
When it comes to styling a document, it’s obviously handy to be able to change the
type of box an element generates. For example, suppose we have a series of links in a
nav that we’d like to lay out as a vertical sidebar:

<nav>
 WidgetCo Home
 Products
 Services
 Widgety Fun!
 Support
 About Us
 Contact
</nav>

We could put all the links into table cells, or wrap each one in its own nav—or we
could just make them all block-level elements, like this:

nav a {display: block;}

This will make every a element within the navigation nav a block-level element. If we
add on a few more styles, we could have a result like that shown in Figure 2.

Figure 2. Changing the display role from inline to block

Altering Element Display | 5

Changing display roles can be useful in cases where you want non-CSS browsers to
get the navigation links as inline elements but to lay out the same links as block-level
elements. With the links as blocks, you can style them as you would div or p ele‐
ments, with the advantage that the entire element box becomes part of the link. Thus,
if a user’s mouse pointer hovers anywhere in the element box, she can then click the
link.

You may also want to take elements and make them inline. Suppose we have an unor‐
dered list of names:

<ul id="rollcall">
 Bob C.
 Marcio G.
 Eric M.
 Kat M.
 Tristan N.
 Arun R.
 Doron R.
 Susie W.

Given this markup, say we want to make the names into a series of inline names with
vertical bars between them (and on each end of the list). The only way to do so is to
change their display role. The following rules will have the effect shown in Figure 3:

#rollcall li {display: inline; border-right: 1px solid; padding: 0 0.33em;}
#rollcall li:first-child {border-left: 1px solid;}

Figure 3. Changing the display role from list-item to inline

There are plenty of other ways to use display to your advantage in design. Be creative
and see what you can invent!

Be careful to note, however, that you are changing the display role of elements—not
changing their inherent nature. In other words, causing a paragraph to generate an
inline box does not turn that paragraph into an inline element. In XHTML, for exam‐
ple, some elements are block while others are inline. (Still others are “flow” elements,
but we’re ignoring them right now.) An inline element can be a descendant of a block
element, but the reverse is not true. Thus, while a span can be placed inside a para‐
graph, a span cannot be wrapped around a paragraph. This will hold true no matter
how you style the elements in question. Consider the following markup:

<p style="display: inline;">this is wrong!</p>

6 | Basic Visual Formatting

The markup will not validate because the block element (p) is nested inside an inline
element (span). The changing of display roles does nothing to change this. display
has its name because it affects how the element is displayed, not because it changes
what kind of element it is.

With that said, let’s get into the details of different kinds of boxes: block boxes, inline
boxes, inline-block boxes, list-item boxes, and run-in boxes.

Block Boxes
Block boxes can behave in sometimes predictable, sometimes surprising ways. The
handling of box placement along the horizontal and vertical axes can differ, for exam‐
ple. In order to fully understand how block boxes are handled, you must clearly
understand a number of boundaries and areas. They are shown in detail in Figure 4.

Figure 4. The complete box model

By default, the width of a block box is defined to be the distance from the left inner
edge to the right inner edge, and the height is the distance from the inner top to the
inner bottom. Both of these properties can be applied to an element generating a
block box. It’s also the case that we can alter how these properties are treated using
the property box-sizing.

Altering Element Display | 7

box-sizing

Values: content-box | padding-box | border-box | inherit

Initial value: content-box

Applies to: All elements that accept width or height values

Inherited: No

Computed value: As specified

This property is how you change what the width and height values actually do. If you
declare width: 400px and don’t declare a value for box-sizing, then the element’s
content box will be 400 pixels wide; any padding, borders, and so on will be added to
it. If, on the other hand, you declare box-sizing: border-box, then it will be 400
pixels from the left outer border edge to the right outer border edge; any border or
padding will be placed within that distance, thus shrinking the width of the content
area. This is illustrated in Figure 5.

Figure 5. The effects of box-sizing

We’re talking about the box-sizing property here because, as stated, it applies to “all
elements that accept width or height values.” That’s most often elements generating
block boxes, though it also applies to replaced inline elements like images as well as
inline-block boxes.

The various widths, heights, padding, and margins all combine to determine how a
document is laid out. In most cases, the height and width of the document are auto‐

8 | Basic Visual Formatting

matically determined by the browser and are based on the available display region,
plus other factors. With CSS, of course, you can assert more direct control over the
way elements are sized and displayed.

Horizontal Formatting
Horizontal formatting is often more complex than you’d think. Part of the complexity
has to do with the default behavior of box-sizing. With the default value of content-
box, the value given for width affects the width of the content area, not the entire visi‐
ble element box. Consider the following example:

<p style="width: 200px;">wideness?</p>

This will make the paragraph’s content 200 pixels wide. If we give the element a back‐
ground, this will be quite obvious. However, any padding, borders, or margins you
specify are added to the width value. Suppose we do this:

<p style="width: 200px; padding: 10px; margin: 20px;">wideness?</p>

The visible element box is now 220 pixels wide, since we’ve added 10 pixels of pad‐
ding to the right and left of the content. The margins will now extend another 20 pix‐
els to both sides for an overall element box width of 260 pixels. This is illustrated in
Figure 6.

Figure 6. Additive padding and margin

Of course, if we change the styles to use the border box for box-sizing, then the
results would be different. In that case, the visible box would be 200 pixels wide with
a content width of 180 pixels, and a total of 40 pixels of margin to the sides, giving an
overall box width of 240 pixels, as illustrated in Figure 7.

In either case, there is a simple rule that says that the sum of the horizontal compo‐
nents of a block box in the normal flow always equals the width of the containing
block. Let’s consider two paragraphs within a div whose margins have been set to be
1em, and whose box-sizing value is the default. The content width (the value of
width) of each paragraph, plus its left and right padding, borders, and margins,
always adds up to the width of the div’s content area.

Altering Element Display | 9

Figure 7. Subtracted padding

Let’s say the width of the div is 30em. That makes the sum total of the content width,
padding, borders, and margins of each paragraph 30 em. In Figure 8, the “blank”
space around the paragraphs is actually their margins. If the div had any padding,
there would be even more blank space, but that isn’t the case here.

Figure 8. Element boxes are as wide as the width of their containing block

Horizontal Properties
The “seven properties” of horizontal formatting are: margin-left, border-left,
padding-left, width, padding-right, border-right, and margin-right. These
properties relate to the horizontal layout of block boxes and are diagrammed in Fig‐
ure 9.

The values of these seven properties must add up to the width of the element’s con‐
taining block, which is usually the value of width for a block element’s parent (since
block-level elements nearly always have block-level elements for parents).

Of these seven properties, only three may be set to auto: the width of the element’s
content and the left and right margins. The remaining properties must be set either to
specific values or default to a width of zero. Figure 10 shows which parts of the box
can take a value of auto and which cannot.

10 | Basic Visual Formatting

Figure 9. The “seven properties” of horizontal formatting

Figure 10. Horizontal properties that can be set to auto

width must either be set to auto or a nonnegative value of some type. When you do
use auto in horizontal formatting, different effects can occur.

Using auto
If you set width, margin-left, or margin-right to a value of auto, and give the
remaining two properties specific values, then the property that is set to auto is set to
the length required to make the element box’s width equal to the parent element’s
width. In other words, let’s say the sum of the seven properties must equal 500 pixels,
no padding or borders are set, the right margin and width are set to 100px, and the
left margin is set to auto. The left margin will thus be 300 pixels wide:

div {width: 500px;}
p {margin-left: auto; margin-right: 100px;
 width: 100px;} /* 'auto' left margin evaluates to 300px */

Altering Element Display | 11

In a sense, auto can be used to make up the difference between everything else and
the required total. However, what if all three of these properties are set to 100px and
none of them are set to auto?

In the case where all three properties are set to something other than auto—or, in
CSS terminology, when these formatting properties have been overconstrained—then
margin-right is always forced to be auto. This means that if both margins and the
width are set to 100px, then the user agent will reset the right margin to auto. The
right margin’s width will then be set according to the rule that one auto value “fills in”
the distance needed to make the element’s overall width equal that of its containing
block. Figure 11 shows the result of the following markup:

div {width: 500px;}
p {margin-left: 100px; margin-right: 100px;
 width: 100px;} /* right margin forced to be 300px */

Figure 11. Overriding the margin-right setting

If both margins are set explicitly, and width is set to auto, then width will be what‐
ever value is needed to reach the required total (which is the content width of the par‐
ent element). The results of the following markup are shown in Figure 12:

p {margin-left: 100px; margin-right: 100px; width: auto;}

The case shown in Figure 12 is the most common case, since it is equivalent to setting
the margins and not declaring anything for the width. The result of the following
markup is exactly the same as that shown in Figure 12:

p {margin-left: 100px; margin-right: 100px;} /* same as before */

Figure 12. Automatic width

12 | Basic Visual Formatting

You might be wondering what happens if box-sizing is set to, say, padding-box. The
discussion here tends to assume that the default of content-box is used, but all the
same principles described here apply, which is why this section only talked about
width and the side margins without introducing any padding or borders. The han‐
dling of width: auto in this section and the following sections is the same regardless
of the value of box-sizing. The details of what gets placed where inside the box-
sizing-defined box may vary, but the treatment of auto values does not, because
box-sizing determines what width refers to, not how it behaves in relation to the
margins.

More Than One auto
Now let’s see what happens when two of the three properties (width, margin-left,
and margin-right) are set to auto. If both margins are set to auto, as shown in the
following code, then they are set to equal lengths, thus centering the element within
its parent. This is illustrated in Figure 13.

div {width: 500px;}
p {width: 300px; margin-left: auto; margin-right: auto;}
 /* each margin is 100 pixels wide, because (500-300)/2 = 100 */

Figure 13. Setting an explicit width

Setting both margins to equal lengths is the correct way to center elements within
block boxes in the normal flow. (There are other methods to be found with flexible
box and grid layout, but they’re beyond the scope of this text.)

Another way of sizing elements is to set one of the margins and the width to auto.
The margin set to be auto is reduced to zero:

div {width: 500px;}
p {margin-left: auto; margin-right: 100px;
 width: auto;} /* left margin evaluates to 0; width becomes 400px */

The width is then set to the value necessary to make the element fill its containing
block; in the preceding example, it would be 400 pixels, as shown in Figure 14.

Altering Element Display | 13

Figure 14. What happens when both the width and right margin are auto

Finally, what happens when all three properties are set to auto? The answer is simple:
both margins are set to zero, and the width is made as wide as possible. This result is
the same as the default situation, when no values are explicitly declared for margins
or the width. In such a case, the margins default to zero and the width defaults to
auto.

Note that since horizontal margins do not collapse, the padding, borders, and mar‐
gins of a parent element can affect its children. The effect is indirect in that the mar‐
gins (and so on) of an element can induce an offset for child elements. The results of
the following markup are shown in Figure 15:

div {padding: 50px; background: silver;}
p {margin: 30px; padding: 0; background: white;}

Negative Margins
So far, this probably all seems rather straightforward, and you may be wondering why
I said things could be complicated. Well, there’s another side to margins: the negative
side. That’s right, it’s possible to set negative values for margins. Setting negative mar‐
gins can result in some interesting effects.

Figure 15. Offset is implicit in the parent’s margins and padding

Remember that the total of the seven horizontal properties always equals the width of
the parent element. As long as all properties are zero or greater, an element can never
be wider than its parent’s content area. However, consider the following markup,
depicted in Figure 16:

14 | Basic Visual Formatting

div {width: 500px; border: 3px solid black;}
p.wide {margin-left: 10px; width: auto; margin-right: -50px; }

Figure 16. Wider children through negative margins

Yes indeed, the child element is wider than its parent! This is mathematically correct:

10px + 0 + 0 + 540px + 0 + 0 - 50px = 500px

The 540px is the evaluation of width: auto, which is the number needed to balance
out the rest of the values in the equation. Even though it leads to a child element
sticking out of its parent, the specification hasn’t been violated because the values of
the seven properties add up to the required total. It’s a semantic dodge, but it’s valid
behavior.

Now, let’s add some borders to the mix:

div {width: 500px; border: 3px solid black;}
p.wide {margin-left: 10px; width: auto; margin-right: -50px;
 border: 3px solid gray;}

The resulting change will be a reduction in the evaluated width of width:

10px + 3px + 0 + 534px + 0 + 3px - 50px = 500px

If we were to introduce padding, then the value of width would drop even more.

Conversely, it’s possible to have auto right margins evaluate to negative amounts. If
the values of other properties force the right margin to be negative in order to satisfy
the requirement that elements be no wider than their containing block, then that’s
what will happen. Consider:

div {width: 500px; border: 3px solid black;}
p.wide {margin-left: 10px; width: 600px; margin-right: auto;
 border: 3px solid gray;}

The equation will work out like this:

10px + 3px + 0 + 600px + 0 + 3px - 116px = 500px

The right margin will evaluate to -116px. Even if we’d given it a different explicit
value, it would still be forced to -116px because of the rule stating that when an ele‐
ment’s dimensions are overconstrained, the right margin is reset to whatever is

Altering Element Display | 15

needed to make the numbers work out correctly. (Except in right-to-left languages,
where the left margin would be overruled instead.)

Let’s consider another example, illustrated in Figure 17, where the left margin is set to
be negative:

div {width: 500px; border: 3px solid black;}
p.wide {margin-left: -50px; width: auto; margin-right: 10px;
 border: 3px solid gray;}

Figure 17. Setting a negative left margin

With a negative left margin, not only does the paragraph spill beyond the borders of
the div, but it also spills beyond the edge of the browser window itself!

Remember that padding, borders, and content widths (and heights) can never be neg‐
ative. Only margins can be less than zero.

Percentages
When it comes to percentage values for the width, padding, and margins, the same
basic rules apply. It doesn’t really matter whether the values are declared with lengths
or percentages.

Percentages can be very useful. Suppose we want an element’s content to be two-
thirds the width of its containing block, the right and left padding to be 5% each, the
left margin to be 5%, and the right margin to take up the slack. That would be written
something like:

<p style="width: 67%; padding-right: 5%; padding-left: 5%; margin-right: auto;
 margin-left: 5%;">playing percentages</p>

The right margin would evaluate to 18% (100% - 67% - 5% - 5% - 5%) of the width of
the containing block.

Mixing percentages and length units can be tricky, however. Consider the following
example:

<p style="width: 67%; padding-right: 2em; padding-left: 2em; margin-right: auto;
 margin-left: 5em;">mixed lengths</p>

16 | Basic Visual Formatting

In this case, the element’s box can be defined like this:

5em + 0 + 2em + 67% + 2em + 0 + auto = containing block width

In order for the right margin’s width to evaluate to zero, the element’s containing
block must be 27.272727 em wide (with the content area of the element being
18.272727 em wide). Any wider than that, and the right margin will evaluate to a pos‐
itive value. Any narrower and the right margin will be a negative value.

The situation gets even more complicated if we start mixing length-value unity types,
like this:

<p style="width: 67%; padding-right: 15px; padding-left: 10px;
 margin-right: auto;
 margin-left: 5em;">more mixed lengths</p>

And, just to make things more complex, borders cannot accept percentage values,
only length values. The bottom line is that it isn’t really possible to create a fully flexi‐
ble element based solely on percentages unless you’re willing to avoid using borders
or use some of the more experimental approaches such as flexible box layout.

Replaced Elements
So far, we’ve been dealing with the horizontal formatting of nonreplaced block boxes
in the normal flow of text. Block-level replaced elements are a bit simpler to manage.
All of the rules given for nonreplaced blocks hold true, with one exception: if width is
auto, then the width of the element is the content’s intrinsic width. The image in the
following example will be 20 pixels wide because that’s the width of the original
image:

If the actual image were 100 pixels wide instead, then it would be laid out as 100 pix‐
els wide.

It’s possible to override this rule by assigning a specific value to width. Suppose we
modify the previous example to show the same image three times, each with a differ‐
ent width value:

This is illustrated in Figure 18.

Note that the height of the elements also increases. When a replaced element’s width
is changed from its intrinsic width, the value of height is scaled to match, unless
height has been set to an explicit value of its own. The reverse is also true: if height
is set, but width is left as auto, then the width is scaled proportionately to the change
in height.

Altering Element Display | 17

Figure 18. Changing replaced element widths

Now that you’re thinking about height, let’s move on to the vertical formatting of
normal-flow block box.

Vertical Formatting
Like horizontal formatting, the vertical formatting of block boxes has its own set of
interesting behaviors. An element’s content determines the default height of an
element. The width of the content also affects height; the skinnier a paragraph
becomes, for example, the taller it has to be in order to contain all of the inline con‐
tent within it.

In CSS, it is possible to set an explicit height on any block-level element. If you do
this, the resulting behavior depends on several other factors. Assume that the speci‐
fied height is greater than that needed to display the content:

<p style="height: 10em;">

In this case, the extra height has a visual effect somewhat like extra padding. But sup‐
pose the height is less than what is needed to display the content:

<p style="height: 3.33em;">

When that happens, the browser is supposed to provide a means of viewing all
content without increasing the height of the element box. In a case where the content
of an element is taller than the height of its box, the actual behavior of a user agent
will depend on the value of the property overflow. Two alternatives are shown in
Figure 19.

Under CSS1, user agents can ignore any value of height other than auto if an ele‐
ment is not a replaced element (such as an image). In CSS2 and later, the value of
height cannot be ignored, except in one specific circumstance involving percentage
values. We’ll talk about that in a moment.

18 | Basic Visual Formatting

Just as with width, height defines the content area’s height by default, as opposed to
the height of the visible element box. Any padding, borders, or margins on the top or
bottom of the element box are added to the value for height, unless the value of box-
sizing is different than content-box.

Figure 19. Heights that don’t match the element’s content height

Vertical Properties
As was the case with horizontal formatting, vertical formatting also has seven related
properties: margin-top, border-top, padding-top, height, padding-bottom,
border-bottom, and margin-bottom. These properties are diagrammed in Figure 20.

The values of these seven properties must equal the height of the block box’s contain‐
ing block. This is usually the value of height for a block box’s parent (since block-
level elements nearly always have block-level elements for parents).

Only three of these seven properties may be set to auto: the height of the element,
and the top and bottom margins. The top and bottom padding and borders must be
set to specific values or else they default to a width of zero (assuming no border-style
is declared). If border-style has been set, then the thickness of the borders is set to
be the vaguely defined value medium. Figure 21 provides an illustration for remember‐
ing which parts of the box may have a value of auto and which may not.

Interestingly, if either margin-top or margin-bottom is set to auto for a block box in
the normal flow, they both automatically evaluate to 0. A value of 0 unfortunately
prevents easy vertical centering of normal-flow boxes in their containing blocks. It
also means that if you set the top and bottom margins of an element to auto, they are
effectively reset to 0 and removed from the element box.

Altering Element Display | 19

The handling of auto top and bottom margins is different for posi‐
tioned elements, as well as flexible-box elements.

Figure 20. The “seven properties” of vertical formatting

height must be set to auto or to a nonnegative value of some type; it can never be less
than zero.

Percentage Heights
You already saw how length-value heights are handled, so let’s spend a moment on
percentages. If the height of a normal-flow block box is set to a percentage value, then
that value is taken as a percentage of the height of the box’s containing block. Given
the following markup, the resulting paragraph will be 3 em tall:

20 | Basic Visual Formatting

<div style="height: 6em;">
 <p style="height: 50%;">Half as tall</p>
</div>

Since setting the top and bottom margins to auto will give them zero height, the only
way to vertically center the element in this particular case would be to set them both
to 25%—and even then, the box would be centered, not the content within it.

Figure 21. Vertical properties that can be set to auto

However, in cases where the height of the containing block is not explicitly declared,
percentage heights are reset to auto. If we changed the previous example so that the
height of the div is auto, the paragraph will now be exactly as tall as the div itself:

<div style="height: auto;">
 <p style="height: 50%;">NOT half as tall; height reset to auto</p>
</div>

These two possibilities are illustrated in Figure 22. (The spaces between the para‐
graph borders and the div borders are the top and bottom margins on the para‐
graphs.)

Altering Element Display | 21

Figure 22. Percentage heights in different circumstances

Before we move on, take a closer look at the first example in Figure 22, the half-as-tall
paragraph. It may be half as tall, but it isn’t vertically centered. That’s because the con‐
taining div is 6 em tall, which means the half-as-tall paragraph is 3 em tall. It has top
and bottom margins of 1 em, so its overall box height is 5 em. That means there is
actually 2 em of space between the bottom of the paragraph’s visible box and the div’s
bottom border, not 1 em. It might seem a bit odd at first glance, but it makes sense
once you work through the details.

Auto Heights
In the simplest case, a normal-flow block box with height: auto is rendered just
high enough to enclose the line boxes of its inline content (including text). If an auto-
height, normal-flow block box has only block-level children, then its default height
will be the distance from the top of the topmost block-level child’s outer border edge
to the bottom of the bottommost block-level child’s outer bottom border edge. There‐
fore, the margins of the child elements will “stick out” of the element that contains
them. (This behavior is explained in the next section.)

However, if the block-level element has either top or bottom padding, or top or bot‐
tom borders, then its height will be the distance from the top of the outer-top margin
edge of its topmost child to the outer-bottom margin edge of its bottommost child:

<div style="height: auto;
 background: silver;">
 <p style="margin-top: 2em; margin-bottom: 2em;">A paragraph!</p>
</div>
<div style="height: auto; border-top: 1px solid; border-bottom: 1px solid;
 background: silver;">
 <p style="margin-top: 2em; margin-bottom: 2em;">Another paragraph!</p>
</div>

Both of these behaviors are demonstrated in Figure 23.

If we changed the borders in the previous example to padding, the effect on the
height of the div would be the same: it would still enclose the paragraph’s margins
within it.

22 | Basic Visual Formatting

Figure 23. Auto heights with block-level children

Collapsing Vertical Margins
One other important aspect of vertical formatting is the collapsing of vertically adja‐
cent margins. Collapsing behavior applies only to margins. Padding and borders,
where they exist, never collapse with anything.

An unordered list, where list items follow one another, is a perfect example of margin
collapsing. Assume that the following is declared for a list that contains five items:

li {margin-top: 10px; margin-bottom: 15px;}

Each list item has a 10-pixel top margin and a 15-pixel bottom margin. When the list
is rendered, however, the distance between adjacent list items is 15 pixels, not 25.
This happens because, along the vertical axis, adjacent margins are collapsed. In other
words, the smaller of the two margins is eliminated in favor of the larger. Figure 24
shows the difference between collapsed and uncollapsed margins.

Correctly implemented user agents collapse vertically adjacent margins, as shown in
the first list in Figure 24, where there are 15-pixel spaces between each list item. The
second list shows what would happen if the user agent didn’t collapse margins, result‐
ing in 25-pixel spaces between list items.

Another word to use, if you don’t like “collapse,” is “overlap.” Although the margins
are not really overlapping, you can visualize what’s happening using the following
analogy.

Imagine that each element, such as a paragraph, is a small piece of paper with the
content of the element written on it. Around each piece of paper is some amount of
clear plastic, which represents the margins. The first piece of paper (say an h1 piece)
is laid down on the canvas. The second (a paragraph) is laid below it and then slid up
until the edge of one of the piece’s plastic touches the edge of the other’s paper. If the

Altering Element Display | 23

first piece of paper has half an inch of plastic along its bottom edge, and the second
has a third of an inch along its top, then when they slide together, the first piece’s
plastic will touch the top edge of the second piece of paper. The two are now done
being placed on the canvas, and the plastic attached to the pieces is overlapping.

Figure 24. Collapsed versus uncollapsed margins

Collapsing also occurs where multiple margins meet, such as at the end of a list.
Adding to the earlier example, let’s assume the following rules apply:

ul {margin-bottom: 15px;}
li {margin-top: 10px; margin-bottom: 20px;}
h1 {margin-top: 28px;}

The last item in the list has a bottom margin of 20 pixels, the bottom margin of the ul
is 15 pixels, and the top margin of a succeeding h1 is 28 pixels. So once the margins
have been collapsed, the distance between the end of the li and the beginning of the
h1 is 28 pixels, as shown in Figure 25.

Now, recall the examples from the previous section, where the introduction of a bor‐
der or padding on a containing block would cause the margins of its child elements to
be contained within it. We can see this behavior in operation by adding a border to
the ul element in the previous example:

24 | Basic Visual Formatting

ul {margin-bottom: 15px; border: 1px solid;}
li {margin-top: 10px; margin-bottom: 20px;}
h1 {margin-top: 28px;}

Figure 25. Collapsing in detail

With this change, the bottom margin of the li element is now placed inside its parent
element (the ul). Therefore, the only margin collapsing that takes place is between
the ul and the h1, as illustrated in Figure 26.

Figure 26. Collapsing (or not) with borders added to the mix

Negative Margins and Collapsing
Negative margins do have an impact on vertical formatting, and they affect how mar‐
gins are collapsed. If negative vertical margins are set, then the browser should take
the absolute maximum of both margins. The absolute value of the negative margin is
then subtracted from the positive margin. In other words, the negative is added to the
positive, and the resulting value is the distance between the elements. Figure 27 pro‐
vides two concrete examples.

Altering Element Display | 25

Figure 27. Examples of negative vertical margins

Notice the “pulling” effect of negative top and bottom margins. This is really no dif‐
ferent from the way that negative horizontal margins cause an element to push out‐
side of its parent. Consider:

p.neg {margin-top: -50px; margin-right: 10px;
 margin-left: 10px; margin-bottom: 0;
 border: 3px solid gray;}

<div style="width: 420px; background-color: silver; padding: 10px;
 margin-top: 50px; border: 1px solid;">
 <p class="neg">
 A paragraph.
 </p>

 A div.

</div>

As we see in Figure 28, the paragraph has simply been pulled upward by its negative
top margin. Note that the content of the div that follows the paragraph in the markup
has also been pulled upward 50 pixels. In fact, every bit of normal-flow content that
follows the paragraph is also pulled upward 50 pixels.

Figure 28. The effects of a negative top margin

26 | Basic Visual Formatting

Now compare the following markup to the situation shown in Figure 29:

p.neg {margin-bottom: -50px; margin-right: 10px;
 margin-left: 10px; margin-top: 0;
 border: 3px solid gray;}

<div style="width: 420px; margin-top: 50px;">
 <p class="neg">
 A paragraph.
 </p>
</div>
<p>
 The next paragraph.
</p>

Figure 29. The effects of a negative bottom margin

What’s really happening in Figure 29 is that the elements following the div are placed
according to the location of the bottom of the div. As you can see, the end of the div
is actually above the visual bottom of its child paragraph. The next element after the
div is the appropriate distance from the bottom of the div. This is expected, given the
rules we saw.

Now let’s consider an example where the margins of a list item, an unordered list, and
a paragraph are all collapsed. In this case, the unordered list and paragraph are
assigned negative margins:

li {margin-bottom: 20px;}
ul {margin-bottom: -15px;}
h1 {margin-top: -18px;}

The larger of the two negative margins (-18px) is added to the largest positive margin
(20px), yielding 20px - 18px = 2px. Thus, there are only two pixels between the bot‐
tom of the list item’s content and the top of the h1’s content, as we can see in Fig‐
ure 30.

When elements overlap each other due to negative margins, it’s hard to tell which ele‐
ments are on top. You may also have noticed that none of the examples in this section
use background colors. If they did, the background color of a following element
might overwrite their content. This is expected behavior, since browsers usually ren‐
der elements in order from beginning to end, so a normal-flow element that comes
later in the document can be expected to overwrite an earlier element, assuming the
two end up overlapping.

Altering Element Display | 27

Figure 30. Collapsing margins and negative margins, in detail

List Items
List items have a few special rules of their own. They are typically preceded by a
marker, such as a small dot or a number. This marker isn’t actually part of the list
item’s content area, so effects like those illustrated in Figure 31 are common.

CSS1 said very little about the placement and effects of these markers with regard to
the layout of a document. CSS2 introduced properties specifically designed to address
this issue, such as marker-offset. However, a lack of implementations and changes
in thinking caused this to be dropped from CSS2.1, and work is being done to rein‐
troduce the idea (if not the specific syntax) to CSS. Accordingly, the placement of
markers is largely beyond the control of authors, at least as of this writing.

The marker attached to a list item element can be either outside the content of the list
item or treated as an inline marker at the beginning of the content, depending on the
value of the property list-style-position. If the marker is brought inside, then the
list item will interact with its neighbors exactly like a block-level element, as illustra‐
ted in Figure 32.

If the marker stays outside the content, then it is placed some distance from the left
content edge of the content (in left-to-right languages). No matter how the list’s styles
are altered, the marker stays the same distance from the content edge. Occasionally,
the markers may be pushed outside of the list element itself, as we can see in Fig‐
ure 32.

Remember that list-item boxes define containing blocks for their ancestor boxes, just
like regular block boxes.

Inline Elements
After block-level elements, inline elements are the most common. Setting box prop‐
erties for inline elements takes us into more interesting territory than we’ve been so
far. Some good examples of inline elements are the em tag and the a tag, both of which
are nonreplaced elements, and images, which are replaced elements.

28 | Basic Visual Formatting

Figure 31. The content of list items

Figure 32. Markers inside and outside the list

Note that none of the behavior described in this section applies to table elements.
CSS2 introduced new properties and behaviors for handling tables and table content,
and these elements behave in ways fairly distinct from either block-level or inline for‐
matting. Table styling is beyond the scope of this book, as it’s surprisingly compli‐
cated and exists rather in a world of its own.

Nonreplaced and replaced elements are treated somewhat differently in the inline
context, and we’ll look at each in turn as we explore the construction of inline ele‐
ments.

Line Layout
First, you need to understand how inline content is laid out. It isn’t as simple and
straightforward as block-level elements, which just generate block boxes and usually
don’t allow anything to coexist with them. By contrast, look inside a block-level ele‐

Inline Elements | 29

ment, such as a paragraph. You may well ask, how did all those lines of text get there?
What controls their arrangement? How can I affect it?

In order to understand how lines are generated, first consider the case of an element
containing one very long line of text, as shown in Figure 33. Note that we’ve put a
border around the line by wrapping the entire line in a span element and then assign‐
ing it a border style:

span {border: 1px dashed black;}

Figure 33. A single-line inline element

Figure 33 shows the simplest case of an inline element contained by a block-level ele‐
ment. It’s no different in its way than a paragraph with two words in it. The only dif‐
ferences are that, in Figure 34, we have a few dozen words and most paragraphs don’t
contain an explicit inline element such as span.

In order to get from this simplified state to something more familiar, all we have to do
is determine how wide the element should be, and then break up the line so that the
resulting pieces will fit into the content width of the element. Therefore, we arrive at
the state shown in Figure 34.

Figure 34. A multiple-line inline element

Nothing has really changed. All we did was take the single line and break it into
pieces, and then stack those pieces on top of each other.

In Figure 34, the borders for each line of text also happen to coincide with the top
and bottom of each line. This is true only because no padding has been set for the
inline text. Notice that the borders actually overlap each other slightly; for example,
the bottom border of the first line is just below the top border of the second line. This
is because the border is actually drawn on the next pixel (assuming you’re using a

30 | Basic Visual Formatting

monitor) to the outside of each line. Since the lines are touching each other, their bor‐
ders will overlap as shown in Figure 34.

If we alter the span styles to have a background color, the actual placement of the
lines becomes quite clear. Consider Figure 35, which contains four paragraphs, each
with a different value of text-align and each having the backgrounds of its lines
filled in.

Figure 35. Showing lines in different alignments

As we can see, not every line reaches to the edge of its parent paragraph’s content
area, which has been denoted with a dotted gray border. For the left-aligned para‐
graph, the lines are all pushed flush against the left content edge of the paragraph,
and the end of each line happens wherever the line is broken. The reverse is true for
the right-aligned paragraph. For the centered paragraph, the centers of the lines are
aligned with the center of the paragraph.

In the last case, where the value of text-align is justify, each line is forced to be as
wide as the paragraph’s content area so that the line’s edges touch the content edges of
the paragraph. The difference between the natural length of the line and the width of
the paragraph is made up by altering the spacing between letters and words in each
line. Therefore, the value of word-spacing can be overridden when the text is justi‐
fied. (The value of letter-spacing cannot be overridden if it is a length value.)

Inline Elements | 31

That pretty well covers how lines are generated in the simplest cases. As you’re about
to see, however, the inline formatting model is far from simple.

Basic Terms and Concepts
Before we go any further, let’s review some basic terms of inline layout, which will be
crucial in navigating the following sections:

Anonymous text
This is any string of characters that is not contained within an inline element.
Thus, in the markup <p> I'm so happy!</p>, the sequences “ I’m ”
and “ happy!” are anonymous text. Note that the spaces are part of the text since
a space is a character like any other.

Em box
This is defined in the given font, otherwise known as the character box. Actual
glyphs can be taller or shorter than their em boxes. In CSS, the value of font-
size determines the height of each em box.

Content area
In nonreplaced elements, the content area can be one of two things, and the CSS
specification allows user agents to choose which one. The content area can be the
box described by the em boxes of every character in the element, strung together;
or it can be the box described by the character glyphs in the element. In this
book, I use the em box definition for simplicity’s sake. In replaced elements, the
content area is the intrinsic height of the element plus any margins, borders, or
padding.

Leading
Leading is the difference between the values of font-size and line-height. This
difference is actually divided in half and is applied equally to the top and bottom
of the content area. These additions to the content area are called, not surpris‐
ingly, half-leading. Leading is applied only to nonreplaced elements.

Inline box
This is the box described by the addition of the leading to the content area. For
nonreplaced elements, the height of the inline box of an element will be exactly
equal to the value for line-height. For replaced elements, the height of the
inline box of an element will be exactly equal to the content area, since leading is
not applied to replaced elements.

Line box
This is the shortest box that bounds the highest and lowest points of the inline
boxes that are found in the line. In other words, the top edge of the line box is

32 | Basic Visual Formatting

placed along the top of the highest inline box top, and the bottom of the line box
is placed along the bottom of the lowest inline box bottom.

CSS also contains a set of behaviors and useful concepts that fall outside of the above
list of terms and definitions:

• The content area is analogous to the content box of a block box.
• The background of an inline element is applied to the content area plus any pad‐

ding.
• Any border on an inline element surrounds the content area plus any padding

and border.
• Padding, borders, and margins on nonreplaced elements have no vertical effect

on inline elements or the boxes they generate; that is, they do not affect the height
of an element’s inline box (and thus the line box that contains the element).

• Margins and borders on replaced elements do affect the height of the inline box
for that element and, by implication, the height of the line box for the line that
contains the element.

One more thing to note: inline boxes are vertically aligned within the line according
to their values for the property vertical-align.

Before moving on, let’s look at a step-by-step process for constructing a line box,
which you can use to see how the various pieces of the line fit together to determine
its height.

Determine the height of the inline box for each element in the line by following these
steps:

1. Find the values of font-size and line-height for each inline nonreplaced ele‐
ment and text that is not part of a descendant inline element and combine them.
This is done by subtracting the font-size from the line-height, which yields
the leading for the box. The leading is split in half and applied to the top and bot‐
tom of each em box.

2. Find the values of height, margin-top, margin-bottom, padding-top, padding-
bottom, border-top-width, and border-bottom-width for each replaced ele‐
ment and add them together.

3. Figure out, for each content area, how much of it is above the baseline for the
overall line and how much of it is below the baseline. This is not an easy task: you
must know the position of the baseline for each element and piece of anonymous
text and the baseline of the line itself, and then line them all up. In addition, the
bottom edge of a replaced element sits on the baseline for the overall line.

Inline Elements | 33

4. Determine the vertical offset of any elements that have been given a value for
vertical-align. This will tell you how far up or down that element’s inline box
will be moved, and it will change how much of the element is above or below the
baseline.

5. Now that you know where all of the inline boxes have come to rest, calculate the
final line box height. To do so, just add the distance between the baseline and the
highest inline box top to the distance between the baseline and the lowest inline
box bottom.

Let’s consider the whole process in detail, which is the key to intelligently styling
inline content.

Inline Formatting
First, know that all elements have a line-height, whether it’s explicitly declared or
not. This value greatly influences the way inline elements are displayed, so let’s give it
due attention.

Now let’s establish how to determine the height of a line. A line’s height (or the height
of the line box) is determined by the height of its constituent elements and other con‐
tent, such as text. It’s important to understand that line-height actually affects inline
elements and other inline content, not block-level elements—at least, not directly. We
can set a line-height value for a block-level element, but the value will have a visual
impact only as it’s applied to inline content within that block-level element. Consider
the following empty paragraph, for example:

<p style="line-height: 0.25em;"></p>

Without content, the paragraph won’t have anything to display, so we won’t see any‐
thing. The fact that this paragraph has a line-height of any value—be it 0.25em or
25in—makes no difference without some content to create a line box.

We can certainly set a line-height value for a block-level element and have that
apply to all of the content within the block, whether or not the content is contained in
any inline elements. In a certain sense, then, each line of text contained within a
block-level element is its own inline element, whether or not it’s surrounded by tags.
If you like, picture a fictional tag sequence like this:

<p>
<line>This is a paragraph with a number of</line>
<line>lines of text which make up the</line>
<line>contents.</line>
</p>

Even though the line tags don’t actually exist, the paragraph behaves as if they did—
each line of text inherits styles from the paragraph. Therefore, you only bother to cre‐

34 | Basic Visual Formatting

ate line-height rules for block-level elements so you don’t have to explicitly declare
a line-height for all of their inline elements, fictional or otherwise.

The fictional line element actually clarifies the behavior that results from setting
line-height on a block-level element. According to the CSS specification, declaring
line-height on a block-level element sets a minimum line box height for the content
of that block-level element. Thus, declaring p.spacious {line-height: 24pt;}

means that the minimum heights for each line box is 24 points. Technically, content
can inherit this line height only if an inline element does so. Most text isn’t contained
by an inline element. Therefore, if you pretend that each line is contained by the fic‐
tional line element, the model works out very nicely.

Inline Nonreplaced Elements
Building on your formatting knowledge, let’s move on to the construction of lines
that contain only nonreplaced elements (or anonymous text). Then you’ll be in a
good position to understand the differences between nonreplaced and replaced ele‐
ments in inline layout.

Building the Boxes
First, for an inline nonreplaced element or piece of anonymous text, the value of
font-size determines the height of the content area. If an inline element has a font-
size of 15px, then the content area’s height is 15 pixels because all of the em boxes in
the element are 15 pixels tall, as illustrated in Figure 36.

Figure 36. Em boxes determine content area height

The next thing to consider is the value of line-height for the element, and the dif‐
ference between it and the value of font-size. If an inline nonreplaced element has a
font-size of 15px and a line-height of 21px, then the difference is six pixels. The
user agent splits the six pixels in half and applies half to the top and half to the bot‐
tom of the content area, which yields the inline box. This process is illustrated in Fig‐
ure 37.

Inline Elements | 35

Figure 37. Content area plus leading equals inline box

Let’s assume that the following is true:

<p style="font-size: 12px; line-height: 12px;">
This is text, some of which is emphasized, plus other text

which is <strong style="font-size: 24px;">strongly emphasized
and which is

larger than the surrounding text.
</p>

In this example, most of the text has a font-size of 12px, while the text in one inline
nonreplaced element has a size of 24px. However, all of the text has a line-height of
12px since line-height is an inherited property. Therefore, the strong element’s
line-height is also 12px.

Thus, for each piece of text where both the font-size and line-height are 12px, the
content height does not change (since the difference between 12px and 12px is zero),
so the inline box is 12 pixels high. For the strong text, however, the difference
between line-height and font-size is -12px. This is divided in half to determine
the half-leading (-6px), and the half-leading is added to both the top and bottom of
the content height to arrive at an inline box. Since we’re adding a negative number in
both cases, the inline box ends up being 12 pixels tall. The 12-pixel inline box is cen‐
tered vertically within the 24-pixel content height of the element, so the inline box is
actually smaller than the content area.

So far, it sounds like we’ve done the same thing to each bit of text, and that all the
inline boxes are the same size, but that’s not quite true. The inline boxes in the second
line, although they’re the same size, don’t actually line up because the text is all
baseline-aligned (see Figure 38).

Since inline boxes determine the height of the overall line box, their placement with
respect to each other is critical. The line box is defined as the distance from the top of
the highest inline box in the line to the bottom of the lowest inline box, and the top of
each line box butts up against the bottom of the line box for the preceding line. The
result shown in Figure 38 gives us the paragraph shown in Figure 39.

36 | Basic Visual Formatting

Figure 38. Inline boxes within a line

Figure 39. Line boxes within a paragraph

As we can see in Figure 39, the middle line is taller than the other two, but it still isn’t
big enough to contain all of the text within it. The anonymous text’s inline box deter‐
mines the bottom of the line box, while the top of the strong element’s inline box sets
the top of the line box. Because that inline box’s top is inside the element’s content
area, the contents of the element spill outside the line box and actually overlap other
line boxes. The result is that the lines of text look irregular.

In just a bit, we’ll explore ways to cope with this behavior and
methods for achieving consistent baseline spacing.

Vertical Alignment
If we change the vertical alignment of the inline boxes, the same height determination
principles apply. Suppose that we give the strong element a vertical alignment of 4px:

<p style="font-size: 12px; line-height: 12px;">
This is text, some of which is emphasized, plus other text

which is <strong style="font-size: 24px; vertical-align: 4px;">strongly
emphasized and that is

larger than the surrounding text.
</p>

That small change raises the strong element four pixels, which pushes up both its
content area and its inline box. Because the strong element’s inline box top was

Inline Elements | 37

already the highest in the line, this change in vertical alignment also pushes the top of
the line box upward by four pixels, as shown in Figure 40.

Figure 40. Vertical alignment affects line box height

Let’s consider another situation. Here, we have another inline element in the same
line as the strong text, and its alignment is other than the baseline:

<p style="font-size: 12px; line-height: 12px;">
This is text, some of which is emphasized,

plus other text that is <strong style="font-size: 24px;">strong
 and tall and is

larger than the surrounding text.
</p>

Now we have the same result as in our earlier example, where the middle line box is
taller than the other line boxes. However, notice how the “tall” text is aligned in Fig‐
ure 41.

Figure 41. Aligning an inline element to the line box

In this case, the top of the “tall” text’s inline box is aligned with the top of the line box.
Since the “tall” text has equal values for font-size and line-height, the content
height and inline box are the same. However, consider this:

<p style="font-size: 12px; line-height: 12px;">
This is text, some of which is emphasized,

plus other text that is <strong style="font-size: 24px;">strong
 and tall and is

38 | Basic Visual Formatting

larger than the surrounding text.
</p>

Since the line-height for the “tall” text is less than its font-size, the inline box for
that element is smaller than its content area. This tiny fact changes the placement of
the text itself since the top of its inline box must be aligned with the top of the line
box for its line. Thus, we get the result shown in Figure 42.

On the other hand, we could set the “tall” text to have a line-height that is actually
bigger than its font-size. For example:

<p style="font-size: 12px; line-height: 12px;">
This is text, some of which is emphasized, plus other text

that is <strong style="font-size: 24px;">strong
and tall
and that is

larger than the surrounding text.
</p>

Figure 42. Text protruding from the line box (again)

Since we’ve given the “tall” text a line-height of 18px, the difference between line-
height and font-size is six pixels. The half-leading of three pixels is added to the
content area and results in an inline box that is 18 pixels tall. The top of this inline
box aligns with the top of the line box. Similarly, the vertical-align value bottom
will align the bottom of an inline element’s inline box with the bottom of the line box.

In relation to the terms we’ve been using in this chapter, the effects of the assorted
keyword values of vertical-align are:

top

Aligns the top of the element’s inline box with the top of the containing line box

bottom

Aligns the bottom of the element’s inline box with the bottom of the containing
line box

text-top

Aligns the top of the element’s inline box with the top of the parent’s content area

Inline Elements | 39

text-bottom

Aligns the bottom of the element’s inline box with the bottom of the parent’s con‐
tent area

middle

Aligns the vertical midpoint of the element’s inline box with 0.5ex above the
baseline of the parent

super

Moves the content area and inline box of the element upward. The distance is not
specified and may vary by user agent

sub

The same as super, except the element is moved downward instead of upward

<percentage>

Shifts the element up or down the distance defined by taking the declared per‐
centage of the element’s value for line-height

Managing the line-height
In previous sections, we saw that changing the line-height of an inline element can
cause text from one line to overlap another. In each case, though, the changes were
made to individual elements. So how can we affect the line-height of elements in a
more general way in order to keep content from overlapping?

One way to do this is to use the em unit in conjunction with an element whose font-
size has changed. For example:

p {line-height: 1em;}
big {font-size: 250%; line-height: 1em;}

<p>
Not only does this paragraph have "normal" text, but it also

contains a line in which <big>some big text</big> is found.

This large text helps illustrate our point.
</p>

By setting a line-height for the big element, we increase the overall height of the
line box, providing enough room to display the big element without overlapping any
other text and without changing the line-height of all lines in the paragraph. We
use a value of 1em so that the line-height for the big element will be set to the same
size as big’s font-size. Remember, line-height is set in relation to the font-size of
the element itself, not the parent element. The results are shown in Figure 43.

40 | Basic Visual Formatting

Figure 43. Assigning the line-height property to inline elements

Make sure you really understand the previous sections, because things will get trickier
when we try to add borders. Let’s say we want to put five-pixel borders around any
hyperlink:

a:link {border: 5px solid blue;}

If we don’t set a large enough line-height to accommodate the border, it will be in
danger of overwriting other lines. We could increase the size of the inline box for
unvisited links using line-height, as we did for the big element in the earlier exam‐
ple; in this case, we’d just need to make the value of line-height 10 pixels larger than
the value of font-size for those links. However, that will be difficult if we don’t actually
know the size of the font in pixels.

Another solution is to increase the line-height of the paragraph. This will affect
every line in the entire element, not just the line in which the bordered hyperlink
appears:

p {line-height: 1.8em;}
a:link {border: 5px solid blue;}

Because there is extra space added above and below each line, the border around the
hyperlink doesn’t impinge on any other line, as we can see in Figure 44.

This approach works here, of course, because all of the text is the same size. If there
were other elements in the line that changed the height of the line box, our border
situation might also change. Consider the following:

p {font-size: 14px; line-height: 24px;}
a:link {border: 5px solid blue;}
big {font-size: 150%; line-height: 1.5em;}

Given these rules, the height of the inline box of a big element within a paragraph
will be 31.5 pixels (14 × 1.5 × 1.5), and that will also be the height of the line box. In
order to keep baseline spacing consistent, we must make the p element’s line-height
equal to or greater than 32px.

Inline Elements | 41

Figure 44. Increasing line-height to leave room for inline borders

Baselines and line heights
The actual height of each line box depends on the way its component elements line
up with one another. This alignment tends to depend very much on where the base‐
line falls within each element (or piece of anonymous text) because that location
determines how the inline boxes are arranged. The placement of the baseline within
each em box is different for every font. This information is built into the font files and
cannot be altered by any means other than directly editing the font files.

Thus, consistent baseline spacing tends to be more of an art than a science. If you
declare all of your font sizes and line heights using a single unit, such as ems, then
you have a reliable chance of consistent baseline spacing. If you mix units, however,
that feat becomes a great deal more difficult, if not impossible. As of this writing,
there are proposals for properties that would let authors enforce consistent baseline
spacing regardless of the inline content, which would greatly simplify certain aspects
of online typography. None of these proposed properties have been implemented
though, which makes their adoption a distant hope at best.

Scaling Line Heights
The best way to set line-height, as it turns out, is to use a raw number as the value.
This method is the best because the number becomes the scaling factor, and that fac‐
tor is an inherited, not a computed, value. Let’s say we want the line-height`s of
all elements in a document to be one and a half times their `font-size.
We would declare:

body {line-height: 1.5;}

This scaling factor of 1.5 is passed down from element to element, and, at each level,
the factor is used as a multiplier of the font-size of each element. Therefore, the fol‐
lowing markup would be displayed as shown in Figure 45:

p {font-size: 15px; line-height: 1.5;}
small {font-size: 66%;}
big {font-size: 200%;}

42 | Basic Visual Formatting

<p>This paragraph has a line-height of 1.5 times its font-size. In addition,
any elements within it <small>such as this small element</small> also have
line-heights 1.5 times their font-size...and that includes <big>this big
element right here</big>. By using a scaling factor, line-heights scale
to match the font-size of any element.</p>

In this example, the line height for the small element turns out to be 15 pixels, and
for the big element, it’s 45 pixels. (These numbers may seem excessive, but they’re in
keeping with the overall page design.) Of course, if we don’t want our big text to gen‐
erate too much extra leading, we can give it a line-height value, which will override
the inherited scaling factor:

p {font-size: 15px; line-height: 1.5;}
small {font-size: 66%;}
big {font-size: 200%; line-height: 1em;}

Figure 45. Using a scaling factor for line-height

Another solution—possibly the simplest of all—is to set the styles such that lines are
no taller than absolutely necessary to hold their content. This is where we might use a
line-height of 1.0. This value will multiply itself by every font-size to get the same
value as the font-size of every element. Thus, for every element, the inline box will
be the same as the content area, which will mean the absolute minimum size neces‐
sary is used to contain the content area of each element.

Most fonts still display a little bit of space between the lines of character glyphs
because characters are usually smaller than their em boxes. The exception is script
(“cursive”) fonts, where character glyphs are usually larger than their em boxes.

Adding Box Properties
As you’re aware from previous discussions, padding, margins, and borders may all be
applied to inline nonreplaced elements. These aspects of the inline element do not
influence the height of the line box at all. If you were to apply some borders to a span
element without any margins or padding, you’d get results such as those shown in
Figure 46.

Inline Elements | 43

The border edge of inline elements is controlled by the font-size, not the line-
height. In other words, if a span element has a font-size of 12px and a line-height
of 36px, its content area is 12px high, and the border will surround that content area.

Alternatively, we can assign padding to the inline element, which will push the bor‐
ders away from the text itself:

span {padding: 4px;}

Note that this padding does not alter the actual shape of the content height, and so it
will not affect the height of the inline box for this element. Similarly, adding borders
to an inline element will not affect the way line boxes are generated and laid out, as
illustrated in Figure 47.

Figure 46. Inline borders and line-box layout

Figure 47. Padding and borders do not alter line-height

As for margins, they do not, practically speaking, apply to the top and bottom of an
inline nonreplaced element, as they don’t affect the height of the line box. The ends of
the element are another story.

Recall the idea that an inline element is basically laid out as a single line and then bro‐
ken up into pieces. So, if we apply margins to an inline element, those margins will
appear at its beginning and end: these are the left and right margins, respectively.

44 | Basic Visual Formatting

Padding also appears at the edges. Thus, although padding and margins (and bor‐
ders) do not affect line heights, they can still affect the layout of an element’s content
by pushing text away from its ends. In fact, negative left and right margins can pull
text closer to the inline element, or even cause overlap, as Figure 48 shows.

Think of an inline element as a strip of paper with some plastic surrounding it. Dis‐
playing the inline element on multiple lines is like slicing up the strip into smaller
strips. However, no extra plastic is added to each smaller strip. The only plastic is that
which was on the strip to begin with, so it appears only at the beginning and end of
the original ends of the paper strip (the inline element). At least, that’s the default
behavior, but as we’ll soon see, there is another option.

Figure 48. Padding and margins on the ends of an inline element

So, what happens when an inline element has a background and enough padding to
cause the lines’ backgrounds to overlap? Take the following situation as an example:

p {font-size: 15px; line-height: 1em;}
p span {background: #FAA; padding-top: 10px; padding-bottom: 10px;}

All of the text within the span element will have a content area 15 pixels tall, and
we’ve applied 10 pixels of padding to the top and bottom of each content area. The
extra pixels won’t increase the height of the line box, which would be fine, except
there is a background color. Thus, we get the result shown in Figure 49.

CSS 2.1 explicitly states that the line boxes are drawn in document order: “This will
cause the borders on subsequent lines to paint over the borders and text of previous
lines.” The same principle applies to backgrounds as well, as Figure 49 shows. CSS2,
on the other hand, allowed user agents “to ‘clip’ the border and padding areas (i.e.,
not render them).” Therefore, the results may depend greatly on which specification
the user agent follows.

Inline Elements | 45

Figure 49. Overlapping inline backgrounds

Changing Breaking Behavior
In the previous section, we saw that when an inline nonreplaced element is broken
across multiple lines, it’s treated as if it were one long single-line element that’s sliced
into smaller boxes, one slice per line break. That’s actually just the default behavior,
and it can be changed via the property box-decoration-break.

box-decoration-break

Values: slice | clone | inherit

Initial value: slice

Applies to: All elements

Inherited: No

Computed value: As specified

The default value, slice, is what we saw in the previous section. The other value,
clone, causes each fragement of the element to be drawn as if it were a standalone
box. What does that mean? Compare the two examples in Figure 50, in which exactly
the same markup and styles are treated as either sliced or cloned.

Many of the differences are pretty apparent, but a few are perhaps more subtle.
Among the obvious effects are the application of padding to each element’s fragment,
including at the ends where the linebreaks occurred. Similarly, the border is drawn
around each fragment individually, instead of being broken up.

46 | Basic Visual Formatting

Figure 50. Sliced and cloned inline fragments

More subtly, notice how the background-image positioning changes between the two.
In the sliced version, background images are sliced along with everything else, mean‐
ing that only one of the fragments contains the origin image. In the cloned version,
however, each background acts as its own copy, so each has its own origin image.
This means, for example, that even if we have a nonrepeated background image, it
will appear once in each fragment instead of only in one fragment.

The box-decoration-break property will most often be used with inline boxes, but it
actually applies in any situation where there’s a break in an element—for example,
when a page break interrupts an element in paged media. In such a case, each frag‐
ment is a separate slice. If we set box-decoration-break: clone, then each box frag‐
ment will be treated as a copy when it comes to borders, padding, backgrounds, and
so on. The same holds true in multicolumn layout: if an element is split by a column
break, the value of box-decoration-break will affect how it is rendered.

Glyphs Versus Content Area
Even in cases where you try to keep inline nonreplaced element backgrounds from
overlapping, it can still happen, depending on which font is in use. The problem lies
in the difference between a font’s em box and its character glyphs. Most fonts, as it
turns out, don’t have em boxes whose heights match the character glyphs.

That may sound very abstract, but it has practical consequences. In CSS2.1, we find
the following: “the height of the content area should be based on the font, but this

Inline Elements | 47

specification does not specify how. A user agent may…use the em box or the maxi‐
mum ascender and descender of the font. (The latter would ensure that glyphs with
parts above or below the em box still fall within the content area, but leads to differ‐
ently sized boxes for different fonts.)”

In other words, the “painting area” of an inline nonreplaced element is left to the user
agent. If a user agent takes the em box to be the height of the content area, then the
background of an inline nonreplaced element will be equal to the height of the em
box (which is the value of font-size). If a user agent uses the maximum ascender
and descender of the font, then the background may be taller or shorter than the em
box. Therefore, you could give an inline nonreplaced element a line-height of 1em
and still have its background overlap the content of other lines.

Inline Replaced Elements
Inline replaced elements, such as images, are assumed to have an intrinsic height and
width; for example, an image will be a certain number of pixels high and wide. There‐
fore, a replaced element with an intrinsic height can cause a line box to become taller
than normal. This does not change the value of line-height for any element in the
line, including the replaced element itself. Instead, the line box is simply made tall
enough to accommodate the replaced element, plus any box properties. In other
words, the entirety of the replaced element—content, margins, borders, and padding
—is used to define the element’s inline box. The following styles lead to one such
example, as shown in Figure 51:

p {font-size: 15px; line-height: 18px;}
img {height: 30px; margin: 0; padding: 0; border: none;}

Despite all the blank space, the effective value of line-height has not changed, either
for the paragraph or the image itself. line-height simply has no effect on the image’s
inline box. Because the image in Figure 51 has no padding, margins, or borders, its
inline box is equivalent to its content area, which is, in this case, 30 pixels tall.

Nonetheless, an inline replaced element still has a value for line-height. Why? In
the most common case, it needs the value in order to correctly position the element if
it’s been vertically aligned. Recall that, for example, percentage values for vertical-
align are calculated with respect to an element’s line-height. Thus:

p {font-size: 15px; line-height: 18px;}
img {vertical-align: 50%;}

<p>the image in this sentence
will be raised 9 pixels.</p>

48 | Basic Visual Formatting

Figure 51. Replaced elements can increase the height of the line box but not the value of
line-height

The inherited value of line-height causes the image to be raised nine pixels instead
of some other number. Without a value for line-height, it wouldn’t be possible to
perform percentage-value vertical alignments. The height of the image itself has no
relevance when it comes to vertical alignment; the value of line-height is all that
matters.

However, for other replaced elements, it might be important to pass on a line-
height value to descendant elements within that replaced element. An example
would be an SVG image, which uses CSS to style any text found within the image.

Adding Box Properties
After everything we’ve just been through, applying margins, borders, and padding to
inline replaced elements almost seems simple.

Padding and borders are applied to replaced elements as usual; padding inserts space
around the actual content and the border surrounds the padding. What’s unusual
about the process is that these two things actually influence the height of the line box
because they are part of the inline box of an inline replaced element (unlike inline
nonreplaced elements). Consider Figure 52, which results from the following styles:

img {height: 50px; width: 50px;}
img.one {margin: 0; padding: 0; border: 3px dotted;}
img.two {margin: 10px; padding: 10px; border: 3px solid;}

Note that the first line box is made tall enough to contain the image, whereas the sec‐
ond is tall enough to contain the image, its padding, and its border.

Inline Elements | 49

Figure 52. Adding padding, borders, and margins to an inline replaced element increases
its inline box

Margins are also contained within the line box, but they have their own wrinkles. Set‐
ting a positive margin is no mystery; it will simply make the inline box of the replaced
element taller. Setting negative margins, meanwhile, has a similar effect: it decreases
the size of the replaced element’s inline box. This is illustrated in Figure 53, where we
can see that a negative top margin is pulling down the line above the image:

img.two {margin-top: -10px;}

Negative margins operate the same way on block-level elements, of course. In this
case, the negative margins make the replaced element’s inline box smaller than ordi‐
nary. Negative margins are the only way to cause inline replaced elements to bleed
into other lines, and it’s why the boxes that replaced inline elements generate are
often assumed to be inline-block.

Figure 53. The effect of negative margins on inline replaced elements

50 | Basic Visual Formatting

Replaced Elements and the Baseline
You may have noticed by now that, by default, inline replaced elements sit on the
baseline. If you add bottom padding, a margin, or a border to the replaced element,
then the content area will move upward (assuming box-sizing: content-box).
Replaced elements do not actually have baselines of their own, so the next best thing
is to align the bottom of their inline boxes with the baseline. Thus, it is actually the
bottom outer margin edge that is aligned with the baseline, as illustrated in Figure 54.

Figure 54. Inline replaced elements sit on the baseline

This baseline alignment leads to an unexpected (and unwelcome) consequence: an
image placed in a table cell all by itself should make the table cell tall enough to con‐
tain the line box containing the image. The resizing occurs even if there is no actual
text, not even whitespace, in the table cell with the image. Therefore, the common
sliced-image and spacer-GIF designs of years past can fall apart quite dramatically in
modern browsers. (I know that you don’t create such things, but this is still a handy
context in which to explain this behavior.) Consider the simplest case:

td {font-size: 12px;}

<td></td>

Under the CSS inline formatting model, the table cell will be 12 pixels tall, with the
image sitting on the baseline of the cell. So there might be three pixels of space below
the image and eight above it, although the exact distances would depend on the font
family used and the placement of its baseline.

This behavior is not confined to images inside table cells; it will also happen in any
situation where an inline replaced element is the sole descendant of a block-level or
table-cell element. For example, an image inside a div will also sit on the baseline.

Inline Elements | 51

The most common workaround for such circumstances is simply to make images in
table cells block-level so that they do not generate a line box. For example:

td {font-size: 12px;}
img.block {display: block;}

<td></td>

Another possible fix would be to make the font-size and line-height of the enclos‐
ing table cell 1px, which would make the line box only as tall as the one-pixel image
within it.

As of this writing, many browsers can ignore this CSS inline for‐
matting model in this context. See the article “Images, Tables, and
Mysterious Gaps” for more information.

Here’s another interesting effect of inline replaced elements sitting on the baseline: if
we apply a negative bottom margin, the element will actually get pulled downward
because the bottom of its inline box will be higher than the bottom of its content area.
Thus, the following rule would have the result shown in Figure 55:

p img {margin-bottom: -10px;}

Figure 55. Pulling inline replaced elements down with a negative bottom margin

This can easily cause a replaced element to bleed into following lines of text, as Fig‐
ure 55 shows.

52 | Basic Visual Formatting

http://bit.ly/imgs-tables-gaps
http://bit.ly/imgs-tables-gaps

Inline with History
The CSS inline formatting model may seem needlessly complex and, in some ways,
even contrary to author expectations. Unfortunately, the complexity is the result of
creating a style language that is both backward-compatible with pre-CSS web brows‐
ers and leaves the door open for future expansion into more sophisticated territory—
an awkward blend of past and present. It’s also the result of making some sensible
decisions that avoid one undesirable effect while causing another.

For example, the “spreading apart” of lines of text by image and vertically aligned text
owes its roots to the way Mosaic 1.0 behaved. In that browser, any image in a para‐
graph would simply push open enough space to contain the image. That’s a good
behavior, since it prevents images from overlapping text in other lines. So when CSS
introduced ways to style text and inline elements, its authors endeavored to create a
model that did not (by default) cause inline images to overlap other lines of text.
However, the same model also meant that a superscript element (sup), for example,
would likely also push apart lines of text.

Such effects annoy some authors who want their baselines to be an exact distance
apart and no further, but consider the alternative. If line-height forced baselines to
be exactly a specified distance apart, we’d easily end up with inline replaced and verti‐
cally shifted elements that overlap other lines of text—which would also annoy
authors. Fortunately, CSS offers enough power to create your desired effect in one
way or another, and the future of CSS holds even more potential.

Inline-Block Elements
As befits the hybrid look of the value name inline-block, inline-block elements are
indeed a hybrid of block-level and inline elements. This display value was introduced
in CSS2.1.

An inline-block element relates to other elements and content as an inline box. In
other words, it’s laid out in a line of text just as an image would be, and in fact, inline-
block elements are formatted within a line as a replaced element. This means the bot‐
tom of the inline-block element will rest on the baseline of the text line by default and
will not linebreak within itself.

Inside the inline-block element, the content is formatted as though the element were
block-level. The properties width and height apply to it (and thus so does box-
sizing), as they do to any block-level or inline replaced element, and those properties
will increase the height of the line if they are taller than the surrounding content.

Inline Elements | 53

Let’s consider some example markup that will help make this clearer:

<div id="one">
This text is the content of a block-level level element. Within this
block-level element is another block-level element. <p>Look, it's a block-level
paragraph.</p> Here's the rest of the DIV, which is still block-level.
</div>
<div id="two">
This text is the content of a block-level level element. Within this
block-level element is an inline element. <p>Look, it's an inline
paragraph.</p> Here's the rest of the DIV, which is still block-level.
</div>
<div id="three">
This text is the content of a block-level level element. Within this
block-level element is an inline-block element. <p>Look, it's an inline-block
paragraph.</p> Here's the rest of the DIV, which is still block-level.
</div>

To this markup, we apply the following rules:

div {margin: 1em 0; border: 1px solid;}
p {border: 1px dotted;}
div#one p {display: block; width: 6em; text-align: center;}
div#two p {display: inline; width: 6em; text-align: center;}
div#three p {display: inline-block; width: 6em; text-align: center;}

The result of this stylesheet is depicted in Figure 56.

Notice that in the second div, the inline paragraph is formatted as normal inline con‐
tent, which means width and text-align get ignored (since they do not apply to
inline elements). For the third div, however, the inline-block paragraph honors both
properties, since it is formatted as a block-level element. That paragraph’s margins
also force its line of text to be much taller, since it affects line height as though it were
a replaced element.

If an inline-block element’s width is not defined or explicitly declared auto, the ele‐
ment box will shrink to fit the content. That is, the element box is exactly as wide as
necessary to hold the content, and no wider. Inline boxes act the same way, although
they can break across lines of text, whereas inline-block elements cannot. Thus, we
have the following rule, when applied to the previous markup example:

div#three p {display: inline-block; height: 4em;}

will create a tall box that’s just wide enough to enclose the content, as shown in Fig‐
ure 57.

54 | Basic Visual Formatting

Figure 56. The behavior of an inline-block element

Inline-block elements can be useful if, for example, we have a set of five hyperlinks
that we want to be equal width within a toolbar. To make them all 20% the width of
their parent element, but still leave them inline, declare:

nav a {display: inline-block; width: 20%;}

Flexible-box layout is another way to achieve this effect, and is
probably better suited to it in most if not all cases.

Inline Elements | 55

Figure 57. Autosizing of an inline-block element

Run-in Elements
CSS2 introduced the value run-in, another interesting block/inline hybrid that can
make some block-level elements an inline part of a following element. This ability is
useful for certain heading effects that are quite common in print typography, where a
heading will appear as part of a paragraph of text.

In CSS, you can make an element run-in simply by changing its display value and by
making the next element box block-level. Note that I’m talking about boxes here, not
the elements themselves. In other words, it doesn’t matter if an element is block or
inline. All that matters is the box that element generates. A strong element set to
display: block generates a block-level box; a paragraph set to display: inline
generates an inline box.

So, to rephrase this: if an element generates a run-in box, and a block box follows that
box, then the run-in element will be an inline box at the beginning of the block box.
For example:

56 | Basic Visual Formatting

<h3 style="display: run-in; border: 1px dotted; font-size: 125%;
font-weight: bold;">Run-in Elements</h3>
<p style="border-top: 1px solid black; padding-top: 0.5em;">
Another interesting block/inline hybrid is the value <code>run-in</code>,
introduced in CSS2, which has the ability to take block-level elements and make
them an inline part of a following element. This is useful for certain heading
effects that are quite common in print typography, where a heading will appear
as part of a paragraph of text.
</p>

Since the p element following the h3 generates a block-level box, the h3 element will
be turned into an inline element at the beginning of the p element’s content, as illus‐
trated in Figure 58.

Figure 58. Making a heading run-in

Note how the borders of the two elements are placed. The effect of using run-in in
this situation is exactly the same as if we’d used this markup instead:

<p style="border-top: 1px solid black; padding-top: 0.5em;">
Run-in
Elements Another interesting block/inline hybrid is the value
<code>run-in</code>, introduced in CSS2, which has the ability to take block-
level elements and make them an inline part of a following element. This is
useful for certain heading effects that are quite common in print typography,
where a heading will appear as part of a paragraph of text.
</p>

However, there is a slight difference between run-in boxes and the markup example.
Even though run-in boxes are formatted as inline boxes within another element, they
still inherit properties from their parent element in the document, not the element
into which they’re placed. Let’s extend our example to include an enclosing div and
some color:

<div style="color: silver;">
<h3 style="display: run-in; border: 1px dotted; font-size: 125%;
font-weight: bold;">Run-in Elements</h3>
<p style="border-top: 1px solid black; padding-top: 0.5em; color: black;">
Another interesting block/inline hybrid is the value <code>run-in</code>,
introduced in CSS2, which has the ability to take block-level elements and make
them an inline part of a following element.
</p>
</div>

Inline Elements | 57

In this situation, the h3 will be silver, not black, as illustrated in Figure 59. That’s
because it inherits the color value from its parent element before it gets inserted into
the paragraph.

Figure 59. Run-in elements inherit from their source parents

The important thing to remember is that run-in will work only if the box after the
run-in box is block-level. If it is not, then the run-in box itself will be made block-
level. Thus, given the following markup, the h3 will remain or even become block-
level, since the display value for the table element is (oddly enough) table:

<h3 style="display: run-in;">Prices</h3>
<table>
<tr><th>Apples</th><td>$0.59</td></tr>
<tr><th>Peaches</th><td>$0.79</td></tr>
<tr><th>Pumpkin</th><td>$1.29</td></tr>
<tr><th>Pie</th><td>$6.99</td></tr>
</table>

It’s unlikely that an author would ever apply the value run-in to a naturally inline ele‐
ment, but if this happens, the element will most likely generate a block-level box. For
example, the em element in the following markup would become block-level because a
block-level box does not follow it:

<p>
This is a really odd thing to do, but you could do it
if you were so inclined.
</p>

At the time of this writing, very few browsers offer support for
run-in.

Computed Values
The computed value of display can change if an element is floated or positioned. It
can also change when declared for the root element. In fact, the values display,
position, and float interact in interesting ways.

58 | Basic Visual Formatting

If an element is absolutely positioned, the value of float is set to none. For either
floated or absolutely positioned elements, the computed value of display is deter‐
mined by the declared value, as shown in Table 1.

Table 1. Computed display values for floated or positioned elements

Declared value Computed value

inline-table table

inline, run-in, table-row-group, table-column, table-column-group, table-
header-group, table-footer-group, table-row, table-cell, table-caption,
inline-block

block

All others As specified

In the case of the root element, declaring either of the values inline-table or table
results in a computed value of table, whereas declaring none results in the same
computed value. All other display values are computed to be block.

Summary
Although some aspects of the CSS formatting model may seem counterintuitive at
first, they begin to make sense the more one works with them. In many cases, rules
that seem nonsensical or even idiotic turn out to exist in order to prevent bizarre or
otherwise undesirable document displays. Block-level elements are in many ways easy
to understand, and affecting their layout is typically a simple task. Inline elements, on
the other hand, can be trickier to manage, as a number of factors come into play, not
least of which is whether the element is replaced or nonreplaced.

Summary | 59

About the Author
Eric A. Meyer has been working with the Web since late 1993 and is an internation‐
ally recognized expert on the subjects of HTML, CSS, and web standards. A widely
read author, he is also the founder of Complex Spiral Consulting, which counts
among its clients America Online; Apple Computer, Inc.; Wells Fargo Bank; and Mac‐
romedia, which described Eric as “a critical partner in our efforts to transform Mac‐
romedia Dreamweaver MX 2004 into a revolutionary tool for CSS-based design.”

Beginning in early 1994, Eric was the visual designer and campus web coordinator for
the Case Western Reserve University website, where he also authored a widely
acclaimed series of three HTML tutorials and was project coordinator for the online
version of the Encyclopedia of Cleveland History and the Dictionary of Cleveland Biog‐
raphy, the first encyclopedia of urban history published fully and freely on the Web.

Author of Eric Meyer on CSS and More Eric Meyer on CSS (New Riders), CSS: The
Definitive Guide (O’Reilly), and CSS2.0 Programmer’s Reference (Osborne/McGraw-
Hill), as well as numerous articles for the O’Reilly Network, Web Techniques, and
Web Review, Eric also created the CSS Browser Compatibility Charts and coordinated
the authoring and creation of the W3C’s official CSS Test Suite. He has lectured to a
wide variety of organizations, including Los Alamos National Laboratory, the New
York Public Library, Cornell University, and the University of Northern Iowa. Eric
has also delivered addresses and technical presentations at numerous conferences,
among them An Event Apart (which he cofounded), the IW3C2 WWW series, Web
Design World, CMP, SXSW, the User Interface conference series, and The Other
Dreamweaver Conference.

In his personal time, Eric acts as list chaperone of the highly active css-discuss mail‐
ing list, which he cofounded with John Allsopp of Western Civilisation, and which is
now supported by evolt.org. Eric lives in Cleveland, Ohio, which is a much nicer city
than you’ve been led to believe. For nine years he was the host of “Your Father’s Old‐
smobile,” a big-band radio show heard weekly on WRUW 91.1 FM in Cleveland.

You can find more detailed information on Eric’s personal web page.

Colophon
The animals on the cover of Basic Visual Formatting in CSS are salmon (salmonidae),
which is a family of fish consisting of many different species. Two of the most com‐
mon salmon are the Pacific salmon and the Atlantic salmon.

Pacific salmon live in the northern Pacific Ocean off the coasts of North America and
Asia. There are five subspecies of Pacific salmon, with an average weight of 10 to 30
pounds. Pacific salmon are born in the fall in freshwater stream gravel beds, where

http://www.complexspiral.com
http://bit.ly/css-tdg-3e
http://bit.ly/css-tdg-3e
http://www.css-discuss.org
http://www.css-discuss.org
http://evolt.org
http://www.meyerweb.com/eric

they incubate through the winter and emerge as inch-long fish. They live for a year or
two in streams or lakes and then head downstream to the ocean. There they live for a
few years, before heading back upstream to their exact place of birth to spawn and
then die.

Atlantic salmon live in the northern Atlantic Ocean off the coasts of North America
and Europe. There are many subspecies of Atlantic salmon, including the trout and
the char. Their average weight is 10 to 20 pounds. The Atlantic salmon family has a
life cycle similar to that of its Pacific cousins, and also travels from freshwater gravel
beds to the sea. A major difference between the two, however, is that the Atlantic sal‐
mon does not die after spawning; it can return to the ocean and then return to the
stream to spawn again, usually two or three times.

Salmon, in general, are graceful, silver-colored fish with spots on their backs and fins.
Their diet consists of plankton, insect larvae, shrimp, and smaller fish. Their unusu‐
ally keen sense of smell is thought to help them navigate from the ocean back to the
exact spot of their birth, upstream past many obstacles. Some species of salmon
remain landlocked, living their entire lives in freshwater.

Salmon are an important part of the ecosystem, as their decaying bodies provide fer‐
tilizer for streambeds. Their numbers have been dwindling over the years, however.
Factors in the declining salmon population include habitat destruction, fishing, dams
that block spawning paths, acid rain, droughts, floods, and pollution.

The cover image is a 19th-century engraving from the Dover Pictorial Archive. The
cover fonts are URW Typewriter and Guardian Sans. The text font is Adobe Minion
Pro; the heading font is Adobe Myriad Condensed; and the code font is Dalton
Maag’s Ubuntu Mono.

	Copyright
	Table of Contents
	Preface
	Conventions Used in This Book
	Safari® Books Online
	How to Contact Us

	Basic Visual Formatting
	Basic Boxes
	A Quick Refresher
	The Containing Block

	Altering Element Display
	Changing Roles
	Block Boxes
	Horizontal Formatting
	Horizontal Properties
	Using auto
	More Than One auto
	Negative Margins
	Percentages
	Replaced Elements
	Vertical Formatting
	Vertical Properties
	Percentage Heights
	Auto Heights
	Collapsing Vertical Margins
	Negative Margins and Collapsing
	List Items

	Inline Elements
	Line Layout
	Basic Terms and Concepts
	Inline Formatting
	Inline Nonreplaced Elements
	Building the Boxes
	Vertical Alignment
	Managing the line-height
	Scaling Line Heights
	Adding Box Properties
	Changing Breaking Behavior
	Glyphs Versus Content Area
	Inline Replaced Elements
	Adding Box Properties
	Replaced Elements and the Baseline
	Inline-Block Elements
	Run-in Elements
	Computed Values

	Summary

	About the Author

